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Abstract. We introduce an abstract definition of pattern search methods for solving nonlinear
unconstrained optimization problems. Our definition unifies an important collection of optimization
methods that neither compute nor explicitly approximate derivatives. We exploit our characterization
of pattern search methods to establish a global convergence theory that does not enforce a notion of
sufficient decrease. Our analysis is possible because the iterates of a pattern search method lie on a
scaled, translated integer lattice. This allows us to relax the classical requirements on the acceptance
of the step, at the expense of stronger conditions on the form of the step, and still guarantee global
convergence.
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1. Introduction. We consider the familiar problem of minimizing a continu-
ously differentiable function f : Rn → R. Direct search methods for this problem
are methods that neither compute nor explicitly approximate derivatives of f . Our
interest is in a particular subset of direct search methods that we will call pattern
search methods. Our purpose is to generalize these methods and to present a global
convergence theory for them. To our knowledge, this is the first convergence result
for some of these methods and the first general convergence theory for all of them.

Examples of pattern search methods include such classical direct search algo-
rithms as coordinate search with fixed step sizes, evolutionary operation using facto-
rial designs (first proposed by G. E. P. Box [2, 3, 13]), and the original pattern search
algorithm of Hooke and Jeeves [7]. A more recent example is the multidirectional
search algorithm of Dennis and Torczon [6, 15]. For some time, it has been apparent
to us that the unifying theme that distinguishes these algorithms from other direct
search methods is that each of them performs a search using a “pattern” of points
that is independent of the objective function f . This informal insight is the basis for
our general definition of pattern search methods—it turns out that each of the above
pattern search methods is an instance of our general model.

Formally, our definition of pattern search methods requires the existence of a
lattice T such that if {x1, . . . , xN} are the first N iterates generated by a pattern
search method, then there exists a scale factor φN such that the steps {x1 − x0, x2 −
x1, . . . , xN − xN−1} all lie in the scaled lattice φNT . The lattice depends on the
pattern that defines the individual method and on the initial choice of the step length
control parameter, but it is independent of the objective function f . The scaling
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depends solely on the sequence of updates that have been applied to the step length
control parameter.

Despite isolated convergence results [4, 11, 16] for certain individual pattern search
methods, a general theory of convergence for the class of such methods remained
elusive for some time. The standard convergence theory for line search and trust
region methods depends crucially on some notion of sufficient decrease, but pattern
search methods do not enforce any such notion. Therefore, attempts such as [18]
to apply the standard theory to pattern search methods arbitrarily introduce some
notion of sufficient decrease, thereby modifying the original algorithms. Thus, the
challenge was to develop a general convergence theory for pattern search methods
without redefining what they are.

Our convergence analysis is guided by that found in Torczon [16] for the mul-
tidirectional search algorithm; however, the present level of abstraction makes the
important elements of that analysis easier to appreciate. The present paper also
includes a correction to the specification of the scaling factors found in [16].

There are three key points to our analysis. First, we show that pattern search
methods are descent methods. Second, we prove that pattern search methods are
gradient-related methods in the sense of [10]. Finally, we demonstrate that pattern
search methods cannot terminate prematurely due to inadequate step length control
mechanisms. The crucial element of this analysis is the fact that pattern search
methods are able to relax the conditions on accepting a step by enforcing stronger
conditions on the step itself. The lattice T , together with the way in which the step
length control parameter is updated, prevent a pathological choice of steps: steps of
arbitrary lengths along arbitrary search directions are not permitted.

We are able to guarantee that, if the function f is continuously differentiable, then
lim infk→+∞ ‖∇f(xk)‖ = 0 without an explicit representation of the gradient or the
directional derivative. In particular, we prove global convergence for pattern search
methods despite the fact that they do not explicitly enforce a notion of sufficient
decrease on their iterates, such as fraction of Cauchy decrease, fraction of optimal de-
crease, or the Armijo–Goldstein–Wolfe conditions. However, our convergence analysis
does share certain characteristics with the classical convergence analysis of both line
search and trust region methods. This connection is both subtle and unexpected.

Our convergence analysis for pattern search methods makes it clear why these
methods are as robust as their proponents have long claimed, while clarifying some of
the limitations that have long been ascribed to them. In addition, having identified
the common structure of these methods, it is now possible to develop new pattern
search methods with guaranteed global convergence.

In section 2 we establish the notation and general specification of pattern search
methods. In section 3 we prove that if the function to be minimized is continuously dif-
ferentiable, then pattern search methods guarantee that lim infk→+∞ ‖∇f(xk)‖ = 0.
In addition, we identify the modifications that must be made to pattern search meth-
ods to obtain the stronger result limk→+∞ ‖∇f(xk)‖ = 0. In section 4 we show that
the classical pattern search methods mentioned above, as well as the newer multidi-
rectional search algorithm of Dennis and Torczon, conform to the general specification
for pattern search methods. In section 5, we give some concluding remarks; section 6
contains technical results needed for the proofs of section 3.

Notation. We denote by R, Q, Z, and N the sets of real, rational, integer, and
natural numbers, respectively.

All norms are Euclidean vector norms or the associated operator norm. We define
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L(y) = {x : f(x) ≤ f(y)}, C(y) = {x : f(x) = f(y)}, and X∗ = {x : ∇f(x) = 0}.
2. Pattern search methods. We begin by introducing the following abstrac-

tion of pattern search methods. We defer to section 4 demonstrations that the pattern
search methods mentioned above fall comfortably within this abstraction.

2.1. The pattern. To define a pattern we need two components, a basis matrix
and a generating matrix.

The basis matrix can be any nonsingular matrix B ∈ Rn×n.
The generating matrix is a matrix Ck ∈ Zn×p, where p > 2n. We partition the

generating matrix into components

Ck = [Mk −Mk Lk] = [Γk Lk].(1)

We require that Mk ∈ M ⊂ Zn×n, where M is a finite set of nonsingular matrices,
and that Lk ∈ Zn×(p−2n) and contains at least one column, the column of zeros.

A pattern Pk is then defined by the columns of the matrix Pk = BCk. Because
both B and Ck have rank n, the columns of Pk span Rn. For convenience, we use the
partition of the generating matrix Ck given in (1) to partition Pk as follows:

Pk = BCk = [BMk −BMk BLk] = [BΓk BLk].(2)

Given ∆k ∈ R, ∆k > 0, we define a trial step sik to be any vector of the form

sik = ∆kBc
i
k ,(3)

where cik denotes a column of Ck = [c1k · · · c pk ]. Note that Bcik determines the direction
of the step, while ∆k serves as a step length parameter.

At iteration k, we define a trial point as any point of the form xik = xk+sik, where
xk is the current iterate.

2.2. The exploratory moves. Pattern search methods proceed by conducting
a series of exploratory moves about the current iterate before declaring a new iterate
and updating the associated information. These moves can be viewed as sampling the
function about the current iterate xk in a well-defined deterministic fashion in search of
a new iterate xk+1 = xk+sk with a lower function value. The individual pattern search
methods are distinguished, in part, by the manner in which these exploratory moves
are conducted. To allow the broadest possible choice of exploratory moves and yet still
maintain the properties required to prove convergence for the pattern search methods,
we place two requirements on the exploratory moves associated with any particular
pattern search method. These requirements are given in the following Hypotheses on
exploratory moves. (Please note an abuse of notation that is nonetheless convenient:
y ∈ A means that the vector y is contained in the set of columns of the matrix A.)

Hypotheses on exploratory moves.

1. sk ∈ ∆kPk ≡ ∆kBCk ≡ ∆k [BΓk BLk].
2. If min{f(xk + y), y ∈ ∆kBΓk} < f(xk), then f(xk + sk) < f(xk).

The choice of exploratory moves must ensure two things:
1. The direction of any step sk accepted at iteration k is defined by the pattern
Pk, and its length is determined by ∆k.

2. If simple decrease on the function value at the current iterate can be found
among any of the 2n trial steps defined by ∆kBΓk, then the exploratory
moves must produce a step sk that also gives simple decrease on the function
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value at the current iterate. In particular, f(xk + sk) need not be less than
or equal to min{f(xk + y), y ∈ ∆kBΓk}.
Thus, a legitimate exploratory moves algorithm would be one that somehow
guesses which of the steps defined by ∆kPk will produce simple decrease
and then evaluates the function at only one such step. (And that step may
be contained in ∆kBLk rather than in ∆kBΓk.) At the other extreme, a
legitimate exploratory moves algorithm would be one that evaluates all p
steps defined by ∆kPk and returns the step that produced the least function
value.

These are the properties of the exploratory moves that enable us to prove

lim inf
k→+∞

‖∇f(xk)‖ = 0,

even though we only require simple decrease on f . Thus we avoid the necessity
of enforcing either fraction of Cauchy decrease, fraction of optimal decrease, or the
Armijo–Goldstein–Wolfe conditions on the iterates. To obtain

lim
k→+∞

‖∇f(xk)‖ = 0,

we need to place stronger hypotheses on the exploratory moves as well as place a
boundedness condition on the columns of the generating matrices. These extensions
will be discussed further in section 3.3.2.

2.3. The generalized pattern search method. Algorithm 1 states the gen-
eralized pattern search method for unconstrained minimization.

Algorithm 1. The Generalized Pattern Search Method.

Let x0 ∈ Rn and ∆0 > 0 be given.
For k = 0, 1, . . . ,

(a) Compute f(xk).
(b) Determine a step sk using an exploratory moves algorithm.
(c) Compute ρk = f(xk)− f(xk + sk).
(d) If ρk > 0 then xk+1 = xk + sk. Otherwise xk+1 = xk.
(e) Update Ck and ∆k.
To define a particular pattern search method, it is necessary to specify the basis

matrix B, the generating matrix Ck, the exploratory moves to be used to produce a
step sk, and the algorithms for updating Ck and ∆k.

2.4. The updates. Algorithm 2 specifies the requirements for updating ∆k.
The aim of the updating algorithm for ∆k is to force ρk > 0. An iteration with
ρk > 0 is successful; otherwise, the iteration is unsuccessful. Again we note that to
accept a step we only require simple, as opposed to sufficient, decrease.

Algorithm 2. Updating ∆k.
Given τ ∈ Q, let θ = τw0 and λk ∈ Λ = {τw1 , . . . , τwL}, where τ > 1 and
{w0, w1, . . . , wL} ⊂ Z, L ≡ |Λ| < +∞, w0 < 0, and wi ≥ 0, i = 1, . . . , L.

(a) If ρk ≤ 0 then ∆k+1 = θ∆k.
(b) If ρk > 0 then ∆k+1 = λk∆k.
The conditions on θ and Λ ensure that 0 < θ < 1 and λi ≥ 1 for all λi ∈ Λ. Thus,

if an iteration is successful it may be possible to increase the step length parameter
∆k, but ∆k is not allowed to decrease. Not surprisingly, this is crucial to the success
of the analysis. Also crucial to the analysis is the relationship (overlooked in [16])
between θ and the elements of Λ.
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The algorithm for updating Ck depends on the pattern search method. For theo-
retical purposes, it is sufficient to choose the columns of Ck so that they satisfy (1) and
the conditions we have placed on the matrices Mk ∈ M ⊂ Zn×n and Lk ∈ Zn×(p−2n).

3. The convergence theory. Having set up the machinery to define pattern
search methods, we are now ready to analyze these methods. This analysis produces
theorems of several types. The first, developed in section 3.1, demonstrates an alge-
braic fact about the nature of pattern search methods that requires no assumption
on the function f . This theorem is critical to the proof of the convergence results
for it shows that we only need require simple decrease in f to ensure global conver-
gence. The second theorem, developed in section 3.2, describes the limiting behavior
of the step length control parameter ∆k if we place only a very mild condition on the
function f and exploit the interaction of the simple decrease condition for the gener-
alized pattern search method with the algorithm for updating ∆k. Finally, the third
and fourth theorems, developed in section 3.3, give the global convergence results.
The first theorem guarantees lim infk→+∞ ‖∇f(xk)‖ = 0 for any generalized pattern
search method that satisfies the specifications given in section 2. This is significant
since the theorem applies to all the pattern search methods we discuss in section 4
without the need to impose any modifications on the methods as originally stated.
The second theorem is equivalent to convergence results for line search and trust-
region globalization strategies. We can guarantee limk→+∞ ‖∇f(xk)‖ = 0, but to do
so requires placing stronger conditions on the specifications for generalized pattern
search methods. We could certainly impose these stronger conditions on the pattern
search methods presented in section 4—none of them are unreasonable to suggest or
to enforce—but we would do so at the expense of attractive algorithmic features found
in the original methods.

3.1. The algebraic structure of the iterates. The results found in this sec-
tion are purely algebraic facts about the nature of pattern search methods; they are
also independent of the function to be optimized. It is the algebraic structure of the
iterates that allows us to prove global convergence for pattern search methods without
imposing a notion of sufficient decrease on the iterates.

We begin by showing in what sense ∆k is a step length parameter.

Lemma 3.1. There exists a constant ζ∗ > 0, independent of k, such that for any
trial step sik 6= 0 produced by a generalized pattern search method (Algorithm 1) we
have

‖sik‖ ≥ ζ∗∆k.

Proof. From (3) we have sik = ∆kBc
i
k. The conditions we have placed on the

generating matrix Ck ensure that cik ∈ Zn.

Let σn(B) denote the smallest singular value of B. Then

‖sik‖ = ∆k‖Bcik‖ ≥ ∆kσn(B)‖cik‖ ≥ ∆kσn(B).

The last inequality holds because at least one of the components of cik is a nonzero
integer, and hence ‖cik‖ ≥ 1.

From Lemma 3.1 we can see that the role of ∆k as a step length parameter is to
regulate backtracking and thus prevent excessively short steps.

Theorem 3.2. Any iterate xN produced by a generalized pattern search method
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(Algorithm 1) can be expressed in the following form:

xN = x0 +
(
βrLBα−rUB

)
∆0B

N−1∑
k=0

zk,

where
• x0 is the initial guess,
• β/α ≡ τ , with α, β ∈ N and relatively prime, and τ is as defined in the

algorithm for updating ∆k (Algorithm 2),
• rLB and rUB depend on N ,
• ∆0 is the initial choice for the step length control parameter,
• B is the basis matrix, and
• zk ∈ Zn, k = 0, . . . , N − 1.

Proof. The generalized pattern search algorithm, as stated in Algorithm 1, guar-
antees that any iterate xN is of the form

xN = x0 +
N−1∑
k=0

sk.(4)

(We adopt the convention that sk = 0 if iteration k is unsuccessful.) We also know
that the step sk must come from the set of trial steps sik, i = 1, . . . , p. The trial steps
are of the form sik = ∆kBc

i
k.

Consider the step length parameter ∆k. For any k ≥ 0, the update for ∆k given
in Algorithm 2 guarantees that ∆k is of the form

∆k = θq
0
kλ

q1k
1 λ

q2k
2 · · ·λqLkL ∆0,(5)

where qik ∈ Z and qik ≥ 0. (Recall that L = |Λ|.) We have also placed the following
restrictions on the form of θ and λi: for a given τ ∈ Q, τ > 1, and {w0, w1, . . . , wL} ⊂
Z, θ = τw0 , w0 < 0 and λi = τwi , wi ≥ 0, i = 1, . . . , L. We can thus rewrite (5) as:

∆k = (τw0)
q0k (τw1)

q1k (τw2)
q2k · · · (τwL)

qLk ∆0 = τ rk∆0,(6)

where rk ∈ Z. Let

rLB = min
0≤k<N

{rk} rUB = max
0≤k<N

{rk}.(7)

Then from (4) and (6) we have

xN = x0 +
N−1∑
k=0

∆kBck = x0 + ∆0B
N−1∑
k=0

τ rkck.

Since τ is rational, we can express τ as τ = β
α , where α, β ∈ N are relatively prime.

Then, using (7),

xN = x0 +
(
βrLBα−rUB

)
∆0B

N−1∑
k=0

zk,(8)

where zk ∈ Zn.
Theorem 3.2 synthesizes the requirements we have placed on the pattern, the

definition of the trial steps, and the algorithm for updating ∆k. Note that this means
that for a fixed N , all the iterates lie on a translated integer lattice generated by x0

and the columns of βrLBα−rUB∆0B.
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3.2. The limiting behavior of the step length control parameter. The
next theorem combines the strict algebraic structure of the iterates with the simple de-
crease condition of the generalized pattern search algorithm, along with the algorithm
for updating ∆k, to give us a useful fact about the limiting behavior of ∆k.

Theorem 3.3. Assume that L(x0) is compact. Then lim infk→+∞∆k = 0.
Proof. The proof is by contradiction. Suppose 0 < ∆LB ≤ ∆k for all k. From (6)

we know that ∆k can be written as ∆k = τ rk∆0, where rk ∈ Z.
The hypothesis that ∆LB ≤ ∆k for all k means that the sequence {τ rk} is bounded

away from zero. Meanwhile, we also know that the sequence {∆k} is bounded above
because all the iterates xk must lie inside the set L(x0) = {x : f(x) ≤ f(x0)}, and the
latter set is compact; Lemma 3.1 then guarantees an upper bound ∆UB for {∆k}.
This, in turn, means that the sequence {τ rk} is bounded above. Consequently, the
sequence {τ rk} is a finite set. Equivalently, the sequence {rk} is bounded above and
below.

Let

rLB = min
0≤k<+∞

{rk} rUB = max
0≤k<+∞

{rk}.(9)

Then (8) now holds for the bounds given in (9), rather than (7), and we see that for
all k, xk lies in the translated integer lattice G generated by x0 and the columns of
βrLBα−rUB∆0B.

The intersection of the compact set L(x0) with the translated integer lattice G is
finite. Thus, there must exist at least one point x∗ in the lattice for which xk = x∗
for infinitely many k.

We appeal to the simple decrease condition in the generalized pattern search
method (Algorithm 1 (d)), which guarantees that a lattice point cannot be revisited
infinitely many times since we accept a new step sk if and only if f(xk) > f(xk + sk).
Thus there exists an N such that for all k ≥ N , xk = x∗, which implies that ρk = 0.

We now appeal to the algorithm for updating ∆k (Algorithm 2 (a)) to see that
∆k → 0, thus leading to a contradiction.

3.3. Global convergence. Throughout the discussion in this section, we as-
sume that f is continuously differentiable on a neighborhood of L(x0); however, this
assumption can be weakened, using the same style of argument found in [16].

3.3.1. The general result. To prove Theorem 3.5 we need Proposition 3.4. We
defer the proof of Proposition 3.4 to section 6 in part because we wish to discuss there
several other issues that are tangential to the proof of Theorem 3.5. It is also the case
that the proofs for the results in section 6 are similar to those given for the equivalent
results found in [16], though now restated more succinctly in terms of the machinery
developed in section 2.

Proposition 3.4. Assume that L(x0) is compact, that f is continuously differ-
entiable on a neighborhood of L(x0), and that lim infk→+∞ ‖∇f(xk)‖ 6= 0. Then there
exists a constant ∆LB > 0 such that for all k, ∆k > ∆LB.
We emphasize that the existence of a positive lower bound ∆LB for ∆k is guaranteed
only under the null hypothesis that lim infk→+∞ ‖∇f(xk)‖ 6= 0.

Theorem 3.5. Assume that L(x0) is compact and that f is continuously differ-
entiable on a neighborhood of L(x0). Then for the sequence of iterates {xk} produced
by the generalized pattern search method (Algorithm 1),

lim inf
k→+∞

‖∇f(xk)‖ = 0 .
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Proof. The proof is by contradiction. Suppose that lim infk→+∞ ‖∇f(xk)‖ 6= 0.
Then Proposition 3.4 tells us that there exists ∆LB > 0 such that for all k, ∆k ≥ ∆LB .
But this contradicts Theorem 3.3.

3.3.2. The stronger result. We can strengthen the result given in Theorem 3.5
at the expense of wider applicability. To begin with, we must add three further
restrictions: one on the pattern matrix, one on the Hypotheses on exploratory moves,
and one on the limiting behavior of the step length control parameter ∆k.

First, we must ensure that the columns of the generating matrix Ck are bounded
in norm, i.e., that there exists a constant C > 0 such that for all k, C > ‖cik‖ for all
i = 1, . . . , p. Given this bound, we can place an upper bound, in terms of ∆k, on the
norm of any trial step sik.

Lemma 3.6. Given a constant C > 0 such that for all k, C > ‖cik‖ for all
i = 1, . . . , p, there exists a constant ψ∗ > 0, independent of k, such that for any trial
step sik produced by a generalized pattern search method (Algorithm 1) we have

∆k ≥ ψ∗‖sik‖.

Proof. From (3) we have sik = ∆kBc
i
k. Then ‖sik‖ = ∆k‖Bcik‖ ≤ ∆k‖B‖‖cik‖ ≤

∆kC||B||. Set ψ∗ = 1
C||B|| .

Note that the columns of Mk ∈ M are bounded by the assumption that |M| <
+∞; we use this fact in the proof of Proposition 6.4. The stronger boundedness
condition on the columns of Ck = [Mk −Mk Lk] is needed to monitor the behavior
of Lk.

Second, we must replace the original Hypotheses on exploratory moves with a
stronger version, as given below. Together, Lemma 3.6 and the Strong hypotheses
on exploratory moves allow us to tie decrease in f to the norm of the gradient when
the step sizes get small enough. This is the import of Corollary 6.5, which is given in
section 6.

Strong hypotheses on exploratory moves.

1. sk ∈ ∆kPk ≡ ∆kBCk ≡ ∆k [BΓk BLk].
2. If min{f(xk + y), y ∈ ∆kBΓk} < f(xk), then
f(xk + sk) ≤ min{f(xk + y), y ∈ ∆kBΓk}.

Third, we require that limk→+∞∆k = 0. We can use the algorithm for updating
∆k (Algorithm 2) to ensure that this condition holds. For instance, we can force ∆k

to be nonincreasing by requiring wi = 0, i = 1, . . . , L, which when taken together
with Theorem 3.3 guarantees that limk→+∞∆k = 0. All the algorithms we consider
in section 4, except the multidirectional search algorithm, enforce this condition by
limiting Λ = {1} ≡ {τ0}. However, it is not necessary to force the steps to be nonin-
creasing; we need only require that in the limit the step length control parameter goes
to zero, which, in conjunction with Lemmas 3.1 and 3.6, has the effect of ultimately
forcing the steps to zero.

Theorem 3.7. Assume that L(x0) is compact and that f is continuously dif-
ferentiable on a neighborhood of L(x0). In addition, assume that the columns of
the generating matrices are bounded in norm, that limk→+∞∆k = 0, and that the
generalized pattern search method (Algorithm 1) enforces the Strong hypotheses on
exploratory moves. Then for the sequence of iterates {xk} produced by the generalized
pattern search method,

lim
k→+∞

‖∇f(xk)‖ = 0 .
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Proof. The proof is by contradiction. Suppose lim supk→+∞ ‖∇f(xk)‖ 6= 0. Let
ε > 0 be such that there exists a subsequence ‖∇f(xmi

)‖ ≥ ε. Since

lim inf
k→+∞

‖∇f(xk)‖ = 0,

given any 0 < η < ε, there exists an associated subsequence li such that

‖∇f(xk)‖ > η for mi ≤ k < li, ‖∇f(xli)‖ < η.

Then, since ∆k → 0, we can appeal to Corollary 6.5 to obtain for mi ≤ k < li, i
sufficiently large,

f(xk)− f(xk+1) ≥ σ‖∇f(xk)‖‖sk‖ ≥ ση‖sk‖,

where σ > 0. Then the telescoping sum

(f(xmi)− f(xmi+1)) + (f(xmi+1)− f(xmi+2)) + · · ·+ (f(xli−1)− f(xli)) ≥
li∑

k=mi

ση‖sk‖

gives us

f(xmi
)− f(xli) ≥ ∑li

k=mi
ση‖sk‖ ≥ c′‖xmi

− xli‖.

Since f is bounded below, f(xmi
) − f(xli) → 0 as i → +∞, so ‖xmi

− xli‖ → 0 as
i→ +∞. Then, because ∇f is uniformly continuous,

‖∇f(xmi
)−∇f(xli)‖ < η

for i sufficiently large. However,

‖∇f(xmi
)‖ ≤ ‖∇f(xmi

)−∇f(xli)‖+ ‖∇f(xli)‖ ≤ 2η.(10)

Since equation (10) must hold for any η, 0 < η < ε, we have a contradiction (e.g., try
η = ε

4 ).

The proof of Theorem 3.7 is almost identical to that of an equivalent result for
trust-region methods that was first given by Thomas [14] and which is included, in a
more general form, in the survey by Moré [8].

One final note: the hypotheses of Theorem 3.7 suggest that in the absence of
any explicit higher-order information about the function to be minimized, it makes
sense to terminate a generalized pattern search algorithm when ∆k is less than some
reasonably small tolerance. In fact, this is a common stopping condition for algorithms
of this sort and the one implemented for the multidirectional search algorithm [17].

4. The particular pattern search methods. In section 2 we stated the con-
ditions an algorithm must satisfy to be a pattern search method. We now illustrate
these conditions by considering the following specific algorithms:

• coordinate search with fixed step lengths,
• evolutionary operation using factorial designs [2, 3, 13],
• the original pattern search method of Hooke and Jeeves [7], and
• the multidirectional search algorithm of Dennis and Torczon [6, 15].
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We will show that these algorithms satisfy the conditions that define pattern search
methods and thus are special cases of the generalized pattern search method presented
as Algorithm 1. Then we can appeal to Theorem 3.5 to claim global convergence for
these methods.

There are other algorithms for which the abstraction and accompanying analy-
sis holds—including various modifications to the algorithms presented—but we shall
confine our investigation to these, the best known of the pattern search methods, to
illustrate the power of our abstract approach to pattern search methods.

4.1. Coordinate search with fixed step lengths. The method of coordinate
search is perhaps the simplest and most obvious of all the pattern search methods.
Davidon describes it concisely in the opening of his belated preface to Argonne Na-
tional Laboratory Research and Development Report 5990 [5]:

Enrico Fermi and Nicholas Metropolis used one of the first digital
computers, the Los Alamos Maniac, to determine which values of
certain theoretical parameters (phase shifts) best fit experimental
data (scattering cross sections). They varied one theoretical param-
eter at a time by steps of the same magnitude, and when no such
increase or decrease in any one parameter further improved the fit
to the experimental data, they halved the step size and repeated the
process until the steps were deemed sufficiently small. Their simple
procedure was slow but sure....

This simple search method enjoys many names, among them alternating direc-
tions, alternating variable search, axial relaxation, and local variation. We shall refer
to it as coordinate search.

Perhaps less obvious is that coordinate search is a pattern search method. To see
this, we begin by considering all possible outcomes for a single iteration of coordinate
search when n = 2, as shown in Fig. 1. We mark the current iterate xk. The xik’s
denote trial points considered during the course of the iteration. The next iterate xk+1

is marked. Solid circles indicate successful intermediate steps taken during the course
of the exploratory moves while open circles indicate points at which the function was
evaluated but that did not produce further decrease in the value of the objective
function. Thus, in the first scenario shown a step from xk to x1

k resulted in a decrease
in the objective function, so the step from x1

k to xk+1 was tried and led to a further
decrease in the objective function value. The iteration was then terminated with a
new point xk+1 that satisfies the simple decrease condition f(xk+1) < f(xk). In the
worst case, the last scenario shown, 2n trial points were evaluated (x1

k, x
1′
k , x2

k, and

x2′
k ) without producing decrease in the function value at the current iterate xk. In

this case, xk+1 = xk and the step size must be reduced for the next iteration.

We now show this algorithm is an instance of a generalized pattern search method.

4.1.1. The matrices. Coordinate search is usually defined so that the basis
matrix is the identity matrix; i.e., B = I. However, knowledge of the problem may
lead to a different choice for the basis matrix. It may make sense to search using
a different coordinate system. For instance, if the variables are known to differ by
several orders of magnitude, this can be taken into account in the choice of the basis
matrix (though, as we will see in section 6.2, this may have a significant effect on the
behavior of the method).

The generating matrix for coordinate search is fixed across all iterations of the
method. The generating matrix Ck = C contains in its columns all possible combi-
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Fig. 1. All possible subsets of the steps for coordinate search in R2.
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Fig. 2. The pattern for coordinate search in R2 with a given step length control parameter ∆k.

nations of {−1, 0, 1}. Thus, C has p = 3n columns. In particular, the columns of C
contain both I and −I, as well as a column of zeros. We define M = I; L consists
of the remaining 3n − 2n columns of C. Since C is fixed across all iterations of the
method, there is no need for an update algorithm.

For n = 2 we have

C =

[
1 0 −1 0 1 1 −1 −1 0
0 1 0 −1 1 −1 −1 1 0

]
.

Thus, when n = 2, all possible trial points defined by the pattern P = BC, for a
given step length ∆k, can be seen in Fig. 2. Note that the pattern includes all the
possible trial points enumerated in Fig. 1.

4.1.2. The exploratory moves. The exploratory moves for coordinate search
are given in Algorithm 3, where the ei’s denote the unit coordinate vectors.
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Algorithm 3. Exploratory Moves Algorithm for Coordinate Search.

Given xk, ∆k, f(xk), and B, set sk = 0, ρk = 0, and min = f(xk).
For i = 1, . . . , n do

(a) sik = sk + ∆kBei and xik = xk + sik. Compute f(xik).
(b) If f(xik) < min then ρk = f(xk)− f(xik), min = f(xik), and sk = sik.

Otherwise,
(i) sik = sk −∆kBei and xik = xk + sik. Compute f(xik).
(ii) If f(xik) < min then ρk = f(xk)− f(xik), min = f(xik), and sk = sik.

Return.
The exploratory moves are executed sequentially in the sense that the selection of

the next trial step is based on the success or failure of the previous trial step. Thus,
while there are 3n possible trial steps, we may compute as few as n trial steps, but
we compute no more than 2n at any given iteration, as we saw in Fig. 1.

From the perspective of the theory, there are two conditions that need to be met
by the exploratory moves algorithm. First, as Figs. 1 and 2 illustrate, all possible
trial steps are contained in ∆kP .

The second condition on the exploratory moves is the more interesting; coordinate
search demonstrates the laxity of this second hypothesis. For instance, in the first
scenario shown in Fig. 1, decrease in the objective function was realized for the first
trial step

s1k = ∆kI

(
1
0

)
,

so the second trial step

s2k = ∆kI

(
1
1

)
= ∆kI

(
1
0

)
+ ∆kI

(
0
1

)
was tried and accepted. It is certainly possible that greater decrease in the value of
the objective function might have been realized for the trial step

s
′
k = ∆kI

(
0
1

)
,

which is defined by a column in the matrixM (the step s2k is defined by a column in the

matrix L), but s
′
k is not tried when simple decrease is realized by the step s1k. However,

in the worst case, as seen in Fig. 1, the algorithm for coordinate search ensures that
all 2n steps defined by ∆kBΓ = ∆kB[M −M ] = ∆kB[I −I] are tried before returning
the step sk = 0. In other words, the exploratory moves given in Algorithm 3 examine
all 2n steps defined by ∆kBΓ unless a step satisfying f(xk + sk) < f(xk) is found.

4.1.3. Updating the step length. The update for ∆k is exactly as given in
Algorithm 2. As noted by Davidon, the usual practice is to continue with steps of
the same magnitude until no further decrease in the objective function is realized, at
which point the step size is halved. This corresponds to setting θ = 1/2 and Λ = {1}.
Thus, τ = 2, w0 = −1, and w1 = 0.

This suffices to verify that coordinate search with fixed step length is a pattern
search method. Theorem 3.5 thus holds. The exploratory moves algorithm for coordi-
nate search would need to be modified to satisfy the Strong hypotheses on exploratory
moves for the conditions of Theorem 3.7 to be met.
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4.2. Evolutionary operation using factorial designs. In 1957 G. E. P. Box
[2] introduced the notion of evolutionary operation as a method for increasing in-
dustrial productivity. The ideas were developed within the context of the on-line
management of industrial processes, but Box recognized that the technique had more
general applicability. Subsequent authors [3, 13] argued that the basic technique was
readily applicable to general unconstrained optimization and it is within this context
that we examine the ideas here.

In its simplest form, evolutionary operation is based on using two-level factorial
designs: evaluate the function at the vertices of a hypercube centered about the
current iterate. (G. E. P. Box refers to this as one of a variety of “pattern of variants”
[2].) If simple decrease in the value of the objective function is observed at one of
the vertices, it becomes the new iterate. Otherwise, the lengths of the edges in the
hypercube are halved and the process is repeated.

4.2.1. The matrices. As with coordinate search, the usual choice for the basis
matrix is B = I, though, as with coordinate search, other choices may be made to
reflect information known about the problem to be solved.

The generating matrix for evolutionary operation is fixed across all iterations of
the method. The generating matrix Ck = C contains in its columns all possible
combinations of {−1, 1}; to this we append a column of zeros. Thus C has p = 2n +1
columns.

We take M to be any linearly independent subset of n columns of C; −M nec-
essarily will be contained in C. Once again, L is fixed and consists of the remaining
(2n + 1)− 2n columns of C.

There is no need for an algorithm to update C since the generating matrix is
fixed.

4.2.2. The exploratory moves. The exploratory moves given in Algorithm 4
are simultaneous in the sense that every possible trial step sik ∈ ∆kP = ∆kBC is
computed at each iteration. It is then the case that every trial step sik is contained in
∆kP . The second observation of note is that since

sk = arg min
si
k
∈∆kP

{f(xk + sik)},

then, if min{f(xk + y), y ∈ ∆kBΓ} < f(xk), we have f(xk + sk) < f(xk), regardless
of our choice of M (and thus, by extension, our choice of Γ). Furthermore, we are
guaranteed that the Strong hypotheses on exploratory moves are satisfied.

Algorithm 4. Exploratory Moves Algorithm for Evolutionary Op-

eration.

Given xk, ∆k, f(xk), B, and C =
[
c1 · · · c p], set sk = 0, ρk = 0, and min = f(xk).

For i = 1, . . . , 2n do
(a) sik = ∆kBc

i and xik = xk + sik. Compute f(xik).
(b) If f(xik) < min then ρk = f(xk)− f(xik), min = f(xik), and sk = sik.

Return.

4.2.3. Updating the step length. The algorithm for updating ∆k is exactly
as given in Algorithm 2, with θ usually set to 1/2 and Λ = {1}.

Since we have shown that evolutionary operation satisfies all the necessary re-
quirements, we can therefore conclude that it, too, is a pattern search method, so
Theorem 3.5 holds. The algorithm, as stated above, also satisfies the conditions of
Theorem 3.7.
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Fig. 3. The pattern step in R2, given xk 6= xk−1, k > 0.

4.3. Hooke and Jeeves’ pattern search algorithm. In addition to introduc-
ing the general notion of a “direct search” method, Hooke and Jeeves introduced the
pattern search method, a specific kind of search strategy [7]. The pattern search of
Hooke and Jeeves is a variant of coordinate search that incorporates a pattern step
in an attempt to accelerate the progress of the algorithm by exploiting information
gained from the search during previous successful iterations.

The Hooke and Jeeves pattern search algorithm is opportunistic. If the previous
iteration was successful (i.e., ρk−1 > 0), then the current iteration begins by conduct-
ing coordinate search about a speculative iterate xk +(xk−xk−1), rather than about
the current iterate xk. This is the pattern step. The idea is to investigate whether
further progress is possible in the general direction xk − xk−1 (since, if xk 6= xk−1,
then xk − xk−1 is clearly a promising direction).

To make this a little clearer, we consider the example shown in Fig. 3. Given
xk−1 and xk (we assume, for now, that k > 0 and that xk 6= xk−1), the pattern search
algorithm takes the step xk − xk−1 from xk. The function is evaluated at this trial
step and the trial step is accepted, temporarily, even if f(xk + (xk − xk−1)) ≥ f(xk).
The Hooke and Jeeves pattern search algorithm then proceeds to conduct coordinate
search about the temporary iterate xk + (xk − xk−1). Thus, in R2, the exploratory
moves are exactly as shown in Fig. 1, but with xk + (xk − xk−1) substituted for xk.

If coordinate search about the temporary iterate xk + (xk − xk−1) is successful,
then the point returned by coordinate search about the temporary iterate is accepted
as the new iterate xk+1. If not, i.e., f((xk + (xk − xk−1)) + sk) ≥ f(xk), then the
pattern step is deemed unsuccessful, and the method reduces to coordinate search
about xk. For the two dimensional case, then, the exploratory moves would simply
resort to the possibilities shown in Fig. 1.

If the previous iteration was not successful, so xk = xk−1 and (xk−xk−1) = 0, then
the iteration is limited to coordinate search about xk. In this instance, though, the
updating algorithm for ∆k will have reduced the size of the step (i.e., ∆k = θ∆k−1).

The algorithm does not execute the pattern step when k = 0.
To express the pattern search algorithm within the framework we have developed,

we use all the machinery required for coordinate search. Once again, the basis matrix
is usually defined to be B = I. We append to the generating matrix another set of
3n columns to capture the effect of the pattern step and we change the exploratory
moves algorithm, as detailed below.

4.3.1. The generating matrix. Recall that the generating matrix for coordi-
nate search consists of all possible combinations of {−1, 0, 1} and is never changed.
For the Hooke and Jeeves pattern search method, we allow the generating matrix to
change from iteration to iteration to capture the effect of the pattern step. We append
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another set of 3n columns, consisting of all possible combinations of {−1, 0, 1}, to the
initial generating matrix for coordinate search. Thus Ck has p = 2 · 3n columns. The
additional 3n columns allow us to express the effect of the pattern step with respect
to xk, rather than with respect to the temporary iterate xk + (xk − xk−1), which is
how the Hooke and Jeeves pattern search method usually is described. The matrix
M is unchanged; M = I. Now, however, Lk ∈ Zn×(p−2n) is allowed to vary, though
only in the 3n columns associated with the pattern step. For n = 2,

C0 =

[
1 0 −1 0 1 1 −1 −1 0
0 1 0 −1 1 −1 −1 1 0

(11)

1 0 −1 0 1 1 −1 −1 0
0 1 0 −1 1 −1 −1 1 0

]
.

For notational convenience, we require that the last column ofC0, which we denote
as c p0 , be the column of zeros. In both the algorithm for updating Ck (Algorithm 5)
and the algorithm for the exploratory moves (Algorithm 6), we use the column c pk to
measure the accumulation of a sequence of successful pattern steps. This can be seen,
in (12), for our example from Fig. 3. In this example, we have the generating matrix

Ck =

[
1 0 −1 0 1 1 −1 −1 0
0 1 0 −1 1 −1 −1 1 0

(12)

2 1 0 1 2 2 0 0 1
1 2 1 0 2 0 0 2 1

]
.

The pattern step (xk − xk−1) is represented by the vector (1 1)T , seen in the last
column of Ck. Note that the only difference between the columns of C0 given in (11)
and the columns of Ck given in (12) is that (1 1)T has been added to the last 32

columns of Ck.
The algorithm for updating the generating matrix updates the last 3n columns

of Ck; the first 3n columns remain unchanged, as in coordinate search. The purpose
of the updating algorithm is to incorporate the result of the search at the current
iteration into the pattern for the next iteration. This is done using Algorithm 5. Note
the distinguished role of c pk , the last column of Ck, which represents the pattern step
(xk − xk−1).

Algorithm 5. Updating Ck.
For i = 3n + 1, . . . , 2 · 3n do

cik+1 = cik + (1/∆k)sk − c pk .
Return.

Since (1/∆k)sk is necessarily a column of Ck and C0 ∈ Zn×p, an argument by
induction shows that the update algorithm for Ck ensures that the columns of Ck
always consist of integers.

4.3.2. The exploratory moves. In Algorithm 6, the ei’s denote the unit co-
ordinate vectors and c pk denotes the last column of Ck. We set ρ−1 = 0 so that ρk−1

is defined when k = 0.
A useful example for working through the logic of the algorithm can be found in

[1], though the presentation and notation differ somewhat from that given here.
Algorithm 6. Exploratory Moves Algorithm for Hooke and Jeeves.

Given xk, ∆k, f(xk), B, and ρk−1, set ρk = ρk−1 and min = f(xk).
If ρk > 0 then set sk = ∆kBc

p
k , ρk = f(xk)− f(xk + sk), and min = f(xk + sk).
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For i = 1, . . . , n do
(a)sik = sk + ∆kBei and xik = xk + sik. Compute f(xik).
(b)If f(xik) < min then ρk = f(xk)− f(xik), min = f(xik), and sk = sik.

Otherwise,
(i) sik = sk −∆kBei and xik = xk + sik. Compute f(xik).
(ii)If f(xik) < min then ρk = f(xk)− f(xik), min = f(xik), and sk = sik.

If ρk ≤ 0 then set sk = 0, ρk = 0, and min = f(xk).
For i = 1, . . . , n do

(a)sik = sk + ∆kBei and xik = xk + sik. Compute f(xik).
(b)If f(xik) < min then ρk = f(xk)− f(xik), min = f(xik), and sk = sik.

Otherwise,
(i) sik = sk −∆kBei and xik = xk + sik. Compute f(xik).
(ii)If f(xik) < min then ρk = f(xk)− f(xik), min = f(xik), and sk = sik.

Return.

All possible steps are contained in ∆kPk since Ck contains columns that represent
the “pattern steps” tried at the beginning of the iteration. And, once again, the
exploratory moves given in Algorithm 6 examine all 2n steps defined by ∆kBΓ unless
a step satisfying f(xk + sk) < f(xk) is found.

Since we have shown that the pattern search algorithm of Hooke and Jeeves
satisfies all the necessary requirements, we can therefore conclude that it, too, is a
special case of the generalized pattern search method and Theorem 3.5 holds.

4.4. Multidirectional search. The multidirectional search algorithm was in-
troduced by Dennis and Torczon in 1989 [15] as a first step towards a general purpose
optimization algorithm with promising properties for parallel computation. While
subsequent work led to a class of algorithms (based on the multidirectional search
algorithm) that allows for more flexible computation [6, 17], one of the unanticipated
results of the original research was a global convergence theorem for the multidirec-
tional search algorithm [16].

The multidirectional search algorithm is a simplex-based algorithm. The pattern
of points can be expressed as a simplex (i.e., n + 1 points or vertices) based at the
current iterate; as such, multidirectional search owes much in its conception to its
predecessors, the simplex design algorithm of Spendley, Hext, and Himsworth [12] and
the simplex algorithm of Nelder and Mead [9]. However, multidirectional search is a
different algorithm—particularly from a theoretical standpoint. Convergence for the
Spendley, Hext, and Himsworth algorithm can be shown only with some modification
of the original algorithm, and then only under the additional assumption that the
function f is convex. There are numerical examples to demonstrate that the Nelder–
Mead simplex algorithm may fail to converge to a stationary point of the function
because the uniform linear independence property (discussed in section 6.2), which
plays a key role in the convergence analysis, cannot be guaranteed to hold [15].

The multidirectional search algorithm is described in detail in both [6] and [16].
The formulation given here is different and, in fact, introduces some redundancy that
can be eliminated when actually implementing the algorithm. However, the way of
expressing the algorithm that we use here allows us to make clear the similarities
between this and other pattern search methods.

4.4.1. The matrices. It is most natural to express multidirectional search in
terms of multiple basis matrices Bk and a fixed generating matrix C, which is at odds
with our definition for generalized pattern search methods. As we shall see, however,
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it is possible to convert the more natural specification to one that conforms to our
requirements for a pattern search method.

The multidirectional search algorithm centers around a family of basis matrices
B that consists of all matrices representing the edges adjacent to each vertex in a
nondegenerate n-dimensional simplex that the user is allowed to specify. Since the
ordering of the columns is not unique and typically not preserved in the implemen-
tation of the method, we consider all possible representations of the columns of the
matrices associated with the edges adjacent to the (n+1) vertices of the simplex. We
then add the negatives of these (n+ 1)! basis matrices to account for the effect of the
reflection step allowed by the multidirectional search algorithm. Thus the cardinality
of the set B is |B| = 2(n+ 1)!.

Fortunately, there is no need to construct this unwieldy number of basis matrices
to initialize the method. We can update the basis matrix after each iteration k
by reconstructing the new basis matrix Bk+1, given the outcome of the exploratory
moves, from the trial points xik, i = 1, . . . , n, considered during the course of the
exploratory moves. This procedure is given in Algorithm 7. The scalar scale is
chosen during the course of the exploratory moves (see Algorithm 8) to ensure that
Bk+1 ∈ B by factoring out any change in the size of the simplex introduced by a
change in ∆k. This has the further effect of preserving the role of ∆k as a step length
parameter.

Algorithm 7. Updating Bk.

Given Bk = [b1k · · · bik · · · bnk ], scale, best, and xik for i = 0, . . . , n,
If ρk > 0 then

For i = 0, . . . , (best − 1) do

bi+1
k+1 = scale ∗ (xik − xbest

k ).
For i = (best + 1), . . . , n do

bik+1 = scale ∗ (xik − xbest
k ).

Otherwise
For i = 1, . . . , n do

bik+1 = bik.
Return.

Given this use of a family of basis matrices to help define the multidirectional
search algorithm, the generating matrix is then the fixed matrix C = [I −I −µI 0].
Thus, C contains p = 3n + 1 columns, with M = I. To ensure that C ∈ Zn×p, we
require µ ∈ Z. Furthermore, to ensure that the role of ∆k as a step length parameter
is not lost with the introduction of the expansion step represented by −µI, we require
µ ∈ Λ. The algorithm is defined so that Λ = {τw1 , τw2}, with µ = τw2 . This
requires the further restriction that τ ∈ N. Again, this is not an onerous restriction.
Multidirectional search usually is specified so that τ = 2, w2 = 1, and thus µ = 2.

Now, to bring this notation into conformity with our definition for a generalized
pattern search method, observe that we can represent all possible basis matrices Bν ∈
B in terms of a single reference matrix B ∈ B so that

Bν = BB̂ν , ν = 1, . . . , |B|.

A convenient feature of using the edges of a simplex to form the set of basis matrices
is that the matrices B̂ν consist only of elements from the set {−1, 0, 1}. The matrices
B̂ν are necessarily nonsingular because of the nondegeneracy of the simplex. We use
B̂ to represent the set of matrices B̂ν and observe that since B is a finite set, the set
B̂ is also finite.
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We then observe that

Pk = BkC = Bk [I −I −µI 0]

≡ B [B̂k −B̂k −µB̂k 0] = BCk.

Thus we can define the pattern in terms of the single reference matrix B and the
redefined generating matrix

Ck ≡ [B̂k −B̂k −µB̂k 0],

with Mk ≡ B̂k and M ≡ B̂. We also have Lk ≡ [−µB̂k 0] and since µ ∈ Z,
Lk ∈ Zn×(n+1), as required.

4.4.2. The exploratory moves. The exploratory moves for the multidirec-
tional search method are given in Algorithm 8; the ei’s denote the unit coordinate
vectors. We use the notion of Bk ∈ B for consistency with the update algorithm given
in Algorithm 6, but we could just as easily substitute BB̂k for Bk in the algorithm
given below.

Algorithm 8. Exploratory Moves Algorithm for Multidirectional

Search.

Given xk, ∆k, f(xk), Bk, and µ = τw2 ∈ N, set sk = 0, ρk = 0, min = f(xk),
λk = 1, scale = 1/∆k, best = 0, and x0

k = xk.
For i = 1, . . . , n do

(a) sik = ∆kBkei and xik = xk + sik. Compute f(xik).
(b) If f(xik) < min then ρk = f(xk)− f(xik), min = f(xik), sk = sik, and best = i.

If ρk ≤ 0 then
For i = 1, . . . , n do

(a) sik = −∆kBkei and xik = xk + sik. Compute f(xik).
(b) If f(xik) < min then ρk = f(xk)− f(xik), min = f(xik), sk = sik, and best = i.

If ρk > 0 then set scale = 1/µ∆k.
For i = 1, . . . , n do

(a) sik = −µ∆kBkei and xik = xk + sk. Compute f(xik).
(b) If f(xik) < min then ρk = f(xk)− f(xik), min = f(xik), sk = sik, best = i,

and λk = µ.
Return.

Clearly, sk ∈ ∆kPk. Since the exploratory moves algorithm considers all steps
of the form ∆kBΓk, unless simple decrease is found after examining only the steps
defined by ∆kBMk, this guarantees we satisfy the condition that if min{f(xk+y), y ∈
∆kBΓk} < f(xk), then f(xk + sk) < f(xk).

4.4.3. Updating the step length. The algorithm for updating ∆k is that given
in Algorithm 2. In this case, while θ usually is set to 1/2 so that τ = 2, w0 = −1,
and w1 = 0, we also include an expansion factor µ = τw2 , where w2 usually equals
one. Thus Λ = {1, µ}, where µ is usually 2. The choice of λk ∈ Λ is made during the
execution of the exploratory moves.

Since we have shown that the multidirectional search algorithm satisfies all the
necessary requirements, we conclude that it is also a pattern search method and thus
Theorem 3.5 applies. Note that since we allow µ > 1, which is a useful algorithmic
feature, we cannot guarantee that limk→+∞∆k = 0 and so Theorem 3.7 does not
automatically apply.
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5. Conclusions. We have presented a framework in which one can analyze pat-
tern search methods. This framework abstracts and quantifies the similarities of the
classical pattern search methods and enables us to prove lim infk→+∞ ‖∇f(xk)‖ = 0
for this class of algorithms. We also specify the conditions under which the limit
limk→+∞ ‖∇f(xk)‖ = 0 can be shown to hold.

These convergence results are perhaps surprising, given the simplicity of pattern
search methods, but derive from the algebraic rigidity imposed on the iterates pro-
duced by pattern search methods. This is gratifying, since while this rigidity originally
was introduced as a heuristic for directing the exploratory moves, it turns out to be
the key to proving convergence as well. This analysis also highlights just how weak
the conditions on the acceptance of the step can be and yet still allow a global conver-
gence analysis, an observation that may prove useful in the analysis of other classes
of optimization methods.

6. Technical results. We deferred the proof of Proposition 3.4 for several rea-
sons. First, many of the results in this section are generalizations of similar results to
be found in [16]. The abstraction in section 2 leads to more succinct proofs. Second,
the proof of Proposition 3.4 is closely related to that of several other results presented
in this section and requires us to introduce several additional notions.

We return to our definition of the pattern as Pk = BCk to show that the pattern
contains at least one direction of descent whenever ∇f(xk) 6= 0.

Recall that we require the columns of Ck to contain both Mk and −Mk. Thus,
Pk can be partitioned as follows:

Pk = BCk = B[Mk −Mk Lk] = B[Γk Lk].

We now elaborate on these requirements. Since Mk is an n×n nonsingular matrix
and B is nonsingular, we are guaranteed that BMk forms a basis for Rn. Further,
we are guaranteed that at any iteration k, if ∇f(xk) 6= 0, xk − Bcik is a direction of
descent for at least one column cik contained in the block Γk.

6.1. Descent methods. Of course, the existence of a trial step in a descent
direction is not sufficient to guarantee that decrease in the value of the objective
function will be realized. To guarantee that a pattern search method is a descent
method, we need to guarantee that in a finite number of iterations the method pro-
duces a positive step size ∆k that achieves decrease on the objective function at the
current iterate. We now show that this is the case.

Lemma 6.1. Suppose that f is continuously differentiable on a neighborhood of
L(x0). If ∇f(xk) 6= 0, then there exists q ∈ Z, q ≥ 0 such that ρk+q > 0 (i.e., the
(k + q)th iteration is successful).

Proof. A key hypothesis placed on the exploratory moves is that if descent can
be found for one of the trial steps defined by ∆kBΓk, then the exploratory moves
returns a step that produces descent.

Because BCk has rank n, if ∇f(xk) 6= 0, then there exists at least one trial
direction dik = xk − Bcik, where cik ∈ Γk, such that ∇f(xk)

T dik 6= 0. But, since
−cik ∈ Γk, ∇f(xk)

T dik < 0 without loss of generality. Thus, there exists an hk > 0
such that for 0 < h ≤ hk, f(xk + hdik) < f(xk).

If at iteration k, ∆k > hk, then the iteration may be unsuccessful; that is, ρk =
f(xk) − f(xk + sk) ≤ 0. When the iteration is unsuccessful, the generalized pattern
search method sets xk+1 = xk and the updating algorithm sets ∆k+1 = θ∆k. Since θ
is strictly less than one, there exists q ∈ Z, q ≥ 0, such that θq∆k ≤ hk. Thus we are
guaranteed descent, i.e., a successful iteration, in at most q iterations.
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6.2. Uniform linear independence. The pattern Pk guarantees the existence
of at least one direction of descent whenever ∇f(xk) 6= 0. We now want to guarantee
the existence of a bound on the angle between the direction of descent contained in
BΓk and the negative gradient at xk (whenever ∇f(xk) 6= 0). We will show, in fact,
that this bound is uniform across all iterations of the pattern search algorithm. To
do so, we use the notion of uniform linear independence [10].

Lemma 6.2. For a pattern search algorithm, there exists a constant ξ > 0 such
that for all k ≥ 0 and x 6= 0,

max

{ |xT (xik − xk)|
‖x‖‖xik − xk‖ , i = 1, . . . , p

}
≥ ξ.(13)

Proof. To demonstrate the existence of ξ, we first consider the simplest possible
case, B = I and C = [M −M 0] = [I −I 0], and use this to derive a bound for any
choice of B and Ck that satisfies the conditions we have imposed.

Lemma 6.3. Suppose ‖y‖ = 1. Define θ(y) ∈ [0, π/2] by

cos θ(y) = max
1≤j≤n

{|yT ej |} ,
where the ej’s are the unit coordinate vectors.

If B = I and C = [I −I 0], then

min
y∈Rn

cos θ(y) =
1√
n
.

Proof.We have |yT ej | = |yj |, where y = (y1, . . . , yn)T . Since
∑n

j=1 |yj |2 = 1, we

are guaranteed that |yj | ≥ 1/
√
n for some j, so |yT ej | ≥ 1/

√
n for some j. Thus

cos θ(y) ≥ 1/
√
n.

Now note that cos θ(y) attains this lower bound for any y = α1e1 + α2e2 + · · ·+
αnen, where αj = ±1/

√
n.

Thus, if the pattern search is restricted to the coordinate directions defined by
P = [I −I 0], ξ = 1/

√
n gives the lower bound on the absolute value of the cosine of

the angle between the gradient and a guaranteed direction of descent. We now use
the bound for this particular case to derive a bound for the general case.

Assume a general basis matrix B and a general matrix Mk ∈ M, where |M| <
+∞. We adopt the notation BMk = [y1

k · · · ynk ]. Then for any x 6= 0 we have the
following:

|cos θ| =

∣∣∣xT yjk∣∣∣
‖x‖‖yjk‖

=

∣∣xTBMkej
∣∣

‖x‖‖BMkej‖ =

∣∣∣((BMk)
Tx
)T
ej

∣∣∣
‖x‖‖BMkej‖ .

If we set w = (BMk)
Tx so that x = (BMk)

−Tw, we have

|cos θ| = |wT ej |
‖(BMk)−Tw‖‖BMkej‖ ≥

|wT ej |
‖(BMk)−T ‖‖w‖‖BMk‖‖ej‖

=
1

‖(BMk)−T ‖‖BMk‖
( |wT ej |
‖w‖‖ej‖

)
=

1

‖(BMk)−1‖‖BMk‖
( |wT ej |
‖w‖‖ej‖

)
≥ 1

κ(BMk)

1√
n
,
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where κ(BMk) is the condition number of the matrix BMk. Thus, we have

|cos θ| ≥ 1

κ(BMk)
√
n
> 0 .

To ensure a bound ξ that is independent of the choice of any particular matrix
M ∈ M, we simply observe that the set M is required to be finite. Thus, ξ is taken
to be

ξ = min
M∈M

{
1

κ(BM)
√
n

}
.(14)

The bound given in (14) points to two features that explain much about the behav-
ior of pattern search methods. Since we never explicitly calculate—or approximate—
the gradient, we are dependent on the fact that in the worst case at least one of our
search directions is not orthogonal to the gradient; ξ gives us a bound on how far
away we can be. Thus, as either the condition number of the product BMk increases,
or the dimension of the problem increases, our bound on the angle between the search
direction and the gradient deteriorates. This suggests two things. First, we should
be very careful in our choice of B and M for any particular pattern search method.
Second, we should not be surprised that these methods become less effective as the
dimension of the problem increases.

Nevertheless, even though pattern search methods neither require nor explicitly
approximate the gradient of the function, the uniform linear independence condition
demonstrates that the pattern search methods are, in fact, gradient-related methods,
as defined by Ortega and Rheinboldt [10], which is one reason why we can establish
global convergence.

6.3. The descent condition. Having introduced the notion of uniform linear
independence with the bound ξ, we are now ready to show that pattern search methods
reduce ∆k only when necessary to find descent. To do this we will show that once
the steps sik ≡ (xik − xk) are small enough, then a successful step must be returned
by the exploratory moves algorithm. Lemma 3.1 allows us to restate this condition
in terms of ∆k. We use the result to prove Proposition 3.4.

Proposition 6.4. Suppose that L(x0) is compact and f is continuously differ-
entiable on a neighborhood of L(x0). Given ε > 0, let

Ωε = {x ∈ L(x0) : dist(x,X∗) ≥ ε}.

Suppose also that x0 ∈ Ωε. Then there exists δ > 0, independent of k, such that if
xk ∈ Ωε and ∆k < δ, then the kth iteration of a generalized pattern search method
(see Algorithm 1) will be successful (i.e., ρk = f(xk) − f(xk + sk) > 0) and thus
∆k+1 ≥ ∆k.

Proof. We restrict our attention to the steps defined by the columns of ∆kBΓk.
This is sufficient since the Hypotheses on exploratory moves ensure that a step sk
satisfying the simple decrease condition ρk > 0 must be returned if a trial step defined
by a column of ∆kBΓk satisfies the simple decrease condition.

If sik, i = 1, . . . , 2n, is a step defined by ∆kBΓk (we assume that Pk is parti-
tioned as in (2) so that the first 2n columns of Pk contain the columns of BΓk ≡
[BMk −BMk]), then for some ζ∗ > 0, independent of k,

‖sik‖ = ‖∆kBc
i
k‖ ≤ ‖B‖‖cik‖∆k ≤ ζ∗∆k, i = 1, . . . , 2n,(15)
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since Mk ∈ M ⊂ Zn×n and M is a finite set of matrices. Together, (15) and
Lemma 3.1 yield

ζ∗∆k ≤ ‖sik‖ ≤ ζ∗∆k, i = 1, . . . , 2n.

Since x0 ∈ Ωε, Lemma 6.1 allows us to define N = min{k : xk 6= x0}. Define
d = dist (L(xN ), C(x0)). Because L(xN ) and C(x0) are compact and disjoint, we
know that d > 0. If ∆k < d/2ζ∗, then ‖sik‖ ≤ ζ∗∆k < d/2 for all i = 1, . . . , 2n.
Thus xik lies in the interior of L(x0) for all i = 1, . . . , 2n. More precisely, for all
i = 1, . . . , 2n, xik lies in the ball B(xk, d/2) ⊂ L(x0).

Let α = minx∈Ωε ‖∇f(x)‖. By design, α > 0. Since ∇f is continuous on a
neighborhood of L(x0), ∇f is uniformly continuous on a neighborhood of L(x0).
Thus, there exists a constant r > 0, depending only on α and the ξ from (13), such
that

‖∇f(x)−∇f(xk)‖ ≤ ξα
2 whenever ‖x− xk‖ ≤ r (and x ∈ L(x0)).

We define

δ =
1

ζ∗
min

{
d

2
, r

}
.(16)

We are now assured that if

∆k < δ(17)

then

xik ∈ B
(
xk,

d

2

)
⊂ L(x0), i = 1, . . . , 2n,(18)

and

‖∇f(xik)−∇f(xk)‖ ≤ ξα
2 , i = 1, . . . , 2n.(19)

We are ready to argue that if at any iteration k ≥ N , xk ∈ Ωε and (17) is satisfied,
then an acceptable step will be found.

Choose a trial point xik, i = 1, . . . , 2n, that satisfies both ∇f(xk)
T (xik − xk) < 0

and

|∇f(xk)
T (xik − xk)|

‖∇f(xk)‖‖xik − xk‖ ≥ ξ.

The definitions of Ωε and the pattern Pk, together with Lemma 6.2, guarantee the
existence of at least one such xik.

Since (17) holds by assumption, (18) also holds. We can apply the mean value
theorem to obtain f(xik)− f(xk) = ∇f(ω)T (xik − xk) for some ω ∈ (xk, x

i
k), where

f(xik)− f(xk) = ∇f(xk)
T (xik − xk) + (∇f(ω)−∇f(xk))

T (xik − xk).(20)

Consider the first term on the right-hand side of (20). Our choice of xik gives us∣∣∇f(xk)
T (xik − xk)

∣∣ ≥ ξ‖∇f(xk)‖‖xik − xk‖.
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Furthermore, since ∇f(xk)
T (xik − xk) < 0, we have

∇f(xk)
T (xik − xk) ≤ −ξ‖∇f(xk)‖‖xik − xk‖.(21)

Now consider the second term on the right-hand side of (20). The Cauchy–Schwarz
inequality gives us∣∣(∇f(ω)−∇f(xk))

T (xik − xk)
∣∣ ≤ ‖∇f(ω)−∇f(xk)‖‖xik − xk‖.(22)

Combine (21) and (22) to rewrite (20) as

f(xik)− f(xk) ≤ −ξ‖∇f(xk)‖‖xik − xk‖+ ‖∇f(ω)−∇f(xk)‖‖xik − xk‖
= (−ξ‖∇f(xk)‖+ ‖∇f(ω)−∇f(xk)‖)‖xik − xk‖.

Since ω ∈ (xk, x
i
k) and (17) holds by assumption, (19) also holds. We then have

f(xik)− f(xk) ≤ (−ξ‖∇f(xk)‖+
ξ

2
‖∇f(xk)‖)‖xik − xk‖ < 0.(23)

Thus, when ∆k < δ, f(xik) ≡ f(xk+sik) < f(xk) for at least one sik defined by ∆kBc
i
k,

i = 1, . . . , 2n. The Hypotheses on exploratory moves guarantee that if min{f(xk +
y), y ∈ ∆kBΓk} < f(xk), then f(xk+sk) < f(xk). Thus, ρk = f(xk)−f(xk+sk) > 0
and the algorithm for updating ∆k (Algorithm 2) ensures that ∆k+1 ≥ ∆k.

Proposition 6.4 guarantees that if ∆k is small enough, a generalized pattern search
method realizes simple decrease because there exists at least one step among the 2n
steps defined by ∆kBΓk that gives decrease as a function of the norm of the gradient
at the current iterate, as shown in (23); the Hypotheses on exploratory moves then
ensure that the exploratory moves algorithm must return a step that satisfies at least
simple decrease. However, there are no guarantees that the step returned by an
exploratory moves algorithm satisfies more than the simple decrease condition.

To tie the amount of actual decrease to the norm of the gradient, we must place
much stronger conditions on the generalized pattern search method, as discussed in
section 3.3.2. Once we have done so, Corollary 6.5 follows more or less immediately
from Proposition 6.4.

Corollary 6.5. Suppose that L(x0) is compact and f is continuously differen-
tiable on a neighborhood of L(x0). Suppose that the columns of the generating matrix
are bounded in norm and that the generalized pattern search method (Algorithm 1)
enforces the Strong hypotheses on exploratory moves. Given ε > 0, let

Ωε = {x ∈ L(x0) : dist(x,X∗) ≥ ε}.

Suppose also that x0 ∈ Ωε. Then there exist δ > 0 and σ > 0, independent of k, such
that for all but finitely many k, if xk ∈ Ωε and ∆k < δ, then

f(xk+1) ≤ f(xk)− σ‖∇f(xk)‖‖sk‖ < f(xk).

Proof. From Proposition 6.4, (23) says that for k ≥ N = min{k : xk 6= x0}
(Lemma 6.1 guarantees the existence of N), there exists at least one trial step sik ∈
∆kBΓk such that once ∆k < δ, where δ is as defined in (16), we have

f(xik) ≤ f(xk)− ξ
2‖∇f(xk)‖‖sik‖ < f(xk).
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The Strong hypotheses on exploratory moves give us

f(xk+1) ≤ f(xk)− ξ
2‖∇f(xk)‖‖sik‖ < f(xk).

Lemma 3.1 ensures that

f(xk+1) ≤ f(xk)− ξ
2ζ∗∆k‖∇f(xk)‖ < f(xk).

Lemma 3.6, which holds only when the columns of the generating matrix are bounded
in norm, gives us

f(xk+1) ≤ f(xk)− ξ
2ζ∗ψ∗‖∇f(xk)‖‖sk‖ < f(xk).

We define σ = ξ
2ζ∗ψ∗ to complete the proof.

We now prove Proposition 3.4.
Proof. By assumption, lim infk→+∞ ‖∇f(xk)‖ 6= 0. Then we can find N1 and

ε > 0 such that for all k ≥ N1, xk ∈ Ωε = {x ∈ L(x0) : dist(x,X∗) ≥ ε}. Lemma 6.1
guarantees the existence of N2 = min{k : xk 6= x0}. Let N = max(N1, N2).

From Proposition 6.4 we are assured of δ > 0 such that if ∆k ≤ δ, then the
iteration will be successful. Given ∆0, there exists a constant q ∈ Z, q ≥ 0, such
that θq∆0 ≤ δ, where θ ∈ (0, 1) and is as defined in the algorithm for updating ∆k

(Algorithm 2). Thus, for k ≥ N , θq+1∆0 < ∆k.
Set ∆LB = θmin(θq∆0, ∆1, . . . , ∆N−1). Then for all k, ∆LB < ∆k.
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Abstract. The Barzilai and Borwein gradient method for the solution of large scale uncon-
strained minimization problems is considered. This method requires few storage locations and very
inexpensive computations. Furthermore, it does not guarantee descent in the objective function and
no line search is required. Recently, the global convergence for the convex quadratic case has been
established. However, for the nonquadratic case, the method needs to be incorporated in a global-
ization scheme. In this work, a nonmonotone line search strategy that guarantees global convergence
is combined with the Barzilai and Borwein method. This strategy is based on the nonmonotone line
search technique proposed by Grippo, Lampariello, and Lucidi [SIAM J. Numer. Anal., 23 (1986),
pp. 707–716]. Numerical results to compare the behavior of this method with recent implementations
of the conjugate gradient method are presented. These results indicate that the global Barzilai and
Borwein method may allow some significant reduction in the number of line searches and also in the
number of gradient evaluations.

Key words. unconstrained optimization, nonmonotone line search, Barzilai and Borwein
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1. Introduction. In this paper we consider the Barzilai and Borwein gradient
method for the large scale unconstrained minimization problem

min
x∈Rn

f(x),(1)

where f : Rn → R. The method is defined by

xk+1 = xk − 1

αk
gk,(2)

where gk is the gradient vector of f at xk and the scalar αk is given by

αk =
stk−1yk−1

stk−1sk−1
,(3)

where sk−1 = xk − xk−1 and yk−1 = gk − gk−1.
Every iteration of the Barzilai and Borwein method requires only O(n) floating

point operations and a gradient evaluation. No matrix computations and no line
searches are required during the process. The search direction is always the negative
gradient direction, but the choice of steplength is not the classical choice of the steepest
descent method. In fact, Barzilai and Borwein [1] observed that this new choice of
steplength required less computational work and greatly speeded up the convergence
of the gradient method for quadratics.
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More interesting from a theoretical point of view is that the method does not
guarantee descent in the objective function. Barzilai and Borwein [1] presented a con-
vergence analysis in the two-dimensional quadratic case. They established, for that
particular case, R-superlinear convergence. However, Fletcher [5] argued that, in gen-
eral, only R-linear convergence should be expected. Later, Raydan [18] established
global convergence for the strictly convex quadratic case with any number of vari-
ables. This result has been recently extended to the (not necessarily strictly) convex
quadratic case by Friedlander, Martinez, and Raydan [6] to incorporate the method
in a box constrained optimization technique.

Glunt, Hayden, and Raydan [9] established a relationship with the shifted power
method that adds understanding to the significant improvement obtained with the
choice of steplength given by (3). In particular, they applied the Barzilai and Borwein
gradient method to find local minimizers of nonquadratic functions that appear in
the determination of molecular structures from nuclear magnetic resonance data. For
this application, it was possible to choose good starting values and convergence was
observed. However, in general, for the nonquadratic case the method needs to be
incorporated in a globalization scheme.

The object of this work is to embed the Barzilai and Borwein gradient method
in a globalization strategy that accepts the steplength given by (3) as frequently as
possible and that only requires storage of first-order information during the process.

This paper is organized as follows. In section 2 we present a globalization strategy
suitable for the Barzilai and Borwein method. This strategy is based on the non-
monotone line search technique of Grippo, Lampariello, and Lucidi [10] for Newton’s
method. We discuss the properties of this new algorithm and establish global conver-
gence under mild assumptions. In section 3 we present some preliminary numerical
results to compare the behavior of our global new method with recent implementa-
tions of the conjugate gradient method for the nonquadratic case. Finally, in section
4 we present some concluding remarks.

2. Globalization strategy. Standard methods for the solution of (1) usually
generate a sequence of iterates for which a sufficient decrease in the objective func-
tion f is enforced at every iteration. In many cases, the global strategy consists of
accepting the steplength, in the search direction, if it satisfies the well-known Armijo–
Goldstein–Wolfe conditions. Practical line search schemes have been developed to
enforce these conditions when combined with Newton, quasi-Newton, and conjugate
gradient methods. For a complete discussion on this topic see [3], [4], and [14].

There are some disadvantages to forcing the Armijo–Goldstein–Wolfe conditions
when combined with the Barzilai and Borwein gradient method. One of the dis-
advantages is that forcing decrease at every iteration will destroy some of the local
properties of the method. As it is argued in Fletcher [5] and Glunt, Hayden, and
Raydan [9], the choice of steplength (3) is related to the eigenvalues of the Hessian at
the minimizer and not to the function value. Moreover, since the search direction is
always the negative gradient direction, forcing decrease at every iteration will reduce
the method to the steepest descent method, which is known for being slow.

Therefore, we will enforce a much weaker condition of the form

f(xk+1) ≤ max
0≤j≤M

f(xk−j) + γgtk(xk+1 − xk),(4)

where M is a nonnegative integer and γ is a small positive number. This type of
condition (4) was introduced by Grippo, Lampariello, and Lucidi [10] and success-
fully applied to Newton’s method for a set of test functions. Recently, the same type



28 MARCOS RAYDAN

of nonmonotone line search technique has been incorporated into a variety of opti-
mization algorithms. See, for instance, [11], [15], and [16]. Condition (4) allows the
objective function to increase at some iterations and still guarantees global conver-
gence. This feature fits nicely with the nonmonotone behavior of the Barzilai and
Borwein gradient method. We now present the proposed algorithm.

Global Barzilai and Borwein (GBB) Algorithm.

Given x0, α0, integer M ≥ 0, γ ∈ (0, 1), δ > 0,
0 < σ1 < σ2 < 1, 0 < ε < 1. Set k = 0.

Step 1: If ‖gk‖=0 stop

Step 2: If αk ≤ ε or αk ≥ 1/ε then set αk = δ

Step 3: Set λ = 1/αk

Step 4: (nonmonotone line search)
If f(xk − λgk) ≤ max0≤j≤min(k,M)(fk−j)− γλgtkgk
then set λk = λ, xk+1 = xk − λkgk, and go to Step 6

Step 5: Choose σ ∈ [σ1, σ2], set λ = σλ, and go to Step 4

Step 6: Set αk+1 = −(gtkyk)/(λkg
t
kgk), k = k + 1, and go to Step 1.

Remarks. (1) The object of Step 2 is to avoid uphill directions and to keep the
sequence {λk} uniformly bounded. In fact, for all k

0 < min

(
ε,

1

δ

)
≤ λk ≤ max

(
1

ε
,
1

δ

)
.

(2) The GBB algorithm cannot cycle indefinitely between Steps 4 and 5. Indeed,
since λgtkgk > 0 and γ < 1, for sufficiently small values of λ the condition in Step 4 is
satisfied.

(3) Since sk = −λkgk, then the definition of αk+1 given in Step 6 is equivalent
to the one given in (3). The advantage of the definition used in the algorithm is
that it avoids the storage of the vector sk and reduces to 3n locations the storage
requirements of the GBB algorithm.

(4) For k = 0 the condition in Step 4 reduces to the Armijo α condition. For k > 0
the objective function might increase at some iterations. However, f(xk) ≤ f(x0) for
all k, and so the level set {x : f(x) ≤ f(x0)} contains the entire sequence of iterates
{xk}.

The convergence properties of the GBB algorithm are stated in the following
theorem.

Theorem 2.1. Assume that Ω0 = {x : f(x) ≤ f(x0)} is a bounded set. Let
f : Rn → R be continuously differentiable in some neighborhood N of Ω0. Let {xk} be
the sequence generated by the GBB algorithm. Then either g(xj) = 0 for some finite
j, or the following properties hold:

(i) limk→∞ ‖gk‖ = 0;
(ii) no limit point of {xk} is a local maximum of f ;
(iii) if the number of stationary points of f in Ω0 is finite, then the sequence

{xk} converges.
Proof. In order to establish (i), we make use of the first part of the proof of the

convergence theorem in [10, p. 709].
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Let us define m(k) = min(k,M). Clearly, m(0) = 0 and

0 ≤ m(k) ≤ min(m(k − 1) + 1,M) for k ≥ 1.

Moreover, there exists a positive constant a such that 0 < λk ≤ a for all k. Indeed, in
the GBB algorithm a = max(ε−1, δ−1). Finally, there exist positive numbers c1 and c2
such that the search direction dk satisfies gtkdk ≤ −c1‖gk‖2

2 and ‖dk‖2 ≤ c2‖gk‖2. In
fact, in the GBB algorithm, the search direction dk is −gk for all k and so c1 = c2 = 1.
Therefore, we obtain equation (14) in [10, p. 711] that in our case reduces to

lim
k→∞

λk‖gk‖2 = 0.

Since λk ≥ min(ε, 1
δ ) for all k, then part (i) holds. Assertions (ii) and (iii) follow

directly from the convergence theorem in [10].
Notice that, forcing the weak condition (4), the sequence {xk} generated by the

GBB algorithm has the following property:

lim
k→∞

‖gk‖ = 0.

This is in sharp contrast to the conjugate gradient methods (Fletcher–Reeves, Polak–
Ribière, etc.) for which much stronger conditions have to be imposed to obtain the
weaker result:

lim inf
k→∞

‖gk‖ = 0.

For a further discussion on the convergence properties of the conjugate gradient meth-
ods see Nocedal [14] and Gilbert and Nocedal [8].

3. Numerical results. In this section we present numerical results to compare
the behavior of the GBB algorithm with two different implementations of the conju-
gate gradient method for the nonquadratic case. In particular, we compare the GBB
algorithm with the well-known routine CONMIN of Shanno and Phua [19], which
includes automatic restarts and requires 7n storage locations. We also compare the
GBB algorithm with the Polak–Ribière implementation of Gilbert and Nocedal [8]
(PR+) that requires 4n storage locations and for which global convergence was es-
tablished under mild assumptions. The line search for the PR+ method is based on
the algorithm of Moré and Thuente [13] and is fully described in [8]. It is worth men-
tioning that for the classical Polak–Ribière method no satisfactory global convergence
result has been found and a negative convergence result has been established; see
Powell [17]. For this lack of theoretical support we have decided to compare the new
algorithm with PR+ instead of the classical Polak–Ribière method, although they
behave similarly in practice.

The problems used in our tests include well-known large functions and two new
strictly convex functions. Table 1 lists the problems and the references for descriptions
of the test functions and the starting points. For the problems of Moré, Garbow, and
Hillstrom [12] we use the standard starting vector. In this paper, we only describe
the new functions:

Strictly Convex 1:

f(x) =
n∑
i=1

(exi − xi); x0 =

(
1

n
, . . . ,

i

n
, . . . , 1

)t
.
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Table 1

Test problems.

Problem Name Reference
1 Strictly Convex 1
2 Strictly Convex 2
3 Brown almost linear Moré et al. [12]
4 Trigonometric Moré et al. [12]
5 Broyden tridiagonal Moré et al. [12]
6 Oren’s power Garg and Tapia [7]
7 Extended Rosenbrock Moré et al. [12]
8 Penalty 1 Moré et al. [12]
9 Tridiagonal 1 Buckley and LeNir [2]
10 Variably dimensioned Moré et al. [12]
11 Extended Powell Moré et al. [12]
12 Generalized Rosenbrock Moré et al. [12]
13 Extended ENGLV1 Toint [20]
14 Extended Freudenstein and Roth Toint [20]
15 Wrong Extended Wood Toint [20]

Strictly Convex 2:

f(x) =
n∑
i=1

i

10
(exi − xi); x0 = (1, 1, . . . , 1)t.

Clearly, the unique minimizer of Strictly Convex 1 and Strictly Convex 2 is given by
x? = (0, . . . , 0)t. The Hessian of Strictly Convex 1 at x? is the identity matrix, and
the Hessian of Strictly Convex 2 at x? has n distinct eigenvalues.

All the experiments were run on a SparcStation 1 in double precision FORTRAN
with a machine epsilon of about 2×10−16. For the GBB algorithm we used γ = 10−4,
ε = 10−10, σ1 = 0.1, σ2 = 0.5, α0 = 1, and M = 10. We have chosen the parameter ε
to be a very small number in order to accept the Barzilai and Borwein step as many
times as possible. However, if the condition in Step 2 was satisfied at iteration k, then
the parameter δ was chosen in the following way:

δ =


1 if ‖gk‖2 > 1,

‖gk‖−1
2 if 10−5 ≤ ‖gk‖2 ≤ 1,

105 if ‖gk‖2 < 10−5.

Notice that, with this choice of δ, the sequence {λk} remains uniformly bounded. In
Step 5, σ is chosen by means of a quadratic interpolation described in [3, p. 127]. All
runs were stopped when

‖gk‖2 ≤ 10−6(1 + |f(xk)|),
and we verified that the three methods converged to the same solution point.

The numerical results are shown in Table 2. We report number of iterations
(IT), CPU time in seconds (Time), number of function evaluations (f), number of
gradient evaluations (g), and number of line searches (LS) required by the GBB
method during the process, i.e., number of iterations for which the GBB algorithm
goes through Step 5 at least once. Every time GBB requires a line search, it needs
additional function evaluations and no additional gradient evaluations. On the other
hand, CONMIN and PR+ require a line search at every iteration and as many function
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Table 2

Results for GBB, CONMIN, and PR+.

GBB CONMIN PR+

P(n) IT f g LS Time IT f-g Time IT f-g Time
1(100) 8 8 8 0 0.04 15 38 0.16 6 17 0.14
1(1000) 8 8 8 0 0.28 15 38 1.23 7 22 0.92
1(10000) 8 8 8 0 2.8 15 38 12.57 7 22 8.45
2(100) 52 57 52 4 0.29 40 81 0.55 33 69 0.45
2(500) 74 80 74 5 1.61 63 127 4.1 44 92 2.34
2(1000) 82 91 82 7 3.49 71 145 9.13 40 84 4.17
3(100) 3 3 3 0 0.01 3 7 0.03 2 4 0.03
3(1000) 4 4 4 0 0.1 15 38 0.94 F F F
3(10000) 57 72 57 10 25.5 17 41 22.3 F F F
4(100) 76 81 76 4 0.86 51 108 1.33 54 121 1.1
4(1000) 93 106 93 13 9.6 53 112 13.1 58 132 10.1
4(10000) 89 99 89 10 83.3 59 126 134. 61 133 97.
5(100) 34 34 34 0 0.13 33 67 0.34 31 70 0.42
5(1000) 40 40 40 0 1.1 38 75 3.8 32 75 3.47
5(3000) 44 45 44 1 3.7 35 71 10.8 31 71 9.82
6(100) 105 112 105 7 0.32 49 99 0.3 39 87 0.25
6(1000) 310 378 310 54 6.8 158 320 10.8 114 236 6.42
6(10000) 1351 1750 1351 263 325. 464 937 365. 355 719 207.
7(100) 69 91 69 15 0.22 19 47 0.12 25 73 0.24
7(1000) 93 118 93 20 1.73 30 73 1.92 23 70 1.45
7(10000) 70 92 70 11 14.3 28 69 16.3 20 64 13.9
8(100) 48 49 48 1 0.16 27 65 0.23 53 204 0.75
8(1000) 57 57 57 0 1.22 25 55 1.44 40 164 4.15
8(10000) 62 62 62 0 14.2 25 55 15. 40 164 43.2
9(100) 167 191 167 18 0.55 80 161 0.8 78 158 0.7
9(1000) 878 1152 878 186 21.3 306 613 25.8 295 593 18.3
10(100) 38 38 38 0 0.13 13 29 0.1 7 39 0.16
10(1000) 54 54 54 0 1.22 27 62 1.54 F F F
11(100) 740 988 740 136 3.5 47 95 0.48 190 434 1.6
11(1000) 815 1125 815 163 32.6 43 87 4.1 99 238 10.6
12(100) 1429 1869 1429 342 4.85 254 516 2.3 258 533 2.63
12(500) 4452 5622 4452 1087 51. 1082 2280 45.3 1072 2162 39.7
13(100) 26 26 26 0 0.1 13 27 0.15 17 43 0.21
13(1000) 23 23 23 0 0.54 12 25 0.81 13 45 1.32
13(10000) 21 21 21 0 5.16 11 23 7.3 9 32 9.3
14(100) 438 560 438 102 2.0 13 27 0.14 14 39 0.3
14(1000) 288 377 288 69 10.3 12 25 1.13 19 50 2.4
14(10000) 119 151 119 21 44.2 11 23 11.1 8 30 16.8
15(100) 76 85 76 8 0.3 25 53 0.25 54 127 0.62
15(1000) 80 87 80 5 2.32 34 70 2.83 29 66 2.1

evaluations as gradient evaluations during the process. Hence, for CONMIN and PR+,
we report function and gradient evaluations under the label (f-g). The letter F that
appears under the multicolumn PR+ means that the run was stopped because the
line search procedure failed to find a steplength. In those cases, we were not able to
report any information for the PR+ method. The results of Table 2 are summarized
in Table 3. We report in Table 3 the number of problems for which each method was
a winner in number of iterations, number of gradient evaluations, and CPU time.

We observe that the GBB method out performs CONMIN and PR+ in number of
gradient evaluations and CPU time, except for problems with a very ill-conditioned
Hessian at the solution. For some of these problems, GBB is still competitive in
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Table 3

Number of problems for which a method was a winner.

Method IT g Time
GBB 1 19 22
CONMIN 17 12 10
PR+ 22 9 8

CPU time. However, if the Hessian is singular at the solution as in problem 11, then
CONMIN and PR+ clearly out perform GBB.

CONMIN and PR+ out perform GBB in number of iterations, except for problems
with a well-conditioned Hessian at the solution, in which case the number of iterations
is quite similar. In some of those cases (problems 1 and 5), the difference in computing
time is remarkable.

4. Concluding remarks. The Barzilai and Borwein method can be incorpo-
rated in a globalization strategy that preserves the good features of the method and
only requires 3n storage locations. Since the search direction is always the negative
gradient direction, it is trivial to ensure that descent directions are generated at every
iteration. This is in sharp contrast to the conjugate gradient methods, for which a
very accurate line search has to be performed at every iteration to generate descent
directions.

Our numerical experiments seem to indicate that the global Barzilai and Bor-
wein algorithm is competitive and sometimes preferable to recent and well-known
implementations of the conjugate gradient method. However, further numerical in-
vestigation needs to be done to establish this conclusively.

We observe that the GBB algorithm requires few line searches. In the worst case
(problem 12), it requires 1 line search out of every 5 iterations. Moreover, we have
observed that near the solution the GBB method does not require any line search.
At this point, we would like to stress that no local convergence analysis has been
presented to support this observation. All we can say, so far, to explain the local
behavior of the GBB method is that the Barzilai and Borwein method, given by (2)
and (3), is globally convergent for convex quadratic functions.

Finally, we would like to comment on the choice of the parameter M in the GBB
algorithm. We have tested the same set of problems with different values of M ranging
from 5 to 20. In general, we observed similar results to the ones presented in Tables
2 and 3, except for problems with a singular or very ill-conditioned Hessian at the
solution. For these problems, the behavior of the method is very sensitive to the
choice of M . For example, using M = 20 in problem 11 with n = 1000, convergence
is obtained after 365 iterations, 36 line searches, 451 function evaluations, and 12.8
seconds of execution time. These results represent a significant improvement over
the ones reported in Table 2 with M = 10. On the other hand, using M = 5 the
results obtained are worse than the ones in Table 2. Therefore, for the singular or
very ill-conditioned case, the choice of the parameter M is a delicate issue and merits
further investigation.

Acknowledgments. The author thanks Jorge Nocedal for providing all the re-
quired routines to test the PR+ method. He also thanks Jose Mario Martinez and
two anonymous referees for their constructive suggestions.
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Abstract. We present two examples in which the dual affine scaling algorithm converges to
a vertex that is not optimal if at each iteration we move 0.999 of the step to the boundary of the
feasible region.
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1. Introduction. This work is about the convergence of the affine scaling algo-
rithm. We assume that the reader is familiar with this algorithm, which is a variation of
the affine scaling algorithm proposed by Dikin in [Dk]. Dikin [Dk2] and Tsuchiya and
Muramatsu [TM] have shown that x̄ is optimal if λ ≤ 1/2 and λ ≤ 2/3, respectively,
regardless of degeneracy, where λ is the fraction of the step to the boundary taken at
each iteration. Saigal [S] has shown convergence to optimality for λ ≤ 2q/(3q − 1),
where q is the number of nonzeros in the limiting solution. In this work we present
two examples in which the dual affine scaling algorithm, with λ = 0.999, converges to
a vertex that is not optimal if we choose the starting point properly. The first example
is simpler and contains the essence of how convergence to the wrong solution happens.
However, it does not have an optimal solution and for completeness we present the
second example, which has an optimal solution.

We are interested in linear programs Π(A, b, c) of the form

(1) minimize z(x) = ctx, subject to Atx ≥ b.

The feasible set of Π is FΠ = {x ∈ Rn s.t. Atx ≥ b}. Its interior is called F+
Π . Usually,

we look at programs that have an optimal solution and for which c 6= 0,F+
Π 6= ∅, and

A has full rank. It follows from [MTW] that for any such programs, λ ∈ (0, 1), and
interior starting point x0, the dual affine scaling algorithm converges to x̄(Π, λ, x0) in
the relative interior of some face ϕ of FΠ. We say that ϕ is nondegenerate if the re-
strictions active at its relative interior are linearly independent. If ϕ is nondegenerate,
then x̄ is optimal [Dk2].

Our examples are presented in (2) and (3). The proofs that show that the dual
affine scaling algorithm with λ = 0.999 fails for these problems are rather technical, but
the examples themselves are simple and we encourage the reader to perform numerical
experiments with them. The experiments will show that if x0 = t(1, s̄2, s̄3)t, with s̄2
and s̄3 given by (4) and t small in the second example, then x2k ≈ (0.001108633)kx0 for
several values of k. For a verification in higher precision, use Mathematica with decimal
numbers represented as rationals (0.999 = 999/1000, etc.) to avoid the rounding errors
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on the conversion to base 2. We hope that these experiments convince the practical-
minded reader that xk → 0 for properly chosen x0. In the last sections of this work we
present rigorous arguments showing how to turn this empirical evidence into theorems.

The paper is organized as follows. In section 2 we present the examples and
explain how we found them. In section 3 we introduce some notation. In section 4
we prove two theorems which formalize the statements above. In section 5 we prove
two technical lemmas. In section 6 we prove a weak version of the stable manifold
theorem, used for the rigorous analysis of the second example.

2. The examples. In this section we present the two examples and state two
theorems saying that the dual affine scaling algorithm with λ = 0.999 converges to a
nonoptimal solution if we choose the starting point properly. The section ends with
an explanation of how we found the examples. The first example is the program Π
given by

(2) A =

 0 0 −1 −1
1 0 α β
0 1 β α

 , b = (0, 0, 0, 0)t, c = (1, 0, 0)t

with α = 0.39574487 and β = 0.91836049. Program Π does not have an optimal
solution. To fix that, we add a restriction, getting the second example, Π̃, given by

(3) Ã =

 0 0 −1 −1 1
1 0 α β −1
0 1 β α −1

 , b̃ = (0, 0, 0, 0,−1)t, c = (1, 0, 0)t.

The vertex (−1, 0, 0) is the optimal solution of Π̃. (The proofs below work as long as
Π̄ is not empty and the corresponding face does not contain (0, 0, 0), but the notation
for the proof of the general case would be horrendous.)

The main results of this paper are the following theorems.
Theorem 1. Let Π be given by (2). There exists s = (1, s2, s3) ∈ F+

Π and
0 < µ < 1 such that if xk = ts for t > 0 and λ = 0.999 then xk+2 = µxk.

Theorem 2. Let Π̃ be given by (3). There exists ε > 0, a curve σ: (0, ε) → F+

Π̃
,

and a function φ: (0, ε) → (0, ε) with 0 < φ(t) < t/4 such that if λ = 0.999 and
xk = σ(t) then xk+2 = σ(φ(t)).

In other words, there exists a half line L in F+
Π such that if the algorithm starts

from x0 ∈ L then all the even iterates will lie on L and converge to 0, which is not
optimal. The behavior of the second example is a nonlinear version of the behavior
of the first one, with the half line L replaced by the curve σ. The nonlinearity is
introduced when we turn Π into the acceptable program Π̃ by adding one constraint.
Theorem 2 holds because this nonlinearity has a negligible effect.

The values of s2 and s3 in Theorem 1 are close to s̄2 and s̄3 given, respectively, by

(4)

2.373875277831879570815871749315245119314258024281969559631585343413865,

0.105896780064483343718545069960983375540459740821398318758336306497571.

These values were computed by Mathematica with high precision and rounded to 70
digits.

We leave the proofs of Theorems 1 and 2 to section 4 and explain now how we
found Π and Π̃. For two variables, we proved that the iterates converge to an optimal
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Fig. 1.

solution for every λ ∈ (0, 1) and feasible x0 [M]. Therefore, we needed three variables.
Using Farkas’s lemma and scaling, we concluded that the minimal program for which
the vertex 0 is degenerate and not optimal looks like Π̄ given by

(5) Ā =

 0 0 −1 −1
1 0 sin θ1 cos θ1
0 1 sin θ2 cos θ2

 , b̄ = (0, 0, 0, 0)t, c̄ = (1, 0, 0)t,

where θ1 and θ2 are free parameters. To simplify, we took sin θ1 = cos θ2 = α and
cos θ1 = sin θ2 = β equal to the numerical value of

√
1− α2, getting program Π in (2).

This choice makes Π symmetric with respect to the permutation x2 ↔ x3. We leave
to the reader the verification that if P ∈ R3×3 is the permutation matrix such that

(6) P (x1, x2, x3)t = (x1, x3, x2)t,

then the iterates for programs (2) and (3) satisfy

(7) yk = Pxk ⇒ yk+1 = Pxk+1.

Since Π is homogeneous, for x1 > 0, we looked at

(8) vt(x) = (v1(x), v2(x), v3(x))t =

(
x1,

x2

x1
,
x3

x1

)t
.

If v1(x) > 0 then x ∈ F+
Π if and only if (v2(x), v3(x)) belongs to the set

Vα = {(v2, v3) ∈ R2 s.t. v2, v3 > 0, αv2 + βv3 > 1, βv2 + αv3 > 1}.

The evolution of v2(x) and v3(x) is independent from v1(x) and there exists a differ-
entiable function Vα,λ with domain containing Vα such that

(v2(xk+1), v3(xk+1)) = Vα,λ(v2(xk), v3(xk)).

As long as vk1 > 0, we can recover x from v using xk = vk1 (1, vk2 , v
k
3 ). We used graphics

routines to study Vα,λ and found that for α ≈ 0.4 and Vλ = Vα,λ, the iterations are
described by Figure 1.
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In this figure, R is a region in the (v2, v3) plane and Vλ(R) is its image by Vλ.
We use a prime (′) to denote “symmetrical with respect to the diagonal v2 = v3.”
The intersection of R′ and Vλ(R) is empty if λ is small. However, as λ increases,
Vλ(R) moves to the left. When λ is about 0.999, Vλ(R) contains R′. By the symmetry

of Π, Vλ(R′) = Vλ(R)′ and R ⊂ Vλ(R′) ⊂ Vλ(Vλ(R)). Since V
(2)
λ is continuous and

one-to-one in R,R ⊂ V
(2)
λ (R) and R is convex and bounded, there exists (s2, s3) in R

such that V
(2)
λ (s2, s3) = (s2, s3). (This is a version of Brower’s fixed point theorem and

can be proven by applying the standard argument, presented on p. 194 of [Sp], to the
inverse of V 2

λ .) Thus, if x0 = (1, s2, s3) then x2 = (x2)1(1, s2, s3) = µx0. According
to Mathematica, µ ≈ 0.001. Since Π is homogeneous, if xk = (xk)1(1, s2, s3), then
xk+2 = µ(xk)1(1, s2, s3) = µxk. Geometrically, if xk ∈ L = {t(1, s2, s3), t > 0}, then
xk+2 is also in L. Moreover, xk+2 is closer to 0 than xk and limk→∞ xk = 0. To get an
example with an optimal solution we add a constraint to bound FΠ, getting Π̃ in (3).
With this new restriction, the evolution of v2 and v3 depends on v1. This dependence
is weak if v1 ≈ 0 and the new example behaves like Π near 0.

3. Notation. Let Π be the linear program in (1). The slack ξ is defined as
ξ(Π, x) = Atx − b. If v ∈ Rk, then (v) is the diagonal matrix with diagonal v and
max(v) is the value of its biggest entry. The dual affine scaling algorithm steps in the
direction

(9) d(Π, x) = (A[ξ(Π, x)]−2At)−1c,

normalized by

(10) χ(Π, x) = max([ξ(Π, x)]−1Atd(Π, x)).

The next iterate of the dual affine scaling algorithm is given by

(11) xk+1 = N(Π, λ, xk) = xk − λ

χ(Π, xk)
d(Π, xk).

The 2-norm of the matrix M is ‖M‖. If F is a function, then F (k) is its kth
iterate; that is, F (0)(x) = x and F (k+1)(x) = F (F (k)(x)). Analogously, we define
N (0)(Π, λ, x) = x and N (k+1)(Π, λ, x) = N(Π, λ,N (k)(Π, λ, x)). We use Ck(D,S)
to denote the set of k times continuously differentiable functions from D to S. The
jacobian of F at x is JF (x). The open ball of center x and radius ρ in Rk is

Bk(x, ρ) = {y ∈ Rk s.t. ‖x− y‖ < ρ}.

4. Proofs of Theorems 1 and 2. In this section we prove Theorems 1 and 2.
Motivated by the graphical arguments in section 2, we express the slacks of problem
Π̃ in terms of the normalized variable v, defined in (8), and get

(12) ξt(x) = x1

(
v2, v3, αv2 + βv3 − 1, βv2 + αv3 − 1,

1 + v1 − v1v2 − v1v3
v1

)t
.

For the program Π in (2) the slacks are given by the first four components of this
vector. This motivates the introduction of the functions
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ψt(v) =

(
1

v2
,

1

v3
,

1

αv2 + βv3 − 1
,

1

βv2 + αv3 − 1
,

v1
1 + v1 − v1v2 − v1v3

)t
,(13)

ω(v) = (Ã[ψ(v)]2Ãt)−1,(14)

τ(v) = [ψ(v)]Ãtω(v)c,(15)

κ(v) = max(τ(v)),(16)

δ(v) = κ(v)v − λω(v)c,(17)

θ(v) = κ(v)− λ(ω(v)c)1.(18)

Notice that the functions above are well defined for all v ∈ R3 for which ψ(v) and
ω(v) are defined, even if v1 = 0. The following lemma states facts about the functions
in (16)–(18) which hold even for v1 ≤ 0, and we will be careful and require that v1 > 0
when we want to conclude something about x. Let

(19) s̄ = (0, s̄2, s̄3)

with s̄2 and s̄3 given in (4). We have the following lemma.
Lemma 1. The functions κ, δ, and θ are rational in B3(s̄, 10−50) and

10−2 < κ(v), ‖δ(v)‖∞, θ(v) < 1,(20) ∣∣∣∣ ∂κ∂vi (v)
∣∣∣∣ , ∥∥∥∥ ∂δ∂vi (v)

∥∥∥∥ , ∣∣∣∣ ∂θ∂vi (v)
∣∣∣∣ < 1020,(21)

∥∥∥∥ ∂2δ

∂vi∂vj
(v)

∥∥∥∥ , ∣∣∣∣ ∂2θ

∂vi∂vj
(v)

∣∣∣∣ < 1030,(22)

∂θ

∂v1
(0, v2, v3) =

∂δ2
∂v1

(0, v2, v3) =
∂δ3
∂v1

(0, v2, v3) = 0.(23)

The proofs of Theorems 1 and 2 use the functions above to describe the evo-
lution of the iterates. For Π̃, we get from (9), (10), and (13)–(16) that d(x) =
(x1)2ω(v(x))c, χ(x) = x1κ(v(x)), and

(24) xk+1 = xk − xk1
λ

κ(v(xk))
ω(v(xk))c.

It follows from (17)–(18) and (24) that if i = 2, 3, xk1 > 0 and xk+1
1 > 0, then

v1(xk+1) = xk+1
1 = v1(xk)

θ(v(xk))

κ(v(xk))
,

vi(xk+1) =
xk+1
i

xk+1
1

=
δi(v(xk))

θ(v(xk))
.

In other words, v(xk+1) = G(v(xk)) for

(25) G(v) =

(
v1
θ(v)

κ(v)
,
δ2(v)

θ(v)
,
δ3(v)

θ(v)

)
.
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Notice that G is a function of v and may be defined even when v1 = 0.
The evolution of the xk in program Π is similar; we only need to notice that Π

is homogeneous and replace v1 by 0 in the fifth component of ψ in (13). The reader
can verify that in this case

(26) v(xk+1) =

(
vk1
θ(v̄)

κ(v̄)
, G2(v̄), G3(v̄)

)
for v̄ = (0, v2(xk), v3(xk)).

Now consider the permutation P in (6) and define

(27) H(v) = PG(v) = (G1(v), G3(v), G2(v)).

It follows from Lemma 1 (especially (23)) that if v ∈ B3(s̄, 10−50) and v1 = 0 then

JH(v) =


θ(v)
κ(v) 0 0

0 ∂G3

∂v2
(v) ∂G3

∂v3
(v)

0 ∂G2

∂v3
(v) ∂G2

∂v3
(v)

 .

The last result we need to prove Theorems 1 and 2 is the following lemma.
Lemma 2. There exists s = (0, s2, s3) such that s2, s3 > 0, αs2 + βs3 > 1, βs2 +

αs3 > 1, H in (27) belongs to C1(B3(s, 10−60),R3), H(s) = s, |θ(s)/κ(s) − 0.03| <
10−2, and the eigenvalues of the right lower corner of JH(s) satisfy ‖(µ2, µ3) −
(−1.1, 15.06)‖ < 10−2.

We now prove Theorems 1 and 2 and finish this section.
Proof of Theorem 1. If s is as in Lemma 2 then G2(s) = H3(s) = s3 and G3(s) =

H2(s) = s2. Therefore, if xk = t(1, s2, s3) then vk = (t, s2, s3) and (26) imply that

vk+1 = v(xk+1) =

(
t
θ(s)

κ(s)
, s3, s2

)
.

Taking s′ = (0, s3, s2), we get by the symmetry of Π that κ(s′) = κ(s) and θ(s′) = θ(s).
Notice that vk+1

1 > 0. Therefore, (26) and the symmetry of Π lead to

vk+2 = v(xk+2) =

(
t

(
θ(s)

κ(s)

)2

, G2(s′), G3(s′)

)
= (µt, s2, s3)

for µ = θ(s)2/κ(s)2. Since µt > 0, we conclude that xk+2 = µt(1, s2, s3) = µxk.
Lemma 2 shows that 0 < µ < 1 and the proof of Theorem 1 is complete.

Proof of Theorem 2. We will apply the stable manifold theorem [HP] to H and
s from Lemma 2. Since this theorem is not widely known in the mathematical pro-
gramming community and in order to make the paper self contained, we state only a
weak version of it, which we will prove in section 6.

The Stable Manifold Theorem. Let a > 0 and F in C1((−a, a)×Bn(0, a),
R1+n) be given by

F (x, y) = (µ0x+R(x, y), Ay + S(x, y))

with R(0, 0) = 0, S(0, 0) = 0,∇R(0, 0) = 0, and JS(0, 0) = 0. Assume that |µ0| < 1
and the eigenvalues µi of A satisfy |µi| > 1 for all i. Then, given ε > 0, there exits
δ > 0, µ in C0((−δ, δ),R), and γ in C0((−δ, δ),Rn) such that

(28) F (t, γ(t)) = (µ(t), γ(µ(t)))
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and

(29) |µ(t)− µ0t|+ ‖γ(t)‖ ≤ ε|t|.

The curve C(t) = (t, γ(t)) is called the stable manifold of F at (0, 0) because if
x ∈ C then F (k)(x) converges to (0, 0) as k →∞. Equation (28) means that if x ∈ C
then F (x) is also in C, and (29) means that (t, γ(t)) is tangent to (t, 0). If F were
linear, then θ would be the straight line (t, 0) and µ(t) would equal µ0t. The stable
manifold theorem says that near (0, 0) F behaves as its linearization.

Lemma 2 and the stable manifold theorem applied to F (v) = H(v + s)− s with

(30) ε =
1

2
min

{
µ0,

1

2
− µ0, s2, s3, αs2 + βs3 − 1, βs2 + αs3 − 1

}
> 0

and 0 < µ0 = θ(s)/κ(s) < 1/2 imply that there exist δ ∈ (0, 10−60), µ ∈ C0((−δ, δ),R),
and γ ∈ C0((−δ, δ),R2), with

(31) H(t, s2 + γ2(t), s3 + γ3(t)) = (µ(t), s2 + γ2(µ(t)), s3 + γ3(µ(t))),

where we have written γ(t) = (γ2(t), γ3(t)) and such that (29) holds.
To complete the proof we show that

σ(t) = (t, s2t+ γ2(t)t, s3t+ γ3(t)t)

and φ(t) = µ(µ(t)) satisfy

(32) 0 < t < δ ⇒ 0 < µ(t) < t/4,

(33) 0 < t < δ ⇒ σ(t) ∈ F+

Π̃
,

(34) xk = σ(t) ⇒ xk+2 = σ(φ(t)).

Let us start with (32). Inequality (29) implies that if 0 < t < δ then (µ0 − ε)t <
µ(t) < (µ0 + ε)t < t. Equation (30) shows that µ0 − ε > 0 and µ0 + ε < 1/2.
Therefore, 0 < µ(t) < t < δ and, replacing t by µ(t) in the argument above, we get
0 < µ(µ(t)) < (µ0 + ε)µ(t) < (µ0 + ε)2t ≤ t/4.

If 0 < t < δ then σ1(t) > 0 and, as in (8), we can define

ν(t) = v(σ(t)) = (t, s2 + γ2(t), s2 + γ3(t)),

and it follows from (30) and (29) that the slacks in (12) are all positive and (33) holds.
We now use the symmetry of FΠ̃ and (7) to show (34). By the definition of G

and (25) we get v(xk+1) = G(v(xk)). It follows from (31) that H(ν(t)) = ν(µ(t)) and

v(N(σ(t))) = G(v(σ(t))) = G(ν(t)) = PH(ν(t)) = Pν(µ(t)).

Since ν1(µ(t)) = µ(t) > 0 and v(Px) = Pv(x), it follows from the last equation that
N(σ(t)) = Pσ(µ(t)). Therefore, from (7) and PP = I, we get

N (2)(σ(t)) = N(N(σ(t))) = N(Pσ(µ(t))) = PN(σ(µ(t))) = PPσ(µ(2)(t)) = σ(φ(t)),
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as required by Theorem 2.

5. Technical lemmas. In this section we will prove Lemmas 1 and 2 from the
last section. We used Mathematica to evaluate rational functions in these proofs. By
“Mathematica shows that x < y,” we mean that the symbolically computed x and y
warrant such a conclusion.

Proof of Lemma 2. We will show that Lemma 2 is satisfied by s close to s̄ in (19).
Mathematica shows that ‖H(s̄)− s̄‖ < 10−66, which is strong evidence of the existence
of s close to s̄ such that H(s) = s. It also shows that JH(s̄) satisfies the conditions
required from JH(s) in the thesis of Lemma 2. This is evidence that JH(s) is fine.
This proof contains estimates showing that the evidence is correct.

Using Lemma 1 and (25), for i = 2, 3, we get

∂2Gi
∂vj∂vk

=
1

θ

∂2δi
∂vj∂vk

− 1

θ2

(
∂δi
∂vj

∂θ

∂vk
+
∂δi
∂vk

∂θ

∂vj
+ δi

∂2θ

∂vi∂vj

)
+ 2

δi
θ3

∂θ

∂vj

∂θ

∂vk

and

(35)

∣∣∣∣ ∂2Gi
∂vj∂vk

(v)

∣∣∣∣ < 1032 + 1044 + 1044 + 1034 + 1046 < 1047.

Equation (25) shows that H(0, s2, s3) = (0, s2, s3) if and only if

F (s2, s3) = (G3(0, s2, s3)− s2, G2(0, s2, s3)− s3) = (0, 0).

The jacobian of F is (
∂G3

∂v2
− 1 ∂G3

∂v3

∂G2

∂v2
∂G2

∂v3
− 1

)
.

It follows from (35) that, for all v, v′ ∈ B3(s̄, 10−50), we have

(36) ‖JF (v2, v3)− JF (v′2, v
′
3)‖ ≤ 1049‖v − v′‖.

According to Lemma 1, the functions κ, δ, and θ and their derivatives are rational.
We evaluated them symbolically at s̄ and found that∥∥∥∥∂G∂vi (s̄)

∥∥∥∥ < 103,(37)

‖JF−1(s̄2, s̄3)‖ < 10,(38)

‖JF−1(s̄2, s̄3)F (s̄2, s̄3)‖ < 10−65.(39)

We now apply Kantorovich’s theorem, as stated on p. 92 of [DS]. In [DS]’s nota-
tion, (36), (38), and (39) correspond to β = 10, γ = 1049, η = 10−65, and α = 10−15. It
follows from Kantorovich’s theorem that F has a zero (s2, s3) in B2((s̄2, s̄3), r0) with
r0 = (1−√1− 2× 10−15)/1050 < 10−60.

Since ‖s̄ − s‖ < 10−60, B3(s, 10−60) ⊂ B3(s̄, 10−50) and Lemma 1 show that
κ, δ, and θ are positive rational functions in B3(s, 10−60). Equation (25) shows that
H = PG is in C1(B3(s̄, 10−60),R3). Since s1 = 0, it follows from (23) that ∂G2

∂v1
(s) =

∂G3

∂v1
(s) = 0 and, for i = 2, 3, ∂G1

∂vi
(s) = s1

(
∂ θκ/∂vi

)
(s) = 0 and ∂G1

∂v1
(s) = θ(s)/κ(s).
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Mathematica shows that |θ(s̄)/κ(s̄) − 0.033| < 10−3. Lemma 1 and ‖s − s̄‖ <
10−50 imply that |θ(s)/κ(s) − 0.03| < 10−2. Let p(µ, v) be the characteristic poly-
nomial of the right lower corner of JH(v):

p(µ, v) =

(
∂G3

∂v2
(v)− µ

)(
∂G2

∂v3
(v)− µ

)
− ∂G2

∂v3
(v)

∂G3

∂v3
(v).

Bounds (37) and (35) show that
∥∥∥ ∂G∂vi (v)∥∥∥ < 104 in B(s̄, 10−50). It follows that if

|µ| < 102 then |p(µ, s) − p(µ, s̄)| < 10−5. Mathematica shows that p(−1.11, s̄) >
0.1, p(−1.09, s̄) < −0.1, p(15.05, s̄) < −0.1, and p(15.07, s̄) > 0.1. Thus, p(−1.11, s)
p(−1.09, s) and p(15.05, s)p(15.07, s) are negative. It follows that the right lower
corner of JH(s) has eigenvalues µ2, µ3 such that ‖(µ2, µ3)− (−1.1, 15.06)‖∞ < 10−2,
and the proof of Lemma 2 is complete.

Proof of Lemma 1. Let us bound ψ (see (13)) and its derivatives. Notice that
αs̄2 + βs̄3 − 1 > 0.035. Since 0 < α, β < 1, and v ∈ B3(s̄, 10−50), we have

αv2 + βv3 − 1 > 0.035− 2× 10−50 > 10−2.

Therefore, |ψ(v)3| < 102. Similar computations show that ‖ψ(v)‖∞ ≤ 102 and

(40) ‖[ψ(v)]‖ ≤ 102.

Differentiating (13) with respect to v, we get

(41)
∂ψt

∂v1
(v) =

(
0, 0, 0, 0,

1

(1− v1v2 − v1v3 + v1)2

)t
= (0, 0, 0, 0, ψ2

5)t,

(42)
∂ψ

∂v2
(v) = (−ψ2

1 , 0,−αψ2
3 ,−βψ2

4 , v1ψ
2
5)t.

Since 0 < |v1|, α, β < 1, equations (41) and (42) and the analogous equation to v3
show that

(43)

∥∥∥∥[ ∂ψ∂vi (v)
]∥∥∥∥ ≤ 104.

Since Jψ is 5× 3, we have

(44) ‖Jψ(v)‖ ≤
√

15× 104 < 105.

Using (41) and (42) and noticing that |v1| < 10−50 and 0 < α, β < 1, we get

(45)

∣∣∣∣ ∂2ψk
∂vi∂vj

(v)

∣∣∣∣ ≤ ∣∣∣∣2ψk ∂ψk∂vi

∣∣∣∣+ ψ2
5 < 2× 102 × 104 + 104 < 107.

Let us now bound ω and its derivatives. From (14) we get

(46) ω(v) = (Ã[ψ(s̄)]2Ãt − Ã([ψ(s̄)]2 − [ψ(v)]2)Ãt)−1 = (I − C(v))−1ω(s̄),

where C(v) = ω(s̄)Ã([ψ(s̄) − ψ(v)])([ψ(s̄) + ψ(v)])Ãt. Notice that ‖Ã‖ < 10 and
(44) implies that ‖[ψ(s̄) − ψ(v)]‖ < 105 × ‖v − s̄‖ < 10−45. Mathematica shows that
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‖ω(s̄)‖ < 10, and (4) implies that ‖C(v)‖ < 10× 10× 10−45× (2× 102)× 10 < 10−10.
It follows from (46) that

(47) ‖ω(v)‖ ≤ ‖ω(s̄)‖
1− ‖C(v)‖ < 102.

Differentiating ω, we get

(48)
∂ω

∂vi
(v) = −2ω(v)Ã

[
∂ψ

∂vi
(v)

]
[ψ]Ãtω(v)

and

∂2ω

∂vj∂vi
(v) =− 2

∂ω

∂vj
(v)Ã

[
∂ψ

∂vi
(v)

]
[ψ]Ãtω(v)− 2ω(v)Ã

[
∂2ψ

∂vi∂vj
(v)

]
[ψ]Ãtω(v)

− 2ω(v)Ã

[
∂ψ

∂vi
(v)

] [
∂ψ

∂vj
(v)

]
Ãtω(v)− 2ω(v)Ã

[
∂ψ

∂vi
(v)

]
[ψ]Ãt

∂ω

∂vj
(v).

Using (40)–(49), we get

(49)

∥∥∥∥ ∂ω∂vi (v)
∥∥∥∥ < 2× 102 × 10× 104 × 102 × 10× 102 < 1013,

(50)

∥∥∥∥ ∂2ω

∂vi∂vj
(v)

∥∥∥∥ < 2× (1023 + 1015 + 1014 + 1023) < 1024.

Differentiating (15), we obtain

(51)
∂τ

∂vi
(v) =

[
∂ψ

∂vi
(v)

]
Ãtω(v)c+ [ψ(v)]Ãt

∂ω

∂vi
(v)c

and
∂2τ

∂vj∂vi
(v) =

[
∂2ψ

∂vi∂vj
(v)

]
Ãtω(v)c+

[
∂ψ

∂vi
(v)

]
Ãt

∂ω

∂vj
(v)c

+

[
∂ψ

∂vj
(v)

]
Ãt
∂ω

∂vi
(v)c+ [ψ(v)]Ãt

∂2ω

∂vj∂vi
(v)c.

Since ‖c‖ = 1, the estimates above show that
∣∣∣∂τk∂vi

∣∣∣ < 2 times 1016. The jacobian of τ

is 5× 3 and

(52) ‖Jτ(v)‖ <
√

15× 2× 1016 < 1017.

We also have

(53)

∥∥∥∥ ∂2τ

∂vj∂vi
(v)

∥∥∥∥ ≤ 1010 + 1018 + 1018 + 1027 < 1028.

Mathematica shows that τ4(s̄) > τi(s̄) + 10−4 for i 6= 4, and (52) implies that

τ4(v) > τ4(s̄)− 1017 × 10−50 > τi(s̄) + 10−4 − 10−33

> τi(v) + 10−5 − 10−33 > τi(v) + 10−6.
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Therefore, for all v ∈ B3(s̄, 10−50), κ(v) = τ4(v), which is a rational function of v.
This shows that δ (see (18)) is a rational function in B3(s̄, 10−50) and

∂δ

∂vi
(v) =

∂τ4
∂vi

(v)v + τ4(v)
∂v

∂vi
(v)− λ

∂ω

∂vi
(v)c,

∂2δ

∂vi∂vj
(v) =

∂2τ4
∂vj∂vi

(v)v +
∂τ4
∂vi

(v)
∂v

∂vj
+
∂τ4
∂vj

(v)
∂v

∂vi
− λ

∂2ω

∂vj∂vi
(v)c

because ∂2v
∂vi∂vj

= 0. The derivatives of θ are similar, and (21) and (22) follow from the

estimates above. Mathematica shows that |θ(s̄)− 0.015| < 10−3, |κ(s̄)− 0.4| < 10−1,
and ‖δ(s̄)‖∞ < 0.5. Bound (20) follows from (21), and ‖v − s̄‖ < 10−50.

To prove (23), notice that if v1 = 0 then (41) implies that ∂[ψ]2

∂v1
(v) = 0. Therefore,

(48) implies that ∂ω
∂v1

(v) = 0, and (51) shows that ∂τ
∂v1

(v) = 0. Since κ(v) = τ4(v), (18)

shows that ∂θ
∂v1

(v) = 0. Since ∂vi
∂v1

= 0 if i = 2, 3, (18) implies (23), and the proof of
Lemma 1 is complete.

6. The stable manifold theorem. In this section we prove our weak version
of the stable manifold theorem. Our proof is an adaptation of the traditional one,
presented in [HP]. The idea is to characterize γ as the fixed point of a contraction on
a complete metric space and take µ(t) = µγ(t), where

(54) µφ(t) = µ0t+R(t, φ(t)).

Since all the eigenvalues of A have absolute value bigger than 1, there exists a
norm ‖·‖A in Rn such that the subordinated operator norm ‖·‖A satisfies ‖A−1‖A < 1.
Moreover, there exists K such that ‖y‖ ≤ K‖y‖A for all y ∈ Rn. Since ‖A−1‖A and
|µ0| are strictly less than 1, there exists θ > 0 such that

(55)
θ ≤ a

K
, |µ0|+ θ2 + θ3 < 1, (K + θ + θ2)θ < ε,

and ‖A−1‖A(1 + θ + θ2 + θ3) < 1.

Since R and S are C1 and their derivatives vanish at (0, 0), there exists δ ∈ (0, 1),
with δ < a, such that if |x1|, |x2|, ‖y1‖A, ‖y2‖A ≤ δ then

(56) |R(x1, y1)−R(x2, y2)| < θ2(|x1 − x2|+ ‖y1 − y2‖A)

and

(57) ‖S(x1, y1)− S(x2, y2)‖A < θ2(|x1 − x2|+ ‖y1 − y2‖A).

Consider the complete metric space

(58) H = {φ ∈ C0((−δ, δ),Rn) s.t. φ(0) = 0, ‖φ(t1)− φ(t2)‖A ≤ θ|t1 − t2|}

with the metric d(φ, ψ) = sup−δ≤t≤δ ‖φ(t) − ψ(t)‖A. We will show that the operator
T : H → H given by

(59) T [φ](t) = A−1(φ(µφ(t))− S(t, φ(t))),
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with µφ as in (54), is a contraction in H. The proof proceeds in four steps. First we
show that, given φ ∈ H, the function T [φ] is well defined; i.e., (t, φ(t)) is in the domain
of R and S and µφ(t) is in the domain of φ. Next we show that T [φ] ∈ H. Then we
show that T is a contraction. Finally we show that the fixed point γ of T and µ = µγ
are as required by the stable manifold theorem.

We now demonstrate that T [φ](x) is well defined for every φ ∈ H and x ∈ [−δ, δ].
Since ‖φ(x)‖ ≤ K‖φ(x)‖A < Kθδ < a, S(t, φ(x)) and R(t, φ(x)) are well defined. If
|y| ≤ δ then (56) and (58) show that

(60) |R(x, φ(x))−R(y, φ(y))| ≤ θ2(|x− y|+ ‖φ(x)− φ(y)‖A) ≤ (θ2 + θ3)|x− y|.

(Analogously, ‖S(x, φ(x)) − S(y, φ(y))‖ ≤ (θ2 + θ3)|x − y|.) Using (54) and (55), we
get

(61)
|µφ(x)− µφ(y)| ≤ |µ0(x− y) +R(x, φ(x))−R(y, φ(y))|

≤ (|µ0|+ θ2 + θ3)|x− y| < |x− y|.

In particular, if y = 0, |µφ(x)| < |x| < δ and µφ(x) is in the domain of φ.
Let us now demonstrate that ψ = T [φ] ∈ H. Since φ ∈ H in (58), it is clear from

(59) that ψ(0) = 0. Moreover,

‖ψ(x)− ψ(y)‖A ≤ ‖A−1‖A(‖φ(µφ(x))− φ(µφ(y))‖+ ‖S(x, φ(x))− S(y, φ(y))‖A)

≤ ‖A−1‖Aθ|µφ(x)− µφ(y)|+ ‖A−1‖A(θ2 + θ3)|x− y|
≤ ‖A−1‖A(1 + θ + θ2)θ|x− y|

because of (61), and (55) shows that ‖ψ(x)−ψ(y)‖A ≤ θ|x− y|. Therefore, T [φ] ∈ H.
Let us now show that T is a contraction. Equations (54) and (56) demonstrate

that

|µφ(t)− µψ(t)| = |R(t, φ(t))−R(t, ψ(t))| ≤ θ2‖φ(t)− ψ(t)‖A ≤ θ2d(φ, ψ)

and
‖S(t, φ(t))− S(t, ψ(t))‖A ≤ θ2‖φ(t)− ψ(t)‖A ≤ θ2d(φ, ψ).

Therefore,

‖T [φ](t)− T [ψ](t)‖A ≤ ‖A−1‖A(‖φ(µφ(t))− ψ(µψ(t))‖A + ‖S(t, φ(t))− S(t, ψ(t))‖A)

≤ ‖A−1‖A(‖φ(µφ(t))− φ(µψ(t))‖A + ‖φ(µψ(t))− ψ(µψ(t))‖A + θ2d(φ, ψ))

≤ ‖A−1‖A(θ|µφ(t)− µψ(t)|+ d(φ, ψ) + θ2d(φ, ψ)) ≤ ‖A−1‖A(1 + θ2 + θ3)d(φ, ψ),

and (55) shows that T is a contraction.
Finally, let us demonstrate that the fixed point γ of T and µ = µγ are as required

by the stable manifold theorem. Notice that since γ ∈ H, ‖γ(t)‖A ≤ θ|t| and

‖γ(t)‖+ |µγ(t)− µ0t| ≤ K‖γ(t)‖A + |R(t, γ(t))|
≤ (K + θ2)‖γ(t)‖A + θ2|t| ≤ (K + θ + θ2)θ|t| ≤ ε|t|.
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Since γ is a fixed point of T,

Aγ(t) = γ(µγ(t))− S(t, γ(t))

and
F (t, γ(t)) = (µγ(t), Aγ(t) + S(t, γ(t))) = (µγ(t), γ(µγ(t))),

and the proof is complete.
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Abstract. In this work we demonstrate that the Mizuno–Todd–Ye predictor-corrector primal-
dual interior-point method for linear programming generates iteration sequences that converge to
the analytic center of the solution set.

Key words. linear programming, primal-dual interior-point algorithm, predictor-corrector al-
gorithm, analytic center

AMS subject classifications. 49M, 65K, 90C

PII. S1052623493243557

1. Introduction and preliminaries. The basic primal-dual interior-point meth-
od for linear programming was originally proposed by Kojima, Mizuno, and Yoshise
[6] based on earlier work of Megiddo [11]. This algorithm can be viewed as perturbed
(centered) and damped Newton’s method applied to the first order conditions for a
particular standard form linear program. They established linear convergence of the
duality-gap sequence to zero and an iteration complexity of O(nL) for their basic algo-
rithm. Immediately Kojima, Mizuno, and Yoshise in a second paper [7] and Monteiro
and Adler [15] proposed algorithms that fit in the original Kojima–Mizuno–Yoshise
framework and established linear convergence of the duality-gap sequence to zero
and a superior iteration complexity of O(

√
nL) for their versions of the algorithm.

Soon after Mizuno, Todd, and Ye [14] considered a predictor-corrector variant of the
Kojima–Mizuno–Yoshise basic algorithm. In their algorithm, the predictor step is a
damped Newton step and the corrector step is a perturbed (centered) Newton step.
Mizuno, Todd, and Ye also established linear convergence of the duality-gap sequence
to zero and an iteration complexity of O(

√
nL) for their predictor-corrector algorithm.

The literature now abounds with papers concerned with issues related to primal-
dual interior-point methods. Moreover, when we discuss convergence or convergence
attributes (including complexity) of one of these algorithms, we are in general dis-
cussing convergence of the duality-gap to zero. This interpretation has become stan-
dard in the area even though convergence of the duality-gap sequence does not imply
convergence of the iteration sequence. The convergence of the iteration sequence is
certainly an important issue in its own right. Indeed, the earlier works on fast (super-
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linear) convergence of the duality-gap sequence to zero, i.e., Zhang, Tapia, and Dennis
[26], Zhang, Tapia, and Potra [27], Zhang and Tapia [23], Ye, Tapia, and Zhang [21],
and McShane [10], all made the assumption that the iteration sequence converged.

In some applications, see, e.g., Charnes, Cooper, and Thrall [2], it is important to
obtain a solution that is not near the boundary of the solution set. Hence there is sig-
nificant value in designing a primal-dual interior-point method for linear programming
that converges to the analytic center of the solution set.

Tapia, Zhang, and Ye [17] derived conditions under which the iteration sequence
generated by the Kojima–Mizuno–Yoshise primal-dual interior-point method con-
verged. These conditions were essentially the conditions for fast (superlinear) con-
vergence established by Zhang, Tapia, and Dennis [26] (see also Zhang and Tapia
[24]). Zhang and Tapia [25] derived conditions under which this iteration sequence
converged to the analytic center, assuming that the sequence converged. However,
these conditions are not completely compatible with the Tapia–Zhang–Ye conditions
for the convergence of the iteration sequence.

Ye et al. [20] and, independently, Mehrotra [13], based on the work of Ye, Tapia,
and Zhang [21], demonstrated that the Mizuno–Todd–Ye predictor-corrector algo-
rithm in all cases gives quadratic convergence of the duality-gap sequence to zero. A
highlight of this contribution was that the assumption of iteration sequence conver-
gence was not needed (for the first time). Soon after, Zhang and Tapia [24] removed
this assumption from the Zhang–Tapia–Dennis theory for superlinear convergence.
Quite recently, Zhang and El-Bakry [22] were able to show that a modified version
of the Mizuno–Todd–Ye predictor-corrector algorithm had the property that the it-
eration sequence that it generated converged to the analytic center. Their modified
algorithm dynamically chose the steplength in the Newton predictor step so that the
corrector step would asymptotically enforce arbitrary close proximity to the central
path.

In this paper we show that the predictor-corrector algorithm as originally stated
by Mizuno, Todd, and Ye has the property that the iteration sequences (predictor-step
sequence and corrector-step sequence) it generates converge to the analytic center of
the solution set.

The paper is organized as follows. In the remainder of this section we introduce
our notation and several fundamental background notions. In section 2 we discuss the
primal-dual Newton step and establish some properties concerning this step. Some
mathematical tools concerning projections and scalings are derived in section 3. Cen-
tral path issues are discussed in section 4. The Mizuno–Todd–Ye predictor-corrector
algorithm and some of its properties are presented in section 5. In section 6 we combine
all our previous discussions and in Theorem 6.3 demonstrate that the Mizuno–Todd–
Ye algorithm generates sequences that converge to the analytic center of the solution
set.

Given a vector x, d, φ, the corresponding upper case symbols denote (as usual)
the diagonal matrix X,D,Φ, defined by the vector.

We denote component-wise operations on vectors by the usual notations for real
numbers. Thus, given two vectors u, v of the same dimension, uv, u/v, etc. denotes
the vectors with components uivi, ui/vi, etc. This notation is consistent as long as
component-wise operations are given precedence over matrix operations. Note that
uv ≡ Uv and if A is a matrix, then Auv ≡ AUv, but in general Auv 6= (Au)v.

We frequently use the O(·) and Ω(·) notation to express a relationship between
functions. Our most common usage will be associated with a sequence {xk} of vectors
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and a sequence {µk} of positive real numbers. In this case x = O(µ) or xk = O(µk)
means that there is a constant K (dependent on problem data) such that for every
k ∈ N, ‖xk‖ ≤ Kµk. Similarly, x = Ω(µ) or xk = Ω(µk) means that there is ε > 0
such that for every k ∈ N, ‖xk‖ ≥ εµk.

The primal and dual linear programming problems are as follows:

(LP )
minimize cTx

subject to Ax = b,
x ≥ 0

and

(LD)
maximize bT y
subject to AT y + s = c,

s ≥ 0,

where c ∈ Rn, b ∈ Rm, and A ∈ Rm×n. We assume that both problems have optimal
solutions and that the sets of optimal solutions are bounded. This is equivalent to the
requirement that both feasible sets contain points satisfying all inequalities strictly.

Given any feasible primal-dual pair (x̃, s̃), the problems can be rewritten as

(LP )
minimize s̃Tx

subject to Ax = b,
x ≥ 0

and

(LD)
minimize x̃T s

subject to Bs = Bc,
s ≥ 0,

where BT is a matrix whose columns span the null space of A. Popular choices for BT

are an orthonormal basis for the null space of A and B = PA, the projection matrix
into the null space of A.

The feasible sets for (LP) and (LD) will be denoted, respectively, by P and D.
Their relative interiors will be, respectively, P0 and D0.

The set of optimal solutions for the primal-dual pair of problems constitutes a
face F = FP × FD of the polyhedron of feasible solutions, where FP and FD are,
respectively, the primal and dual optimal faces. By hypothesis, this face is a compact
set. It is well known that this face is characterized by a partition {B,N} of the set
of indices {1, . . . , n} such that FP = {x ∈ P | xN = 0} and FD = {s ∈ D | sB = 0}.
In the relative interior of the face, xB > 0 and sN > 0.

We study algorithms that generate sequences that converge to the optimal face.
Our main concern is with the behavior of the iterates as they approach the optimal
face. We want this to happen in such a manner that all limit points are in the relative
interior of the optimal face. We shall see later how this condition can be enforced.

Given µ > 0, µ ∈ R, the pair (x, s) of feasible primal and dual solutions is the
central point (x(µ), s(µ)) associated with µ if and only if

xs = µe,

where e stands for the vector of all ones, with dimension given by the context.
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The central path is the curve in R2n parametrized by the positive real µ, i.e.,

µ 7→ (x(µ), s(µ)).

Thus (x, s) is a central point if and only if

xs = µe,
Ax = b,
Bs = Bc,
x, s ≥ 0,

(1)

where the columns of BT span the null space of A.
The first-order or Karush–Kuhn–Tucker (KKT) conditions for problem (LP) (or

(LD)) are

xs = 0,
Ax = b,

AT y + s = c,
x, s ≥ 0.

The perturbed KKT conditions for perturbation parameter µ > 0 are

xs=µe,
Ax= b,

AT y + s= c,
x, s≥ 0.

(2)

Observe that the perturbed KKT conditions are merely the defining relations for
the central path and (2) can equivalently be written as (1). Essentially all primal-
dual interior-point methods for problem (LP) consist of some variant of the damped
Newton method applied to the perturbed KKT conditions (1) or (2).

2. Newton steps. When dealing with an iterative procedure we will use the
superscript 0 to denote the previous iterate, no superscript to denote the current
iterate, and a subscript of + to denote the subsequent iterate. In two-step algorithms
like the Mizuno–Todd–Ye algorithm described in section 4, this notation will apply
to the current iterate, the intermediate iterate, and the final iterate.

Given a strictly feasible pair (x, s), we shall define three parameters:

µ(x, s) = sTx/n,

w(x, s) = sx/µ(x, s),

φ(x, s) = 1/
√
w(x, s).

The first two parameters will be extensively studied below. The parameter φ has no
special meaning and is introduced because it will simplify many formulas in the text.
When no confusion can arise, we drop the reference to the variables and continue to
use other symbols in a consistent manner. For example, w̄ = w(x̄, s̄) or φ0 = φ(x0, s0).

Given a strictly feasible pair (x, s), we are interested in finding (x+, s+) = (x, s)+
(u, v) that solves (1) or (2) with µ = γµ(x, s), where γ ∈ [0, 1]. The Newton equation
for (1) at (x, s) with µ replaced by γµ can be written

xv + su = −xs+ γµ(x, s)e,
u ∈ N (A),
v ∈ R(AT ),

(3)
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where as usual N denotes null space and R denotes range space. The solution of
(3) is obtained by scaling the equations. Define the scaling matrix by d =

√
x/s,

D = diag(d1, . . . , dn), and the scaling

(p, q) → (p̄, q̄) = (d−1p, dq)

for general (p, q) ∈ (Rn × Rn).
The relationship between d and the vector φ defined above is

d =

√
x

s
=

xφ√
µ

=

√
µ

sφ
.(4)

When applied to the original pair (x, s), the resulting scaled pair will be

(x̄, s̄) = (
√
xs,

√
xs).(5)

After scaling, system (3) becomes

x̄v̄ + s̄ū = −x̄s̄+ γµe,
ū ∈ N (AD),
v̄ ∈ R(DAT ).

(6)

Since x̄ > 0, the first equation can be multiplied by x̄−1, leading to

v̄ + ū = −s̄+ γµx̄−1,

and the solution is simply the orthogonal decomposition of the vector −s̄ + γµx̄−1

along N (AD) and its orthogonal complement. Let PAD be the projection matrix into
N (AD), and P̃AD = I − PAD:

ū = PAD(−s̄+ γµx̄−1),

v̄ = P̃AD(−s̄+ γµx̄−1).
(7)

The Newton step in original coordinates is given by u = dū and v = d−1v̄.
A convenient formulation is obtained by substituting d = 1√

µxφ and d−1 = 1√
µsφ.

u = xφPAXΦφ

(
−xs

µ
+ γe

)
v = sφP̃AXΦφ

(
−xs

µ
+ γe

)
.

(8)

We now describe two alternative ways of writing the expression for u (the expres-
sions for v are similar).

Using the definition of w,

u = −xφPAXΦφ(w − γe).(9)

Observing the symmetrical formulation of (LD), we see that for any two feasible dual
slacks s1, s2, PADds

1 = PADds
2 = PADdc. In particular, we can choose a fixed dual

slack and use it in (7). We shall choose s∗, the analytic center of the dual optimal
face, and write

u = −dPADd(s∗ − γµx−1).
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By the same process as above,

u = −xφPAXΦφ

(
xs∗

µ
− γe

)
.(10)

In section 5 when we study the Mizuno–Todd–Ye predictor-corrector algorithm,
we will have need for the following proposition.

Proposition 2.1. Let (x̂, ŝ) and (x, s) be feasible pairs; θ ∈ [0, 1]. Consider
x+ = x+ u and s+ = s+ v, where (u, v) satisfies

x̂v + ŝu = −θxs+ µ̂e,
u ∈ N (A),
v ∈ R(AT ) .

Then

µ(x+, s+) = (1− θ)µ(x, s) + µ̂ .(11)

Proof. Left multiplying by eT , we obtain

x̂T v + ŝTu = −θxT s+ nµ̂ .

From the definition,

x+T s+ = xT s+ xT v + sTu ,

since uT v = 0. But x̂T v = xT v, because x̂− x ∈ N (A) and v ∈ R(AT ), and similarly
ŝTu = sTu. Substituting in the expressions above we immediately obtain (11).

Two special cases of system (3) have been studied extensively in the literature.
They are as follows:

(i) γ = 0: the resulting directions (h1
x, h

1
s) are called the primal-dual affine scaling

directions (or pure Newton directions);
(ii) γ = 1: the resulting directions (h2

x, h
2
s) are called the constant gap-centering

directions.
The first equation of the Newton system (3) can be rewritten as

xv + su = −(1− γ)xs+ γ(−xs+ µe).(12)

This is a combination of the solutions of two systems with

xv1 + su1 = −xs,
xv2 + su2 = −xs+ µe,

(13)

where µ = µ(x, s). The complete solution is given by

(u, v) = (1− γ)(u1, v1) + γ(u2, v2).(14)

It is quite common to use these two directions separately, possibly as a way to simplify
the analysis. This is done by the predictor-corrector algorithms that we study in this
paper.

3. Mathematical tools. In this section we state some lemmas on projections
and scalings that will be useful in the analysis below.
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3.1. Properties of scaled projections. In this section we slightly extend re-
sults published by Megiddo and Shub [12].

Consider the primal feasible set for (LP):

P = {x ∈ Rn | Ax = b, x ≥ 0}
and the map h defined for (d, ρ) ∈ J = (Rn

+\{0})× Rn by

(d, ρ) 7→ h(d, ρ) = PADρ,(15)

where PAD represents the projection matrix into the null space of AD.
We study the behavior of this map when d > 0, (d, ρ) → (d̄, ρ̄) ∈ J .
Given d̄, we define the index sets B = {i = 1, . . . , n | d̄i > 0} and N = {i =

1, . . . , n | d̄i = 0}. The variables with indices in B are called the large variables,
and the others are called small variables. It is difficult to describe the behavior of
the small variables hN (d, ρ) of the scaled projection defined above; the theory of
Megiddo and Shub concerns the large variables hB(d, ρ). We shall describe these
results conveniently extended to fit our needs.

By definition of projection, h(d, ρ) solves the problem

minimize ‖hN − ρN‖2 + ‖hB − ρB‖2
subject to ABDBhB = −ANDNhN .

(16)

Assume now that hN (d, ρ) is given. Then hB(d, ρ) solves

minimize ‖hB − ρB‖
subject to ABDBhB = −ANDNhN (d, ρ).

(17)

Thus, since hN (d̄, ρ̄) is finite and D̄N = 0, hB(d̄, ρ̄) = PABD̄B ρ̄B . We shall study the
point-to-set mapping θ defined for d ∈ Rn

+ and ρ ∈ Rn by

(d, ρ) 7→ θ(d, ρ) = {hB ∈ R|B| | ABDBhB = −ANDNhN (d, ρ)},(18)

near a pair (d̄, ρ̄) ∈ J . Note that at this point, θ(d̄, ρ̄) = N (ABD̄B).
Lemma 3.1. The point-to-set map defined by (18) is continuous at (d̄, ρ̄) ∈ J .
Proof.
(i) Upper semicontinuity: consider a sequence (dk, ρk) → (d̄, ρ̄) and hkB such that

ABD
k
Bh

k
B = −ANDk

NhN (dk, ρk) and hkB converges to some point h̄B . We must prove
that ABD̄Bh̄B = 0.

The sequence hN (dk, ρk) is bounded, because ‖hN (dk, ρk)‖ ≤ ‖ρk‖, since h(dk, ρk)
is a projection. Hence ABD

k
Bh

k
B → 0 and, consequently, ABD̄Bh̄B = 0, completing

this part of the proof.
(ii) Lower semicontinuity: consider an arbitrary point h̄B ∈ N (ABD̄B). Given

an arbitrary sequence (dk, ρk) ∈ Rn
+ × Rn and such that (dk, ρk) → (d̄, ρ̄), we must

construct hkB such that ABD
k
Bh

k
B = −ANDk

NhN (dk, ρk) and hkB → h̄B .
Consider (dk, ρk) ∈ Rn

+ × Rn and (dk, ρk) → (d̄, ρ̄). Since dkB → d̄B > 0, we lose
no generality by assuming that dkB > 0 for all k. Define hkN = hN (dk, ρk). For each k

let h̃kB be a minimum-norm solution of ABD
k
BhB = −ANDk

Nh
k
N , where the norm is

the weighted Euclidean norm ‖Dk
B · ‖. If A+

B denotes the pseudoinverse of AB , then

we can write h̃kB = −Dk−1
B A+

BD
k
Nh

k
N . It follows that h̃kB → 0, since dkB → d̄B > 0 and

Dk
Nh

k
N → 0. Construct

hkB = (Dk
B)−1D̄Bh̄B + h̃kB .(19)
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Then

ABD
k
Bh

k
B = ABD̄Bh̄B +ABD

k
Bh̃

k
B = −ANDk

Nh
k
N ,

since h̄B ∈ N (ABD̄B). Thus hkB ∈ θ(dk, ρk). Since Dk
B → D̄B > 0 and h̃kB → 0, it

follows that hkB → h̄B , completing the proof.
Lemma 3.2. Let h(d, ρ) be given by (15). Consider (d̄, ρ̄) ∈ J and (dk, ρk) ∈

Rn
+ × Rn such that (dk, ρk) → (d̄, ρ̄). Then

(i) hB(dk, ρk) → hB(d̄, ρ̄) = PABD̄B ρ̄B ;
(ii) if ρ̄N = 0, then hN (dk, ρk) → 0.
Proof. (i): the map (d, ρ) → argmin{‖hB − ρB‖ : hB ∈ θ(d, ρ)} is well defined

by the uniqueness of the minimizer. It is continuous at (d̄, ρ̄) as a consequence of
the continuity of the point-to-set map θ and the continuity of projections (see, for
example, Hogan [4]). From the comment immediately preceding (17) we see that

hB(dk, ρk) = argmin{‖hB − ρkB‖ | hB ∈ θ(dk, ρk)} .
Hence, from continuity, hB(dk, ρk) → hB(d̄, ρ̄). From the comment immediately fol-
lowing (17) we see that hB(d̄, ρ̄) = PABD̄B ρ̄B . This establishes part (i).

(ii): here we follow a similar proof in Megiddo and Shub [12]. Assume that
ρ̄N = 0 and by contradiction that for some sequence dk → d̄, ρk → ρ̄ we have
hN (dk, ρk) → h̄N 6= 0. Define ε = ‖h̄N‖2 > 0. We have the following:

‖h(dk, ρk)− ρk‖2 = ‖hB(dk, ρk)− ρkB‖2 + ‖hN (dk, ρk)− ρkN‖2.
By (i), hB(dk, ρk) → h̄B , where h̄B = PABD̄B ρ̄B . For sufficiently large k,

‖hB(dk, ρk)− ρkB‖2 > ‖h̄B − ρ̄B‖2 − ε/2.(20)

Now construct the following sequence:

h̃kB = (Dk
B)−1D̄Bh̄B , h̃kN = 0.

It follows that h̃kB → h̄B and h̃k ∈ N (ADk), since ADkh̃k = ABD̄Bh̄B = 0.

Comparing this with (20), we have for k sufficiently large ‖h̃k−ρk‖ < ‖h(dk, ρk)−
ρk‖ and h̃k ∈ N (ADk), contradicting the definition of h(dk, ρk) = PADkρ

k and com-
pleting the proof.

3.2. Shifted scalings. This section contains some useful consequences of scal-
ings on projections and norms. The first lemma concerns projections and slightly
shifted scalings.

Lemma 3.3. Let q ∈ Rn be such that ‖q − e‖∞ ≤ α, where α ∈ (0, 0.25), and

consider the projections ĥ = PAρ, h = qPAQqρ. Then ‖h− ĥ‖ ≤ 3α‖ĥ‖.
Proof. Note that since ρ = ĥ+ATw for some w ∈ Rm,

qρ = qĥ+ (AQ)Tw,

and thus

PAQqρ = PAQqĥ.

It follows that

q−1h = PAQqĥ.
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On the other hand, by definition of projection,

qĥ = PAQqĥ+ z,

where z ∈ R(QAT ). Merging the last expressions, we get

qĥ = q−1h+ z,

where q−1h ∈ N (AQ) and z ∈ R(QAT ). Subtracting q−1ĥ ∈ N (AQ) from both sides,

(q−1 − q)ĥ = q−1(h− ĥ) + z,

and from the orthogonality of the right-hand side terms,

‖(q−1 − q)ĥ‖ ≥ ‖q−1(h− ĥ)‖.

Now use the following facts: ‖(h− ĥ)‖ ≤ ‖q‖∞‖q−1(h− ĥ)‖ and ‖(q−1 − q)ĥ‖ ≤
‖(q−1 − q)‖∞‖ĥ‖. Combining these three expressions leads to

‖h− ĥ‖ ≤ ‖q‖∞‖q−1 − q‖∞‖ĥ‖.

But ‖q‖∞‖q−1− q‖∞ ≤ (1+α) (1/(1− α)− (1− α)) ≤ 3α which is easily verified for
α ∈ (0, 0.25), completing the proof.

Our second lemma concerns scaled norms. Given a vector x ∈ Rn
++, the following

map defines a norm:

h ∈ Rn 7→ ‖h‖x = ‖x−1h‖.

This is the Euclidean norm of the vector corresponding to h after a scaling h̄ =
x−1h. This norm is very usual in interior-point methods, because it characterizes
the proximity from a point to a central point in the following sense: let x(µ) be the
primal central point associated with the parameter µ > 0. If ‖x − x(µ)‖x ≤ δ < 1,
then a Newton centering iteration from x produces an efficient centering step (which is
usually imprecisely stated as being in the region of quadratic convergence of Newton’s
method).

In the same fashion that we defined the scaled Euclidean norm ‖h‖x, we define
the scaled norm ‖h‖∞x . The following lemma relates the scaled norms for different
reference points.

Lemma 3.4. Consider x, y ∈ Rn
++, h ∈ Rn, α ∈ (0, 1). If either ‖x − y‖∞x ≤ α

or ‖x− y‖∞y ≤ α, then

‖h‖x ≤ 1

1− α
‖h‖y.

Proof. To begin with,

‖h‖x =

∥∥∥∥hx
∥∥∥∥ =

∥∥∥∥yx hy
∥∥∥∥ ≤ ∥∥∥yx∥∥∥∞ ‖h‖y.

If ‖x − y‖∞x ≤ α, then |(xi − yi)/xi| ≤ α or 1 − yi/xi ≥ −α, which implies yi/xi ≤
1+α ≤ 1/(1−α). In the other case, |(xi−yi)/yi| ≤ α or xi/yi ≥ 1−α, which implies
yi/xi ≤ 1/(1− α), completing the proof.
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4. Trajectories, centrality, and proximity. The primal-dual central path de-
fined above is contained in the set of interior points and ends at a point (x∗, s∗) in
the relative interior of the optimal face. This point is the analytic center of the face.
See problem (24) for an equivalent characterization. For more detail, see McLinden
[9] and Sonnevend [16].

In this section we study (primal-dual) proximity criteria that describe how far
a pair (x, s) is from the primal-dual central path and then study (primal) proximity
criteria to evaluate how far a point in the optimal face is from its analytic center.

4.1. Primal-dual proximity. Given an interior pair (x, s) and a parameter µ >
0 (not necessarily equal to µ(x, s)), the proximity of (x, s) in relation to (x(µ), s(µ))
is measured by

δ(x, s, µ) =

∥∥∥∥xsµ − e

∥∥∥∥ .(21)

When µ = µ(x, s), this is the proximity with relation to the central path

δ(x, s) =

∥∥∥∥ xs

µ(x, s)
− e

∥∥∥∥ = ‖w(x, s)− e‖ .(22)

Let us compute the proximity at the pair (x+, s+) resulting from the Newton step
described in (3), with µ = µ(x, s). We have

x+s+ = (x+ u)(s+ v)

= xs+ xv + su+ uv

= γµe+ uv.

Premultiplying the expression above by eT and noting that uT v = 0, we arrive to
µ(x+, s+) = γµ, and thus

x+s+

µ(x+, s+)
− e =

uv

µ(x+, s+)

or

δ(x+, s+) =

∥∥∥∥uvγµ
∥∥∥∥ =

∥∥∥∥ uv

µ(x+, s+)

∥∥∥∥ .(23)

A fundamental result on the effect of the Newton step on proximity is given in the
following lemma. This result, due to Mizuno, Todd, and Ye, can be found in [14].

Lemma 4.1. Consider an interior pair (x, s) and a parameter µ+ > 0. If
δ(x, s, µ+) = δ ≤ 0.5, then δ(x+, s+) ≤ δ2/

√
2.

The primal-dual affine-scaling directions are the solution of (3) with γ = 0. These
directions associated with each interior feasible pair (x, s) generate a continuous vector
field, which extends continuously to the boundary.

This vector field was thoroughly studied by Adler and Monteiro [1], who describe
the trajectories generated by it and the derivatives of these trajectories. The trajec-
tories are parametrized by µ, and there is one trajectory passing through each interior
pair (x, s).

For each interior pair (x, s), we defined the vector w(x, s) = xs/µ(x, s). Each
trajectory is associated with this vector in the following two ways:
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(i) the trajectory associated with w > 0 is composed of the pairs (x, s) such that

xs

µ(x, s)
= w.

In particular, the central path is the trajectory associated with w = e;

(ii) the trajectory associated with w > 0 is composed of the minimizer pairs of
the parametrized primal-dual penalized function

xT s− µ
n∑
i=1

wi lnxi − µ
n∑
i=1

wi ln si.

Each trajectory is composed of interior points and ends in the relative interior of the
optimal face.

In what follows, we assume that the vectors w(x, s) are always in a compact set
defined by

‖w(x, s)− e‖ ≤ α,

where α ∈ (0, 1).

When the weight vectors w are in a compact set bounded away from the boundary
of the positive orthant, the trajectories end in the relative interior of the optimal face.
Specifically at the limit of the minimizers of the parametrized barrier function, we
have

x∗(w) = argmin

{
−
∑
i∈B

wi lnxi | x ∈ FP

}
,

s∗(w) = argmin

{
−
∑
i∈N

wi ln si | x ∈ FD

}
.

In particular, the central path ends at the analytic center of the optimal face (x∗, s∗) =
(x∗(e), s∗(e)).

The sets of end points of all trajectories for such weights w are sets of minimizers
of parametrized continuously differentiable functions and are compact. It is easy to
see that the nonzero variables are all bounded away from zero, because the compact
sets are in the relative interior of the optimal faces. This is also clear from the fact
that the barrier functions become arbitrarily large as the boundaries of the faces are
approached.

Similarly, all the trajectories in the bundle associated with this compact set of
parameter vectors are in the relative interior of the feasible set and bounded away
from the nonoptimal faces.

4.2. Primal proximity. We shall summarize some facts about the analytic cen-
ter of a polytope and derive properties of descent methods for finding the center.

Consider the primal centering problem

minimize p(x) = −∑n
i=1 ln(xi)

subject to Ax = b,
x > 0,

(24)
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where b ∈ Rm, A ∈ Rm×n, such that its feasible region, S0, is nonempty, with compact
closure S. The analytic center of S is the unique optimal solution of (24);

χ = argmin
x∈S0

p(x).

The analytic center was defined by Sonnevend [16]; see also McLinden [9]. Its prop-
erties and the description of the Newton primal centering algorithm (SSD algorithm)
are described in Gonzaga [3]. The following facts come from the latter reference.

Given a point x ∈ S0, the Newton centering direction from x is given by h(x) =
xh̄(x), where

h̄(x) = −PAXe
is the centering direction after scaling the problem so that the point x is taken to e.

The (primal) proximity of x in relation to χ, defined above, is given by

δ(x) = ‖h̄(x)‖ = ‖h(x)‖x,(25)

where ‖ · ‖x is the norm relative to x.
The following important results are described, for example, in [3]. Let x ∈ S0 be

such that δ(x) = δ < 1, then

‖x− χ‖x ≤ δ

1− δ
,

δ(x+ h(x)) ≤ δ2.
(26)

The first result above gives an upper bound for ‖x− χ‖x. We shall also need a lower
bound for this distance, and this will be provided by the next lemma.

Lemma 4.2. If δ(x) = δ < 0.5, then

‖x− χ‖x ≥ 1− 2δ

1− δ
δ.

In particular, if δ ≤ 0.09, then ‖x− χ‖x ∈ [0.9δ, 1.1δ].
Proof. Let x+ = x + h(x). We know that ‖h(x)‖x = δ and that δ(x+) ≤ δ2. It

follows from (26) that

‖x+ − χ‖x+ ≤ δ2

1− δ2
,

and hence

‖x+ − χ‖x ≤
∥∥∥∥x+

x

∥∥∥∥
∞

δ2

1− δ2
.

But x+/x = e+ h(x)/x, and thus∥∥∥∥x+

x

∥∥∥∥
∞
≤ 1 +

∥∥∥∥h(x)

x

∥∥∥∥ ≤ 1 + δ.

It follows that

‖x+ − χ‖x ≤ (1 + δ)
δ2

1− δ2
=

δ2

1− δ
.
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Finally,

‖x− χ‖x = ‖x− x+ + x+ − χ‖x
≥ ‖x− x+‖x − ‖x+ − χ‖x
≥ δ − δ2

1− δ

=
1− 2δ

1− δ
δ.

The numeric values are obtained by substitution, completing the proof.
This lemma shows that when the proximity measure is small, it is indeed a good

approximation to the actual scaled distance to the center. The values δ ≤ 0.09 will
be quite reasonable for our analysis below.

One final technical result also will be useful below. It reproduces the bounds
above using the norm relative to χ.

Lemma 4.3. If δ(x) = δ ≤ 0.1, then for x+ = x+ h(x),

‖x+ − χ‖χ ≤ 1.05δ2,
‖x− χ‖χ ≥ 0.75δ.

Proof. Using (26), ‖x+ − χ‖x+ ≤ δ2/(1 − δ2), since δ(x+) ≤ δ2. Using Lemma
3.4 with α = δ2/(1− δ2), we obtain ‖x+ −χ‖χ ≤ δ2/(1− 2δ2). The first result in the
lemma follows from this with δ = 0.1.

Using Lemma 4.2, ‖x−χ‖x ≥ δ(1−2δ)/(1− δ). From (26), ‖x−χ‖x ≤ δ/(1− δ).
Using Lemma 3.4 with α = δ/(1−δ), we get ‖x−χ‖χ ≥ (1−α)‖x−χ‖x. Manipulating
these expressions, we arrive at

‖x− χ‖χ ≥
(

1− 2δ

1− δ

)2

δ.

Substituting δ = 0.1, we obtain the second result, therefore completing the proof.
The primal centering direction h(x) is the Newton direction for p(·) from x, and

it coincides with the steepest descent direction for x = e; i.e., h̄(x) is the Cauchy
direction from e. To see this, notice that h(x) = −xPAXx∇p(x) = xPAXxx

−1.
Other scalings give rise to descent directions that are in general not as efficient

as this one. We shall apply Lemma 3.3 to study the effect of slightly shifted scalings
on the descent directions.

5. The Mizuno–Todd–Ye algorithm. The MTY algorithm is a path-following
predictor-corrector algorithm. All activity is restricted to a region near the central
path; i.e., all points (x, s) generated by the algorithm satisfy

δ(x, s) = ‖w(x, s)− e‖ =

∥∥∥∥ xs

µ(x, s)
− e

∥∥∥∥ ≤ α,

where α ∈ (0, 0.5).

Algorithm 5.1. Given α ≤ 0.3, (x01 , s0
1
) such that δ(x01 , s0

1
) ≤ α2/

√
2, k = 1.

repeat

x0 := x0k , s0 := s0
k
.

Predictor: Given (x0, s0) compute the (affine-scaling) step (u0, v0), and let
x = x0 + u0, s = s0 + v0 where (u0, v0) is defined by
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x0v0 + s0u0 = −θx0s0, u0 ∈ N (A), v0 ∈ R(AT ),
with θ ∈ (0, 1] such that (x, s) is feasible and δ(x, s) ≤ α. (The specific
value of θ will be discussed below.)

Corrector: Given (x, s) compute the (centering) step (u, v) and let x+ = x+u,
s+ = s+ v, where (u, v) is defined by
xv + su = −xs+ µe, u ∈ N (A), v ∈ R(AT ),
with µ = µ(x, s).

Subsequent iterate:

x0k+1
= x+, s0

k+1
= s+,

k = k + 1,
until convergence.

Observe that our θ in the predictor step is effectively a steplength parameter. To
see this, let us denote the predictor step by (u0(θ), v0(θ)). Then

θ(u0(0), v0(0)) = (u0(θ), v0(θ))

and

(x, s) = (x0, s0) + θ(u0(0), v0(0)),

which is the usual way of writing the MTY predictor step. Our choice for θ will be the
usual one: θ = θk, the largest θ ∈ (0, 1] such that δ(x(θ), s(θ)) ≤ α for all 0 ≤ θ ≤ θk.
For further detail see, for example, section 2 of Ye et al. [20].

From Proposition 2.1, with (x̂, ŝ) = (x0, s0), γ̂ = γ, and µ̂ = 0, we see that from
the predictor step we get µ(x, s) = γµ(x0, s0). Also, from the same proposition with
(x̂, ŝ) = (x, s), γ̂ = 0, and µ̂ = µ(x, s), we see that from the corrector step we get
µ(x+, s+) = µ(x, s). Hence we have µ(x+, s+) = µ(x, s) = γµ(x0, s0).

We now list some properties of this algorithm. Some proofs are presented here for
the sake of completeness. The proofs that are not given here can be found in Mizuno,
Todd, and Ye [14]. Mizuno, Todd, and Ye proved that the algorithm is well defined
in the sense that the centering step produces (x+, s+) such that δ(x+, s+) ≤ α2/

√
2.

Bounds on the quantities appearing in the algorithm are given in the lemmas
below. Let {B,N} be the optimal partition for the linear programming problem, i.e.,
the index partition associated with the optimal face. As we described in section 4.1,
the central path ends at the analytic center of the optimal face, and the pairs (x, s)
such that ‖w(x, s) − e‖ ≤ α constitute a neighborhood of the central path bounded
away from the nonoptimal faces of the feasible polyhedron and correspond to a bundle
of w-weighted affine-scaling trajectories. For α small, the bundle of trajectories ends
in a compact neighborhood of the analytic center of the optimal face, and so all the
sequences generated by the algorithm are in compact sets.

Hence, the algorithm behaves as follows. As the optimal face is approached (and
this happens in polynomial time), xkN → 0, skB → 0, and xkB , skN stay in small
neighborhoods of x∗B , s

∗
N , the analytic centers of the primal and dual optimal faces.

Lemma 5.1. Let (x0, s0) be such that δ(x0, s0) ≤ 0.1 and consider the quantities
generated by a step of the MTY algorithm originated in (x0, s0). Then

(i) xN = O(µ), sB = O(µ), x0
N = O(µ0), s0B = O(µ0),

(ii) u0 = O(µ0), v0 = O(µ0),
(iii) uN = O(µ), vB = O(µ).
Proof. All of these bounds are implicit in the technical results given in section 3

of Ye et al. [20]. Specifically, (ii) follows from Lemma 3.2 and Theorem 3.1 in [20].
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The tools used there can also be used to establish (i) and (iii). Hence we will not
include a proof and direct the reader to that paper for proofs.

The lemma above shows that all the variations in (x, s) due to an MTY step are
bounded by O(µ0), with exception of uB and vN . These are the variations in the
large variables due to the corrector step.

6. Convergence of the MTY algorithm. In this section we establish the main
result of the paper: the points generated by the MTY algorithm always converge to
the analytic center of the optimal face. We shall assume that the optimal face is not
a single point. Our convergence proofs will be carried out for primal solutions. The
symmetric results for dual slacks can always be proved by the same methods using
the complete symmetry of conditions (1).

We begin by studying the map that results from the algorithm. Towards this
end we describe the relationship between primal-dual pairs (x0, s0) and the result
(x+, s+) of an MTY step originating at (x0, s0). It is essential to keep in mind that
at this point we are not studying sequences generated by the algorithm. We derive
a lemma (a main result of the paper) on the boundary behavior of the algorithmic
map for sequences with strong convergence properties; a second lemma extends the
result to nonconvergent sequences and provides the main convergence property of the
algorithmic map.1 We then consider a sequence generated by the algorithm and prove
in Theorem 6.3 that it converges to the analytic center of the optimal face.

Consider a sequence of interior primal-dual pairs (x0k , s0
k
) and all the quantities

that would be generated by applying one MTY step from each of these points, namely

(u0k , v0k ), (xk, sk), (uk, vk), (x+k , s+
k
), µ0k , µk = γkµ0k , w0k , wk, φ0k, φk. Again,

we stress the fact that presently (x0, s0)k+1 is not necessarily related to (x+, s+)k.
Recall that we are denoting the analytic center by (x∗, s∗). Also, the {B,N} partition
of the indices {1, . . . , n} is the partition associated with the optimal face of the linear
program in question. Our main interest is in measuring how the large variables
approach x∗B . A good metric for measuring this is given by the norm ‖ · ‖x∗

B
, defined

on R|B|. To simplify notation, we write

‖ · ‖∗ ≡ ‖ · ‖x∗
B
.

Lemma 6.1. Let (x0k , s0
k
) be such that δ(x0k , s0

k
) ≤ 0.1 and assume that µ0k →

0, (x0k , s0
k
) → (x̄, s̄), and w0k → w̄0. We then have the following:

(i) if x̄ = x∗, then uk → 0 and x+k → x∗;
(ii) if x̄ 6= x∗, then for sufficiently large k,

‖x+k

B − x∗B‖∗ ≤ 0.8‖x0k

B − x∗B‖∗.

Proof. The proof consists of two technical parts and a conclusion. In the first part
we analyze the boundary behavior of the MTY steps; in the second part we describe
the centering direction from x̄ in the optimal face. Finally, the conclusion is reached
from the comparison of the results of the first two parts.

We begin by considering MTY steps. From Lemma 5.1, (u0k , v0k ) → 0 and,
consequently, (xk, sk) → (x̄, s̄). From the same lemma, ukN → 0. We must describe

1 The reader might consider Lemma 6.2 before going through the technical proof of Lemma 6.1.
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the behavior of ukB . From (10),

uk = −xkφkPAXkΦkφk
(
xks∗

µk
− e

)
.

We are now in a position to use Lemma 3.2 with d = xφ and ρ = −φ
(
xs∗
µ − e

)
.

Our first task is to show that these two sequences converge. By hypothesis,
‖ω(x0k, s0k) − e‖ ≤ 0.1. Hence ‖ω(x̄, s̄) − e‖ ≤ 0.1. It follows that ω(x̄, s̄) > 0. We
observed that (xk, sk) also converges to (x̄, s̄). This means that φ(xk, sk) converges

to φ̄ = ω(x̄, s̄)−
1
2 > 0. We have demonstrated that dk converges to d̄ = x̄φ̄. Now, sk

converges to s̄ and ωk = xksk

µk
converges to ω̄ implies that

xkN
µk

converges to s̄−1
N ω̄N ,

and hence ρkN converges. Since s∗B = 0, we see that ρkB = φkB . This shows that both
dk and ρk converge. We can now apply Lemma 3.2 to obtain

ukB → ūB = x̄Bφ̄BPABX̄BΦ̄B φ̄B .(27)

Since x+k = x0k + u0k + uk and u0k → 0, ukN → 0,

x+k → x̄+ = x̄+ ū,

where ūN = 0.
Our attention now goes to centering in the optimal face. Consider the following

primal centering direction associated with each (x0k , s0
k
):

hk = −x0kPAX0k

(
x0ks

µ0k
− e

)
,(28)

where s is an arbitrary dual slack (remember that dPADds = dPADds
′ for any dual

slacks s, s′ and any scaling d > 0).

With s = s0
k
, we see that hk = −x0kPAX0k(w0k − e). It follows that h̄N = 0 and

‖hk‖
x0k ≤ ‖w0k − e‖ = δ(x0k , s0

k
) ≤ 0.1.

We now consider (28) with s = s∗. Lemma 3.2 with d = x0 and ρ = −x0s∗
µ0 + e can be

used to determine the behavior of hk once we demonstrate that dk and ρk converge.
In this case dk converges by hypothesis. Moreover, an argument similar to the one
used above will show that ρk converges. Hence Lemma 3.2 applies, so hk → h̄. From
these latter two arguments we have that

h̄N = 0, h̄B = x̄BPABX̄BeB , and ‖h̄B‖x̄B ≤ 0.1.

We conclude that h̄ is the Newton centering direction in the optimal face and that
the proximity measure of x̄ is

δ(x̄B) = ‖h̄B‖x̄B ≤ 0.1.

Let z = x̄+ h̄ be the result of a primal centering step. Then by Lemma 4.3,

‖x̄B − x∗B‖∗ ≥ 0.75δ(x̄B),
‖zB − x∗B‖∗ ≤ 1.05δ2(x̄B).

(29)
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Our attention now turns to shifted scaling. We study the effect of the direction
ūB defined in (27), when it is used for primal centering instead of h̄. The quantity

ūB = x̄Bφ̄BPAX̄BΦ̄B φ̄B

corresponds to h̄B by way of a shifted scaling. Here φ̄ = 1/
√
w̄, as usual. Since

‖w̄− e‖ ≤ 0.1, it follows that for i = 1, . . . , n, w̄i ∈ [0.9, 1.1], and it is trivial to check
that φ̄i ∈ [0.9, 1.1]. Hence

∥∥φ̄− e
∥∥
∞ ≤ 0.1 and, by Lemma 3.3,

‖h̄B − ūB‖x̄B ≤ 0.3‖h̄B‖x̄B = 0.3δ(x̄B).(30)

If x̄ = x∗, then δ(x̄B) = 0 and it follows that h̄B = ūB = 0. This proves part (i) of
the lemma. Assume from here on that ‖x̄B − x∗B‖ 6= 0.

We need (30) in the norm ‖ · ‖∗. Using (26), define

α = ‖x̄B − x∗B‖x̄B ≤
δ(x̄B)

1− δ(x̄B)
≤ 0.1

0.9
.

Using Lemma 3.4,

‖h̄B − ūB‖∗ ≤ 1

1− α
‖h̄B − ūB‖x̄B .

Merging this and (30) with 1/(1− α) ≤ 1.2 we obtain

‖h̄B − ūB‖∗ ≤ 0.4δ(x̄B).(31)

And now we compare the points zB = x̄B + h̄B and x̄+
B = x̄B + ūB , using (29).

Specifically,

‖x̄+
B − x∗B‖∗ ≤ ‖zB − x∗B‖∗ + ‖x̄+

B − zB‖∗
= ‖zB − x∗B‖∗ + ‖ūB − h̄B‖∗
≤ 1.05δ2(x̄B) + 0.4δ(x̄B)

≤ 0.51δ(x̄B).

Using (29), we conclude that

‖x̄+
B − x∗B‖∗

‖x̄B − x∗B‖∗
≤ 0.51

0.75
≤ 0.7.

Finally, we conclude from this expression that since x0k → x̄ and x+k → x̄+ for
sufficiently large k,

‖x+k

B − x∗B‖∗ ≤ 0.8‖x0k

B − x∗B‖∗,
completing the proof.

The lemma above studies convergent sequences (x0k , s0
k
). The next lemma shows

that the reduction in distance from x∗ can be extended uniformly for nonconvergent
sequences.

Lemma 6.2. Let (x0k , s0
k
) be such that δ(x0k , s0

k
) ≤ 0.1 and µ0k → 0. Then

there exists a sequence of positive reals εk such that εk → 0 and for sufficiently large
k, ∥∥∥x+k

B − x∗B
∥∥∥
∗
≤ max

{
εk, 0.8

∥∥∥x0k

B − x∗B
∥∥∥
∗

}
.
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Proof. Assume by contradiction that there exist ε > 0 and an infinite subsequence

of (x0k , s0
k
) with indices K0 ⊂ N such that for k ∈ K0,∥∥∥x+k

B − x∗B
∥∥∥
∗
> ε,

∥∥∥x+k

B − x∗B
∥∥∥
∗
> 0.8

∥∥∥x0k

B − x∗B
∥∥∥
∗
.(32)

The sequences (x0k , s0
k
), (w0k ), (wk) are all in compact sets by construction, and

thus there must exist an infinite subsequence with indices K ⊂ K0 such that these
three sequences are convergent in K.

In particular, (x+k

B )K does not converge to x∗B , due to (32). Applying Lemma

6.1(i), we see that (x0k )K does not converge to x∗, and thus (ii) must hold for this
subsequence. This contradicts (32), completing the proof.

Finally, we are ready to establish our convergence result.

Theorem 6.3. Consider sequences (x0k , s0
k
), (xk, sk) generated by the MTY

algorithm. Then (x0k , s0
k
) → (x∗, s∗) and (xk, sk) → (x∗, s∗), where (x∗, s∗) is the

analytic center of the solution set.
Proof. We prove the result for the primal variables. The proof for the dual slacks

is similar. Also, it is enough to prove that x0k → x∗, since u0k = O(µ0k ) → 0.

Assume by contradiction that the sequence {x0k} has an accumulation point
x̄ 6= x∗. Since x̄N = x∗N = 0, we have

σ ≡ ‖x̄B − x∗B‖∗ > 0.

Let {εk} be the sequence guaranteed by Lemma 6.2, and let k̄ be such that the
conclusions of that lemma are valid for k ≥ k̄. Choose an index j ≥ k̄ such that

‖x0
B
j − x∗B‖∗ < 1.1σ and such that for k ≥ j, εk < 0.5σ. This index exists because

εk → 0 and x̄B is an accumulation point of {x0k

B }.
We prove by induction that for any k > j, ‖x0k

B − x∗B‖∗ < 0.9σ.

(a) ‖x0
B
j+1 − x∗B‖∗ < 0.8× 1.1σ < 0.9σ by Lemma 6.2.

(b) Assume that for an index k > j, ‖x0k

B − x∗B‖∗ < 0.9σ. Then, by Lemma 6.2,

‖x0
B
k+1 − x∗B‖∗ ≤ max{εk, 0.8‖x0k

B − x∗B‖∗} < 0.9σ.

Statements (a) and (b) prove that for all k > j, ‖x0k

B −x∗B‖∗ < 0.9σ, contradicting

the fact that σ is an accumulation point of the sequence (‖x0k

B −x∗B‖∗), and completing
the proof.
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Abstract. It is known that the Mizuno–Todd–Ye predictor-corrector primal-dual Newton
interior-point method generates a duality-gap sequence which converges quadratically to zero, and
this is accomplished with an iteration complexity of O(

√
nL). Very recently, the present authors

demonstrated that the iteration sequence generated by this method converges, and this convergence
is to the analytic center of the solution set. In the current work we show that within a finite number
of iterations, the Newton corrector step can be replaced with a simplified Newton corrector step,
and the resulting algorithm maintains O(

√
nL) iteration complexity, quadratic convergence of the

duality-gap sequence to zero, and convergence of the iteration sequence (however, not necessarily to
the analytic center). The simplified predictor-corrector algorithm requires only one linear solve per
iteration in contrast to the two linear solves per iteration required by the original predictor-corrector
algorithm.

Key words. linear programming, primal-dual interior-point algorithm, predictor-corrector al-
gorithm, quadratic convergence
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1. Introduction and preliminaries. The basic primal-dual interior-point meth-
od for linear programming was originally proposed by Kojima, Mizuno, and Yoshise
[4] based on earlier work of Megiddo [8]. This method can be viewed as a perturbed
and damped Newton’s method applied to the first-order conditions for a particular
standard form linear program. They established linear convergence of the duality-gap
sequence to zero and an iteration complexity of O(nL) for their basic algorithm. Im-
mediately Kojima, Mizuno, and Yoshise in a second paper [5] and Monteiro and Adler
[12] proposed algorithms that fit in the original Kojima–Mizuno–Yoshise framework
and established linear convergence of the duality gap sequence to zero and a supe-
rior iteration complexity of O(

√
nL) for their versions of the algorithm. Soon after

Mizuno, Todd, and Ye [11] considered a predictor-corrector variant of the Kojima–
Mizuno–Yoshise basic algorithm. In their algorithm, the predictor step is a damped
Newton step and the corrector step is a perturbed (centered) Newton step. Hence
one iteration of the predictor-corrector algorithm requires the solution of two linear
systems, essentially two Newton steps. Hence when comparing convergence rate re-
sults, they should technically be considered two-step results. Mizuno, Todd, and Ye
established linear convergence for their predictor-corrector algorithm and a superior
iteration complexity bound of O(

√
nL).
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We now briefly give a chronological account of the development of fast (super-
linear) convergence for these primal-dual interior-point methods. We refer to the
Kojima–Mizuno–Yoshise method as the basic method and to the Mizuno–Todd–Ye
method as the predictor-corrector method. When we discuss convergence or conver-
gence attributes of one of these methods, we are describing the convergence of the
duality-gap to zero. This interpretation has become standard in this area, even though
convergence of the duality-gap sequence does not imply convergence of the iteration
sequence. The convergence of the iteration sequence is certainly an important issue
in its own right and to some extent has been neglected. For an interesting result
concerning the convergence of the iteration sequence generated by the basic method,
see Tapia, Zhang, and Ye [13]. For a definitive result concerning the convergence of
the iteration sequence for the predictor-corrector method, see Gonzaga and Tapia [3].

Zhang, Tapia, and Dennis [20] demonstrated that under certain assumptions the
algorithmic parameters in the basic method could be chosen so that superlinear con-
vergence was obtained for degenerate problems and quadratic convergence was ob-
tained for nondegenerate problems. However, they did not demonstrate that poly-
nomial complexity would be retained. Zhang and Tapia [19] demonstrated that the
algorithmic parameters in the basic algorithm could be chosen so that the polynomial
complexity bound was maintained and superlinear convergence was obtained for de-
generate problems, while quadratic convergence was obtained for nondegenerate prob-
lems. Ye, Tapia, and Zhang [17] demonstrated that the predictor-corrector algorithm
was superlinearly convergent for degenerate problems and quadratically convergent
for nondegenerate problems while maintaining its O(

√
nL) iteration complexity. Mc-

Shane [7] independently obtained a similar result. Up to this point all superlinear
convergence results assumed that the iteration sequence converged. Ye et al. [16]
and independently Mehrotra [10], based on Ye, Tapia, and Zhang [17], demonstrated
the surprising result that neither the nondegeneracy assumption nor the assumption
of iteration sequence convergence was needed for the quadratic convergence of the
predictor-corrector algorithm.

In this paper we add to the literature on the predictor-corrector algorithm by
demonstrating that its quadratic convergence and O(

√
nL) complexity are retained if

one replaces the Newton corrector step with a simplified Newton step; i.e., the Jaco-
bian from the Newton predictor step is used also in the computation of the corrector
step. Hence the corrector step only requires a back-solve, and the complete iteration
only requires the solution of one linear system. Actually, the Newton corrector step
cannot be replaced with a simplified Newton corrector step at the beginning of the
iterative process, but only after a particular criterion is satisfied. We demonstrate
that this criterion will be satisfied within a finite number of iterations. We also show
that the simplified algorithm generates an iteration sequence which is convergent, but
not necessarily to the analytic center.

Recently Ye [15] was able to show that a variant of the Mizuno–Todd–Ye predictor-
corrector algorithm could be given that eventually did not require the corrector step.
He demonstrated that this variant algorithm gave subquadratic convergence (the Q-
rate is two, but the Q2-factor may be unbounded). Hence Ye attains a convergence
rate of two with an algorithm which (eventually) only requires one linear solve per
iteration. Our simplified Mizuno–Todd–Ye algorithm gives Q-quadratic convergence
but requires the solution of one linear system and an additional back-solve per itera-
tion. It should be clear that any convergence rate analysis based on total number of
arithmetic operations per iteration will favor the Ye variant. It should also be clear
that numerical efficiency of an algorithm is determined by the effective number of
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iterations needed for numerical convergence and not convergence rate alone.
The paper is organized as follows. In the remainder of this section we introduce

our notation and several fundamental background notions. In section 2 we discuss
the primal-dual Newton step and the primal-dual simplified Newton step and derive
several properties concerning these two steps. Some results on scaled projections from
Gonzaga and Tapia will be collected in section 3. These results will be used in section
5. The Mizuno–Todd–Ye predictor-corrector algorithm is presented in section 4. Sec-
tion 5 begins with the presentation of the simplified predictor-corrector algorithm and
then turns to establishing our convergence theory for the simplified predictor-corrector
algorithm. In section 6 we make some observations that imply that quadratic conver-
gence is optimal for both the predictor-corrector method and its simplified variant.
We indicate that cubic convergence might be obtained by appropriately modifying
the corrector step.

Given a vector x, d, φ, the corresponding upper case symbol denotes (as usual)
the diagonal matrix X,D,Φ defined by the vector.

We denote component-wise operations on vectors by the usual notations for real
numbers. Thus, given two vectors u, v of the same dimension, uv, u/v, etc. denote
the vectors with components uivi, ui/vi, etc. This notation is consistent as long as
component-wise operations are given precedence over matrix operations. Note that
uv ≡ Uv, and if A is a matrix then Auv ≡ AUv, but in general Auv 6= (Au)v.

We frequently use the O(·) and Ω(·) notations to express a relationship between
functions. Our most common usage will be associated with a sequence {xk} of vectors
and a sequence {µk} of positive real numbers. In this case x = O(µ) or xk = O(µk)
means that there is a constant K (dependent on problem data) such that for every
k ∈ N, ‖xk‖ ≤ Kµk. Similarly, x = Ω(µ) or xk = Ω(µk) means that there is ε > 0
such that for every k ∈ N, ‖xk‖ ≥ εµk. Given a matrix A, N (A) and R(A) denote,
respectively, its null space and range space. PA denotes the projection matrix into
N (A), and P̃A = I − PA.

The primal and dual linear programming problems are as follows:

(LP )
minimize cTx

subject to Ax = b,
x ≥ 0

and

(LD)
maximize bT y
subject to AT y + s = c,

s ≥ 0,

where c∈ Rn, b∈ Rm, and A∈ Rm×n. We assume that both problems have optimal
solutions and that the sets of optimal solutions are bounded. This is equivalent to the
requirement that both feasible sets contain points satisfying all inequality constraints
strictly.

Given any feasible primal-dual pair (x̃, s̃), the problems can be rewritten as

(LP )
minimize s̃Tx

subject to Ax = b,
x ≥ 0

and

(LD)
minimize x̃T s

subject to Bs = Bc,
s ≥ 0,
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where BT is a matrix whose columns span the null space of A. Popular choices for BT

are an orthonormal basis for the null space of A and B = PA, the projection matrix
into the null space of A.

The feasible sets for (LP) and (LD) will be denoted, respectively, by P and D.
Their relative interiors will be, respectively, P0 and D0.

The set of optimal solutions for the primal-dual pair of problems constitutes a
face F = FP × FD of the polyhedron of feasible solutions, where FP and FD are,
respectively, the primal and dual optimal faces. By hypothesis, this face is a compact
set. It is well known that this face is characterized by a partition {B,N} of the set
of indices {1, . . . , n} such that FP = {x ∈ P | xN = 0} and FD = {s ∈ D | sB = 0}.
In the relative interior of the face F , xB > 0 and sN > 0.

We study algorithms that converge to the optimal face. Our main concern is
with the behavior of the iterates as they approach the optimal face. We want this
to happen in such a manner that all limit points are in the relative interior of the
optimal face. We shall see later on how this condition can be enforced by requiring
some adherence to the central path. For detail on the central path, see Gonzaga [2].

Given µ > 0, µ ∈ R, the pair (x, s) of feasible primal and dual solutions is the
central point (x(µ), s(µ)) associated with µ if

xs = µe,

where e stands for the vector of all ones, with dimension given by the context.
The central path is the curve in R2n parametrized by the positive real µ, i.e.,

µ 7→ (x(µ), s(µ)).

Thus (x, s) is a central point if and only if

xs = µe,
Ax = b,
Bs = Bc,
x, s ≥ 0,

(1)

where the columns of BT span the null space of A.
The first-order or Karush–Kuhn–Tucker (KKT) conditions for problem (LP) (or

(LD)) are

xs = 0,
Ax = b,

AT y + s = c,
x, s ≥ 0.

The perturbed KKT conditions for perturbation parameter µ > 0 are

xs = µe,
Ax = b,

AT y + s = c,
x, s ≥ 0.

(2)

Observe that the perturbed KKT conditions are merely the defining relations for
the central path and (2) can equivalently be written as (1). Essentially all primal-
dual interior-point methods for problem (LP) consist of some variant of the damped
Newton method applied to the perturbed KKT conditions (1) or (2).
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2. The Newton and simplified Newton steps. When dealing with an iter-
ative procedure we will use the superscript 0 to denote the previous iterate, and no
superscript to denote the current iterate, and a superscript of + to denote the sub-
sequent iterate. In two-step algorithms like the Mizuno–Todd–Ye (MTY) algorithm
described in section 4, this notation will apply to the current iterate, the intermediate
iterate, and the final iterate.

Suppose that (x0, s0) and (x, s) have been obtained from a form of Newton’s
method and are both feasible pairs. The Newton step (or correction) for (1) at (x, s)
is given by (u, v), the solution of

xv + su = −xs+ µe,
Au = 0,
Bv = 0,

(3)

and the simplified Newton step for (1) at (x, s) is given by (u, v), the solution of

x0v + s0u = −xs+ µe,
Au = 0,
Bv = 0.

(4)

It should be clear that the difference between (3) and (4) is that (3) uses the
Jacobian of (1) at (x, s) and (4) uses the Jacobian of (1) at (x0, s0).

We introduce some additional notation that will be used throughout the paper.
Given a pair (x, s), we define

µ(x, s) = xT s/n,
w(x, s) = xs/µ(x, s),
δ(x, s) = ‖w(x, s)− e‖,
φ(x, s) = (

√
w(x, s))−1.

(5)

When no confusion can arise, we drop the reference to the variables and continue
to use other symbols in a consistent manner. For instance, given a pair (x̄, s̄), the
parameters above will be denoted simply µ̄, w̄, and φ̄.

Given a pair (x, s), µ(x, s) is the penalty parameter associated with (x, s) in the
following sense: if (x, s) is a central point, then xs = µ(x, s)e; otherwise, µ(x, s) is
the penalty parameter associated with the central point that is nearest the pair (x, s)
in terms of a certain proximity measure. The vector w consists of logarithmic barrier
weights associated with (x, s). It characterizes the weighted primal-dual affine scaling
trajectory through (x, s), as studied by Monteiro and Adler [12]. The scalar δ is a
measure of proximity from (x, s) to the central point (x(µ), s(µ)). The definition of
φ was made merely for convenience; it will simplify expressions below.

At this point we are interested in obtaining usable closed form solutions for the
simplified Newton step and the Newton step. We also derive an interesting property
of the simplified Newton step. In what follows it is important not to confuse µ in (3)
and (4) with µ(x, s) given in (5), because they are not necessarily the same. Hence
µ denotes the µ in (3) and (4) and µ(x, s) means the µ(x, s) given in (5). Since no
confusion will arise in the case of µ0, we use µ0 to denote µ(x0, s0).

Proposition 2.1. The simplified Newton step (u, v) given by (4) can be written

u = x0φ0PAX0Φ0φ0

(
−xs

µ0
+

µ

µ0
e

)
,

v = s0φ0P̃AX0Φ0φ0

(
−xs

µ0
+

µ

µ0
e

)
,

(6)
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where P̃ = I − P.

Proof. Assume that instead of (4), the simplified Newton equations are written
as

x0v + s0u = −xs+ µe, u ∈ N (A), v ∈ R(AT ).(7)

The solution is obtained by associating a scaling vector

d(x, s) =

√
x

s

to each pair (x, s).

Using the definitions in (5) and dropping argument references when no confusion
will arise,

d =

√
x

s
=

xφ√
µ(x, s)

=

√
µ(x, s)

φs
.(8)

The solution of (7) is obtained by scaling the problems by x̄ = (d0)−1x , s̄ = d0s :

x̄0v̄ + s̄0ū = −x̄s̄+ µe,
ū ∈ N (AD0),
v̄ ∈ R(D0AT ).

The choice of this scaling becomes clear when we notice that by direct substitution,

x̄0 = s̄0 =
√
x0s0.(9)

Dividing the equation by s̄0 and using the definitions of scaled variables,

ū+ v̄ = − x̄

x̄0
s̄+ µ(x̄0)−1 =

d0

x0
(−xs+ µe).

Hence ū and v̄ are the components of the right-hand side in the complementary
subspaces, the null space, and row space of AD0; they are given by

ū = PAD0

d0

x0
(−xs+ µe),

v̄ = P̃AD0

d0

x0
(−xs+ µe),

(10)

where P̃AD0 = I − PAD0 . Finally, u = d0ū and v = (d0)−1v̄.

A convenient formulation is obtained by substituting d0 = 1√
µ0
x0φ0 and (d0)−1 =

1√
µ0
s0φ0, and this leads to (6).

The simplified Newton step and the Newton step satisfy an interesting property.
This property will turn out to be fundamental to the analysis presented in section 5.
Hence we derive this property in a form which covers both the simplified Newton step
and the Newton step.



72 CLOVIS C. GONZAGA AND RICHARD A. TAPIA

Proposition 2.2. Let (x̂, ŝ) and (x, s) be feasible pairs; π ∈ [0, 1]. Consider
x+ = x+ u and s+ = s+ v, where (u, v) satisfies

x̂v + ŝu = −(1− π)xs+ µ̂e,
u ∈ N (A),
v ∈ R(AT ).

Then

µ(x+, v+) = πµ(x, s) + µ̂.(11)

Proof. Left multiplying by eT , we obtain

x̂T v + ŝTu = −(1− π)xT s+ nµ̂

from the definition

x+T s+ = xT s+ xT v + sTu,

since uT v = 0. But x̂T v = xT v, because x̂−x ∈ N (A) and v ∈ R(AT ) and, similarly,
ŝTu = sTu. Substituting in the expressions above we immediately obtain (11).

3. Scaled projections. In this section we collect some results on scaled projec-
tions from Gonzaga and Tapia [3]. These results are extensions of results published
by Megiddo and Shub [9]. We use R+ to denote the nonnegative reals and R++ to
denote the positive reals.

Consider the primal feasible set for (LP)

P = {x∈ Rn | Ax = b, x ≥ 0}
and the map h defined for (d, ρ) ∈ J = (Rn

+\{0})× Rn,

(d, ρ) ∈ J 7→ h(d, ρ) = PADρ,(12)

where PAD represents the projection matrix into the null space of AD.
We study the behavior of this map when d > 0, (d, ρ) → (d̄, ρ̄) ∈ J .
Given d̄, we define the index sets B = {i = 1, . . . , n | d̄i > 0} and N = {i =

1, . . . , n | d̄i = 0}. The variables with indices in B are called the large variables, and
the others small variables. It is difficult to describe the behavior of the small variables
hN (d, ρ) of the scaled projection defined above; the theory of Megiddo and Shub
concerns the large variables hB(d, ρ). We shall describe these results conveniently
extended to fit our needs. The following proposition is Lemma 3.2 of Gonzaga and
Tapia [3]. We refer the reader to that paper for the proof.

Proposition 3.1. Let h(d, ρ) be given by (12). Consider (d̄, ρ̄) ∈ J and
(dk, ρk) ∈ Rn

+ × Rn such that (dk, ρk) → (d̄, ρ̄). Then

(i) hB(dk, ρk) → hB(d̄, ρ̄) = PABD̄B
ρ̄B ;

(ii) if ρ̄N = 0, then hN (dk, ρk) → 0.
Consider compact sets Γ ⊂ Rn and ∆ ⊂ Rn

+ such that for any d ∈ ∆, dB > 0 and
dN = 0, where {B,N} is a partition of {1, . . . , n}. We now extend the proposition
above for the case of sequences {dk} in Rn

++ and {ρk}∈ Rn such that dk → ∆ and
ρk → Γ. 1

1 A sequence {zk} converges to a set Z if d(zk, Z) → 0, where d(zk, Z) = infz∈Z ‖zk − z‖.
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Proposition 3.2. For the situation described above we have the following:

(i) if dk → ∆ and ρk → Γ, then

hB(dk, ρk)− PABDk
B
ρkB → 0;

(ii) if dk → d̄ ∈ ∆ and ρk → ρ̄ ∈ Γ, then

hB(dk, ρk)− PABD̄B
ρ̄B → 0.

Proof. Implication (ii) follows from (i), since for convergent sequences PABDk
B
ρkB →

PABD̄B
ρ̄B .

To prove (i), assume by contradiction that there exist ε > 0 and sequences {dk}
in Rn

++ and {ρk} in Rn such that for k = 1, 2, . . .

‖hB(dk, ρk)− PABDk
B
ρkB‖ > ε.(13)

Since the sequences {dk} and {ρk} converge to compact sets they must be bounded.

Hence they have accumulation points d̄, ρ̄, such that for some K ⊂ N, dk
K−→ d̄ and

ρk
K−→ ρ̄. From the facts that dk converges to ∆ and ρk converges to Γ and the

compactness of ∆ and Γ, d̄ ∈ ∆ and ρ̄ ∈ Γ. From Proposition 3.1,

hB(dk, ρk)
K−→ PABD̄B

ρ̄B ,

and since D̄B > 0,

PABDk
B
ρkB

K−→ PABD̄B
ρ̄B .

By subtracting these last expressions, we see that

hB(dk, ρk)− PABDk
B
ρk

K−→ 0,

contradicting (13) and completing the proof.
Now we present two facts related to projections and slightly shifted scalings.
Proposition 3.3. Let q ∈ RN be such that ‖q − e‖∞ ≤ α , α ∈ (0, 0.25), and

consider the projections ĥ = PAρ , h = qPAQqρ. Then ‖h− ĥ‖ ≤ 3α‖ĥ‖.
Proof. See [3].
Given a vector x ∈ Rn

++, the following map defines a norm

h∈ Rn 7→ ‖h‖x = ‖x−1h‖.
This is the Euclidean norm of the vector corresponding to h after a scaling h̄ = x−1h.
This norm is very usual in interior-point methods.

The following result shows that all scaled norms for x in a compact set in the
interior of the positive orthant are uniformly equivalent.

Proposition 3.4. Let ∆ ⊂ Rn
++ be a compact set. Then there is a number

Γ > 0 such that for any h∈ Rn, x ∈ ∆,

1

Γ
‖h‖ ≤ ‖h‖x ≤ Γ‖h‖.

Proof. By definition, given x ∈ ∆, ‖h‖x = ‖x−1h‖. We immediately obtain

min
i=1,...,n

x−1
i ‖h‖ ≤ ‖h‖x ≤ max

i=1,...,n
x−1
i ‖h‖.

Since xi , i = 1, . . . , n, are bounded and bounded away from zero for x ∈ ∆, the scalar
Γ must exist, completing the proof.
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4. The Mizuno–Todd–Ye algorithm. The MTY algorithm is a path-following
predictor-corrector algorithm. All activity is restricted to a region near the central
path; i.e., all points (x, s) generated by the algorithm satisfy

δ(x, s) = ‖w(x, s)− e‖ = ‖ xs

µ(x, s)
− e‖ ≤ α,

where α ∈ (0, 0.5).
We shall describe a typical iteration of the algorithm and list its properties. Com-

plete proofs can be found in Mizuno, Todd, and Ye [11].
Given α = 0.1,1 a typical iteration begins with feasible (x0, s0) such that δ(x0, s0) =

‖w0 − e‖ ≤ α2/
√

2.
Predictor step. Given (x0, s0), compute the (affine-scaling) step (u0, v0) and let

x = x0 + u0, s = s0 + v0, where (u0, v0) is defined by

x0v0 + s0u0 = −(1− γ)x0s0, u0 ∈ N (A), v0 ∈ R(AT ),

with γ ∈ [0, 1) such that δ(x, s) = ‖w(x, s)− e‖ ≤ α. (The specific choice of γ will be
discussed below.)

Corrector step. Given (x, s), compute the (centering) step (u, v) and let x+ =
x+ u, s+ = s+ v, where (u, v) is defined by

xv + su = −xs+ µe, u ∈ N (A), v ∈ R(AT ),

with µ = µ(x, s).
Observe that our γ in the predictor step is effectively a steplength parameter. To

see this let us denote the predictor step by (u0(γ), v0(γ)) and let θ = 1− γ. Then

θ(u0(0), v0(0)) = (u0(γ), v0(γ))

and

(x, s) = (x0, s0) + θ(u0(0), v0(0)),

which is the usual way of writing the MTY predictor step. The usual choice for θ is
θk, the largest θ ∈ (0, 1] such that δ(x(θ), s(θ)) ≤ α for all 0 ≤ θ ≤ θk. For further
details, see, for example, section 2 of Ye et al. [16]. Hence our choice for γ in the
predictor step is γ = 1− θk and can be viewed as the smallest γ ∈ [0, 1) in the sense
just described.

Mizuno, Todd, and Ye [11] prove that the algorithm is well defined in the sense
that the centering step produces (x+, s+) such that δ(x+, s+) ≤ α2/

√
2. Ye et al. [16]

(and independently Mehrotra [10]) prove that the duality-gap (or, equivalently, the
parameter µ) converges to zero Q-quadratically; i.e.,

µ+ = µ(x+, s+) = O(µ02
).

Using Proposition 2.2 with (x̂, ŝ) = (x0, s0), π = γ, and µ̂ = 0, we see that for
the predictor step,

µ(x, s) = γµ(x0, s0).

1 The original paper uses α = 0.5. We shall use a convenient value of 0.1, since this simplifies
some formulas ahead.
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Using Proposition 2.2 with (x̂, ŝ) = (x, s), π = 0, and µ̂ = γµ(x0, s0), we see that for
the corrector step,

µ(x+, s+) = γµ(x0, s0).

So, on one hand we have µ+ = O(µ02

) and on the other hand we have µ+ = γµ0. It
follows that

γ = O(µ0).

Bounds on the quantities appearing in the algorithm are given in the propositions
below. Let {B,N} be the optimal partition for the linear programming problem, i.e.,
the index partition associated to the optimal face. It is well known (see Adler and
Monteiro [1]) that the central path ends at the analytic center of the optimal face
and that the pairs (x, s) such that ‖w(x, s) − e‖ ≤ α constitute a neighborhood of
the central path corresponding to the bundle of w-weighted affine-scaling trajectories
for w such that ‖w − e‖ ≤ α. For α small, the bundle of trajectories ends in a
compact neighborhood of the analytic center of the optimal face, contained in the
relative interior of the face. Namely, the end points in the primal optimal face are the
w-weighted centers given by

x∗(w) = argmin

{
−
∑
i∈B

wi log xi | x ∈ FP

}
.

Hence, the algorithm behaves as follows. As the optimal face is approached (and
this happens in polynomial time), xkN → 0 , skB → 0 and xkB , s

k
N remain in small

neighborhoods of x∗B and s∗N , the analytic centers of the primal and dual optimal
faces.

Actually, it is always true that xk → x∗, sk → s∗, due to the results proved in
Gonzaga and Tapia [3], which we describe.

As was stressed in the beginning of section 6 of Gonzaga and Tapia [3], it is

important to realize that our estimates do not require (x0k+1

, s0
k+1

) to be related to

(x+k

, s+
k

); i.e., (x0k , s0
k

) does not have to be generated by the MTY algorithm. All

that is required is that (x0k , s0
k

) satisfy the condition w‖(x0k , s0
k

) − e‖ ≤ α for the
appropriate choice of α. Hence, in what follows in this section and in section 5, we
employ this broad interpretation when discussing quantities generated by the MTY
algorithm or the simplified MTY algorithm for only one iteration.

Proposition 4.1. Consider quantities generated by the MTY algorithm. Then
(i) xN = O(µ), sB = O(µ), x0

N = O(µ0), s0B = O(µ0),
(ii) u0 = O(µ0), v0 = O(µ0),
(iii) uN = O(µ), vB = O(µ).
Proof. See Lemma 5.1 of [3].
The proposition above shows that the variations in (x, s) due to either an MTY

predictor or corrector step are bounded by O(µ0), with the exception of uB and vN .
These are the variations in the large variables due to the corrector step.

The following proposition is the main result in Gonzaga and Tapia [3]. It is related
to the map that associates to a pair (x0, s0) the pair (x+, s+) resulting from an MTY
iteration. The proposition says that near the optimal face, an MTY iteration causes
the large variables to approach the large variables of the analytic center (x∗, s∗) of
the optimal face. The proposition describes only the behavior of the primal variables;
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the dual variables behave in a similar fashion, due to the symmetry of the optimality
conditions (1).

The approach to the center is measured in the norm relative to x∗B , defined for
h∈ Rn by ‖hB‖∗ = ‖(x∗B)−1hB‖.

Proposition 4.2. Consider a sequence (x0k , s0
k
) of primal-dual pairs (not nec-

essarily generated by the algorithm) such that δ(x0k , s0
k
) ≤ 0.1 and µ0k → 0. Then

there exists a sequence of positive reals {εk} such that εk → 0 and for sufficiently large
k,

‖x+k

B − x∗B‖∗ ≤ max{εk, 0.8‖x0k

B − x∗B‖∗}.

Proof. See Lemma 6.2 of [3].
This result implies that the iterates approach (x∗, s∗) and thus the sequence

generated by the algorithm converges to the central optimum.
We are now concerned with bounding the sum of the variations (corrections) made

to either the x-variable or the s-variable in either the predictor step or the corrector
step in all iterations. The variation in x due to a predictor step is u0. By the

total variation in x due to predictor steps we mean
∑

k ‖u0k‖. If we do not mention
predictor steps or corrector steps we mean both steps. Analogous terminology is used
for corresponding situations.

Proposition 4.3. Consider quantities x0k , s0
k
, xk, etc. generated by the MTY

algorithm starting at (x01

, s0
1

). Then

(i)
∑∞

k=1 µ0k = O(µ01);

(ii) the total variation in xN and in sB is bounded by O(µ01);
(iii) the total variation in xB and in sN due to predictor steps is bounded by

O(µ01).
Proof. To prove (i), it is enough to show that for some constant β ∈ (0, 1), µk+1 ≤

βµk. This was shown by Mizuno, Todd, and Ye [11] when proving the polynomiality of
the algorithm. Now (ii) and (iii) are direct consequences of Proposition 4.1, completing
the proof.

5. The simplified Mizuno–Todd–Ye algorithm. The simplified MTY algo-
rithm is the MTY algorithm with the Newton corrector step replaced by a simplified
Newton step. This means that the computation of the projections in (6) for the cor-
rector step are reduced to a back substitution, instead of a complete solution of the
system.

We now state the complete algorithm.

Algorithm 5.1. Given α = 0.1 and feasible (x01
, s0

1
) such that δ(x01

, s0
1
) ≤

α2/
√

2, set k = 1.
repeat

x0 := x0k , s0 := s0
k
, µ0 := µ(x0, s0).

Predictor: Given (x0, s0) compute (u0, v0), and let x := x0 + u0, s := s0 + v0

where (u0, v0) satisfies
x0v0 + s0u0 = −(1− γ)x0s0, u0 ∈ N (A), v0 ∈ R(AT ),
and γ is as in the MTY predictor step.

Simplified Corrector: Given (x, s) set µ := µ(x, s). Compute (û, v̂) satisfying
x0v̂ + s0û = −xs+ µe, û ∈ N (A), v̂ ∈ R(AT ),
and set x+ := x+ û, s+ := s+ v̂.
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Safeguard: If δ(x+, s+) > α
2 , then discard (x+, s+) and compute the Newton

corrector step
xv + su = −xs+ µe, u ∈ N (A), v ∈ R(AT ),
and set x+ := x+ u, s+ := s+ v.

Subsequent iterate:

x0k+1
:= x+, s0

k+1
:= s+.

k := k + 1.
until convergence.

Before we formally state the convergence properties that we have derived for the
simplified predictor-corrector algorithm, there is value in collecting some fundamental
observations. In what follows all quantities should be indexed by k; however, we will
not always write the index k as we have been doing above.

Proposition 5.2. Let {(x0, s0)k, (x, s)k, (x+, s+)k} be generated by the simplified
MTY predictor-corrector algorithm. Then

(i) x+T s+ = xT s,

(ii) xT s = γx0T s0,

(iii) γ = O(x0T s0),

(iv) xT s ≤ (1− δ√
n
)x0T s0 for some δ > 0 that does not depend on k.

Proof. The proof of (i) follows from Proposition 2.2 with (x̂, ŝ) = (x, s), π = 0,
and µ̂ = µ(x, s). The proof of (ii) follows from Proposition 2.2 with (x̂, ŝ) = (x0, s0),
(x, s) = (x0, s0), π = γ, and µ̂ = 0. Both (iii) and (iv) follow from Theorem 4.1 of Ye
et al. [16], once we observe that their β is related to our α by the relationship β = α

2
and their steplength θ is related to our γ by the relationship θ = 1− γ.

The algorithm uses a simplified Newton iteration in the corrector step. If the sim-
plified corrector produces the reduction in the proximity δ that ensures the quadratic
convergence of the algorithm, i.e., if δ(x+, s+) ≤ α

2 , then the step is accepted. Other-
wise, the simplified step is discarded and the algorithm performs a Newton corrector
step.

Two things must be proved: first, that the iterates are still convergent, not nec-
essarily to the analytic center of the optimal face, and second, that the safeguard
cannot be activated more than a finite number of times.

The predictor step is the same as that for the MTY algorithm. Our analysis will
be based on a comparison of the simplified and exact corrector steps. The conclusions
will be the following: for points near the optimal face,

(i) the simplified corrector step does not center the large variables. The variation
in xB and sN due to simplified steps will be bounded by O(µ0);

(ii) the behavior of the small variables xN and sB tends to be identical in both
methods.

These two facts will be proved and then used to contradict the hypothesis that
the safeguard is activated an infinite number of times.

We begin by studying the behavior of the large variables.
Proposition 5.3. Consider the corrector directions (uk, vk) and (ûk, v̂k) gener-

ated at iteration k of Algorithm 5.1 (independently of which one is actually accepted
by the algorithm). Then there exist a number K > 0 and sequences {θkx}, {θks} in R+

such that θkx → 0, θks → 0, and

‖ûkB‖ ≤ γkK(‖ukB‖+ θkx), ‖v̂kN‖ ≤ γkK(‖vkN‖+ θks ).

Hence ûB = O(µ0) and v̂N = O(µ0).
Proof. We shall prove the result for ûkB . The proof of the other result is similar.
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Dropping the index k for notational simplicity, the primal directions are computed
from (6):

û = x0φ0PAX0Φ0φ0

(
−xs

µ0
+

µ

µ0
e

)
,

u = xφPAXΦφ

(
−xs

µ
+ e

)
.

Substituting µ = γµ0, we obtain

û

γ
= x0φ0PAX0Φ0φ0ρ,

u = xφPAXΦφρ

for ρ =
(
−xs

µ + e
)
. The points xk and x0k approach the relative interior of the

optimal face, converging to a small compact neighborhood of the central optimum x∗.
The vectors φ and φ0 have the following bounds.

By construction, w0
i ∈ [0.95, 1.05], wi ∈ [0.9, 1.1]. Since φi = 1√

wi
by definition,

the following bounds easily can be checked:

φ0
i ∈ [0.97, 1.03], φi ∈ [0.95, 1.06],

φ0
i

φi
∈ [0.92, 1.08].(14)

Thus x0φ0 and xφ also converge to compact sets. Since ‖ρ‖ = δ(x, s) ≤ 0.1, the
vectors φρ and φ0ρ are also in compact sets, and we can use Proposition 3.2 to obtain

ûB
γ − x0

Bφ
0
BPABX0

B
Φ0
B
φ0
BρB → 0,

uB − xBφBPABXBΦB
φBρB → 0.

(15)

The scaled projections above are almost in the format required by Proposition 3.3,
on slightly shifted scalings. To put them in the desired format, let us write

ρB = x0
B(x0

B)−1ρB .

Due to Proposition 4.1, since x0
B = Ω(1), we have

xB = x0
B + u0

B = x0
B(e+O(µ0)) .(16)

It follows that (x0
B)−1 = x−1

B (e+O(µ0)). Thus,

ρB = x0
Bx

−1
B ρB(e+O(µ0)) = x0

Bx
−1
B ρB +O(µ0).

Since O(µ0) → 0, (15) can be written as

ûB
γ − x0

Bφ
0
BPABX0

B
Φ0
B
x0
Bφ

0
Bx

−1
B ρB → 0,(17)

uB − xBφBPABXBΦB
xBφBx

−1
B ρB → 0.(18)

Defining q =
x0
Bφ

0
B

xBφB
, we see from (14) and (16) that for µ sufficiently small, qi ∈

[0.9, 1.1], and thus ‖q − e‖∞ ≤ 0.1. Now (17) can be written as

ûB
γ − xBφBqPABXBΦBQxBφBq x

−1
B ρB → 0.(19)
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Defining ĥB = qPABXBΦBQxBφBq x
−1
B ρB , hB = PABXBΦB

xBφB x−1
B ρB , we see

from Proposition 3.3 that

‖hB − ĥB‖ ≤ 0.3‖hB‖.

Dividing (18) by xBφB and using scaled norms, it follows that

‖uB‖xBφB − ‖hB‖ → 0.(20)

Subtracting (18) from (19) establishes that

ûB
γ − uB

xBφB
+ ĥB − hB → 0(21)

or (making the iteration indices explicit)

‖ ûkB
γk
− ukB‖xk

B
φk
B
≤ ‖hkB − ĥkB‖+ σk1 , σk1 → 0

≤ 0.3‖hkB‖+ σk1

≤ 0.3‖ukB‖xk
B
φk
B

+ σk2 ,

where the last inequality comes from (20), with σk2 → 0.
Using Proposition 3.4 twice to relate ‖ · ‖xk

B
φk
B

and ‖ · ‖, we see that there exists
a constant K1 > 0 such that

‖ ûkB
γk
− ukB‖ ≤ K1‖ukB‖+ θkx,

where θkx → 0. Finally,

‖ ûkB
γk
‖ ≤ ‖ukB‖+K1‖ukB‖+ θkx.

The final statement follows from the fact that {ukB} and {vkB} are bounded, and
γ = O(µ0) from (iii) of Proposition 5.2.

Proposition 5.4. Consider the quantities x0k , s0
k
, xk, etc. generated by Algo-

rithm 5.1, starting at (x01

, s0
1

). Then
(i) at all iterations û = O(µ0), v̂ = O(µ0), and the total variation in (x, s) due to

simplified Newton steps is bounded by O(µ01);

(ii) the sequences {(x0k , s0
k

)} and {(xk, sk)} converge to a pair (x̄, s̄) in the opti-
mal face.

If the safeguard is activated an infinite number of times, 1 then (x̄, s̄) = (x∗, s∗),
the central optimal pair. Otherwise, (x̄, s̄) is not necessarily equal to (x∗, s∗).

Proof. (i): recall that µ(x, s) = γµ(x0, s0) and apply Proposition 2.1 with µ = γµ0

to obtain

û = γx0φ0PAX0Φ0φ0ρ

and

v̂ = γs0φ0P̃AX0Φ0φ0ρ,

1 We shall prove below that this hypothesis is vacuous, but it will be needed to establish a
contradiction.
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where ρ =
(
−xs

µ + e
)
. Since δ(x, s) ≤ 0.1, we see that ‖ρ‖ = δ(x, s) ≤ 0.1. Moreover,

since δ(x0, s0) = ‖w(x0, s0) − e‖ ≤ 0.1, we see that the components of w(x0, s0)
are contained in [0.9, 1.1]; hence the components of φ0 are contained in [0.95, 1.06].

Also, the sequence {(x0k , s0
k

)} is bounded, and projection operators are bounded. It
follows from the above expressions and the fact that all quantities are bounded that
û = O(γ) = O(µ0) and v̂ = O(γ) = O(µ0). Now apply Proposition 4.3 (i) to obtain
the result on total variation.

(ii): if the safeguard is activated a finite number of times, the conclusion follows
from (i), because then the sequences generated by the algorithm are Cauchy sequences.
Otherwise, the convergence proof is similar to the proof for the MTY algorithm,
presented in Gonzaga and Tapia [3].

We shall prove the result for the primal variables. The proof for the dual slacks

is similar. Also, it is enough to prove that x0k → x∗, since u0k = O(µ0k ) → 0.

Assume by contradiction that the sequence {x0k} has an accumulation point
x̄ 6= x∗. Since x̄N = x∗N = 0, we have

σ ≡ ‖x̄B − x∗B‖∗ > 0.

Let K ⊂ N be the set of iterations in which the safeguard is activated (MTY
iterations). Our first step is to show that x̄ must also be an accumulation point of

(x0k )k∈K.

Let K1 ⊂ N be a subsequence such that x0k K1−→ x̄, and let j(k) be the first index

in K greater than or equal to k. Then for any k ∈ K1, ‖x0j(k)−x0k‖ = O(µ0k ) by (i),

and thus x0j(k) K1−→ x̄. Thus it is enough to consider in our assumption subsequences
in K.

Let {εk} be the sequence given by Proposition 4.2, and let k̄ be such that for
k ≥ k̄ the conclusions of that proposition are valid and εk < 0.5σ.

Choose an index j ≥ k̄ with the following characteristics: j ∈ K, ‖x0
B
j − x∗B‖∗ <

1.1σ, and the total variation of x due to simplified steps after j satisfies∑
k 6∈K
k≥j

‖x0k+1 − x0k‖∗ < 0.05σ.(22)

Such an index exists by definition of σ and by (i). We shall prove by induction that

for k ∈ K, k > j, ‖x0k

B − x∗B‖∗ < 0.95σ.

(a) ‖x0
B
j+1 − x∗B‖∗ < 0.8× 1.1σ < 0.9σ by Proposition 4.2. Let k′ = j(j + 1) be

the next index in K. Using (22),

‖x0
B
k′
− x∗B‖∗ ≤ ‖x0

B
j+1 − x∗B‖∗ + ‖x0

B
k′
− x0

B
j+1‖∗ < 0.95σ.

(b) Assume that for an index k ∈ K, k > j, ‖x0k

B − x∗B‖∗ < 0.95σ. Then by

Proposition 4.2, ‖x0
B
k+1 − x∗B‖∗ ≤ max{εk, 0.8‖x0k

B − x∗B‖∗} < 0.9σ. As in (a), using
(22), let k′ = j(k + 1) be the next index in K:

‖x0
B
k′
− x∗‖∗ ≤ ‖x0

B
k+1 − x∗‖∗ + ‖x0

B
k′
− x0

B
k+1‖∗ ≤ 0.95σ.

Statements (a) and (b) prove that for all k ∈ K, k > j, ‖x0k

B −x∗B‖∗ < 0.95σ, con-

tradicting the fact that σ is an accumulation point of the sequence (‖x0k

B − x∗B‖∗)k∈K
and completing the proof.
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Having described the behavior of the large variables, we can now compare the
small variables for the exact and simplified Newton corrector steps.

At a typical iteration, the simplified step (û, v̂) and the exact step (u, v) satisfy
the equations below:

x0
B v̂B + s0BûB = −xBsB + µeB ,

x0
N v̂N + s0N ûN = −xNsN + µeN ,

(23)

xBvB + sBuB = −xBsB + µeB ,
xNvN + sNuN = −xNsN + µeN ,

(24)

where µ = γµ0, γ = O(µ0).
Before we state the main result, we establish some relationships within a typical

iteration:
(i) Large variables: since u0 = O(µ0), v0 = O(µ0), and all components of xB and

sN are bounded away from zero,

x0
B = xB(e+O(µ0)) , s0N = sN (e+O(µ0)).(25)

(ii) Small variables: by construction,

x0s0 = µ0w0,

x s = µ w,

where w0
i ∈ [0.95, 1.05], wi ∈ [0.9, 1.1], i = 1, . . . , n. Dividing these expressions,

x0
N

xN
=

1

γ

sN
s0N

w0
N

wN
,
s0B
sB

=
1

γ

xB
x0
B

w0
B

wB
.

From (25), it is immediate that sN/s
0
N = (e+O(µ0)), and xB/x

0
B = (e+O(µ0)). By

a simple calculation, w0
i /wi ∈ [0.85, 1.17], i = 1, . . . , n.

Defining

σN =
sN
s0N

w0
N

wN
, σB =

xB
x0
B

w0
B

wB
,

it follows that for sufficiently small µ0,

σi ∈ [0.8, 1.2],

and we can write

x0
N =

1

γ
σNxN , s0B =

1

γ
σBsB .(26)

Proposition 5.5. Consider an application of Algorithm 5.1. Then the safeguard
cannot be activated an infinite number of times.

Proof. Assume by contradiction that the safeguard is activated at the iterations
with indices in an infinite set K.
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From Proposition 5.4, the sequences (x0, s0)k and (x, s)k converge to the analytic
center (x∗, s∗) of the optimal face. Using Lemma 6.2 of [3], we conclude that the
sequence (xkB + ukB) also converges to x∗B , which implies that

uk → 0, vk → 0,(27)

where the second part follows from the symmetry of the steps. Also, Proposition 5.4
(i) shows that

ûk → 0, v̂k → 0.(28)

Let us substitute relations (25) and (26) into the Newton equations (23). We shall
analyze the first equation (indices in B); the analysis for the other one is similar. Our
approach is to compare the behavior of the small variables in the simplified and exact
corrector steps. To begin with,

(e+O(µ0))xB v̂B +
1

γ
σBsBûB = −xBsB + µeB .(29)

By subtracting (24) from (29) and restoring the iteration indices, we get

((e+O(µ0k ))v̂kB − vkB)xkB = −
(

1

γk
σkBû

k
B − ukB

)
skB .

Taking norms,

‖(e+O(µ0k ))v̂kB − vkB)xkB‖ ≤ ‖skB‖∞
(
‖σkB‖∞

1

γk
‖ûkB‖ + ‖ukB‖

)
.

From Proposition 5.3, ‖ûkB‖/γk ≤ K(‖ukB‖+ θkx), where θkx → 0. Since ‖σkB‖∞ ≤ 1.2
for sufficiently large k and ‖skB‖∞ = O(µk) by Proposition 4.1, the inequality becomes

‖((e+O(µ0k ))v̂kB − vkB)xkB‖ ≤ O(µk)(1.2K(‖ukB‖+ θkx) + ‖ukB‖)
≤ K1µ

k(‖ukB‖+ θkx),

where K1 is a constant that depends on the problem data. Since ukB → 0 by (27) and
since θkx → 0, we conclude that

1

µk
((e+O(µ0k ))v̂kB − vkB)xkB → 0.

Since xkB has all components bounded away from zero,

(e+O(µ0k ))
v̂kB − vkB

µk
+
O(µ0k )

µk
vkB → 0,

and since vkB = O(µk) by Proposition 4.1, we conclude that

vkB − v̂kB
µk

−→ 0,
ukN − ûkN

µk
−→ 0.(30)

The second expression is obtained by a similar process, using the second equation in
(23).
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Now we shall establish a contradiction. At a typical iteration, let

w+ =
(x+ u)(s+ v)

µ
, ŵ =

(x+ û)(s+ v̂)

µ
.

From the analysis of the MTY algorithm presented in section 4, we see that

‖w+ − e‖ ≤ α2√
2
< 0.01 .

At any iteration k ∈ K,

‖ŵ − e‖ > α
2 ≥ 0.05.

At such an iteration, either ‖ŵN − eN‖ > 0.02 or ‖ŵB − eB‖ > 0.02. Assume that
at an infinite number of iterations K1 ⊂ K, ‖ŵN − eN‖ > 0.02 (the analysis for the
other case is completely similar).

Then for k ∈ K1,

‖ŵN − eN‖ > 0.02, ‖w+
N − eN‖ < 0.01.

This implies that in these iterations,

‖ŵN − w+
N‖ = ‖(ŵN − eN )− (w+

N − eN )‖ ≥ 0.01.(31)

On the other hand, we have (by definition)

µw+
N = (xN + uN ) (sN + vN ),

µŵN = (xN + ûN ) (sN + v̂N ).

By subtracting, we get

µ(ŵN − w+
N ) = (xN + ûN ) (sN + v̂N )− (xN + uN ) (sN + vN ).

Reordering terms in this expression, we obtain

ŵN − w+
N =

ûN − uN
µ

(sN + v̂N ) +
xN + uN

µ
(v̂N − vN ).

Let us analyze the terms in the right-hand side (restoring the index k):

(i) by (30),
ûkN − ukN

µk
(skN + vkN ) → 0;

(ii) by Proposition 4.1, xkN = O(µk) and ukN = O(µk). From (27) and (28),
vk → 0 and v̂k → 0. Hence∥∥∥∥xkN + ukN

µk
(v̂kN − vkN ) ≤ K2

∥∥∥∥ v̂kN − vkN ,

where K2 depends on problem data, so this term converges to zero.
We conclude that (w+

N )k − ŵkN −→ 0, contradicting (31), and complete the
proof.

We are now ready to formally state our convergence results.
Theorem 5.1. Let {(x0, s0)k} and {(x, s)k} denote the sequences generated by

the simplified MTY predictor-corrector algorithm. Then
(i) the safeguard in the corrector step is activated only a finite number of times ;
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(ii) the algorithm has iteration complexity O(
√
nL);

(iii) the duality-gap sequence {x0T s0} converges quadratically to zero;
(iv) both sequences {(x0, s0)} and {(x, s)} converge to a point (x̄, s̄) in the optimal

face.

Proof. Property (i) follows from Proposition 5.5. Also, (ii) follows from (iv) of
Proposition 5.2 in a standard manner. See Mizuno, Todd, and Ye [11] for details.
Property (iii) is a combination of (i), (ii), and (iii) of Proposition 5.2. Finally, (iv) is
(ii) of Proposition 5.4.

6. Concluding remarks. The fact that so much of Theorem 5.1 follows from
Proposition 5.2 and Proposition 5.2 depends so little on the corrector step leads us
to take a closer look at the role of the corrector step in our convergence theory.

Consider a typical simplified MTY predictor-corrector iteration represented by
{(x0, s0), (x, s), (x+, s+)}. The predictor step takes (x0, s0) to (x, s) and the corrector
step takes (x, s) to (x+, s+). A close look at the derivation of our theory shows that
for the establishment of O(

√
nL) complexity and quadratic convergence, we only used

the fact that the corrector step satisfies

(i) x+T s+≤ xT s, and
(ii) δ(x+, s+)≤ α

2 .
(32)

Hence any corrector step satisfying (32) will lead to O(
√
nL) complexity and quadratic

convergence but not necessarily iteration sequence convergence. It follows that quadratic
convergence is the best that should be expected from either the MTY algorithm
or the simplified MTY predictor-corrector algorithm. This is because for both of
these algorithms, the corrector step does not improve the duality-gap. For example,

x+T s+ = xT s, and therefore the quadratic decrease is obtained entirely from the
damped Newton predictor step, and quadratic decrease (in general) is optimal for a
(damped) Newton method. Clearly the same is true for any corrector step that does
not decrease the duality-gap.

We are accustomed to expect cubic decrease from the pair consisting of a Newton
step and a simplified Newton step and quartic decrease from the pair consisting of
two Newton steps. In order to attain these objectives along with O(

√
nL) complexity,

the predictor-corrector approach will have to be modified so that the corrector step
still satisfies (32) but also gives the appropriate decrease in the duality-gap. For
example, if we replace µ with γµ in the simplified corrector step of Algorithm 5.1 and
the safeguard is activated only a finite number of times, then we would obtain cubic
convergence from the simplified MTY algorithm. We did not pursue this issue in the
present work.

The contribution of this paper is the demonstration that in the MTY predictor-
corrector algorithm the Newton corrector step can be replaced with a safeguarded
simplified Newton corrector step and all the algorithmic properties are maintained,
except that the convergence of the iteration sequence is no longer to the analytic
center. Whether this loss is important or not clearly depends on the application.
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Abstract. The SDLCP (semidefinite linear complementarity problem) in symmetric matrices
introduced in this paper provides a unified mathematical model for various problems arising from
systems and control theory and combinatorial optimization. It is defined as the problem of finding
a pair (X,Y ) of n × n symmetric positive semidefinite matrices which lies in a given n(n + 1)/2
dimensional affine subspace F of S2 and satisfies the complementarity condition X •Y = 0, where S
denotes the n(n+ 1)/2-dimensional linear space of symmetric matrices and X • Y the inner product
of X and Y . The problem enjoys a close analogy with the LCP in the Euclidean space. In particular,
the central trajectory leading to a solution of the problem exists under the nonemptiness of the
interior of the feasible region and a monotonicity assumption on the affine subspace F . The aim
of this paper is to establish a theoretical basis of interior-point methods with the use of Newton
directions toward the central trajectory for the monotone SDLCP.

Key words. interior-point method, linear complementarity problem, linear matrix inequality,
semidefinite program, linear program

AMS subject classifications. 90C33, 90C05, 90C25

PII. S1052623494269035

1. Introduction. Let Ŝ denote the set of all n×n real matrices and S the set of
all n× n symmetric real matrices. We identify Ŝ with the n2-dimensional Euclidean
space Rn×n and S with an n(n+1)/2-dimensional linear subspace of Ŝ = Rn×n. The
inner product X • Y of X and Y in the linear space Ŝ is Tr XTY , i.e., the trace
of XTY . We write X � O if X ∈ Ŝ is positive definite, i.e., uTXu > 0 for every
nonzero u ∈ Rn, and X � O if X is positive semidefinite, i.e., uTXu ≥ 0 for every
u ∈ Rn. Here O stands for the n× n zero matrix. We use the symbol S+ for the set
of symmetric positive semidefinite matrices and S++ for the set of symmetric positive
definite matrices,

S+ = {X ∈ S : X � O}, S++ = {X ∈ S : X � O}.

This paper introduces the SDLCP (the semidefinite linear complementarity prob-
lem) in symmetric matrices: find an (X,Y ) ∈ S2 such that

(X,Y ) ∈ F , X � O, Y � O and X • Y = 0.(1)

Here F is an n(n+ 1)/2-dimensional affine subspace of S2. We call (X,Y ) ∈ F with
X � O and Y � O a feasible solution of the SDLCP (1) and (X,Y ) ∈ F with
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X � O and Y � O an interior feasible solution of the SDLCP (1). We impose a
certain monotonicity condition (Condition 1.2 below) of the affine subspace F . The
purpose of this paper is to establish a general theoretical framework of interior-point
methods for the monotone SDLCP (1).

The SDLCP is a generalization of SDPs (semidefinite programs) which have var-
ious applications in systems and control theory and combinatorial optimization. See
[1, 2, 3, 5, 12, 15, 35, 44, 45], etc. Given C ∈ S, Ai ∈ S (i = 1, 2, . . . ,m), and bi ∈ R
(i = 1, 2, . . . ,m), a primal-dual pair of SDPs is defined as

P : minimize C •X
subject to Ai •X = bi (i = 1, 2, . . . ,m),

X � O ( or X ∈ S+),
D : maximize

∑m
i=1 bizi

subject to
∑m

i=1Aizi + Y = C,
Y � O ( or Y ∈ S+).

(2)

We call (X,Y , z) ∈ S2×Rm a feasible solution of the primal-dual pair (2) of SDPs if
it satisfies all the constraints in (2) and an interior feasible solution of (2) if it satisfies
X � O and Y � O in addition to the constraints. Let

F =

{
(X,Y ) ∈ S2 :

Ai •X = bi (i = 1, 2, . . . ,m),∑m
i=1Aizi + Y = C for some z ∈ Rm

}
.(3)

Then (X,Y , z) ∈ S2 × Rm is a feasible solution (or an interior feasible solution) of
the primal-dual pair (2) of SDPs if and only if (X,Y ) ∈ S2 is a feasible solution (or
an interior feasible solution) of the SDLCP (1). Furthermore, if we assume that there
is an interior feasible solution of (2), we can state a common necessary and sufficient
optimality condition for X to be a minimum solution of the primal problem P and
(Y , z) to be a maximum solution of the dual problem D in terms of the SDLCP (1). In
this case, the n(n+ 1)/2-dimensional affine subspace F enjoys the self-orthogonality,
i.e.,

(X ′ −X) • (Y ′ − Y ) = 0 for every (X ′,Y ′), (X,Y ) ∈ F ,
which is a special case of the monotonicity (see Condition 1.2 below). Therefore the
monotone SDLCP (1) is at least as general as the primal-dual pair (2) of SDPs, and
we can specialize and/or modify both theoretical results and interior-point methods
presented in this paper to adapt them to the primal-dual pair (2) of SDPs. However,
our primary concern is not an extension of the primal-dual pair of SDPs but rather
a basic idea for designing a wide class of interior-point methods for mathematical
programs in the space of symmetric matrices.

A distinctive and important feature of our theoretical framework of interior-point
methods for the monotone SDLCP (1) is the use of “a Newton direction for approx-
imating a point on the central trajectory” at each iteration. This feature enables us
to transfer many useful technologies developed in the class of primal-dual interior-
point methods for LPs (linear programs) ([9, 20, 25, 26, 27, 30, 33, 34, 40, 41],
etc.) and their extensions to LCPs (linear complementarity problems) ([19, 21, 22],
etc.) and horizontal LCPs ([47, 48, 49], etc.). Indeed the Generic Interior-Point
Method presented in section 5 opens up the possibilities of extensions of a great
variety of primal-dual interior-point methods developed so far — central trajectory
following methods, potential-reduction methods, predictor-corrector methods, infea-
sible interior-point methods, etc.—to the monotone SDLCP (1).
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In recent years, many studies ([1, 5, 45, 15, 35, 44], etc.) have been done on
extensions of interior-point methods developed for LPs to SDPs. Our primal-dual
interior-point methods for the SDLCP (1) are built on the same materials, the loga-
rithmic barrier function, the central trajectory, the potential function, etc., as those
used in the existing ones. In particular, we follow “a recipe” proposed by Alizadeh [2]
to extend known interior-point algorithms for LPs into similar algorithms for SDPs
using those materials (see Figures 2.1 and 3.2 of [2]). Alizadeh gave “a direct exten-
sion of Ye’s projective potential-reduction method” [46] based on his recipe. It should
be emphasized, however, that our extension of primal-dual interior-point methods to
the SDLCP (1) is not so direct as in the case of Ye’s projective potential-reduction
method. There is a brief discussion of the difficulty below.

We use the notation a•b to denote the inner product
∑n

j=1 ajbj of every a, b ∈ Rn

and the notation diag a to denote the n×n diagonal matrix with the diagonal elements
a1, a2, . . . , an for every a = (a1, a2, . . . , an) ∈ Rn. Let c ∈ Rn, ai ∈ Rn (i =
1, 2, . . . ,m). Consider the primal-dual pair of LPs:

P : minimize c • x
subject to ai • x = bi (i = 1, 2, . . . ,m),

x ≥ 0,
D : maximize

∑m
i=1 bizi

subject to
∑m

i=1 aizi + y = c,
y ≥ 0.

(4)

By taking

C = diag c, Ai = diag ai (i = 1, 2, . . . ,m), O = diag 0,

X = diag x, and Y = diag y,

we embed the primal-dual LPs (4) into the primal-dual SDPs (2). This convenience
makes it possible for us to simultaneously present one iteration of primal-dual interior-
point methods for LPs and SDPs. Suppose that we know an interior feasible solution
(X,Y , z) ∈ S2 ×Rm of the primal-dual pair (2) of SDPs. Alizadeh’s recipe leads us
to the Newton equation dXY +XdY = µI −XY ,

Ai • dX = 0 (i = 1, 2, . . . ,m),∑m
i=1Aidzi + dY = O

(5)

for a search direction (dX, dY , dz) ∈ S2×Rm, where µ > 0 denotes a search direction
parameter. Then we generate a new point (X̄, Ȳ , z̄) ∈ S2 × Rm with appropriate
step lengths αp > 0 and αd > 0 such that

X̄ = X + αp dX,

(Ȳ , z̄) = (Y , z) + αd (dY , dz).

When we are concerned with the primal-dual pair (4) of LPs, all the matrices Ai,
X, Y , dX, dY appearing in the Newton equation (5) are diagonal; hence they are
commutative. In this case, we can transform (5) into the system of equations D−1dX +DdY = µ(XY )−1/2 − (XY )1/2,

DAi •D−1dX = 0 (i = 1, 2, . . . ,m),∑m
i=1DAidzi +DdY = O

(6)
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in a “scaled Newton direction” (D−1dX,DdY , dz), where D = X1/2Y −1/2. We can
easily verify that the scaled Newton direction (D−1dX,DdY , dz) satisfies

(D−1dX) + (DdY ) = µ(XY )−1/2 − (XY )1/2 and (D−1dX) • (DdY ) = 0.(7)

This relation has been playing a crucial role in the development of primal-dual interior-
point algorithms for LPs. See [20, Section 2].

In the case of SDPs, we can derive from the Newton equation (5) a similar system
of equations,

(6)′


√
X
−1
dX
√
Y +

√
XdY

√
Y
−1

= µ
√
X
−1√

Y
−1 −√X√Y ,√

XAi

√
Y
−1 • √X−1

dX
√
Y = 0 (i = 1, 2, . . . ,m),∑m

i=1

√
XAi

√
Y
−1
dzi +

√
XdY

√
Y
−1

= O,

in a “scaled Newton direction” (
√
X
−1
dX
√
Y ,
√
XdY

√
Y
−1
, dz) and a similar rela-

tion,

(7)′
{ √

X
−1
dX
√
Y +

√
XdY

√
Y
−1

= µ
√
X
−1√

Y
−1 −√X√Y ,√

X
−1
dX
√
Y • √XdY

√
Y
−1

= 0.

But (6) and (7) do not hold any more because the matrices X, Y , dX, and dY
appearing in the Newton equation (5) are n × n general symmetric matrices whose
multiplication is not necessarily commutative, and the derivation of the scaled Newton
equation (6) essentially relies on the commutativity of these matrices. This noncom-
mutativity of general symmetric matrices certainly causes some difficulty in straight-
forward extensions of primal-dual interior-point methods to the SDP (2). What is
worse and more substantial in the case of SDPs, however, is that the Newton equation
(5) does not necessarily have a symmetric solution (i.e., a solution (dX, dY , dz) with
symmetric dX and dY ). (This fact was also pointed out in the recent paper [3] by Al-
izadeh, Haeberly, and Overton. They proposed some variants of the Newton equation
which are different from (5) to get a symmetric search direction.) Therefore, follow-
ing Alizadeh’s recipe is not enough to generalize primal-dual interior-point methods
from LPs to SDPs. In this paper, we will devise “a new system of equations” in a
modified Newton direction towards the central trajectory and establish some funda-
mental results (including a system of equations similar to (6)’ and a relation similar to
(7)’; see Corollary 4.3) which are necessary to analyze the convergence of primal-dual
interior-point methods using the modified Newton direction.

The SDLCP (1) presents an extraordinary similarity to the LCP in the Euclidean
space: find an (x,y) ∈ R2n such that

y = Mx+ q, x ≥ 0, y ≥ 0, and x • y = 0,(8)

where M ∈ Ŝ is a given constant matrix and q ∈ Rn a given constant vector. Letting
F be the n-dimensional affine subspace {(x,y) ∈ R2n : y = Mx+ q}, we can rewrite
(8) as

(x,y) ∈ F, x ≥ 0, y ≥ 0, and x • y = 0.(9)

If we allow F to be a general affine subspace of R2n, the LCP (9) is equivalent to the so-
called horizontal linear complementarity problem (see, for example, [4, 6, 31, 43, 48]).
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Thus we have the clear correspondence between the SDLCP (1) and the horizontal
LCP (9) in the Euclidean space:

(X,Y ) ∈ F ⊂ S2 ⇐⇒ (x,y) ∈ F ⊂ R2n,

“ �, � ” ⇐⇒ “ >, ≥”,

X • Y ⇐⇒ x • y.
(See also Figures 2.1 and 3.2 of [2].)

It is interesting to note that the sets S+ = {X ∈ S : X � O} and S++ = {X ∈
S : X � O} play the roles of the nonnegative orthant Rn

+ and the positive orthant
Rn

++, respectively, in the space S of symmetric matrices. We have the following
properties.

Lemma 1.1.

1. S+ is a closed convex cone in S and its interior coincides with S++.
2. {Y ∈ S : X • Y ≥ 0 for every X ∈ S+} = S+ (self-polarity).
3. Let X, Y ∈ S+. Then X • Y ≥ 0, and X • Y = 0 if and only if XY = O

(Lemma 2.3 of [1]).
4. Suppose that A ∈ S++ and α > 0. Let λmin be the minimum eigenvalue of

A. If X ∈ S+ and A •X ≤ α then the sum of all eigenvalues of X is not greater
than α/λmin; hence the set {X ∈ S+ : A •X ≤ α} is bounded.

The properties 1, 2, and 4 are easily verified, and their proofs are omitted here.
See [13] for further properties of S+. In view of property 3 of Lemma 1.1, we can
rewrite the SDLCP (1) as (X,Y ) ∈ F , (X,Y ) ∈ S2

+, and XY = O.
Among many kinds of assumptions on the LCP (8) and the horizontal LCP (9),

the monotonicity assumption

(x′ − x) • (y′ − y) ≥ 0 for every (x′,y′) and (x,y) ∈ F

is the most popular one. Indeed, the monotone LCP and the monotone horizontal
LCP have important applications to LPs and convex quadratic programs. We impose
a similar assumption on the SDLCP (1) throughout the paper.

Condition 1.2. The n(n + 1)/2-dimensional affine subspace F associated with
the SDLCP (1) is monotone, i.e., (X ′ −X) • (Y ′ − Y ) ≥ 0 for every (X ′,Y ′) and
(X,Y ) ∈ F .

Suppose that F is an n-dimensional monotone affine subspace of R2n and that
the horizontal LCP (9) has an interior feasible solution, i.e., (x0,y0) ∈ F such that
(x0,y0) > 0. It is well known that for every µ > 0 there exists a unique interior
feasible solution (x(µ),y(µ)) satisfying xj(µ)yj(µ) = µ (j = 1, 2, . . . , n) and that the
set C = {(x(µ),y(µ)) : µ > 0} forms a smooth trajectory converging to a solution of
the horizontal LCP (9) as µ → 0. The set C is called the central trajectory or the
path of centers.

Remark 1.3. Megiddo [30] presented the result above in connection with interior-
point methods for the monotone LCP (8) with F = {(x,y) ∈ R2n : y = Mx+ q}. It
was shown recently that dimF ≤ n for any monotone affine subspace F of R2n and
that any monotone horizontal LCP with F of dimension n is reducible to a positive
semidefinite LCP (8) (see [4, 11, 39, 43]). Hence the result above is equivalent to
the one by Megiddo [30] on the monotone LCP (8) with F = {(x,y) ∈ R2n : y =
Mx+q}. See also [19, 28] for the existence of the central trajectory for more general
complementarity problems.

The central trajectory has provided us with a theoretical basis for a wide class
of interior-point methods which originated from a primal-dual interior-point method
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([20, 30, 34, 40], etc.) for LPs and later extended to the monotone LCP (8) ([19, 21,
22], etc.) and the monotone horizontal LCP ([48, 49], etc.). A common feature of
methods in this class is to move in “a Newton direction for approximating a point on
the central trajectory” at each iteration.

It is well known that convex quadratic programs in the Euclidean space can be
transformed into the LCP (8) or the horizontal LCP (9) via the Karush–Kuhn–Tucker
optimality condition. As an extension of the primal SDP P stated above, consider a
convex quadratic program of the form

QP : minimize C •X +X • (QX) subject to X ∈ S+ ∩ (L+D).

Here Q ∈ S+ is a given matrix and L a given linear subspace of S. Then it is easily
verified that X ∈ S is a minimum solution of the quadratic program if the conditions

X ∈ S+ ∩ (L+D), Y − (QX +XQ) ∈
(
L⊥ +C

)
,

Y ∈ S+, and X • Y = 0

hold for some Y ∈ S+, where L⊥ is the orthogonal complement of L. We can rewrite
these conditions as the SDLCP (1) with the affine subspace

F = {(X,Y ) ∈ S2 : Y − (QX +XQ) ∈
(
L⊥ +C

)
, X ∈ (L+D)}.

It is easily verified that F is an n(n + 1)/2-dimensional monotone affine subspace.
Thus we can apply the generic IP method described in section 5 to the convex QP. It
should be noted, however, that the convex QP is equivalent to an SDP of the form

SDP: minimize C •X + I •Z
subject to X ∈ S+ ∩ (L+D),(

I LTX
XL Z

)
� O.

Here L denotes an n × n matrix such that Q = LLT . This fact itself never denies
the significance of the monotone SDLCP because the direct SDLCP formulation is
of a smaller size than the SDP formulation but raises questions like how general the
monotone SDLCP is and whether it is essentially different from the SDP. In their
recent paper [24], Kojima, Shida, and Shindoh showed that the monotone SDLCP (1)
is reducible to an SDP involving an additional m-dimensional variable vector and an
(m + 1)× (m + 1) variable symmetric matrix, where m = n(n + 1)/2.

In section 2, we list notation and symbols that are used throughout the paper.
Sections 3 through 8 are devoted to our main results:

• The existence of the central trajectory (section 3).
• The existence of modified Newton directions towards the central trajectory

(section 4).
• A generic interior-point method (section 5).
• Some properties of the solution set of the monotone SDLCP (1) (section 6).
• Basic lemmas necessary to analyze the computational complexity of interior-

point methods for the monotone SDLCP (1) (section 7).
• A central trajectory following method which is an extension of the algorithm

given by Kojima–Mizuno–Yoshise [21] for the monotone LCP (8) in the Eu-
clidean space to the monotone SDLCP (1) (section 8.1).
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• A potential-reduction method based on the algorithm given by Kojima–
Mizuno–Yoshise [22] for the monotone LCP (8) to the monotone SDLCP
(1) (section 8.2).

• An infeasible interior-point potential-reduction method based on the con-
strained potential reduction algorithm given by Mizuno–Kojima–Todd [32,
Algorithm I] for LPs to the monotone SDLCP (1) (section 8.3).

2. Notation and symbols.

Rm : the m-dimensional Euclidean space.

Ŝ = Rn×n, the set of all n× n matrices.

S : the n(n + 1)/2-dimensional linear subspace of Ŝ consisting of

all n× n symmetric matrices.

S̃ : the n(n− 1)/2-dimensional linear subspace of Ŝ consisting of

all n× n skew-symmetric matrices.

S+ = {X ∈ S : X � O}.
S++ = {X ∈ S : X � O}.
Ŝ++ = {X ∈ Ŝ : X � O}.
I, O : the n× n identity matrix, the n× n zero matrix, respectively.

Tr X : the trace of X ∈ Ŝ.
X • Y = Tr XTY for X, Y ∈ Ŝ (the inner product of X and Y ).

‖X‖F = (X •X)
1/2

(the Frobenius norm of X ∈ Ŝ).

F0 =

{
(X,Y ) ∈ S2 :

(X,Y ) =
∑n(n+1)/2

i=1 ci(M
i,N i)

for some ci ∈ R (i = 1, 2, . . . , n(n + 1)/2)

}
,

where (M i,N i) ∈ S2 (i = 1, 2, . . . , n(n + 1)/2) are linearly

independent.

F = (X0,Y 0) + F0 for some (X0,Y 0) ∈ F
(an n(n + 1)/2-dimensional affine subspace associated with the SDLCP (1)).

F+ = {(X,Y ) ∈ F : X � O, Y � O}
(the set of feasible solutions of the SDLCP (1)).

F++ = {(X,Y ) ∈ F : X � O, Y � O}
(the set of interior feasible solutions of the SDLCP (1)).

F∗ = {(X,Y ) ∈ F+ : X • Y = 0}
(the set of solutions of the SDLCP (1)).

F̃0 =

{
(X,Y ) ∈ Ŝ2

: (X,Y ) =
∑n(n−1)/2

j=1 c̃j(M̃
j
, Ñ

j
)

for some c̃j ∈ R (j = 1, 2, . . . , n(n− 1)/2)

}
,

where (M̃
j
, Ñ

j
) ∈ S̃2 (j = 1, 2, . . . , n(n− 1)/2) are linearly

independent (an n(n− 1)/2-dimensional linear subspace of S̃2).

φ(µ,X,Y ) = X • Y − µ log detXY for every (µ,X,Y ) ∈ R++ × S2
++

(the logarithmic barrier function).

λ1, λ2, . . . , λn : the eigenvalues of XY , where (X,Y ) ∈ S2
++.

(Note that all λi’s are positive. See below.)
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Λ = diag (λ1, λ2, . . . , λn).

λmin = min{λ1, λ2, . . . , λn}.
λmax = max{λ1, λ2, . . . , λn}.
H(β) = βµ

√
X
−1√

Y
−1 −√X√Y ∈ Ŝ, where β ≥ 0 and µ > 0.

N (γ) =

(X,Y ) ∈ F++ :

 n∑
j=1

(λj − µ)2

1/2

≤ γµ, where µ =
X • Y

n

 ,

where γ > 0 (a horn neighborhood of the central trajectory).

f(X,Y ) = (n + ν) logX • Y − log detXY − n logn for every (X,Y ) ∈ S2
++,

where ν ≥ 0 is a parameter (the potential function).

Let X ∈ S+. Then we can find a symmetric matrix B such that X = BB. Note
that such a matrix B is uniquely determined and is positive semidefinite. We denote
such a matrix B by

√
X throughout the paper:

√
X : the matrix in S+ uniquely determined by X =

√
X
√
X for X ∈ S+.

By the definition, we see that

Tr A =

n∑
j=1

αj , where α1, α2, . . . , αn denote the eigenvalues of a matrix A ∈ Ŝ,

Tr A = Tr B−1AB for every A ∈ Ŝ and every nonsingular B ∈ Ŝ,
M •X = MT •X if M ∈ S or X ∈ S.

We will often use these relations throughout the paper.
The following fact is also utilized often: If (X,Y ) ∈ S2

++, all the eigenvalues
of XY are real and positive. This is because XY has the same eigenvalues as the
symmetric positive definite matrix

√
XY

√
X.

3. The central trajectory. Let F+, F++, and F∗ denote the set of feasible
solutions, the set of interior feasible solutions, and the set of solutions, of the SDLCP
(1), respectively:

F+ = {(X,Y ) ∈ F : X � O, Y � O},
F++ = {(X,Y ) ∈ F : X � O, Y � O},
F∗ = {(X,Y ) ∈ F+ : X • Y = 0}.

Theorem 3.1. Suppose that the SDLCP (1) has an interior feasible solution,
i.e., (X0,Y 0) ∈ F++.

1. For every µ > 0, there exists a unique (X(µ),Y (µ)) ∈ F++ such that
X(µ)Y (µ) = µI, where I denotes the n× n identity matrix.

2. (X(µ),Y (µ)) is the unique minimizer of the logarithmic barrier function

φ(µ,X,Y ) = X • Y − µ log detXY over F++.

3. The set C = {(X(µ),Y (µ)) : µ > 0} forms a smooth trajectory. (We call C
the central trajectory.)

4. (X(µ),Y (µ)) converges to a solution of the SDLCP (1), (X∗,Y ∗) ∈ F∗ as
µ > 0 tends to zero.
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The existence of the central trajectory is known if we restrict ourselves to the
primal-dual pair (2) of SDPs P and D, where F is given as in (3); see [5, 44, 45].

Besides item 2 of Theorem 3.1, there are some other characterizations of the
central trajectory C. One is the following: an (X,Y ) ∈ F++ lies on the central
trajectory C if and only if all eigenvalues λ1, λ2, . . . , λn of XY have a common value
µ > 0.

We give some remarks on relations of the SDLCP (1) in symmetric matrices with
the horizontal LCP (9) (or the LCP (8) with F = {(x,y) ∈ R2n : y = Mx + q})
in the Euclidean space. Each eigenvalue λj of the product XY of a pair of matrices
(X,Y ) ∈ S2

++ plays the role of the product xjyj of a complementary pair of variables
xj and yj in (x,y) ∈ R2n

++. We have seen above that the central trajectory C can be
rewritten as

C =

{
(X,Y ) ∈ F++ :

λj = µ > 0 (j = 1, 2, . . . , n) for some µ > 0,
where λ1, λ2, . . . , λn are the eigenvalues of XY

}
.

We also see that the logarithmic barrier function φ and the potential function f ,

φ(µ,X,Y ) = X • Y − µ log detXY ,

f(X,Y ) = (n + ν) logX • Y − log detXY − n logn,

which we will utilize in section 8, can be rewritten in terms of the eigenvalues λ1, λ2, . . . , λn
of XY as follows:

φ(µ,X,Y ) =

n∑
j=1

λj − µ

n∑
j=1

log λj ,

f(X,Y ) = (n + ν) log

 n∑
j=1

λj

−
n∑

j=1

log λj − n logn.

If we replace λj by xjyj , we have the central trajectory, the logarithmic barrier func-
tion, and the potential function that have been used widely in interior-point methods
for the LCP (8) in the Euclidean space. See also [7] and Figures 2.1 and 3.2 of [2].

We give another characterization of the central trajectory C in terms of the po-
tential function in section 8.2 where we present a potential-reduction method. See
(60).

The remainder of this section is devoted to a proof of Theorem 3.1. Let ‖X‖F
denote the Frobenius norm of a matrix X ∈ Ŝ; ‖X‖2F = X •X. Let

F0 = {(X ′ −X,Y ′ − Y ) : (X,Y ), (X ′,Y ′) ∈ F}.

Then F0 forms an n(n+1)/2-dimensional linear subspace of S2. Let p = n(n+1)/2,
(X0,Y 0) ∈ F and let (M i,N i)(i = 1, 2, . . . , p) be a basis of F0. Then

F = (X0,Y 0) + F0,(10)

F0 =

{
(dX, dY ) ∈ S2 :

(dX, dY ) =
∑p

i=1 ci(M
i,N i)

for some ci ∈ R (i = 1, 2, . . . , p)

}
.(11)

We also note that F0 is monotone, i.e., dX • dY ≥ 0 for every (dX, dY ) ∈ F0.
We need a series of lemmas.
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Lemma 3.2.

1. Suppose that (µ,X,Y ) ∈ R++ ×F++. Then

φ(µ,X + dX,Y + dY )− φ(µ,X,Y )(12)

= Φ1(dX, dY ) + Φ2(dX, dY )

+ o(‖√X−1
dX
√
X
−1‖2F ) + o(‖√Y −1

dY
√
Y
−1‖2F )

for all (dX, dY ) ∈ F0,

where 
Φ1(dX, dY ) = (Y − µX−1) • dX + (X − µY −1) • dY ,

Φ2(dX, dY ) = dX • dY +
µ

2
‖√X−1

dX
√
X
−1‖2F

+
µ

2
‖√Y −1

dY
√
Y
−1‖2F .

(13)

2. φ(µ, ·) is strictly convex on F++.
Proof. 1. Let (dX, dY ) ∈ F0, ξ1, ξ2, . . . , ξn be the eigenvalues of the symmetric

matrix
√
X
−1
dX
√
X
−1

, and η1, η2, . . . , ηn be the eigenvalues of the symmetric matrix√
Y
−1
dY
√
Y
−1

. It suffices to derive (12) under the assumption that (dX, dY ) ∈ F0

is so small that the absolute values of all eigenvalues ξ1, ξ2, . . . , ξn, η1, η2, . . . , ηn are
less than one. The assumption ensures that (X + dX,Y + dY ) ∈ F++. We then see
that

φ(µ,X + dX,Y + dY )

= (X + dX) • (Y + dY )− µ log det(X + dX)− µ log det(Y + dY )

= X • Y + dX • Y +X • dY + dX • dY

−µ
log detX + log

n∏
j=1

(1 + ξj)

− µ

log detY + log
n∏

j=1

(1 + ηj)


= φ(µ,X,Y ) + dX • Y +X • dY + dX • dY

−µ
 n∑

j=1

ξj − 1

2

n∑
j=1

ξ2
j + o

 n∑
j=1

ξ2
j

− µ

 n∑
j=1

ηj − 1

2

n∑
j=1

η2
j + o

 n∑
j=1

η2
j


= φ(µ,X,Y ) + Φ1(dX, dY ) + Φ2(dX, dY )

+o
(
‖√X−1

dX
√
X
−1‖2F

)
+ o

(
‖√Y −1

dY
√
Y
−1‖2F

)
.

Thus we have shown assertion 1.
2. Note that the quadratic form Φ2(dX, dY ) is positive for any nonzero (dX, dY ) ∈

F0. This ensures that φ(µ, ·) is strictly convex on F++.
Lemma 3.3. Let µ ∈ R++.

1. If (X,Y ) ∈ F++ satisfies the condition XY = µI, then (X,Y ) is a global
minimizer of φ(µ, ·) over F++.

2. Assume that there is an (X0,Y 0) ∈ F++. Then there is a unique global
minimizer of φ(µ, ·) over F++.

Proof. Let λj (j = 1, 2, · · · , n) denote the n positive eigenvalues of the symmetric

positive definite matrix
√
XY

√
X. Then

φ(µ,X,Y ) = X • Y − µ log detXY =
n∑

j=1

(λj − µ log λj) .
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Hence we have shown that

φ(µ,X,Y ) =

n∑
j=1

(λj − µ log λj) .(14)

1. Note that each term λj −µ log λj in the parentheses ( · ) attains the minimum
under the condition λj > 0 if and only if λj = µ. On the other hand, we can rewrite

the condition XY = µI as
√
XY

√
X = µI or equivalently λj = µ (j = 1, 2, . . . , n).

Thus assertion 1 follows.
2. Take a real number θ such that φ(µ,X0,Y 0) ≤ θ. We show that the level set

Γ = {(X,Y ) ∈ F++ : φ(µ,X,Y ) ≤ θ}
of the function φ(µ, ·) is a bounded and closed subset of S2. Then assertion 2 follows
from the continuity and the strict convexity of the function φ(µ, ·) over the level set
Γ. We first show that the level set is contained in the bounded set

Γ∗ = {X ∈ S+ : Y 0 •X ≤ γ} × {Y ∈ S+ : X0 • Y ≤ γ},
where

γ = 2n (θ − n(µ− µ logµ) + µ log 2) +X0 • Y 0.

Assume that (X,Y ) ∈ Γ. Let j ∈ {1, 2, . . . , n} be fixed. We see from (X,Y ) ∈ Γ
and (14) that

θ ≥ φ(µ,X,Y )

=

n∑
j=1

(λj − µ log λj)

≥ (n− 1)(µ− µ logµ) + λj − µ log λj

≥ n(µ− µ logµ)− µ log 2 + λj/2.

Hence all the positive eigenvalues λj (j = 1, 2, . . . , n) of the symmetric positive definite

matrix
√
XY

√
X are bounded from above by the number

γ′ = 2 (θ − n(µ− µ logµ) + µ log 2) .

This implies that X • Y = Tr
√
XY

√
X =

∑n
j=1 λj ≤ nγ′. On the other hand, we

see by Condition 1.2 thatX •Y +X0•Y 0 ≥X0•Y +Y 0•X. Hence (X,Y ) satisfies
that Y 0 •X ≤ γ and X0 •Y ≤ γ. See Lemma 1.1 for Y 0 •X ≥ 0, X0 •Y ≥ 0 and
the boundedness of the set Γ∗. Thus we have shown that the level set Γ is contained
in the bounded set Γ∗.

Now we will prove that the level set Γ is closed. Let {(Xk,Y k)} ⊂ Γ be a sequence
converging to some (X∗,Y ∗) ∈ S2. It suffices to show that (X∗,Y ∗) ∈ S2

++. Since
the sequence is bounded, there is a positive number δ such that

log detXk ≤ δ and log detY k ≤ δ for every k = 1, 2, . . . .

It follows that for every k = 1, 2, . . . ,

µ log detXk = −φ(µ,Xk,Y k) +Xk • Y k − µ log detY k ≥ −θ − µδ,

µ log detY k = −φ(µ,Xk,Y k) +Xk • Y k − µ log detXk ≥ −θ − µδ;
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hence

Xk ∈ S++, detXk ≥ exp ((−θ − µδ)/µ) > 0

Y k ∈ S++, detY k ≥ exp ((−θ − µδ)/µ) > 0

}
for every k = 1, 2, . . . .

This ensures that (X∗,Y ∗) ∈ S2
++. Thus we have shown that the level set Γ is

closed.
Lemma 3.4. Let L be an m-dimensional monotone linear subspace of R2m. Then

its orthogonal complement L⊥ = {(a, b) ∈ R2m : aTu+bTv = 0 for every (u,v) ∈ L}
is antitone, i.e., a • b ≤ 0 for every (a, b) ∈ L⊥.

Proof. We represent the m-dimensional monotone linear space L as

L =

{
(u,v) ∈ R2m :

(
u
v

)
=

(
AT

−BT

)
z, z ∈ Rm

}
,

where A, B are m×m matrices such that rank (A,−B) = m. We can easily verify
that L⊥ = {(a, b) ∈ R2m : Aa −Bb = 0}. By the monotonicity, BAT is negative
semidefinite. Consider the quadratic form

uT (A−B)(A−B)Tu = uT
(
(A,−B)(A,−B)T − 2BAT

)
u for every u ∈ Rm.

The right-hand side is positive for any nonzero u ∈ Rm because the m × 2m ma-
trix (A, −B) is of full row rank, i.e., rank (A,−B) = m, and −BAT is positive
semidefinite. Hence so is the left-hand side. This ensures rank (A − B) = m. By
Theorem 11 of Sznajder–Gowda [39], we obtain that the m-dimensional subspace
{(a, b) ∈ R2m : Aa + Bb = 0} is monotone, which implies that the orthogonal
complement L⊥ = {(a, b) ∈ R2m : Aa−Bb = 0} of L is antitone.

Lemma 3.5. Let µ ∈ R++ be fixed. Suppose that (X,Y ) ∈ F++ is the global
minimizer of φ(µ, ·) over F++. Then it satisfies XY = µI.

Proof. Recall the relations (12) and (13) in Lemma 3.2. At the global minimizer
(X,Y ) ∈ F++, the linear term Φ1(dX, dY ) with respect to (dX, dY ) in (12) must
satisfy the equality

Φ1(dX, dY ) = (Y − µX−1) • dX + (X − µY −1) • dY = 0

for every (dX, dY ) ∈ F0.

Hence (Y − µX−1,X − µY −1) ∈ S2 lies in the orthogonal complement of the n(n+
1)/2-dimensional monotone linear subspace F0. By Lemma 3.4,

0 ≥ (Y − µX−1) • (X − µY −1) = Tr
(
XY − 2µI + µ2Y −1X−1

)
.

Let λ1, λ2, . . . , λn denote the eigenvalues of the symmetric positive definite matrix√
XY

√
X. Then they are all real and positive. It follows from the inequality above

that

0 ≥ Tr
(
XY − 2µI + µ2Y −1X−1

)
=

n∑
j=1

(λj − µ)2

λj
.

Hence all the eigenvalues λ1, λ2, . . . , λn of the symmetric matrix
√
XY

√
X are equal

to µ. This implies that
√
XY

√
X = µI. Therefore XY =

√
X(

√
XY

√
X)

√
X
−1

=
µI.
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Assertions 1 and 2 of Theorem 3.1 follow from Lemmas 3.3 and 3.5. To prove
assertion 3 of Theorem 3.1, define a mapping H : R×Rp → S = Rp by

H(µ, c) =

(
X0 +

p∑
i=1

ciM
i

)(
Y 0 +

p∑
i=1

ciN
i

)
− µI for every (µ, c) ∈ R1+p.

Here (X0,Y 0) ∈ F and {(M i,N i) ∈ S2 (i = 1, 2, . . . , p)} denote a basis of F0 (see
(11)). Then each point (X,Y ) = (X(µ),Y (µ)) ∈ S2

++ on the central trajectory is
characterized as a unique solution of the system of equations

(X,Y ) =

(
X0 +

p∑
i=1

ciM
i,Y 0 +

p∑
i=1

ciN
i

)
and H(µ, c) = O.

Lemma 3.6. Let µ ∈ R++ and (X,Y ) = (X0 +
∑p

i=1 c
0
iM

i,Y 0 +
∑p

i=1 c
0
iN

i) ∈
F++. Then the Jacobian matrix of the mapping H(µ, ·) with respect to c ∈ Rp at c0

is nonsingular.
Proof. It suffices to show that the system of linear equations

dH(µ, c0 + tdc)

dt

∣∣∣∣
t=0

= O(15)

has no nonzero solution dc ∈ Rp. A simple calculation shows that

dH(µ, c0 + tdc)

dt

∣∣∣∣
t=0

= X

(
p∑

i=1

dciN
i

)
+

(
p∑

i=1

dciM
i

)
Y .

Let dc ∈ Rp be a solution of (15) and (dX, dY ) =
∑p

i=1 dci(M
i,N i) ∈ F0. Then

XdY +dXY = O. By the monotonicity of the linear subspace F0 and (dX, dY ) ∈ F0

we see that dX • dY ≥ 0. We also see that O = XdY + dXY =
√
X
√
XdY + dXY ;

hence

O =
√
XdY

√
X +

√
X
−1
dXY

√
X

=
√
X
−1
dXdY

√
X +

√
X
−1
dX
√
X
−1√

X
−1
dXY

√
X.

Thus

0 = Tr
(√
X
−1
dXdY

√
X +

√
X
−1
dX
√
X
−1√

X
−1
dXY

√
X
)

= dX • dY + Tr dX
√
X
−1√

X
−1
dXY

≥ Tr
√
X
−1
dXY dX

√
X
−1
.

Since the matrix Y ∈ S is positive definite, the inequality above implies that every col-

umn of the matrix dX
√
X
−1

is zero. Hence (O,O) = (dX, dY ) =
∑p

i=1 dci(M
i,N i).

Recall that {(M i,N i) ∈ S2 (i = 1, 2, . . . , p)} is a basis of F0. Therefore we obtain
dc = 0.

Obviously, the mapping H is C∞ on R × Rp. Applying the implicit function
theorem (see, for example, [14]), we obtain assertion 3 of Theorem 3.1.

Lemma 3.7. For every µ̄ > 0, the subset {(X(µ),Y (µ)) : 0 < µ ≤ µ̄} of the
central trajectory is bounded.
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Proof. Let 0 < µ ≤ µ̄. By Condition 1.2, (X0,Y 0) ∈ F++, and (X(µ),Y (µ)) ∈
F++, we see that (X(µ)−X0) • (Y (µ)− Y 0) ≥ 0. It follows that

Y 0 •X(µ) +X0 • Y (µ) ≤X0 • Y 0 +X(µ) • Y (µ)

≤X0 • Y 0 + nµ

≤X0 • Y 0 + nµ̄.

Thus the subset {(X(µ),Y (µ)) : 0 < µ ≤ µ̄} is contained in the bounded set

{X ∈ S+ : Y 0 •X ≤ γ} × {Y ∈ S+ : X0 • Y ≤ γ},
where γ = X0 • Y 0 + nµ̄.

In view of the lemma above, there exists at least one accumulation point of
(X(µ),Y (µ)) as µ > 0 tends to 0. By the continuity, every accumulation point
is a solution of the SDLCP (1). The convergence of (X(µ),Y (µ)) to a single point as
µ > 0 tends to 0 follows from the fact that the central trajectory C is characterized
as the algebraic system of equations H(µ, c) = O. The details are omitted here. See
Theorem 4.4 of Kojima–Megiddo–Noma–Yoshise [19]. This completes the proof of
Theorem 3.1.

4. Newton directions toward the central trajectory. Let (X,Y ) ∈ S2
++

and µ = X • Y /n. Choose β ≥ 0. It might seem natural to regard the system of
linear equations

(X + dX,Y + dY ) ∈ F and dXY +XdY = Q(16)

in variable matrices dX, dY ∈ S as the Newton equation at (X,Y ) ∈ S2
++ for

approximating a point (X ′,Y ′) = (X+dX,Y +dY ) ∈ S2
++ on the central trajectory

that satisfies

(X ′,Y ′) ∈ F and X ′Y ′ = βµI.(17)

Here Q = βµI −XY . However the system (16) does not necessarily have a solution.
Hence we need a suitable modification in the system (16) to consistently define Newton
directions toward the central trajectory. For this purpose, we introduce an n(n−1)/2-
dimensional linear subspace F̃0 of S̃2, where S̃ ⊂ Ŝ is the n(n − 1)/2-dimensional
linear subspace consisting of all n × n skew-symmetric matrices. It should be noted
that S and S̃ are orthogonal complements to each other in the linear space Ŝ. Since
F0 ⊂ S2 and F̃0 ⊂ S̃2,

dX • d̃X = dY • d̃Y = dX • d̃Y = dY • d̃X = 0(18)

for every (dX, dY ) ∈ F0 and (d̃X, d̃Y ) ∈ F̃0.

We impose F̃0 on the condition below.
Condition 4.1. F̃0 is monotone, i.e., d̃X • d̃Y ≥ 0 for every (d̃X, d̃Y ) ∈ F̃0. For

example, we can take F̃0 = {(tW , (1−t)W ) : W ∈ S̃}, where t ∈ [0,1] is an arbitrary
constant.

Now we consider a (modified) Newton equation at (X,Y ) ∈ S2
++ for approxi-

mating a point (X ′,Y ′) = (X+dX,Y +dY ) on the central trajectory which satisfies
(17): {

(X + dX,Y + dY ) ∈ F , (d̃X, d̃Y ) ∈ F̃0, and

X(dY + d̃Y ) + (dX + d̃X)Y = Q
(19)
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in variable matrices dX, dY ∈ S, and d̃X, d̃Y ∈ S̃. Here Q = βµI −XY .
Theorem 4.2. Let (X,Y ) ∈ S2

++, µ = X • Y /n, and β ≥ 0. Then the Newton

equation (19) has a unique solution (dX, dY , d̃X, d̃Y ) ∈ S2 × S̃2.
It should be noted that Theorem 4.2 is valid even when the feasible region F+ of

the SDLCP (1) in symmetric matrices is empty or the central trajectory C does not
exist.

Proof of Theorem 4.2. Let {(M i,N i) ∈ S2 (i = 1, 2, . . . , p)} be a basis of F0

and {(M̃ j
, Ñ

j
) ∈ S̃2 (j = 1, 2, . . . , p̃)} be a basis of F̃0, and let (X0,Y 0) ∈ F ,

where p = n(n + 1)/2 and p̃ = n(n − 1)/2. Note that p + p̃ = n2. Then the
first relation of the Newton equation (19) can be written as (X + dX,Y + dY ) =
(X0,Y 0) +

∑p
i=1 ci(M

i,N i), hence

dX = X0 −X +

p∑
i=1

ciM
i and dY = Y 0 − Y +

p∑
i=1

ciN
i,

where ci (i = 1, 2, . . . , p) are real variables. With new variables c̃j (j = 1, 2, . . . , p̃),

we also rewrite the second relation of (19) as (d̃X, d̃Y ) =
∑p̃

j=1 c̃j(M̃
j
, Ñ

j
). Now

the last equation in (19) is reduced to

p∑
i=1

ci(XN
i +M iY ) +

p̃∑
j=1

c̃j(XÑ
j
+ M̃

j
Y ) = Q−X(Y 0 − Y )− (X0 −X)Y .

Hence we have only to show that the equation above in n2 variables ci (i = 1, 2, . . . , p)
and c̃j (j = 1, 2, . . . , p̃) has a unique solution. It suffices to show that the set of n2

matrices

(XN i +M iY ) (i = 1, 2, . . . , p) and (XÑ
j
+ M̃

j
Y ) (j = 1, 2, . . . , p̃)(20)

forms a basis of the n2-dimensional linear space Ŝ. Assume that

p∑
i=1

c′i(XN
i +M iY ) +

p̃∑
j=1

c̃′j(XÑ
j
+ M̃

j
Y ) = O(21)

for some c′i (i = 1, 2, . . . , p) and c̃′j (j = 1, 2, . . . , p̃). Let

dX ′ =
p∑

i=1

c′iM
i, dY ′ =

p∑
i=1

c′iN
i, d̃X

′
=

p̃∑
j=1

c̃′jM̃
j
, and d̃Y

′
=

p̃∑
j=1

c̃′jÑ
j
.

Then (dX ′, dY ′) ∈ F0 and (d̃X
′
, d̃Y

′
) ∈ F̃0. We also see from (21) that

O = X(dY ′ + d̃Y
′
) + (dX ′ + d̃X

′
)Y .(22)

Since X and Y are positive definite, it follows from (22) that

O =
√
X(dY ′ + d̃Y

′
)
√
Y
−1

+
√
X
−1

(dX ′ + d̃X
′
)
√
Y .

From the above equality, we obtain that

0 = ‖√X(dY ′ + d̃Y
′
)
√
Y
−1‖2F + ‖√X−1

(dX ′ + d̃X
′
)
√
Y ‖2F
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+
√
X(dY ′ + d̃Y

′
)
√
Y
−1 • √X−1

(dX ′ + d̃X
′
)
√
Y

+
√
X
−1

(dX ′ + d̃X
′
)
√
Y • √X(dY ′ + d̃Y

′
)
√
Y
−1

= ‖√X(dY ′ + d̃Y
′
)
√
Y
−1‖2F + ‖√X−1

(dX ′ + d̃X
′
)
√
Y ‖2F

+ 2dY ′ • dX ′ + 2d̃X
′ • d̃Y ′

(since dY ′ • d̃X ′
= d̃Y

′ • dX ′ = 0 from (18))

≥ ‖√X(dY ′ + d̃Y
′
)
√
Y
−1‖2F + ‖√X−1

(dX ′ + d̃X
′
)
√
Y ‖2F

(since dY ′ • dX ′ ≥ 0 and d̃X
′ • d̃Y ′ ≥ 0).

Hence we see that ‖√X(dY ′+ d̃Y
′
)
√
Y
−1‖2F = 0 and ‖√X−1

(dX ′+ d̃X
′
)
√
Y ‖2F = 0.

This implies that
√
X(dY ′+ d̃Y

′
)
√
Y
−1

= O and
√
X
−1

(dX ′+ d̃X
′
)
√
Y = O. By the

nonsingularity of
√
X and

√
Y , we obtain that dY ′ + d̃Y

′
= O and dX ′ + d̃X

′
= O.

We see from (18) that dX ′ • d̃X ′
= dY ′ • d̃Y ′

= 0. Hence the equalities above imply
that

(O,O) = (dX ′, dY ′) =

p∑
i=1

c′i(M
i,N i) and (O,O) = (d̃X

′
, d̃Y

′
) =

p̃∑
j=1

c̃′j(M̃
j
, Ñ

j
).

Recall that {(M i,N i) ∈ S2 (i = 1, 2, . . . , p)} and {(M̃ j
, Ñ

j
) ∈ S̃2 (j = 1, 2, . . . , p̃)}

are bases of F0 and F̃0, respectively. Hence c′i = 0 (i = 1, 2, . . . , p) and c̃′j = 0 (j =

1, 2, . . . , p̃). This means that the set of n2 matrices given in (20) is linearly independent
and forms a basis of the n2-dimensional linear space Ŝ. This completes the proof of
Theorem 4.2.

We can rewrite the Newton equation (19) as

(X + d̂X,Y + d̂Y ) ∈ F + F̃0 and X d̂Y + d̂XY = Q.(23)

In fact,
(i) if (dX, dY , d̃X, d̃Y ) ∈ S2 × S̃2 is a solution of (19), then (d̂X, d̂Y ) = (dX +

d̃X, dY + d̃Y ) is a solution of (23).

(ii) if (d̂X, d̂Y ) ∈ Ŝ2
is a solution of (23), then

((d̂X + d̂X
T
)/2, (d̂Y + d̂Y

T
)/2, (d̂X − d̂X

T
)/2, (d̂Y − d̂Y

T
)/2)

is a solution of (19).
The proof of Theorem 4.2 and the argument above do not depend on the specific

matrix Q of the right-hand side of the Newton equation (19) or (23). They remain
valid for any Q ∈ Ŝ. Thus we have the following corollary which will be utilized in
our succeeding discussions.

Corollary 4.3. Let (X,Y ) ∈ S2
++ and Q ∈ Ŝ.

1. The system of equations

(d̂X, d̂Y ) ∈ F0 + F̃0 and Xd̂Y + d̂XY = Q(24)

has a unique solution (d̂X, d̂Y ) ∈ Ŝ2
.

2. The solution (d̂X, d̂Y ) ∈ F0 + F̃0 satisfies

√
Xd̂Y

√
Y
−1

+
√
X
−1
d̂X
√
Y =

√
X
−1
Q
√
Y
−1
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and

√
X
−1
d̂X
√
Y • √Xd̂Y

√
Y
−1 ≥ 0.

Proof. To prove assertion 1, let (X0,Y 0) ∈ F and Q′ = Q−X(Y −Y 0)− (X −
X0)Y . In view of the discussion above, there exists a unique solution (d̂X

′
, d̂Y

′
) ∈ Ŝ2

of the system of equations

(X + d̂X
′
,Y + d̂Y

′
) ∈ F + F̃0 and X d̂Y

′
+ d̂X

′
Y = Q′.

We can rewrite this system of equations as

(X + d̂X
′ −X0,Y + d̂Y

′ − Y 0) ∈ F0 + F̃0 and

X(Y + d̂Y
′ − Y 0) + (X + d̂X

′ −X0)Y = Q.

Letting (d̂X, d̂Y ) = (X + d̂X
′−X0,Y + d̂Y

′−Y 0), we see that (d̂X, d̂Y ) is a unique
solution of (24). Multiplying both sides of the last equality in the system (24) of

equations by
√
X
−1

from the left and
√
Y
−1

from the right, we have the first relation
of assertion 2. The second relation of 2 follows from Conditions 1.2 and 4.1 and the
relation (18).

5. A generic interior-point method.

Generic IP method.
Step 0: Choose (X0,Y 0) ∈ S2

++. Let r = 0.
Step 1: Let (X,Y ) = (Xr,Y r) and µ = (X • Y )/n.
Step 2: Choose a direction parameter β ≥ 0.

Step 3: Compute a solution (d̂X, d̂Y ) ∈ Ŝ2
of the system (23) of equations with

Q = βµI −XY .

Step 4: Let dX = (d̂X + d̂X
T
)/2 and dY = (d̂Y + d̂Y

T
)/2.

Step 5: Choose a step size parameter α ≥ 0 such that

(X̄, Ȳ ) = (X,Y ) + α(dX, dY ) ∈ S2
++.(25)

Let (Xr+1,Y r+1) = (X̄, Ȳ ).
Step 6: Replace r by r + 1 and go to Step 1.
The generic IP method involves two parameters: a search direction parameter

β ≥ 0 and a step size parameter α ≥ 0. If we choose an initial point (X0,Y 0) ∈ S2
++,

which can be infeasible, and if we specify β ≥ 0 and α ≥ 0 satisfying (25) in each
iteration, the method consistently generates a sequence {(Xr,Y r)} in S2

++. The
lemma below is useful to determine a legitimate step size parameter α satisfying (25)
and is closely related to the generalized eigenvalue problem of the matrix pencil (see,
for example, [8]).

Lemma 5.1. Suppose that X ∈ S++, dX ∈ S, and α ≥ 0. Let ξmin be the
minimum eigenvalue of the matrix X−1dX and let

ᾱ = sup{α : 1 + αξmin ≥ 0} =

{ −1/ξmin if ξmin < 0,
+∞ otherwise.

Then X + αdX ∈ S++ if and only if α < ᾱ.
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If we compute the minimum ζmin of all the eigenvalues of X−1dX and Y −1dY
in Step 5 of the generic IP method, then

αbd =

{ −1/ζmin if ζmin < 0,
+∞ otherwise

gives the upper bound for a step size α ≥ 0 which satisfies (25).
The generic IP method is analogous to many infeasible interior-point methods

([17, 18, 23, 26, 48], etc.) developed for the monotone LCP (8). Specifically the
generic IP method shares with them the features that we can start from an infeasible
initial point and that we utilize a Newton direction for approximating a point on the
central trajectory. A difference lies in Step 4 of the generic IP method where we
symmetrize the Newton direction (d̂X, d̂Y ) computed at Step 3 to create a symmetric
search direction (dX, dY ). This ensures that each iterate (Xr,Y r) runs in the set S2

++

of symmetric positive definite matrices whenever we take an initial point (X0,Y 0) in
the set S2

++. The main reason why we use the symmetrized direction is that handling
symmetric matrices is much easier than handling nonsymmetric matrices theoretically
and practically. In particular,

(a) The logarithmic barrier function φ(µ, ·) with a fixed µ > 0 is strictly convex

on S2
++ (see Lemma 3.2) but not convex on Ŝ2

++, where Ŝ++ = {X ∈ Ŝ : X � O}.
In fact, if (X, Ŷ ) ∈ S++ × Ŝ++ but Ŷ 6∈ S++ then

det
Ŷ + Ŷ

T

2
< det Ŷ = det Ŷ

T
(see [38]);

hence

φ

(
µ,X,

Ŷ + Ŷ
T

2

)
>

1

2
φ(µ,X, Ŷ ) +

1

2
φ(µ,X, Ŷ

T
).

(b) If we confine the sequence {(Xr,Y r)} within F++ ⊂ Ŝ2
, the sequence is at

least bounded and any accumulation point is a solution of the SDLCP (1) in symmetric
matrices as observed in Theorem 3.1.

As special cases of the generic IP method, we present a central trajectory following
method in section 8.1 and a potential-reduction method in section 8.2. Both methods
may be classified into feasible interior-point methods; they start from a feasible interior
point (X0,Y 0) ∈ F++ and generate a sequence {(Xr,Y r)} in the interior F++ of
the feasible region such that Xr • Y r → 0 as r tends to ∞ . It follows from the
monotonicity that

Y 0 •Xr +X0 • Y r ≤X0 • Y 0 +Xr • Y r for every r = 0, 1, . . . .

Since Xr • Y r → 0 as r tends to ∞ , the right-hand side is bounded by a posi-
tive number, say ω. This implies that the sequence {(Xr,Y r)} lies in a closed and
bounded set

{(X,Y ) ∈ F+ : Y 0 •X +X0 • Y ≤ ω}.
See Lemma 1.1 for the boundedness of the set. Therefore the sequence {(Xr,Y r)}
has at least one accumulation point and every accumulation point is a solution of the
SDLCP (1) in symmetric matrices.
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When (X,Y ) = (Xr,Y r) ∈ S2
++ is in the interior F++ of the feasible region,

the Newton equation (23) turns out to be

(d̂X, d̂Y ) ∈ F0 + F̃0 and X d̂Y + d̂XY = Q,(26)

and the search direction (dX, dY ) = ((d̂X + d̂X
T
)/2, (d̂Y + d̂Y

T
)/2) computed at

Step 4 lies in F0. In this case, (26) coincides with (24). Hence the solution of (26)
satisfies item 2 of Corollary 4.3.

6. Some properties of the solution set. It is well known (see, for example,
[6]) that if the feasible region of the monotone LCP (8) in the Euclidean space is
nonempty then

(i) the solution set of the LCP (8) is a nonempty convex set,

(ii) there exist subsets I, J of the index set {1, 2, . . . , n} such that

I ∪ J = {1, 2, . . . , n},
xi = 0 (i ∈ I)
yi = 0 (i ∈ J)

}
for every solution (x,y) of the LCP (8).

We can prove similar results on the monotone SDLCP (1) in symmetric matrices
under a slightly stronger assumption that the interior F++ of the feasible region is
nonempty.

Theorem 6.1. Suppose that the interior F++ of the feasible region of the SDLCP
(1) in symmetric matrices is nonempty.

1. The solution set F∗ of the monotone SDLCP (1) is a nonempty convex set.
2. There exist subsets I, J of the index set {1, 2, . . . , n} and an orthogonal

matrix P such that

I ∪ J = {1, 2, . . . , n},[
P TXP

]
ij

= 0 (i ∈ I or j ∈ I)[
P TY P

]
ij

= 0 (i ∈ J or j ∈ J)

 for every (X,Y ) ∈ F∗.

Proof. 1. The nonemptiness of the solution set F∗ follows from Theorem 3.1.
Suppose that (X1,Y 1), (X2,Y 2) ∈ F∗. By Condition 1.2,

0 ≥ −(X2 −X1) • (Y 2 − Y 1) = X2 • Y 1 +X1 • Y 2.

Since all matrices X1, X2, Y 1, and Y 2 are symmetric and positive semidefinite, the
inequality above implies that X1 •Y 2 = 0 and X2 •Y 1 = 0. See Lemma 1.1. Hence,
for every λ ∈ [0, 1],

λ(X1,Y 1) + (1− λ)(X2,Y 2) ∈ F+,(
λX1 + (1− λ)X2

) • (λY 1 + (1− λ)Y 2
)

= 0.

Thus we have shown that the solution set F∗ is convex.

2. Let r be the dimension of the affine subspace spanned by the solution set F∗.
Then there exist r+ 1 pairs of matrices (X0,Y 0), (X1,Y 1), . . . , (Xr,Y r) ∈ F∗ such
that any (X,Y ) ∈ F∗ can be represented as (X,Y ) =

∑r
j=0 αj(X

j ,Y j),
∑r

j=0 αj =



MONOTONE SDLCP IN SYMMETRIC MATRICES 105

1 for some α0, α1, . . . , αr. Define

(X̄, Ȳ ) =
1

r + 1

r∑
j=0

(Xj ,Y j),

K = {p ∈ Rn : pT X̄p = 0},
L = {p ∈ Rn : pT Ȳ p = 0}.

(K coincides with the subspace spanned by all the eigenvectors of X̄ associated with
its zero eigenvalue, and L coincides with the subspace spanned by all the eigenvectors
of Ȳ associated with its zero eigenvalue.) Then for every p ∈ K,

0 = pT X̄p =
1

r + 1

r∑
j=0

pTXjp.

Since each Xj is positive semidefinite, we have Xjp = 0 (j = 0, 1, . . . , r). Hence

Xp = 0 for every (X,Y ) ∈ F∗ and every p ∈ K.(27)

Similarly we have that

Y p = 0 for every (X,Y ) ∈ F∗ and every p ∈ L.(28)

Let ξ1, ξ2, . . . , ξn denote the eigenvalues of X̄ and p̄1, p̄2, . . . , p̄n the eigenvectors cor-
responding to them. We may assume that the eigenvectors form a normalized orthog-
onal basis of Rn. Define I = {j : ξj = 0} and J = {j : ξj > 0}. Then {p̄j : j ∈ I}
forms a basis of the subspace K. It follows from (27) that

Xp̄j = 0 for every (X,Y ) ∈ F∗ and every j ∈ I.(29)

On the other hand, X̄Ȳ = O because (X̄, Ȳ ) ∈ F∗. Hence

0 = (p̄j)T X̄Ȳ p̄j = ξj(p̄
j)T Ȳ p̄j for every j ∈ J,

which together with ξj > 0 (j ∈ J) implies that (p̄j)T Ȳ p̄j = 0 for every j ∈ J, or
equivalently p̄j ∈ L for every j ∈ J. By (28), we then see that

Y p̄j = 0 for every (X,Y ) ∈ F∗ and every j ∈ J.(30)

Letting P = (p̄1, p̄2, . . . , p̄n), we obtain the desired result from the definition of I, J ,
(29), and (30).

Remark 6.2.

(a) In item 1 of Theorem 6.1, the condition F++ 6= ∅ cannot be weakened. It is
well known that the nonemptiness of the feasible region gives a necessary and sufficient
condition for the existence of a solution of the monotone LCP (8) in the Euclidean
space (see, for example, [6]). In contrast with that case, however, the weaker condition
F+ 6= ∅ does not imply the solvability of the SDLCP(1). This is due to the fact that
the cone of positive semidefinite matrices is not polyhedral. (See Gowda and Seidman
[10].) There is a similar gap in the case of the monotone nonlinear complementarity
problem [29].

(b) Result 2 of Theorem 6.1 is closely related to the complementary slackness
theorem (Corollary 2.11 of [2]): it says that all solutions (X,Y )s of the SDP(2) share
a system of eigenvectors and their eigenvalues are complementary in the sense of LCP.
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7. Basic lemmas. In this section we prepare basic lemmas which play important
roles in what follows.

Lemma 7.1. Suppose that (X,Y ) ∈ S2
++. Let λmin and λmax denote the mini-

mum and the maximum eigenvalues of XY , respectively.

1. Let (d̂X, d̂Y ) ∈ Ŝ2
. Then

‖√X−1
d̂X
√
X
−1‖F ≤ ‖√X−1

d̂X
√
Y ‖F√

λmin

,(31)

‖√Y −1
d̂Y
√
Y
−1‖F ≤ ‖√Xd̂Y

√
Y
−1‖F√

λmin

,(32)

‖√Y d̂X
√
Y ‖F ≤

√
λmax‖

√
X
−1
d̂X
√
Y ‖F ,(33)

‖√Xd̂Y
√
X‖F ≤

√
λmax‖

√
Xd̂Y

√
Y
−1‖F .(34)

2. Let (d̂X, d̂Y ) ∈ Ŝ2
, dX = (d̂X + d̂X

T
)/2, dY = (d̂Y + d̂Y

T
)/2, ξ1, ξ2, . . . , ξn

be the eigenvalues of X−1dX, and η1, η2, . . . , ηn be the eigenvalues of Y −1dY . Then

n∑
j=1

ξ2
j ≤ ‖√X−1

d̂X
√
X
−1‖2F ≤

‖√X−1
d̂X
√
Y ‖2F

λmin
,(35)

n∑
j=1

η2
j ≤ ‖√Y −1

d̂Y
√
Y
−1‖2F ≤

‖√Xd̂Y
√
Y
−1‖2F

λmin
.(36)

3. (Extension of the inequalities given in Lemma 4.20 of [19]). Let Q ∈ Ŝ and

let (d̂X, d̂Y ) be a solution of the system (24) of equations. Then

‖√X−1
d̂X
√
Y ‖2F + ‖√Xd̂Y

√
Y
−1‖2F(37)

= ‖√X−1
Q
√
Y
−1‖2F − 2d̂X • d̂Y ,

0 ≤ d̂X • d̂Y ≤ ‖√X−1
Q
√
Y
−1‖2F

4
.(38)

Proof. 1. In general, the inequalities νmin(A)‖B‖2F ≤ Tr BTAB ≤ νmax(A)‖B‖2F
hold for every A ∈ S++ and every B ∈ Ŝ, where νmin(A) and νmax(A) denote the
minimum and the maximum eigenvalues of A, respectively. On the other hand, λmin

and 1/λmax are the minimum eigenvalues of the matrix
√
XY

√
X and its inverse

(
√
XY

√
X)−1, respectively. Hence

‖√X−1
d̂X
√
Y ‖2F = Tr (

√
X
−1
d̂X
√
X
−1

)T
√
XY

√
X(

√
X
−1
d̂X
√
X
−1

)

≥ λmin‖
√
X
−1
d̂X
√
X
−1‖2F ,

‖√X−1
d̂X
√
Y ‖2F = Tr (

√
Y d̂X

√
Y )T (

√
Y X

√
Y )−1(

√
Y d̂X

√
Y )

≥ 1

λmax
‖√Y d̂X

√
Y ‖2F .

Thus we have shown (31) and (33). The proof of (32) and (34) is quite similar.
2. We only show that the inequality (35) holds. The inequality (36) can be proven

similarly. Since the symmetric matrix
√
X
−1
dX
√
X
−1

has the same eigenvalues
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ξ1, ξ2, . . . , ξn as the matrix X−1dX, we have that

n∑
j=1

ξ2
j = ‖√X−1

dX
√
X
−1‖2F

=

∥∥∥∥∥√X−1

(
d̂X + d̂X

T

2

)√
X
−1

∥∥∥∥∥
2

F

(since dX = (d̂X + d̂X
T
)/2)

≤
(
‖√X−1

d̂X
√
X
−1‖F

2
+
‖√X−1

d̂X
√
X
−1‖F

2

)2

= ‖√X−1
d̂X
√
X
−1‖2F

≤ ‖√X−1
d̂X
√
Y ‖2F

λmin
.

Here the last inequality follows from (31).

3. By Corollary 4.3, we have
√
Xd̂Y

√
Y
−1

+
√
X
−1
d̂X
√
Y =

√
X
−1
Q
√
Y
−1
.

Hence

‖√X−1
Q
√
Y
−1‖2F

= (
√
Xd̂Y

√
Y
−1

+
√
X
−1
d̂X
√
Y ) • (

√
X d̂Y

√
Y
−1

+
√
X
−1
d̂X
√
Y )

= ‖√X−1
d̂X
√
Y ‖2F + ‖√Xd̂Y

√
Y
−1‖2F + 2d̂X • d̂Y .

Thus we have shown (37). Since the linear subspaces F0 and F̃0 of Ŝ2
are orthogonal

to each other (see (18)), the first inequality of (38) follows directly from Conditions
1.2 and 4.1. We also see that

d̂X • d̂Y
=

1

4

{
‖√Xd̂Y

√
Y
−1

+
√
X
−1
d̂X
√
Y ‖2F − ‖

√
X d̂Y

√
Y
−1 −√X−1

d̂X
√
Y ‖2F

}
≤ 1

4

{
‖√Xd̂Y

√
Y
−1

+
√
X
−1
d̂X
√
Y ‖2F

}
=
‖√X−1

Q
√
Y
−1‖2F

4
.

Thus we have shown (38).
Lemma 7.2. (Extension of Lemma 4.16 of [19]). Let (X,Y ) ∈ S2

++, µ =
X • Y /n, 0 ≤ β ≤ 1 and let λ1, λ2, . . . , λn be the eigenvalues of the matrix XY .

Define the n× n matrix H(β) as H(β) = βµ
√
X
−1√

Y
−1 −√X√Y .

1. Define Λ = diag (λ1, λ2, . . . , λn) to be the n × n diagonal matrix with the
coordinates λ1, λ2, . . . , λn. Then

‖H(β)‖2F = ‖βµ√Λ−1 −√Λ‖2F .(39)

2. Assume that (X,Y ) ∈ N (γ) for some γ ∈ (0,
√
n]. Here

N (γ) =

(X,Y ) ∈ F++ :

 n∑
j=1

(λj − µ)2

1/2

≤ γµ, where µ =
X • Y

n
,

and λ1, . . . , λn denote the eigenvalues of XY
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=

{
(X,Y ) ∈ F++ : ‖√XY √X − µI‖F ≤ γµ, where µ =

X • Y
n

}
.

Then

(1− γ)µ ≤ λmin ≤ λj ≤ λmax ≤ (1 + γ)µ for every j = 1, 2, . . . , n,(40)

‖H(β)‖F ≤ min

{
((1− β)

√
n + γ)µ√

λmin

,

√
2nµ√
λmin

}
.

Proof. 1. By the definition, we see that

‖H(β)‖2F = ‖βµ√X−1√
Y
−1 −√X√Y ‖2F

=
n∑

j=1

(
βµ√
λj
−√λj

)2

= ‖βµ√Λ−1 −√Λ‖2F .
Thus we have shown the equality (39).

2. We see from (X,Y ) ∈ N (γ) that n∑
j=1

(λj − µ)2

1/2

≤ γµ,(41)

which implies (40). Hence

‖H(β)‖F = ‖βµ√Λ−1 −√Λ‖F (by (39))

≤ (1− β)µ‖√Λ−1‖F + ‖µ√Λ−1 −√Λ‖F

≤ (1− β)µ

 n∑
j=1

1

λmin

1/2

+

 n∑
j=1

(
µ− λj√
λmin

)2
1/2

(by (40))

≤ (1− β)µ ·
√
n√

λmin

+
γµ√
λmin

(by (41))

=
((1− β)

√
n + γ)µ√

λmin

.

We also see that

‖H(β)‖2F = ‖βµ√Λ−1 −√Λ‖2F (by (39))

≤
n∑

j=1

( βµ√
λj

)2

+
(√

λj

)2


≤ nµ2

λmin
+ nµ

(
since 0 ≤ β ≤ 1 and

n∑
j=1

λj = nµ

)

≤ 2nµ2

λmin
(since 1 ≤ µ/λmin)

≤ 2nµ2

λmin
.
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Thus we have shown assertion 2.
Lemma 7.3. (See [16, 42], etc.)

1. If 1 + ξ > 0 then log(1 + ξ) ≤ ξ.

2. If ξ ∈ Rn satisfies ‖ξ‖∞ ≤ τ < 1 then
∑n

j=1 log(1+ξj) ≥
∑n

j=1 ξj− ‖ξ‖2
2(1− τ)

.

For every (X,Y ) ∈ F++, define the potential function

f(X,Y ) = (n + ν) logX • Y − log detXY − n logn.

Here ν ≥ 0 is a parameter. This potential function is the same as the one used in the
paper [44] where Vandenberghe and Boyd proposed a potential-reduction method for
the primal-dual pair (2) of SDPs. (See also [2, 36].)

Lemma 7.4. Let (X,Y ) ∈ F++, (dX, dY ) ∈ S2, µ = X • Y /n, 0 < τ < 1, and
ν ≥ 0. Let ξ1, ξ2, . . . , ξn be the eigenvalues of the matrix X−1dX and η1, η2, . . . , ηn be
the eigenvalues of the matrix dY Y −1. Let α be a positive number such that |αξj | ≤ τ
and |αηj | ≤ τ for every j = 1, 2, . . . , n.

1. f(X + αdX,Y + αdY )− f(X,Y ) ≤ αG1(dX, dY ) + α2G2(dX, dY ), where

G1(dX, dY ) = Tr

(
n + ν

nµ
I − Y −1X−1

)
(dXY +XdY ),

G2(dX, dY ) =
(n + ν)dX • dY

nµ
+

∑n
j=1(ξ

2
j + η2

j )

2(1− τ)
.

2. (Extension of Lemma 2.5 of [22]). Let λ1, λ2, . . . , λn be the eigenvalues of
the matrix XY and λmin = min{λ1, λ2, . . . , λn}. Assume that β = n/(n + ν) and

that (d̂X, d̂Y ) is a solution of the Newton equation (23) with Q = βµI −XY . Let

dX = (d̂X + d̂XT )/2 and dY = (d̂Y + d̂Y T )/2. Then

G1(dX, dY ) = − 1

βµ
‖H(β)‖2F ,(42)

G2(dX, dY ) ≤ ‖H(β)‖2F
2(1− τ)λmin

+
1

λmin

(
n + ν

n
− 1

1− τ

)
dX • dY .(43)

If in addition, ν ≥ √
n then

√
λmin

βµ
‖H(β)‖F ≥

√
3

2
.(44)

Proof. 1. The desired inequality follows from the calculation below.

f(X + αdX,Y + αdY )− f(X,Y )

= (n + ν) log

(
1 +

αTr (dXY +XdY )

nµ
+

α2dX • dY
nµ

)
−

n∑
j=1

(log(1 + αξj) + log(1 + αηj))

≤ (n + ν)

(
αTr (dXY +XdY )

nµ
+

α2dX • dY
nµ

)

−
α n∑

j=1

(ξj + ηj)− α2

∑n
j=1(ξ

2
j + η2

j )

2(1− τ)

 (by Lemma 7.3)
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= αTr

(
n + ν

nµ
I − Y −1X−1

)
(dXY +XdY )

+α2

(
(n + ν)dX • dY

nµ
+

∑n
j=1(ξ

2
j + η2

j )

2(1− τ)

)
.

2. By the definition of G1,

G1(dX, dY ) = Tr

(
n + ν

nµ
I − Y −1X−1

)
(dXY +XdY )

= Tr

(
n + ν

nµ
I − Y −1X−1

)
(d̂XY +X d̂Y )

= Tr

(
1

βµ
I − Y −1X−1

)
(βµI −XY )

(since β = n/(n + ν) and d̂XY +X d̂Y = βµI −XY )

= Tr

(
1

βµ
I − (

√
XY

√
X)−1

)
(βµI −√XY √X)

= Tr

(
1

βµ

√
Λ−√Λ−1

)
(βµ

√
Λ
−1 −√Λ)

= − 1

βµ
‖H(β)‖2F (by Lemma 7.2).

Thus we have shown (42).
By the definition of G2, 0 < λmin ≤ µ, and Lemma 7.1, we see that

G2(dX, dY ) =
(n + ν)dX • dY

nµ
+

∑n
j=1(ξ

2
j + η2

j )

2(1− τ)

≤ ‖H(β)‖2F
2(1− τ)λmin

+
n + ν

λminn
dX • dY − 1

λmin(1− τ)
d̂X • d̂Y

≤ ‖H(β)‖2F
2(1− τ)λmin

+
1

λmin

(
n + ν

n
− 1

1− τ

)
dX • dY .

Here the last inequality is due to the fact that dX • dY ≤ d̂X • d̂Y . Thus we obtain
the inequality (43).

Finally we prove the inequality (44) under the assumption that ν ≥ √
n.(√

λmin

βµ
‖H(β)‖F

)2

=

(√
λmin

βµ
‖βµ√Λ−1 −√Λ‖F

)2

(by Lemma 7.2)

= λmin

∥∥∥∥n + ν

nµ

√
Λ−√Λ−1

∥∥∥∥2

F

(since β = n/(n + ν))

≥ λmin

∥∥∥∥∥
√
Λ√
nµ

∥∥∥∥∥
2

F

+ λmin

∥∥∥∥∥
√
Λ

µ
−√Λ−1

∥∥∥∥∥
2

F

(since Tr
√
Λ

(√
Λ

µ
−√Λ−1

)
= 0 and ν ≥ √

n)
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≥ λmin

µ
+ λmin

∣∣∣∣√λmin

µ
− 1√

λmin

∣∣∣∣2
=

(µ/2− λmin)2 + 3µ2/4

µ2

≥ 3

4
.

In the two lemmas below, we are concerned with the following hypothesis.
Hypothesis. (See Hypothesis 4.1 of [17].) Let (X0,Y 0) ∈ S2

++. There exists a
solution (X∗,Y ∗) of the SDLCP (1) such that

ω∗X0 �X∗ and ω∗Y 0 � Y ∗(45)

for some ω∗ ≥ 1.
This hypothesis as well as the lemmas will be utilized in section 8.3 where we

present an infeasible interior-point potential-reduction method.
Lemma 7.5. Let (X,Y ) and (X0,Y 0) ∈ S2

++. Assume that the hypothesis is
true. Then

‖√X(Y 0 − Y ∗)
√
X‖F ≤ ω∗X • Y 0,

‖√Y (X0 −X∗)
√
Y ‖F ≤ ω∗X0 • Y .

Proof. From the assumption,

ω∗
√
XY 0

√
X +

(√
XY 0

√
X −√XY ∗√X

)
∈ S++,

ω∗
√
XY 0

√
X −

(√
XY 0

√
X −√XY ∗√X

)
∈ S++.

Hence we have

0 ≤ Tr
(
ω∗
√
XY 0

√
X +

(√
XY 0

√
X −√XY ∗√X

))T
(
ω∗
√
XY 0

√
X −

(√
XY 0

√
X −√XY ∗√X

))
= (ω∗)2‖√XY 0

√
X‖2F − ‖

√
XY 0

√
X −√XY ∗√X‖2F .

It follows that ‖√XY 0
√
X − √XY ∗√X‖F ≤ ω∗‖√XY 0

√
X‖F . Since the matrix√

XY 0
√
X is symmetric and positive definite, we have

‖√XY 0
√
X‖F ≤

√
X • Y 0

√
X = X • Y 0.

Thus the first inequality in the lemma follows. We can derive the second inequality
of the lemma similarly.

Lemma 7.6. (Lemmas 5.1 and 5.2 of [17]). Let (X0,Y 0) ∈ S2
++. Assume that

the hypothesis is true and that (X,Y ) ∈ S2
++ satisfies

θX0 • Y 0 ≤ ξX • Y ,(46)

(X,Y ) ∈ F0 + θ(X0,Y 0) + (1− θ)(X∗,Y ∗)(47)

for some ξ ≥ 1 and θ ∈ [0, 1]. Let λmin be the minimum eigenvalue of the matrix

XY , µ = X • Y /n, σ = 2ω∗ξ + 1, ζ = 2 + ω∗σ. Let (d̂X, d̂Y ) ∈ Ŝ2 be a solution

of the Newton equation (23) with Q = βµI −XY , and dX = (d̂X + d̂XT )/2 and

dY = (d̂Y + d̂Y T )/2.
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1. θ(X0 • Y +X • Y 0) ≤ σX • Y .

2. ‖√X−1
d̂X
√
Y ‖F , ‖

√
Xd̂Y

√
Y
−1‖F ≤ ‖H(β)‖F + ω∗σnµ√

λmin
≤ ζnµ√

λmin
.

3. Let ξ1, ξ2, . . . , ξn be the eigenvalues of X−1dX and η1, η2, . . . , ηn be the eigen-

values of Y −1dY . Then
∑n

j=1 ξ
2
j ,
∑n

j=1 η
2
j ≤

(
ζnµ
λmin

)2

.

Proof. 1. By the assumption, there is a solution (X∗,Y ∗) of the SDLCP (1)
satisfying

ω∗X0 �X∗ and ω∗Y 0 � Y ∗.

It follows that

X0 • Y ∗ ≤ ω∗X0 • Y 0 and X∗ • Y 0 ≤ ω∗X0 • Y 0.(48)

Let (X ′,Y ′) = θ(X0,Y 0) + (1 − θ)(X∗,Y ∗). By the relation (47) which we have
assumed, we then see that

(X,Y ) ∈ F0 + θ(X0,Y 0) + (1− θ)(X∗,Y ∗) = F0 + (X ′,Y ′).

Hence (X ′ − X,Y ′ − Y ) ∈ F0. By the monotonicity of the affine subspace F0,
X ′ • Y +X • Y ′ ≤X ′ • Y ′ +X • Y . It follows that

θ(X0 • Y +X • Y 0)

≤X ′ • Y +X • Y ′ (since X ′ � θX0 and Y ′ � θY 0)

≤X ′ • Y ′ +X • Y
≤ θ2X0 • Y 0 + θ(1− θ)(X0 • Y ∗ +X∗ • Y 0) +X • Y (since X∗ • Y ∗ = 0)

≤ θ2X0 • Y 0 + 2θ(1− θ)ω∗X0 • Y 0 +X • Y (by (48))

≤ (2θω∗X0 • Y 0 +X • Y ) (since ω∗ ≥ 1 and X0 • Y 0 ≥ 0)

≤ (2ω∗ξX • Y +X • Y ) (by (46))

≤ (2ω∗ξ + 1)X • Y .

Thus we have shown assertion 1.
2. By assumption (47) and the Newton equation (23) which (d̂X, d̂Y ) satisfies,

we know that

−θ ((X0,Y 0)− (X∗,Y ∗)
) ∈ F0 − (X,Y ) + (X∗,Y ∗),

(d̂X, d̂Y ) ∈ F0 + F̃0 − (X,Y ) + (X∗,Y ∗).

Hence, letting

(d̂X
′
, d̂Y

′
) = (d̂X, d̂Y ) + θ

(
(X0,Y 0)− (X∗,Y ∗)

) ∈ F0 + F̃0,

we obtain the system of equations in the variable matrices d̂X
′
, d̂Y

′ ∈ Ŝ:{
(d̂X

′
, d̂Y

′
) ∈ F0 + F̃0,

Xd̂Y
′
+ d̂X

′
Y = Q1 +Q2 +Q3,

(49)

where Q1 = βµI −XY , Q2 = θX(Y 0 − Y ∗), Q3 = θ(X0 −X∗)Y . We note that
the system (49) of equations has a unique solution in view of Corollary 4.3. Let

(d̂Xj , d̂Y j) (j = 1, 2, 3) denote the solution of the following system of equations:

(d̂Xj , d̂Y j) ∈ F0 + F̃0 and X d̂Y j + d̂XjY = Qj .
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Then the solution (d̂X
′
, d̂Y

′
) of the system (49) of equations can be represented as

(d̂X
′
, d̂Y

′
) = (d̂X1, d̂Y 1) + (d̂X2, d̂Y 2) + (d̂X3, d̂Y 3).

On the other hand, we see by the definition of (d̂X
′
, d̂Y

′
) that

d̂X = d̂X
′ − θ

(
X0 −X∗)

= d̂X1 + d̂X2 + d̂X3 − θ
(
X0 −X∗)

= d̂X1 + d̂X2 +Q3Y
−1 −Xd̂Y 3Y

−1 − θ
(
X0 −X∗)

= d̂X1 + d̂X2 +
(
θ(X0 −X∗)Y

)
Y −1 −X d̂Y 3Y

−1 − θ
(
X0 −X∗)

= d̂X1 + d̂X2 −Xd̂Y 3Y
−1,

d̂Y = d̂Y
′ − θ

(
Y 0 − Y ∗)

= d̂Y 1 + d̂Y 2 + d̂Y 3 − θ
(
Y 0 − Y ∗)

= d̂Y 1 +X−1Q2 −X−1d̂X2Y + d̂Y 3 − θ
(
Y 0 − Y ∗)

= d̂Y 1 +X−1
(
θX(Y 0 − Y ∗)

)−X−1d̂X2Y + d̂Y 3 − θ
(
Y 0 − Y ∗)

= d̂Y 1 −X−1d̂X2Y + d̂Y 3.

It follows that
√
X
−1
d̂X
√
Y =

√
X
−1
d̂X1

√
Y +

√
X
−1
d̂X2

√
Y −√X−1

(X d̂Y 3Y
−1)

√
Y

=
√
X
−1
d̂X1

√
Y +

√
X
−1
d̂X2

√
Y −√X d̂Y 3

√
Y
−1
,

√
Xd̂Y

√
Y
−1

=
√
Xd̂Y 1

√
Y
−1 −√X(X−1d̂X2Y )

√
Y
−1

+
√
X d̂Y 3

√
Y
−1

=
√
Xd̂Y 1

√
Y
−1 −√X−1

d̂X2

√
Y +

√
X d̂Y 3

√
Y
−1
.

Hence, by item 3 of Lemma 7.1 and the definition of H(β),

‖√X−1
d̂X
√
Y ‖F

≤ ‖√X−1
d̂X1

√
Y ‖F + ‖√X−1

d̂X2

√
Y ‖F + ‖√X d̂Y 3

√
Y
−1‖F

≤ ‖√X−1
Q1

√
Y
−1‖F + ‖√X−1

Q2

√
Y
−1‖F + ‖√X−1

Q3

√
Y
−1‖F

≤ ‖H(β)‖F + ‖√X−1
Q2

√
Y
−1‖F + ‖√X−1

Q3

√
Y
−1‖F ,

‖√Xd̂Y
√
Y
−1‖F

≤ ‖√Xd̂Y 1

√
Y
−1‖F + ‖√X−1

d̂X2

√
Y ‖F + ‖√X d̂Y 3

√
Y
−1‖F

≤ ‖√X−1
Q1

√
Y
−1‖F + ‖√X−1

Q2

√
Y
−1‖F + ‖√X−1

Q3

√
Y
−1‖F

≤ ‖H(β)‖F + ‖√X−1
Q2

√
Y
−1‖F + ‖√X−1

Q3

√
Y
−1‖F .

Therefore we have shown

‖√X−1
d̂X
√
Y ‖F , ‖

√
Xd̂Y

√
Y
−1‖F(50)

≤ ‖H(β)‖F + ‖√X−1
Q2

√
Y
−1‖F + ‖√X−1

Q3

√
Y
−1‖F .

We now evaluate ‖√X−1
Q2

√
Y
−1‖F .

‖√X−1
Q2

√
Y
−1‖F
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=
∥∥∥√X−1 (

θX(Y 0 − Y ∗)
)√
Y
−1
∥∥∥
F

= θ
(
Tr (

√
X(Y 0 − Y ∗)

√
X)(

√
XY

√
X)−1(

√
X(Y 0 − Y ∗)

√
X)
)1/2

≤ θ√
λmin

‖√X(Y 0 − Y ∗)
√
X‖F

=
θω∗√
λmin

X • Y 0 (by Lemma 7.5).

Thus we have shown that

‖√X−1
Q2

√
Y
−1‖F ≤ θω∗√

λmin

X • Y 0.(51)

Similarly we can prove that

‖√X−1
Q3

√
Y
−1‖F ≤ θω∗√

λmin

X0 • Y .(52)

Therefore

‖√X−1
d̂X
√
Y ‖F , ‖

√
Xd̂Y

√
Y
−1‖F

≤ ‖H(β)‖F + ‖√X−1
Q2

√
Y
−1‖F + ‖√X−1

Q3

√
Y
−1‖F (by (50))

≤ ‖H(β)‖F +
θω∗√
λmin

(X • Y 0 +X0 • Y ) (by (51) and (52))

≤ ‖H(β)‖F +
ω∗σnµ√
λmin

(by assertion 1)

≤
√

2nµ√
λmin

+
ω∗σnµ√
λmin

(by Lemma 7.2)

≤ ζnµ√
λmin

.

3. The assertion follows from assertion 2 of both Lemma 7.6 and 7.1.
By the argument above, it is easily seen that if (X0,Y 0) ∈ F++ then we can take

θ = 0, which implies that Q2 = Q3 = O. Hence we can obtain the better evaluation

of ‖√X−1
d̂X
√
Y ‖F , ‖

√
Xd̂Y

√
Y
−1‖F in assertion 2 of Lemma 7.6. We state this

result as a corollary.
Corollary 7.7. Suppose that all the assumptions of Lemma 7.6 hold. In addi-

tion, let (X0,Y 0) ∈ F++. Then ‖√X−1
d̂X
√
Y ‖F , ‖

√
Xd̂Y

√
Y
−1‖F ≤ ‖H(β)‖F .

8. Some interior-point methods. In this section we present three types of
interior-point methods, a central trajectory following method, a potential-reduction
method, and an infeasible interior-point potential-reduction method as special cases
of the generic IP method.

8.1. A central trajectory following method. This method is based on the
O(
√
nL) iteration interior-point method proposed by Kojima–Mizuno–Yoshise [21] for

the monotone LCP (8) in the Euclidean space. A horn neighborhood of the central
trajectory is defined as

N (γ) =

(X,Y ) ∈ F++ :

 n∑
j=1

(λj − µ)2

1/2

≤ γµ, where µ =
X • Y

n
,

and λ1, . . . , λn denote the eigenvalues of XY
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=

{
(X,Y ) ∈ F++ : ‖√XY √X − µI‖F ≤ γµ, where µ =

X • Y
n

}
.

Here γ > 0 denotes a parameter which determines the width of the neighborhood
N (γ). We obtain the central trajectory following method by imposing the following
additional restrictions on the generic IP method:

• Let F̃0 = O × S̃.
• Let 0 < γ ≤ 0.1. Choose an initial point (X0,Y 0) ∈ N (γ) in Step 0.
• Let β = 1− γ/

√
n in Step 2.

• Let α = 1 in Step 5.
The first restriction needs some explanation. When we compute the solution (d̂X, d̂Y )

∈ Ŝ2
of the Newton equation (26) with Q = βµI −XY in Step 3, the restriction

above implies d̂X is symmetric so that dX = (d̂X + d̂X
T
)/2 = d̂X in Step 4. The fact

that d̂X is symmetric is necessary in our proof of the lemma below. The authors tried
to employ a general n(n− 1)/2-dimensional monotone linear subspace F̃0 of S̃2, but
we had some difficulty deriving the inequality (55) in the general case.

Theorem 8.1. Let γ ∈ (0, 0.1]. Suppose that (X,Y ) ∈ N (γ). Let β = 1−γ/
√
n

in Step 2 and α = 1 in Step 5. Let µ̄ = X̄ • Ȳ /n. Then

(X̄, Ȳ ) = (X,Y ) + (dX, dY ) ∈ N (γ),

βµ ≤ µ̄ ≤
(

1− γ

2
√
n

)
µ.(53)

Proof. First note that d̂X = dX. By the definition of (X̄, Ȳ ),

nµ̄ = X̄ • Ȳ
= X • Y + Tr (XdY + dXY ) + dX • dY
= X • Y + Tr (Xd̂Y + dXY ) + dX • dY
= nµ + Tr (βµI −XY ) + dX • dY (by the Newton equation (26))

= nµ + nβµ− nµ + dX • dY (since µ = X • Y /n)

= nβµ + dX • dY .

In view of item 3 of Lemma 7.1 with Q = βµI −XY and item 2 of Lemma 7.2,
we see that

0 ≤ dX • dY ≤ ‖H(β)‖2F
4

≤ γ2µ

1− γ
.

Hence

βµ ≤ µ̄ = βµ +
dX • dY

n
≤
(

1− γ

2
√
n

)
µ.

Thus we have shown (53).
By Lemma 7.1 with Q = βµI −XY and Lemma 7.2,

n∑
j=1

(ξ2
j + η2

j ) ≤
1

λmin
‖H(β)‖2F ≤

4γ2

(1− γ)2
< 1.



116 MASAKAZU KOJIMA, SUSUMU SHINDOH, AND SHINJI HARA

Hence Lemma 5.1 together with (X,Y ) ∈ F and (dX, dY ) ∈ F0 ensure that

(X̄, Ȳ ) = (X,Y ) + (dX, dY ) ∈ F++.(54)

To complete the proof, we only need to show the inequality

‖B̄T
Ȳ B̄ − µ̄I‖F ≤ γµ̄(55)

for some B̄ such that X̄ = B̄B̄
T
, since (54) and (55) imply that (X̄, Ȳ ) ∈ N (γ). By

Lemma 7.1, with Q = βµI −XY , Lemma 7.2, and 0 < γ ≤ 0.1,

‖√X−1
dX
√
X
−1‖F ≤ 1√

(1− γ)µ
· 2γ

√
µ√

(1− γ)
=

2γ

1− γ
< 1,(56)

‖√Xd̂Y
√
X‖F ≤

√
(1 + γ)µ · 2γ

√
µ√

(1− γ)
=

2µγ
√

1 + γ√
1− γ

.(57)

We see from the definition of (X̄, Ȳ ) that

X̄ = X + dX =
√
X
√
X + dX =

√
X(I +

√
X
−1
dX
√
X
−1

)
√
X.

Since the inequality (56) implies that the absolute values of all the eigenvalues of

the symmetric matrix
√
X
−1
dX
√
X
−1

are less than 1, the symmetric matrix I +√
X
−1
dX
√
X
−1

is positive definite. Hence it can be represented as I+
√
X
−1
dX
√
X
−1

= PΞP T for an orthogonal matrixP and a diagonal matrixΞ = diag (ξ̄1, ξ̄2, . . . , ξ̄n)
of its eigenvalues ξ̄1, ξ̄2, . . . , ξ̄n such that

1− 3γ

1− γ
= 1− 2γ

1− γ
≤ ξ̄j ≤ 1 +

2γ

1− γ
=

1 + γ

1− γ
for every j = 1, 2, . . . , n.(58)

Letting B̄ =
√
XP

√
Ξ, we obtain

X̄ =
√
X(I +

√
X
−1
dX
√
X
−1

)
√
X =

√
XPΞP T

√
X = B̄B̄

T
.

We also see from the Newton equation (26) that

X̄(Y + d̂Y )− βµI = (X + dX)(Y + d̂Y )− βµI = dX d̂Y ;

hence B̄
T
(Y + d̂Y )B̄−βµI = B̄

−1
dXd̂Y B̄. Now we are ready to evaluate ‖B̄T

Ȳ B̄−
µ̄I‖F to derive the inequality (55):

‖B̄T
Ȳ B̄ − µ̄I‖F

≤ ‖B̄T
Ȳ B̄ − βµI‖F (since ‖B̄T

Ȳ B̄ − µ̄I‖F = minν∈R ‖B̄T
Ȳ B̄ − νI‖F )

= ‖B̄T

(
Y + d̂Y + Y T + d̂Y

T

2

)
B̄ − βµI‖F

≤ ‖B̄T
(Y + d̂Y )B̄ − βµI‖F

2
+
‖B̄T

(Y + d̂Y )T B̄ − βµI‖F
2

= ‖B̄T
(Y + d̂Y )B̄ − βµI‖F

= ‖B̄−1
dXd̂Y B̄‖F



MONOTONE SDLCP IN SYMMETRIC MATRICES 117

= ‖√Ξ−1
P T

√
X
−1
dX
√
X
−1√

Xd̂Y
√
XP

√
Ξ‖F (since B̄ =

√
XP

√
Ξ)

≤
√

(1 + γ)/(1− γ)√
(1− 3γ)/(1− γ)

‖P T
√
X
−1
dX
√
X
−1√

X d̂Y
√
XP ‖F (by (58))

≤
√

1 + γ√
1− 3γ

‖√X−1
dX
√
X
−1‖F · ‖

√
X d̂Y

√
X‖F

≤
√

1 + γ√
1− 3γ

· 2γ

1− γ
· 2µγ

√
1 + γ√

1− γ
(by (56) and (57))

=
4γ2(1 + γ)µ

(1− γ)3/2
√

1− 3γ

≤ 4γ2(1 + γ)µ̄

(1− γ)3/2
√

1− 3γβ
(since βµ ≤ µ̄ by (53))

≤ 4γ2(1 + γ)

(1− γ)3/2
√

1− 3γ(1− γ)
µ̄ (since 1− γ ≤ β).

Hence

‖B̄T
Ȳ B̄ − µ̄I‖F ≤ 4γ(1 + γ)

(1− γ)5/2
√

1− 3γ
γµ̄ ≤ γµ̄.

Here the last inequality follows from γ ∈ (0, 0.1]. Thus we have shown the inequality
(55).

Let ε > 0. In view of the theorem above, the central trajectory following method
generates a sequence {(Xr,Y r)} such that

(Xr,Y r) ∈ N (γ) and Xr • Y r ≤
(

1− γ

2
√
n

)r

X0 • Y 0

for every r = 0, 1, . . . . Hence if

r ≥ 2
√
n

γ
log

X0 • Y 0

ε
= O

(√
n log

X0 • Y 0

ε

)
then (Xr,Y r) gives an approximate solution of the SDLCP (1) in symmetric matrices
such that

(Xr,Y r) ∈ F++ and Xr • Y r ≤ ε.(59)

8.2. A potential-reduction method. For every (X,Y ) ∈ F++, define the
potential function

f(X,Y ) = (n + ν) logX • Y − log detXY − n logn.

Here ν ≥ 0 is a parameter. This potential function is the same as the one used in
the paper [44] by Vandenberghe and Boyd. Our potential-reduction method described
below is different from their method in search directions. Our method may be regarded
as an extension of the Kojima–Mizuno–Yoshise potential-reduction method [22] for
the monotone LCP (8) in the Euclidean space (see also [19]).

The potential function f defined above enjoys similar properties as the potential
function [40, 42] used for the monotone LCP (8). In particular, if we rewrite the
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potential function f as

f(X,Y ) = νfcp(X,Y ) + fcen(X,Y ),

fcp(X,Y ) = logX • Y ,

fcen(X,Y ) = n logX • Y − log detXY − n logn,

we have

fcen(X,Y ) ≥ 0 for every (X,Y ) ∈ F++,

fcen(X,Y ) = 0 if and only if (X,Y ) lies in the central trajectory C.(60)

See the paper [44].
We impose the following restrictions on the generic IP method:
• Choose an initial point (X0,Y 0) ∈ F++ in Step 0.
• Let β = n/(n + ν) in Step 2.
• Let 

0 < τ < 1,

H(β) = βµ
√
X
−1√

Y
−1 −√X√Y ,

λmin = min{λ1, λ2, . . . , λn},
(61)

where λ1, λ2, . . . , λn denote the eigenvalues of the matrix XY . Take a step
size parameter α in Step 5 such that α = τ

√
λmin/‖H(β)‖F .

We remark here that if X = LLT , L ∈ Ŝ, Y = MMT , and M ∈ Ŝ, then

‖H(β)‖F = ‖βµL−1M−T −LTM‖F .

This makes the computation of the step length α = τ
√
λmin/‖H(β)‖F more flexible

and efficient.
Theorem 8.2. Let n ≥ 3, ν =

√
n, τ = 0.4, and δ = 0.2. Suppose that

(X,Y ) ∈ F++. Let β = n/(n + ν) in Step 2 and α = τ
√
λmin/‖H(β)‖F in Step 5,

where τ , λmin, and H(β) are given in (61). Then

(X̄, Ȳ ) = (X,Y ) + α(dX, dY ) ∈ F++ and f(X̄, Ȳ ) ≤ f(X,Y )− δ.

Proof. Let ξ1, ξ2, . . . , ξn be the eigenvalues of X−1dX and η1, η2, . . . , ηn be the
eigenvalues of Y −1dY . By Lemma 7.1 and α = τ

√
λmin/‖H(β)‖F ,

n∑
j=1

(
(αξj)

2 + (αηj)
2
) ≤ α2 · 1

λmin
‖H(β)‖2F = τ2.

Hence |αξj | ≤ τ = 0.4 and |αηj | ≤ τ = 0.4 for every j = 1, 2, . . . , n. By Lemma 5.1,
(X,Y ) ∈ F and (dX, dY ) ∈ F0, we obtain that

(X̄, Ȳ ) = (X,Y ) + α(dX, dY ) ∈ F++.

It follows from τ = 0.4, ν =
√
n, and n ≥ 3 that (n +

√
n)/n < 1/(1 − τ). By

Lemma 7.4,

G2(dX, dY ) ≤ ‖H(β)‖2F
2(1− τ)λmin

.(62)
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Thus we consequently obtain

f(X + αdX,Y + αdY )− f(X,Y )

≤ αG1(dX, dY ) + α2G2(dX, dY ) (by 1 of Lemma 7.4)

≤ − 1

βµ
‖H(β)‖2Fα +

‖H(β)‖2
2(1− τ)λmin

α2 (by (42) and (62))

= −τ
√
λmin

βµ
‖H(β)‖F +

τ2

2(1− τ)
(since α = τ

√
λmin/‖H(β)‖F )

≤ −
√

3τ

2
+

τ2

2(1− τ)
(by 2 of Lemma 7.4)

≤ −0.2. (since τ = 0.4).

This completes the proof of Theorem 8.2.
Let ε > 0. By Theorem 8.2, the potential-reduction method generates a sequence

{(Xr,Y r)} such that (Xr,Y r) ∈ F++ and f(Xr,Y r) ≤ f(X0,Y 0)−rδ for every r =
1, 2, . . . . Hence if r ≥ (f(X0,Y 0)−√n log ε)/δ, then (Xr,Y r) gives an approximate
solution of the SDLCP (1) satisfying (59). If in addition fcen(X0,Y 0) is bounded
by a constant independent of n, the right-hand side of the inequality above is of
O(
√
n log(X0 •Y 0/ε)), the same order as the one in the case of the central trajectory

following method described in section 8.1.

8.3. An infeasible interior-point potential-reduction method. The IIP
potential-reduction method presented below is based on the O(n2.5L) iteration con-
strained potential-reduction algorithm (Algorithm I of [32]) for linear programs and
its modification [17]. We can start the IIP potential-reduction method from any
(X0,Y 0) ∈ S2

++. Before running the method, we assume that the hypothesis given
in section 7 holds.

As we will see below, the IIP potential-reduction method either detects in a finite
number of iterations that the hypothesis is false (i.e., there is no solution (X∗,Y ∗) of
the SDLCP (1) satisfying (45)) or reduces the potential function by at least a given
constant δ at every iteration.

We impose some additional requirements on Steps 0, 2, and 5 of the generic IP
method to describe the IIP potential-reduction method:

IIP potential-reduction method.
Step 0iip: Choose an initial point (X0,Y 0) ∈ S2

++ and two parameters ν ≥ √
n,

ξ ≥ 1. Let σ = 2ω∗ξ + 1, ζ = 2 + ω∗σ, and δ = 1/(10ζ2(n + ν)2). Let θ0 = 1 and
r = 0.

Step 1: Let (X,Y ) = (Xr,Y r) and

µ =
X • Y

n
.

Step 2iip: If

θr(X0 • Y +X • Y 0) ≤ σX • Y(63)

does not hold then stop; in this case there is no solution of the SDLCP (1) satisfying
(45) (see item 2 of Theorem 8.3). Otherwise let β = n/(n + ν).

Step 3: Compute a solution (d̂X, d̂Y ) ∈ Ŝ2
of the system (23) of equations with

Q = βµI −XY .
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Step 4: Let dX = (d̂X + d̂X
T
)/2 and dY = (d̂Y + d̂Y

T
)/2.

Step 5iip: Choose a step size parameter α ≥ 0 such that

(X̄, Ȳ ) = (X,Y ) + α(dX, dY ) ∈ S2
++,(64)

(1− α)θrX0 • Y 0 ≤ ξX̄ • Ȳ ,(65)

f(X̄, Ȳ ) ≤ f(X,Y )− δ.(66)

Let (Xr+1,Y r+1) = (X̄, Ȳ ) and θr+1 = (1− α)θr.
Step 6: Replace r by r + 1 and go to Step 1.
Theorem 8.3. Let (X,Y ) = (Xr,Y r) ∈ S2

++ be the rth iterate generated by the
IIP potential-reduction method. Let µ = X • Y /n and let λmin denote the minimum
eigenvalue of the matrix XY .

1. Let (X ′,Y ′) be a pair of matrices in F ; for example, we can take an or-
thogonal projection of (X0,Y 0) onto F , or a solution (X∗,Y ∗) of the SDLCP (1)
satisfying (45) under the hypothesis in section 7. Then

θrX0 • Y 0 ≤ ξX • Y ,(67)

(X,Y ) ∈ F + θr
(
(X0,Y 0)− (X ′,Y ′)

)
.(68)

2. Assume that inequality (63) holds at Step 2iip. Then α = λmin/(5ζ
2(n + ν)nµ)

fulfills all the requirements (64), (65), and (66) in Step 5iip for a legitimate step size
parameter.

3. If the inequality (63) does not hold at Step 2iip then there is no solution
(X∗,Y ∗) of the SDLCP (1) satisfying (45).

In order to prove the assertion 1, we need the following lemma.
Lemma 8.4. Let (X,Y ) = (Xr,Y r) ∈ S2

++ be the rth iterate generated by the
IIP potential-reduction method, and let θ = θr. Let (X ′,Y ′) be a pair of matrices in
F . Then

θX0 • Y 0 ≤ ξX • Y ,(69)

(X,Y ) ∈ F0 + θ(X0,Y 0) + (1− θ)(X ′,Y ′).(70)

Proof. By the construction, the inequality (69) holds with θ = θr ∈ [0, 1]. Hence
it suffices to show by induction that (Xr,Y r) ∈ F0 + θr(X0,Y 0) + (1− θr)(X ′,Y ′).
When r = 0, the relation above obviously holds because θ0 = 1. Assume that the
relation holds for r = k. Then

(Xk+1,Y k+1)

= (1− α)(Xk,Y k) + α(Xk + dX,Y k + dY )

∈ (1− α)
(F0 + θk(X0,Y 0) + (1− θk)(X ′,Y ′)

)
+ α

(F0 + (X ′,Y ′)
)

= F0 + (1− α)θk(X0,Y 0) + (1− (1− α)θk)(X ′,Y ′)
= F0 + θk+1(X0,Y 0) + (1− θk+1)(X ′,Y ′).

Thus we have shown the desired relation for r = k + 1.
Proof of Theorem 8.3. Assertion 1 of the theorem follows from Lemma 8.4 since

we can rewrite the relation (70) as the relation (68).
To prove assertion 2 of the theorem, let α = λmin/(5ζ

2n(n + ν)µ). By the def-
inition, ζ = 2 + ω∗σ ≥ 4, so that we see α = λmin/(5ζ

2n(n + ν)µ) ≤ 1/80. By
Lemma 7.6, we then see that for every j = 1, 2, . . . , n

|αξj |, |αηj | ≤ α · ζnµ
λmin

=
λmin

5ζ2n(n + ν)µ
· ζnµ
λmin

≤ 1

20
.
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Hence, letting τ = 1/20, we obtain that |αξj |, |αηj | ≤ τ (j = 1, 2, . . . , n). By
Lemma 5.1, X + αdX ∈ S++ and Y + αdY ∈ S++. Thus we have shown the re-
lation (64).

To derive the inequality (65) we observe that

ξ(X + αdX) • (Y + αdY )

= ξ
(
X • Y + αTr (XdY + dXY ) + α2dX • dY )

= ξ
(
X • Y + αTr (Xd̂Y + d̂XY ) + α2dX • dY

)
(since X and Y are symmetric)

= ξ
(
X • Y + αTr (βµI −XY ) + α2Tr

√
X
−1
dX
√
Y
√
Y
−1
dY
√
X
)

(by the Newton equation (23))

≥ ξ
(
(1− (1− β)α)X • Y − α2‖√X−1

dX
√
Y ‖F · ‖

√
Y
−1
dY
√
X‖F

)
(since nµ = X • Y )

≥ ξ
(
(1− (1− β)α)X • Y − α2‖√X−1

d̂X
√
Y ‖F · ‖

√
Y
−1
d̂Y
√
X‖F

)
≥ ξ

(
(1− (1− β)α)X • Y − α2

(
ζnµ√
λmin

)2
)

(by 2 of Lemma 7.6)

= (1− α)ξX • Y + αξ

(
βnµ− α · ζ

2n2µ2

λmin

)
= (1− α)ξX • Y + αξ

(
n2µ

n + ν
− λmin

5ζ2n(n + ν)µ
· ζ

2n2µ2

λmin

)
(

since β =
n

n + ν
and α =

λmin

5ζ2n(n + ν)µ

)
= (1− α)ξX • Y + αξ

(
n2µ

n + ν
− nµ

5(n + ν)

)
≥ (1− α)ξX • Y
≥ (1− α)θrX0 • Y 0 (by assertion 1 of the theorem).

Thus we have shown the inequality (65).
Now we derive the inequality (66):

f(X + αdX,Y + αdY )− f(X,Y )

≤ αG1(dX, dY ) + α2G2(dX, dY ) (by 1 of Lemma 7.4)

= − α

βµ
‖H(β)‖2F +

α2(n + ν)dX • dY
nµ

+
α2
∑n

j=1(ξ
2
j + η2

j )

2(1− τ)

(by 1 of Lemma 7.4 with τ = 1/20)

≤ − α

βµ
‖H(β)‖2F +

α2(n + ν)d̂X • d̂Y
nµ

+
α2
∑n

j=1(ξ
2
j + η2

j )

2(1− τ)

≤ − α

βµ
‖H(β)‖2F +

α2

4βµ
‖H(β)‖2F +

2α2(ζnµ)2)

2(1− 1/20)λ2
min

(by 3 of Lemma 7.1 with Q = βµI −XY , 3 of Lemma 7.6,

and β = n/(n + ν))
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≤ − α

βµ
‖H(β)‖2F ·

(
1− α

4

)
+

α2(ζnµ)2)

(1− 1/20)λ2
min

≤ − λmin

5ζ2β(n + ν)2µ
· 1

βµ
‖H(β)‖2F ·

(
1− 1

320

)
+

(
λmin

5ζ2n(n + ν)µ

)2

· 20(ζnµ)2

19λ2
min

(
since α =

λmin

5ζ2n(n + ν)µ
≤ 1

80

)
= − 1

5ζ2(n + ν)2
·
(√

λmin

βµ
‖H(β)‖F

)2

· 319

320

+
1

52ζ2(n + ν)2
· 20

19

≤ − 1

5ζ2(n + ν)2
· 3

4
· 319

320
+

1

25ζ2(n + ν)2
· 20

19
(by 2 of Lemma 7.4)

≤ − 1

10ζ2(n + ν)2
.

Thus we have shown the inequality (66).
Assertion 2 follows directly from 1 of Lemma 7.6. This completes the proof of

Theorem 8.3.
Assume that the hypothesis in section 7 is true. Then Theorem 8.3 ensures that

the IIP potential-reduction method generates an infinite sequence {(Xr,Y r) ∈ S2
++}

satisfying 
f(Xr,Y r) ≤ f(X0,Y 0)− rδ,
θrX0 • Y 0 ≤ ξXr • Y r,
(Xr,Y r) ∈ F + θr

(
(X0,Y 0)− (X ′,Y ′)

)(71)

for every r = 0, 1, 2, . . . . Thus we may regard (Xr,Y r) with any sufficiently large
r as an approximate solution of the SDLCP (1). More precisely, for any given ε > 0
we have Xr • Y r ≤ ε and θr ≤ ξε/(X0 • Y 0) if r ≥ (f(X0,Y 0) − ν log ε)/δ. If in
addition ν =

√
n and (X0,Y 0) = ρ(I, I) for some ρ > 0, then the right-hand side

of the inequality above is of O(n2.5 log(nρ/ε)), the same order as the constrained
potential-reduction algorithm (Algorithm I) proposed by Mizuno, Kojima, and Todd
[32]. Besides the constrained potential-reduction algorithm, Mizuno, Kojima, and
Todd [32] also presented a pure potential-reduction algorithm (Algorithm II) and
its O(nL)-iteration variant (Algorithm III). We could also modify the IIP potential-
reduction method to develop such variants, but the details are omitted here.

9. Concluding remarks. There remain many theoretical and practical issues
to be studied further on the monotone SDLCP (1) in symmetric matrices and interior-
point methods for solving it. In particular, the authors are interested in feasible and
infeasible interior-point methods using a wide neighborhood of the central trajectory.
The central trajectory following method in section 8.1 is mainly of theoretical impor-
tance. We need to prepare an initial feasible interior point (X0,Y 0) in the narrow
neighborhood N (γ) with γ = 0.1 and confine the generated sequence in the neigh-
borhood. Even when we know such an initial feasible interior point, we should take a
smaller search direction parameter β and a larger step size parameter α to increase the
computational efficiency. Instead of N (γ), we could consider a wider neighborhood

N∞(π) =

{
(X,Y ) ∈ S2

++ :
λmin ≥ πTr XY /n, where λmin denotes
the minimum eigenvalue of XY

}
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(for infeasible interior-point methods)

or

N∞(π) ∩ F++ (for feasible interior-point methods)

of the central trajectory. Here π > 0. This type of neighborhood has been successfully
utilized in many feasible and infeasible interior-point methods ([18, 20, 26, 33, 48],
etc.) for linear programs in the Euclidean space. The authors tried to extend the
Kojima–Megiddo–Mizuno infeasible interior-point method [18] to the SDLCP (1) in
symmetric matrices but encountered some difficulties in analyzing the step length
parameter α, which keeps the next iterate remaining in the neighborhood N∞(π).

Nesterov and Nemirovskii [36] discussed variational inequalities with monotone
operators and presented a path-following method for solving them.

In their recent paper [37], Nesterov and Todd presented a quite general theoretical
foundation for interior-point algorithms for a wide class of nonlinear programs in
conic form including a primal-dual pair (2) of semidefinite programs as a special
case. Among others, they proposed a joint scaling primal-dual interior-point method
for linear programs in conic form, which is an extension of the O(

√
nL) iteration

potential-reduction algorithm given by Kojima–Mizuno–Yoshise [22]. Our current
paper has been written independently of their paper [37].

Acknowledgment. The authors wish to thank Dr. M. Shida and the anonymous
referees for very thorough reading of the manuscript and many valuable comments
and suggestions to improve the paper.
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A FAMILY OF POLYNOMIAL AFFINE SCALING ALGORITHMS
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Abstract. In this paper the new polynomial affine scaling algorithm of Jansen, Roos, and Ter-
laky for linear programming (LP) is extended to positive semidefinite (PSD) linear complementarity
problems. The algorithm is immediately further generalized to allow higher order scaling. These
algorithms are also new for the LP case. The analysis is based on Ling’s proof for the LP case;
hence, it allows an arbitrary interior feasible pair to start with. With the scaling of Jansen, Roos,
and Terlaky, the complexity of the algorithm is

O
(

n

ρ2(1− ρ2)
ln

(x(0))T s(0)

ε

)
,

where ρ2 is a uniform bound for the ratio of the smallest and largest coordinate of the iterates in
the primal-dual space.

We also show that Monteiro, Adler, and Resende’s polynomial complexity result for the classical
primal-dual affine scaling algorithm can easily be derived from our analysis. In addition, our result
is valid for arbitrary, not necessarily centered, initial points.

Finally, some computational results are presented, which indicate the influence of the order of
the scaling on the numerical performance.

Key words. interior-point method, affine scaling method, linear complementarity problem

AMS subject classifications. 90C33, 90C20, 90C05
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1. Introduction. In this paper we consider the positive semidefinite (PSD) lin-
ear complementarity problem (LCP) as follows:

−Mx + s = q, x ≥ 0, s ≥ 0, xs = 0,(1.1)

where M is a given n×n real PSD matrix, q ∈ Rn, and xs denotes the componentwise
product of the vectors x and s. The set of feasible and positive feasible vectors is
denoted, respectively, by

F = { (x, s) | −Mx + s = q, x ≥ 0, s ≥ 0 },
F0 = { (x, s) | −Mx + s = q, x > 0, s > 0 }.

We shall assume throughout that F0 6= ∅.
Scaling is one of the most important techniques in modern polynomial time opti-

mization methods. The first affine scaling algorithm of Dikin [2] remained unnoticed
for a long time. After Karmarkar [9] initiated the dynamically developing field of
interior point methods (IPMs), affine scaling became one of the basic concepts in
IPMs. Primal or dual affine scaling methods were studied by, e.g., Barnes [1], Van-
derbei, Meketon, and Freedman [17], Tsuchiya and Muramatsu [16], and Saigal [15].

∗Received by the editors December 14, 1993; accepted for publication (in revised form) September
18, 1995. This work was completed with the support of a research grant from Shell.

http://www.siam.org/journals/siopt/7-1/26234.html
†Faculty of Technical Mathematics and Informatics, Delft University of Technology, P.O. Box

5031, 2600 GA Delft, The Netherlands (b.jansen@twi.tudelft.nl, c.roos@twi.tudelft.nl, t.terlaky@
twi.tudelft.nl). The research of the first author was supported by the Dutch Organization for Scientific
Research (NWO) under grant 611-304-028.

126



POLYNOMIAL AFFINE SCALING ALGORITHMS 127

A primal-dual affine scaling algorithm for linear programming (LP) was analyzed by
Monteiro, Adler, and Resende [14]. For a general framework of IPMs for LCP, see
[10].

Recently, the authors proposed a new primal-dual affine scaling method for LP [8].
Given a nearly centered primal-dual interior feasible pair, they define an affine scaling
direction (dx, ds) as the steepest descent in the norm induced by Dikin’s ellipsoid in
the primal-dual space. Provided that the step along this direction is small enough, the
next iterate is still nearly centered. This is due to the fact that this new affine scaling
direction has a centering component; more precisely, it is tangent to a curve that
tends to the central path. Having a well-centered initial pair, the complexity of the
algorithm is proved to be O(nL) iterations (compared with the O(nL2) complexity
bound of the classical primal-dual affine scaling algorithm [14]). Ling [11] gave a new
analysis of the new affine scaling method, allowing any interior starting point and
proving that the complexity of the algorithm is O( n

ρ2L), where ρ2 is uniform bound

for the ratio of the smallest and largest coordinate of the product x(k)s(k) during the
algorithm.

The aim of this paper is to generalize the approach in [8] in two ways. First, we
consider the LCP instead of the LP problem. Secondly, we analyze a family of affine
scaling methods of which the algorithm in [8] is just a special case. It is also shown
that the classical affine scaling algorithm can be derived as the limiting case of our
family, and the use of our analysis provides a new, simple proof for the polynomial
complexity (see also Monteiro, Adler, and Resende [14] and Mizuno and Nagasawa
[13]) of the classical affine scaling algorithm, using an arbitrary initial interior point.
Hence, as in [8], we apply and further extend Dikin’s original scaling approach in the
primal-dual (xs)-space. It may be recalled from [8] that the resulting search directions
are not a linear combination of the classical affine scaling and centering directions, as
is usual in the context of IPMs (see [7]).

The paper is organized as follows. The generalized Dikin-type search directions
are derived and discussed in section 2. The algorithmic frame is presented in section
3. Some general results, true for all r ≥ 0, are proved in section 4. The proof of
polynomial convergence for r > 0 is presented in section 5. Then, in section 6 we
derive the polynomial complexity of the classical primal-dual affine scaling algorithm
with suitable step size. Finally, section 7 contains some illustrative computational
results.

Throughout, we shall use ‖·‖p (p ∈ [1,∞]) to denote the lp norm on Rn, with ‖·‖
denoting the Euclidean norm ‖·‖2. E will denote the identity matrix; e will be used to
denote the vector which has all its components equal to one. Given an n-dimensional
vector d, we denote by D the n × n diagonal matrix whose diagonal entries are the
coordinates dj of d. If x, s ∈ Rn then xT s denotes the dot product of the two vectors.
Further, xs and xα for α ∈ R will denote the vector resulting from componentwise
operations.

2. The search directions. In [8], the new affine scaling direction (∆x,∆s) for
LP is obtained by minimizing the duality gap over a suitable ellipsoid which is called
the primal-dual Dikin ellipsoid. In this paper we generalize this approach to LCPs,
and we also generalize the scaling by introducing a parameter r > 0 which is called
the degree of scaling. We remark that r = 1 will give the algorithm studied in [8] for
LP and the classical affine scaling algorithm is obtained with the value r = 0.

Let a strictly feasible pair (x, s) ∈ F0 be given. To determine the search direction
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(∆x,∆s) for a fixed value of r we consider the following problem:

minimize ((xs)r)T (x−1∆x + s−1∆s)

subject to −M∆x + ∆s = 0,(2.1)

‖x−1∆x + s−1∆s‖ ≤ 1.

This minimization problem has a unique solution, as we now will show. It is convenient
to introduce some notations. For each positive primal-dual pair (x, s), define

v := (xs)
1
2 and d := (xs−1)

1
2 .

Hence we have

x = dv and s = d−1v.

Further, let us denote

px := d−1∆x and ps := d∆s,

pv := px + ps and M := DMD.
(2.2)

These relations imply that

x∆s + s∆x = xd−1ps + sdpx = v(px + ps) = vpv,

hence

xT∆s + sT∆x = vT pv,

and

x−1∆x + s−1∆s = (xs)−1(x∆s + s∆x) = v−2vpv = v−1pv.

Using these notations problem (2.1) can be reformulated as follows:

minimize (v2r−1)T (px + ps)

subject to −Mpx + ps = 0,(2.3)

‖v−1(px + ps)‖ ≤ 1.

We can eliminate ps from (2.3) by using ps = Mpx. Now, using (2.2),

pv = px + ps = (E + M)px.

Hence (2.3) is equivalent to

minimize (v2r−1)T pv

subject to ‖v−1pv‖ ≤ 1.

This is a trivial optimization problem with a unique solution; namely,

pv = −v2r+1

‖v2r‖ .(2.4)
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From now on, pv will have the meaning shown in (2.4). Thus we find

px = (E + M)−1pv and ps = M(E + M)−1pv.(2.5)

Rescaling to ∆x and ∆s we thus find

∆x = D(E + DMD)−1pv; ∆s = MD(E + DMD)−1pv.(2.6)

We can now also calculate the optimal value of (2.1); namely,

((xs)r)T (x−1∆x + s−1∆s) = (v2r−1)T pv = −eT v4r

‖v2r‖ = −‖v2r‖.

Note, that (∆x,∆s) is the unique solution of the system of equations

−M∆x + ∆s = 0,

s∆x + x∆s = − v2r+2

‖v2r‖ .

If we compare this with the classical equation system of the primal-dual affine scaling

method, we see that at the right-hand side of the second equation we have −v2r+2

‖v2r‖
instead of −v2. See, e.g., [10]. So classical affine scaling occurs for r = 0, whereas
r = 1 gives the new affine scaling direction proposed in [8].

3. The algorithm. The algorithm is initialized with (x(0), s(0)) ∈ F0 and re-
peatedly makes steps in the direction (∆x,∆s), using a fixed step size θ, until the
error in complementarity reaches some prescribed value ε. For each degree of scaling
r > 0 one can define an algorithm, which formally is stated as follows.

Algorithm.
Input

(x0, s0): the initial pair of interior feasible solutions;
r > 0: the degree of scaling;

Parameters
ε is the accuracy parameter;
θ is the step size;

begin
x := x(0); s := s(0);
while xT s > ε do

calculate ∆x and ∆s from (2.4) and (2.6);
x := x + θ∆x;
s := s + θ∆s;

end

end.

4. General results for r ≥ 0. Given (x, s), the new iterates will be denoted
by x̂ = x + θ∆x and ŝ = s + θ∆s, respectively, where θ is the step size. So we have

v̂2 := x̂ŝ = xs + θ(x∆s + s∆x) + θ2∆x∆s = v2 + θvpv + θ2pxps.

As a consequence, the new error in complementarity is given by

x̂T ŝ = eT v̂2 = eT v2 + θvT pv + θ2pTx ps = eT v2 − θ
eT v2r+2

‖v2r‖ + θ2pTx ps.(4.1)
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To be able to bound the error in complementarity we need to bound the last two
terms in (4.1). Note that due to matrix M being PSD, one has that M is also PSD;
hence,

pTx ps = pTxMpx ≥ 0.

From (4.1) it is clear that for an estimate of the error in complementarity after one
iteration, we need an estimate for pTx ps. Later on we also need an estimate for
‖pxps‖∞. For both purposes the following lemma is useful.

Lemma 4.1. Let px, ps, and pv be defined as in (2.4) and (2.5). One has
(i) ‖pv‖ ≤ ‖v‖∞ ≤ ‖v‖,
(ii) 0 ≤ ∆xT∆s = pTx ps ≤ ‖pv‖2

4 ,

(iii) ‖∆x∆s‖∞ = ‖pxps‖∞ ≤ ‖pv‖2
4 .

Proof. (i): since pv = − v2r+1

‖v2r‖ , the inequalities ‖pv‖ ≤ ‖v‖∞ ≤ ‖v‖ are obvious.

(ii): to prove the other inequalities, we introduce the notation qv = px − ps. One
has

‖qv‖2 = ‖px‖2 + ‖ps‖2 − 2pTx ps = ‖pv‖2 − 4pTx ps ≤ ‖pv‖2.(4.2)

Consequently,

∆xT∆s = pTx ps = 1
4 (‖pv‖2 − ‖qv‖2

) ≤ 1
4 ‖pv‖2

,

which proves (ii).
(iii): using that

pxps = 1
4 (p2

v − q2
v),

we write

‖pxps‖∞ ≤ 1
4 max(‖pv‖2

∞, ‖qv‖2
∞) ≤ 1

4 max(‖pv‖2, ‖qv‖2) = 1
4‖pv‖2.

The last inequality follows from (4.2). This completes the proof of the lemma.
We introduce some further notations. Since our algorithm can start in any interior

feasible point, the complexity will depend on the ratio between the smallest and largest
coordinate of v (cf. [11]). This ratio will be denoted by ω(v). So we define

ω(v) :=
min(v)

max(v)
,

where max(v) denotes the largest coordinate of v and min(v) denotes the smallest
coordinate of v. If ω(v) ≥ ρ, there are α, β ∈ (0,∞) such that

αe ≤ v2 ≤ βe, with
α

β
= ρ2.(4.3)

A crucial part of the analysis is to give an upper bound for the second term in (4.1):

ϑ(r) := vT pv = −eT v2r+2

‖v2r‖ ,

where v is given. Later on we also will give conditions which ensure that ω(v) will
remain bounded during the algorithm.
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Lemma 4.2. Let v ∈ Rn
+ be an arbitrary vector. Depending on the value of r, the

following bounds hold for ϑ(r).

(i) If 0 ≤ r ≤ 1, then ϑ(r) ≤ −‖v‖2√
n

.

(ii) If 1 ≤ r and ω(v) ≥ ρ, then ϑ(r) ≤ −ρ2r−2

√
n
‖v‖2.

Proof. (i): it is obvious that ϑ(0) = −‖v‖2√
n

. Hence it is enough to show that the

derivative of ϑ(r) is nonpositive as long as 0 ≤ r ≤ 1. Let us first differentiate the
nominator and denominator separately.

(eT v2r+2)′ = 2
n∑
i=1

v2r+2
i ln vi.

‖v2r‖′ =

√√√√ n∑
i=1

v4r
i

′ =
4

2‖v2r‖
n∑
i=1

v4r
i ln vi =

2
∑n

i=1 v
4r
i ln vi

‖v2r‖ .

The sign of ϑ′(r) is determined by the nominator of the derivative, which is given by

−
(

2

n∑
i=1

v2r+2
i ‖v2r‖ ln vi − 2

‖v2r‖
n∑
i=1

v4r
i ‖vr+1‖2 ln vi

)

=
2

‖v2r‖
n∑
i=1

(
v4r
i ‖vr+1‖2 − v2r+2

i ‖v2r‖2
)
ln vi.

Now we may write

2
n∑
i=1

(
v4r
i ‖vr+1‖2 − v2r+2

i ‖v2r‖2
)
ln vi = 2

n∑
i=1

n∑
j=1

(
v4r
i v2r+2

j − v2r+2
i v4r

j

)
ln vi

= 2

n∑
i,j=1

(vivj)
2r+2(v2r−2

i − v2r−2
j ) ln vi

=

n∑
i,j=1

(vivj)
2r+2

(
(v2r−2

i − v2r−2
j ) ln vi + (v2r−2

j − v2r−2
i ) ln vj

)
=

n∑
i,j=1

(vivj)
2r+2(v2r−2

i − v2r−2
j ) ln

vi
vj
.

The last expression is nonpositive for r ≤ 1 and nonnegative for r > 1, hence
ϑ(r) is monotone nonincreasing if 0 ≤ r ≤ 1 and monotone nondecreasing if r > 1.

Since ϑ(0) = − ‖v‖2√
n

we have ϑ(r) ≤ −‖v‖2√
n

if 0 ≤ r ≤ 1. The first part of the lemma

is proved.
(ii): using (4.3), one has

−ϑ(r) =
eT v2r+2

‖v2r‖‖v‖2
‖v‖2

≥ αr−1eT v4

βr−1‖v2‖‖v‖2
‖v‖2

≥ ρ2r−2

√
n
‖v‖2.
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The last inequality follows from

eT v4

‖v2‖‖v‖2
=
‖v2‖
‖v‖2

≥ 1√
n
,

where the Cauchy–Schwartz inequality is used. The proof is completed.
Remark. Observe that the above lemma is trivial if r = 1. In that case, ϑ(1) ≤

−‖v‖2√
n

is an immediate consequence of the Cauchy–Schwartz inequality. This was the

last step in the above proof.
Now we can guarantee a decrease in the error of complementarity.
Lemma 4.3. (i): if 0 ≤ r ≤ 1 and θ ≤ 2√

n
then

x̂T ŝ = ‖v̂‖2 ≤
(

1− θ

2
√
n

)
‖v‖2.(4.4)

(ii): if 1 ≤ r and θ ≤ 2ρ2r−2

√
n

then

x̂T ŝ = ‖v̂‖2 ≤
(

1− θρ2r−2

2
√
n

)
‖v‖2.(4.5)

Proof. From (4.1) one has the following:

‖v̂‖2
= ‖v‖2 − θ

eT v2r+2

‖v2r‖ + θ2pTx ps = ‖v‖2
+ ϑ(r) + θ2pTx ps.

(i): using Lemmas 4.1 and 4.2 we obtain

‖v̂‖2 ≤
(

1− θ√
n

+
θ2

4

)
‖v‖2.

Since θ ≤ 2√
n
, it follows that

1− θ√
n

+
θ2

4
≤ 1− θ√

n
+

θ

2
√
n

= 1− θ

2
√
n
.

This proves the first part.
(ii): we use Lemmas 4.1 and 4.2 again to get

‖v̂‖2 ≤
(

1− θρ2r−2

√
n

+
θ2

4

)
‖v‖2.

Since θ ≤ 2ρ2r−2

√
n

, it follows that

1− θρ2r−2

√
n

+
θ2

4
≤ 1− θρ2r−2

√
n

+
θρ2r−2

2
√
n

= 1− θρ2r−2

2
√
n

.

The lemma is proved.
Lemma 4.3 makes clear that the algorithm will converge if the step size θ can be

bounded away from zero, since this will guarantee a fixed reduction of ‖v‖2. If the
lower bound for θ is sufficiently large, then the algorithm will be polynomial.
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We proceed with a condition on the step size that guarantees feasibility of the
new iterates. Let us say that the step size θ is feasible, if the new iterates are positive.
Then we may state the following result.

Lemma 4.4. Let 0 ≤ τ , x(τ) = x+ τ∆x, s(τ) = s+ τ∆s, and v2(τ) = x(τ)s(τ).
If τ̄ is such that v2(τ) > 0 for all τ satisfying 0 ≤ τ ≤ τ̄ , then the step size τ̄ is
feasible.

Proof. If τ̄ satisfies the hypothesis of the lemma, then x(τ̄) and s(τ̄) cannot
vanish for any τ ∈ [0, τ̄ ]. Hence, by continuity, x(τ) and s(τ) must be positive for any
such τ .

5. The proof of polynomial complexity if r > 0. The next theorem makes
clear that with a suitable step size, the new iterates not only stay feasible but also
that the ratio of the smallest and largest coordinate of v will remain bounded by ρ;
i.e., ω(v) ≥ ρ stays valid for all the iterates. The proof goes along the same lines as
the proof of Theorem 3 in [11] for the LP case with r = 1.

Theorem 5.1. If (x, s) ∈ F0, 0 < ρ < 1, r > 0, ω(v) ≥ ρ, and

0 ≤ θ ≤ min

(
2ρ

(√
1 +

ρ2

n
− ρ√

n

)
,
ρ2r

√
n

r + 1
,

4ρ2(1− ρ2r)

(1 + ρ2)
√
n

)
,(5.1)

then (x̂, ŝ) ∈ F0 and ρ ≤ ω(v̂).
Proof. The hypothesis of the theorem provides three upper bounds for the step

size θ. As we will see below, the first upper bound guarantees feasibility of the new
iterates and the last guarantees that ω(v̂) ≥ ρ, both under the premise that the second
bound holds.

Let α and β be defined as in (4.3). We remind that by (4.1),

v̂2 = x̂ŝ = v2 − θ
v2r+2

‖v2r‖ + θ2pxps.

One easily verifies that the function

ϕ(t) = t− θ
tr+1

‖v2r‖

is monotonically increasing on the interval [0, β] if θ ≤ ‖v2r‖
(r+1)βr . The second upper

bound for θ now guarantees the monotonicity of ϕ, because

‖v2r‖
(r + 1)βr

≥ αr‖e‖
(r + 1)βr

=
ρ2r

√
n

r + 1
≥ θ.

Using this monotonicity property together with (4.3), one has the inequalities(
α− θ

αr+1

‖v2r‖
)
e ≤ v2 − θ

v2r+2

‖v2r‖ ≤
(
β − θ

βr+1

‖v2r‖
)
e.

So the minimal and maximal coordinates of v̂2 are bounded by

min(v̂2) ≥ α− θ αr+1

‖v2r‖ − θ2‖pxps‖∞,

max(v̂2) ≤ β − θ βr+1

‖v2r‖ + θ2‖pxps‖∞.
(5.2)
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Now, by applying Lemma 4.1 and observing that ‖pv‖2 ≤ β, we see that

‖pxps‖∞ ≤ 1
4β.(5.3)

Hence from (5.2) and (5.3),

min(v̂2) ≥ α− θ αr+1

‖v2r‖ − 1
4θ

2β,

max(v̂2) ≤ β − θ βr+1

‖v2r‖ + 1
4θ

2β.
(5.4)

Lemma 4.4 implies that the new iterates will be feasible if min(v̂2) > 0. After dividing
by α, this amounts to the following condition on θ:

1− θαr

‖v2r‖ −
θ2

4ρ2
≥ 0.

Since

αr

‖v2r‖ =
‖αre‖√
n ‖v2r‖ ≤

1√
n
,

this certainly holds if

1− θ√
n
− θ2

4ρ2
≥ 0.

Elementary calculations make clear that this condition is satisfied, due to the first
upper bound on θ in the theorem. So the new iterates are feasible.

Now ω(v̂) ≥ ρ will certainly hold if

β − θ
βr+1

‖v2r‖ + 1
4θ

2β ≤ 1

ρ2

(
α− θ

αr+1

‖v2r‖ −
1
4θ

2β

)
.

On dividing this by β = α
ρ2 , we see that this is equivalent to

1− θ
βr

‖v2r‖ + 1
4θ

2 ≤ 1− θ
αr

‖v2r‖ −
θ2

4ρ2
.

By rearranging, one has

θ
1 + ρ2

ρ2
≤ 4(βr − αr)

‖v2r‖ ;

that is,

θ ≤ 4ρ2(βr − αr)

(1 + ρ2)‖v2r‖ .(5.5)

From (4.3), the definition of α and β,

αr
√
n ≤ ‖v2r‖ ≤ βr

√
n.

Hence

βr − αr

‖v2r‖ ≥ 1− ρ2r

√
n

,
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so (5.5) will certainly hold if

θ ≤ 4ρ2(1− ρ2r)

(1 + ρ2)
√
n
,

which is guaranteed by the third upper bound for θ in the theorem. Hence it is proved
that the new iterate is at least as well centered as the old one.

We have that for each 0 < ρ < 1 there exists a 0 < θ such that all the iterates
of the algorithm give a feasible primal-dual solution for which ω(v̂) ≥ ρ. Now we are
ready to present the complexity of the algorithms. The proof can be done in the usual
way.

Theorem 5.2. If ε > 0 is given, (x(0), s(0)) ∈ F0, and θ satisfies the conditions
of Lemma 4.3 and Theorem 5.1, then the algorithm stops, with a solution (x∗, s∗) for
which (x∗)T s∗ ≤ ε and ω(v∗) ≥ ρ holds, after at most

(i) 2
√
n
θ ln (x(0))T s(0)

ε iterations if 0 < r ≤ 1,

(ii) 2
√
n

θρ2r−2 ln (x(0))T s(0)

ε iterations if 1 < r.

Proof. (i): by Lemma 4.3, in each iteration the duality gap reduces by at least
the factor

1− θ

2
√
n
.(5.6)

So, after k steps the error in complementarity will be less than ε if(
1− θ

2
√
n

)k

(x(0))T s(0) ≤ ε.

Taking logarithms, one obtains

k ln

(
1− θ

2
√
n

)
≤ ln

ε

(x(0))T s(0)
,

which is certainly true if

−k θ

2
√
n
≤ ln

ε

(x(0))T s(0)
,

or, equivalently,

k ≥ 2
√
n

θ
ln

(x(0))T s(0)

ε
.(5.7)

This proves the first part of the theorem. The proof of part (ii) is analogous.
In the following corollaries we will use the notation ω2

0 = ω(x(0)s(0)).
Corollary 5.3. Let us take (x(0), s(0)) such that ω0 ≥ ρ = 1√

2
holds.

(i) If 0 < r ≤ 1 and n ≥ 4 then we may choose θ = 4(1−2−r)
3
√
n

, hence the complexity

of our algorithm is O( n
1−2−r ln (x(0))T s(0)

ε ).

(ii) If r = 1 and n ≥ 4 then we may choose θ = 1
2
√
n
, hence the complexity of our

algorithm is O(n ln (x(0))T s(0)

ε ).
(iii) If 1 < r and n is sufficiently large then we may choose θ = 4

2r
√
n
, hence the

complexity of the algorithm is O(22r−2n ln (x(0))T s(0)

ε ).
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Corollary 5.4. Let us take (x(0), s(0)) such that ω0 ≥ ρ holds. If r = 1 and

n is sufficiently large then we may choose θ = 2ρ2(1−ρ2)√
n

, hence the complexity of the

algorithm is O( n
ρ2(1−ρ2) ln (x(0))T s(0)

ε ).

Before proving polynomial complexity of our algorithm for r = 0, note that for
all r ≥ 0 the iterates stay in a fixed neighborhood of the central path. Thus, using
the results of Güler and Ye [5] we conclude that our algorithm produces a maximally
complementary solution.

6. Polynomial complexity if r = 0. In this section we show that, with suit-
able step-size, the classical primal-dual affine scaling algorithm is polynomial. The
obtained complexity bound, O(nL2), is the same as obtained by Monteiro, Adler, and
Resende [14] and by Mizuno and Nagasawa [13]. Our approach enjoys the advantages
of these two results. In the case of LP and convex quadratic programming problems,
our complexity result is the same as in the above mentioned papers. We use a fixed
step-size as it is in Monteiro, Adler, and Resende’s paper [14], but we do not use any
potential function which determines the actual step-size as presented by Mizuno and
Nagasawa [13]. Contrary to the assumptions in [14], as in [13] our analysis allows an
arbitrary, not necessarily centered, starting point. So from now on we assume that
r = 0. For keeping the discussion simple we assume, as in the previous section, that
n ≥ 4. It is easily verified that Lemmas 4.3 and 4.4 still apply in the present case.
Theorem 5.1, however, is not valid if r = 0. In fact, by taking the limit of the bounds
in Theorem 5.1 as r tends to zero, one obtains that the step size θ also tends to zero.
Below we show that by making a positive step (i.e., θ > 0), ω(v) may well decrease,
but the decrease can be bounded from below. In fact, this is the content of the next
lemma.

Lemma 6.1. If (x, s) ∈ F0 and

0 ≤ θ ≤ min

(
2ω(v)

(√
1 +

ω(v)2

n
− ω(v)√

n

)
,
√
n

)
(6.1)

then (x̂, ŝ) ∈ F0 and

1 + ω(v̂2) ≥ 1 + ω(v2)

1 + θ2
√
n

4(
√
n−θ)

.(6.2)

Proof. It may be clear from the proof of Theorem 5.1 that the given bounds (6.1)
on θ guarantee the feasibility of the new iterate (x̂, ŝ). So it remains to show that
(6.2) holds. First observe that (5.4) holds also for r = 0. Hence, by using the notation
ω2 = ω(v2) = α

β with α and β such that αe ≤ xs ≤ βe, one has

ω(v̂2) ≥
(1− θ√

n
)α− θ2β

4

(1− θ√
n
)β + θ2β

4

=
4ω2(

√
n− θ)− θ2

√
n

4(
√
n− θ) + θ2

√
n

.

By rearranging the terms, the inequality (6.2) directly follows.

Now we are ready to prove the polynomial complexity of the classical primal-dual
affine scaling algorithm for positive semidefinite LCPs. We will denote by (x(k), s(k))
the iterate after k iterations and for simplicity we use the notation ω2

k := ω(x(k)s(k)).
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Theorem 6.2. Let an initial interior point (x(0), s(0)) ∈ F0 with 1 ≥ ω0 and
0 < ε < (x(0))T s(0) be given. We define parameters L̃ and τ as follows:

L̃ := ln
(x(0))T s(0)

ε
, τ :=

2

ω2
0

+
1

nL̃
,

and we assume that
√

2nL̃ ≥ ω0. Then, taking θ = 1
t
√
nL̃

, where t is the (unique)

real number in the interval [τ, τ + 1
2nL̃2

) such that 2tnL̃2 is integral, after 2tnL̃2 =

O(nL̃
2

ω2
0

) iterations the algorithm yields a solution (x∗, s∗) such that (x∗)T s∗ ≤ ε and

ω(x∗s∗) ≥ ω2
0

2 .
Proof. For the moment we make the assumption that in each iteration of the

algorithm the step size θ = 1
t
√
nL̃

satisfies the conditions of Lemma 6.1. Later on we

will justify this assumption. Taking logarithms in (6.2) and substituting the given
value of θ, we obtain

ln
1 + ω2

0

1 + ω2
k

≤ k ln

(
1 +

θ2
√
n

4(
√
n− θ)

)
≤ kθ2

√
n

4(
√
n− θ)

=
k

4t2nL̃2 − 4tL̃
=

k

4tL̃
(
tnL̃− 1

) .
Hence we have ω2

k ≥ ω2
0

2 as long as

k

4tL̃
(
tnL̃− 1

) ≤ ln
1 + ω2

0

1 +
ω2

0

2

.(6.3)

Since f(τ) := ln((1 + τ)/(1 + τ/2)) is a concave function and f(0) = 0, f(1) ≥ 1
4 , one

has

ln
1 + ω2

0

1 +
ω2

0

2

≥ ω2
0

4
.

As a consequence, the inequality (6.3) is certainly satisfied if

k ≤ ω2
0tL̃

(
tnL̃− 1

)
.(6.4)

We conclude that, to maintain the inequality ω2
k ≥ ω2

0

2 , the total number of iterations
must satisfy (6.4).

Since Lemma 4.3 is valid, the proof of Theorem 5.2 makes clear (see (5.6) and
(5.7)) that the algorithm stops after at most k iterations, where

k ≥ 2

√
n

θ
ln

(x(0))T s(0)

ε
= 2tnL̃2,

and then we have (x(k))T s(k) ≤ ε. (Note that the definition of t guarantees that 2tnL̃2

is integral.) So, as far as the gap reduction is concerned, the algorithm needs not more
than 2tnL̃2 iterations. This number of iterations will respect the bound (6.4) if

2tnL̃2 ≤ ω2
0tL̃

(
tnL̃− 1

)
.

Dividing both sides by ω2
0tnL̃

2, this reduces to the inequality t ≥ τ , which clearly is
satisfied by the value assigned to t in the theorem.
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It remains to show that in each iteration of the algorithm the specified step size
θ satisfies condition (6.1) of Lemma 6.1. First, observe that θ ≤ √

n is equivalent to
tnL̃ ≥ 1. Since t ≥ τ and τnL̃ ≥ 1, we have θ ≤ √

n. It remains to deal with the
condition that for each k, with 1 ≤ k ≤ 2tnL̃2,

θ ≤ 2ωk

(√
1 +

ω2
k

n
− ωk√

n

)
.

Using n ≥ 4, we have ωk√
n
≤ ωk

2 ≤ 1
2 . Therefore, since

2
(√

1 + σ2 − σ
)
> 1 if 0 ≤ σ < 3

4 ,

it is sufficient that θ ≤ ωk for each k. As we have seen before, for the given step
size we have ωk ≥ ω0√

2
for each k. So is it sufficient that θ satisfies θ ≤ ω0√

2
. This

amounts to ω0t
√
nL̃ ≥ √

2. Due to the assumption in the theorem that
√

2nL̃ ≥ ω0,
this certainly holds if t satisfies ω2

0t ≥ 2. Since ω2
0τ ≥ 2 and t ≥ τ it is obvious that t

satisfies this inequality. Hence the proof of the theorem is complete.
Remarks. We can make the results of Theorem 6.2 more concrete as follows.
• If we choose a centered starting point, i.e., ω0 = 1, then 2 < τ ≤ 3 and so also

2 < t ≤ 3. Hence in that case the algorithm needs at most 6nL̃2 iterations.
• Let L denote the size of the LCP (1.1). If we assume that for the initial point

(x(0))T s(0) = O(2L) and ε = O(2−L), then we solve the LCP in O(2tnL2) iterations.
If in addition the starting point is centered, then we have O(6nL2) complexity.

• Finally, note that although our analysis proves the polynomial complexity of the
classical primal-dual affine scaling algorithm for arbitrary, not necessarily centered,
starting points, the constant t depends on the (non)centrality of the initial point. A
less centered initial point results in a larger t value. Clearly, as ω0 tends to zero, then
t goes to infinity. This behavior is in conformance with the results of section 5.

7. Computational results. To illustrate the effect of the parameter r on the
numerical performance of the algorithm, we solved a series of convex quadratic pro-
gramming problems (reformulated as linear complementarity problems). The prob-
lems are coming from statistics and known as convex regression problems [3, 6]. We
have been given two n-dimensional vectors a and c. The values ai are the sample
points and the values ci are the observed function (distribution) values. The problem
is to find a convex regression function with function values yi in the sample points ai,
where the distance between the observation (c) and function values (y) is minimal.
We have the following formal quadratic programming problem:

min

n∑
i=1

(yi − ci)
2

s.t.
yi+1 − yi
ai+1 − ai

≥ yi − yi−1

ai − ai−1
for all i = 2, 3, . . . , n− 1.

In our test set the values ai are random numbers from a uniform distribution on the
interval [-1,1] and ci = (ai − 0.5)2 + ei, where ei has a normal distribution with zero
mean and 0.1 variance.

We have implemented our family of algorithms in MATLAB (version 4.0) with
efficient sparse matrix handling facility [12, 4]. For the computation we used a 90Mhz
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Table 7.1

The order of scaling: r
n 0.0 0.01 0.1 0.5 1 2 5 10 15 20 25

10 62.7 48.4 28.4 27.0 26.2 28.3 38.1 50.9 62.0 69.8 73.51

25 120.1 59.6 36.8 33.7 33.0 34.3 46.8 66.3 83.3 95.81 107.74

50 37.6 35.7 40.5 37.7 37.8 40.0 49.7 69.5 88.0 105.4 115.86

75 44.9 67.8 55.9 49.0 48.8 50.3 60.5 82.8 103.0 120.21 126.58

100 144.8 54.6 68.0 57.9 57.4 58.7 69.5 94.4 111.8 131.11 137.89

200 68.9 57.7 205.5 107.2 99.9 102.4 115.6 138.0 160.7 176.34 ∗ ∗ ∗10
300 71.5 69.4 524.4 189.4 154.9 157.3 171.0 195.3 218.5 232.36 ∗ ∗ ∗10
400 258.13 199.43 1078.4 308.5 227.2 221.7 235.6 259.3 282.7 301.65 319.58

500 159.82 209.62 761.72 458.6 319.0 301.4 309.6 332.2 355.6 374.55 394.09

Table 7.2

The order of scaling: r
n 0.0 0.01 0.1 0.5 1 2 5 10 15 20 25

10max 114 65 32 31 30 32 42 59 72 83 87
10min 26 26 22 22 22 24 32 43 52 58 59
25max 653 151 54 44 43 45 60 89 110 103 116
25min 28 28 31 29 29 30 42 60 75 89 102
50max 61 60 44 41 42 44 54 75 95 114 121
50min 30 29 37 36 36 38 47 65 80 96 109
75max 72 293 66 54 53 54 66 93 116 129 127
75min 37 36 50 46 45 47 56 77 95 111 126
100max 980 154 76 62 61 62 76 122 123 138 137
100min 37 36 62 55 54 56 66 87 105 121 137
200max 100 87 303 111 104 106 122 147 174 190 ***
200min 41 40 146 105 97 99 110 130 150 169 ***
300max 96 113 736 193 159 160 176 203 229 239 ***
300min 48 49 318 186 151 153 164 185 204 222 ***
400max 1314 904 1598 315 231 227 245 272 297 305 322
400min 56 64 890 304 224 218 231 252 276 297 317
500max 508 833 1813 466 323 304 314 340 364 383 394
500min 66 72 1337 454 316 299 306 328 349 370 394

Pentium processor PC with 32 MB memory. Besides the order of scaling (r), there
is one more important parameter in the algorithm, the step-size. As is always the
case, the theoretical step-size is too pessimistic in practice. After some experiments
we used 2

3 of the maximal possible step in all the experiments.

In Table 7.1 the average number of iterations needed to reach a 10−5 precision in
the duality gap is presented for a series of test problems with n taking values in the
range from 10 to 1000 and for 11 different values of r in the range from 0 to 25. We have
solved 10 problems of each size and with each r. The maximum number of iterations
was set to 2500. Only the successful runs were taken into account in calculating the
average. If a failure (no solution in 2500 iterations) occurred in solving a certain set
of problems then the number of failures is indicated by superscripts.

In Table 7.2 the maximal and the minimal number of iterations of the successful
runs are reported. From the computational results presented in Tables 7.1 and 7.2 we
draw the following conclusions.

• If r is too small (close to zero or equal to zero), the algorithm becomes very
unstable. Sometimes very low iteration numbers occur, while in a slightly different
case the iteration number is high or the algorithm fails. This underlines the common
knowledge that centering is needed to stabilize IPMs.
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Similar problems occur when r is too big (greater than 15). Then the difficulties
are due to the high exponents which make sufficiently precise calculations impossible.
It seems that there is no universal best r value. The selection of the best r value
depends on the dimension.

• Looking at the r values (0.1 ≤ r ≤ 15), one can observe that lowest iteration
numbers are consistently obtained for slightly increasing r values as the dimension
increases. This means that as the dimension increases, the importance of centering
increases as well.

• For fixed r the number of iterations increases almost linearly in the dimension.
In efficient IPMs for LP the number of iterations is almost constant, which is not the
case with this algorithm. Here the gap between the theoretically worst case and the
practical behavior seems to be smaller than in general.
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Abstract. An important problem in linear algebra and optimization is the trust-region sub-
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1. Introduction. An important problem in linear algebra and optimization is
the trust-region subproblem: minimize a quadratic function subject to an ellipsoidal
constraint. A mathematical statement of the problem is

min 1
2x

TAx+ gTx subject to ‖Cx‖ ≤ ∆,

where A is an n×n symmetric matrix, g is an n vector, x is the unknown n vector, C
is a nonsingular matrix, and ∆ is a given positive number. The norm is the standard
2-norm, T denotes transpose, and all quantities are real.

This basic problem has many applications. The regularization or smoothing of
discrete forms of ill-posed problems such as those arising in seismic inversion and
the trust-region mechanism used to force convergence in optimization methods are
two examples of significant computational importance. Discussions of the problem of
minimizing a quadratic function subject to a quadratic constraint may be found in
[5], [6], [10]. Applications to unconstrained optimization algorithms are given in [9],
[10], [15], and applications to constrained optimization algorithms are discussed in [1],
[2], [4], [13]. For applications to seismic inversion, see [8], [17].

A solution x to the problem must satisfy a relation of the form

(A+ µCTC)x = −g,
with ‖Cx‖ = ∆. The parameter µ is the regularization parameter for ill-posed prob-
lems, and it is the Levenberg–Marquardt parameter in optimization. C is often con-
structed to impose a smoothness condition on the solution x for ill-posed problems,
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and it is used to incorporate scaling of the variables in optimization. With a change of
variables one can assume C = I and that the trust-region subproblem will minimize
a quadratic function subject to a spherical constraint. This case is considered in the
following discussion.

If positive definite matrices of the form A+µI can be decomposed into a Cholesky
factorization, then the method proposed by Moré and Sorensen [10] can be used
to solve the problem. In some important applications, e.g., seismic inversion and
large-scale constrained optimization, factoring or even forming these matrices is out
of the question. A conjugate–gradient-style method for the large-scale trust-region
subproblem requiring only matrix-vector products w ← Av would be highly desirable.

The purpose of this paper is to present an algorithm for solving the large-scale
trust-region subproblem that requires a fixed-size limited storage proportional to n
and relies only upon matrix-vector products. In some sense the approach developed
here may be viewed as an extension of the methods presented by Steihaug [16] and by
Toint [18]. The algorithm recasts the trust-region subproblem in terms of a parame-
terized eigenvalue problem and adjusts the parameter with a superlinearly convergent
iteration to find the optimal vector x from the eigenvector of the parameterized prob-
lem. Only the smallest eigenvalue and corresponding eigenvector of the parameterized
problem has to be computed. The implicitly restarted Lanczos method (IRLM) as im-
plemented in the ARPACK software [7] is one technique that meets the requirements
of limited storage and reliance only on matrix-vector products. An algorithm that is
designed to solve the related large-scale quadratically constrained least-squares prob-
lem is presented in [6]. The author is not aware of another algorithm that is suitable
for the general (indefinite) large-scale case.

2. The trust-region subproblem. The trust-region subproblem has a very
interesting mathematical structure that lends itself to efficient computational tech-
niques once the subtlety of the structure is exposed. In this section and throughout
the remainder of the paper C = I is assumed and the problem to be considered is

min 1
2x

TAx+ gTx subject to ‖x‖ ≤ ∆.(2.1)

The optimality conditions for this problem are interesting and computationally at-
tractive since they are both necessary and sufficient and provide a means to reduce
the given n-dimensional constrained optimization problem to a zero-finding problem
in a single scalar variable. The conditions are given in the following lemma.

Lemma 2.1. The vector x is a solution to (2.1) if and only if x is a solution to
an equation of the form

(A− λI)x = −g,
with A− λI positive semidefinite, λ ≤ 0, and λ(∆− ‖x‖) = 0.
The statement of these conditions is slightly nonstandard in the use of a negative
rather than a positive λ. The reason for this will be made clear shortly. A simple
proof of this lemma is given in [14].

The method developed by Moré and Sorensen [10] relies upon the ability to com-
pute a Cholesky factorization

RT
λRλ = A− λI,

whenever this matrix is positive definite. For any such λ one can solve

RT
λRλxλ = −g and then RT

λ qλ = xλ
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to evaluate the function

φ(λ) ≡ 1

∆
− 1

‖xλ‖
and its derivative

φ′(λ) =
‖qλ‖2
‖xλ‖3

and thus apply Newton’s method to find a solution to the equation

φ(λ) = 0.

This method will rapidly find solutions that are on the boundary of the trust region
but it is not appropriate for large-scale problems which do not afford a Cholesky
decomposition.

It is possible to reparameterize the trust-region subproblem to obtain a scalar
problem that is tractable in the large-scale setting. A motivating observation is that
for a given real number α,

1
2α+ ψ(x) = 1

2 (1, xT )

(
α gT

g A

)(
1
x

)
,

where ψ(x) ≡ 1
2x

TAx+ gTx.
For a fixed α the goal is to minimize a vertical translation of the function ψ(x)

over the set {x : 1 + xTx = 1 + ∆2}. This suggests that the solution may be found
in terms of an eigenpair of the bordered matrix. An eigenvalue λ and corresponding
normalized eigenvector (1, xT )T of the bordered matrix will satisfy(

α gT

g A

)(
1
x

)
=

(
1
x

)
λ,(2.2)

and it follows that

α− λ = −gTx and (A− λI)x = −g.(2.3)

Hence,

α− λ = gT (A− λI)−1g =
n∑
j=1

γ2
j

δj − λ,(2.4)

where {δj} are the eigenvalues of A and {γj} are the expansion coefficients of g in the
eigenvector basis.

The bordered matrix appearing on the left in (2.2) will play a key role, and for
future reference this matrix will be denoted as Bα. A moment’s reflection on the
consequences of (2.4) will reveal some very useful information. This equation shows
that the eigenvalues of the matrix A interlace the eigenvalues of the bordered matrix
Bα. (This is also a consequence of the Cauchy interlace theorem.) Hence, the smallest
eigenvalue λ of Bα satisfies λ ≤ δ1, where δ1 is the smallest eigenvalue of A. This
assures that the matrix A − λI is positive semidefinite regardless of the value of
α. Moreover, as long as g is not orthogonal to the eigenspace corresponding to the
smallest eigenvalue of A, then the smallest eigenvalue of Bα is often well separated
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from the rest of the spectrum of Bα, especially for smaller values of ∆. This can be
seen best through a graphical study of equation (2.3) and the relations that follow. In
cases where it is well separated, a Lanczos-type algorithm should be quite successful
in computing this eigenvalue and the corresponding eigenvector.

Equation (2.3) defines λ and, hence, x implicitly as functions of α. Let the
function φ be defined by

φ(λ) ≡ gT (A− λI)−1g = −gTx.

Then

φ′(λ) = gT (A− λI)−2g = xTx,

where differentiation is with respect to λ and (A− λI)x = −g.
Finding the smallest eigenvalue and corresponding eigenvector of the bordered

matrix Bα for a given value of α and then normalizing the eigenvector to have its first
component equal to one provides a means to evaluate the rational function φ and its
derivative at values of λ < δ1, the smallest eigenvalue of A. If α can be adjusted so
the corresponding x satisfies φ′(λ) = xTx = ∆2 with α− λ = φ(λ), then

(A− λI)x = −g, λ(∆− ‖x‖) = 0,

with A − λI positive semidefinite. If λ ≤ 0 then x is optimal and solves the trust-
region subproblem. If λ > 0 is found with ‖x‖ < ∆ during the course of adjusting
α, then A is positive definite and the solution to the trust-region subproblem is the
unconstrained minimizer −A−1g. The only other possibility is that the eigenvector
of the bordered matrix has first component zero and thus cannot be normalized to
have its first component equal to one. This is equivalent to the so-called hard case
analyzed in [10]. The hard case is discussed at length in section 5.

This development has led to a reformulation of the trust-region subproblem in
terms of a parameterized eigenvalue problem. In fact, a sequence of eigenvalue prob-
lems will have to be solved in order to iteratively adjust the parameter α to produce
the optimal λ and x. Therefore, if this observation is to be helpful, a rapidly conver-
gent method must be devised to adjust α to the optimal value, and an efficient method
for computing the smallest eigenvalue and corresponding eigenvector of the bordered
matrix must be available. Keeping in mind the assumption that only matrix-vector
products w ← Av are available, a Lanczos method seems to be a natural choice for
an eigenvalue method. A well-suited variant of the Lanczos method is presented in
the next section. This will be followed with the development of a rapidly convergent
iteration to adjust α.

3. The implicitly restarted Lanczos method (IRLM). Lanczos methods
have been used extensively to solve large, sparse symmetric eigenvalue problems Ax =
λx. In exact arithmetic, the Lanczos process is a scheme to tridiagonalize a symmetric
A ∈ Rn×n. After j-steps of the Lanczos process, an orthonormal n× j matrix Vj and
a symmetric tridiagonal matrix Tj are produced such that

AV j = VjTj + fje
T
j ,(3.1)

where fj is a vector of length n with V T
j fj = 0, and ej is the jth coordinate vector of

length j. This is easily shown to be a truncation of the complete orthogonal reduction
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of A to tridiagonal form that typically precedes the implicitly-shifted tridiagonal QR
iteration.

The eigenvalues of Tj approximate a subset of eigenvalues of A. If µ, y is an
eigenpair for Tj (i.e., Tjy = yµ) then µ, x = Vjy is an approximate eigenpair for A
and the error of approximation is given by

‖Ax− xµ‖ = ‖fj‖|eTj y|.(3.2)

In particular, the approximation is exact when fj = 0. Eigenvalues and eigenvectors
of the symmetric tridiagonal matrix Tj may be determined by the symmetric QR
method or some other suitable technique.

There are a number of numerical difficulties with the original Lanczos process and
these difficulties have been addressed extensively in the literature [12]. The method
developed in [14] provides an alternate approach to the classic numerical difficulties
associated with the Lanczos process. The underlying idea in [14] is to recognize that
the residual vector fj is a function of the initial starting vector (i.e., the first column
of Vj) and to then adjust this starting vector to make the residual vector vanish. The
total number of Lanczos steps is limited to a fixed prescribed value k and the starting
vector is iteratively updated in a way that forces the norm of the residual vector fk
to converge to zero.

The iteration involves repeated application of polynomial filters to the starting
vector and an in-place updating of the k-step Lanczos factorization. The iteration
repeatedly updates the starting vector: v1 ← π(A)v1, where the polynomial π is
applied implicitly through a mechanism directly related to the implicitly-shifted QR
technique. The polynomial is constructed to damp undesirable eigenvector compo-
nents from the starting vector, forcing it into an invariant subspace. This leads to
termination of the Lanczos sequence which begins with this starting vector in precisely
k steps with fk = 0. The k eigenvalues of the associated Tk will be the eigenvalues
of interest. The construction and application of these polynomials, how to update
in-place, and other related details are explained in [14]. The technique is analo-
gous to the implicitly-shifted QR iteration for dense matrices and shares a number of
important numerical properties associated with that process.

With respect to the subject of this paper, the major advantage of this implicit
restart approach is the following:

• Fixed space. In this scheme, the number of Lanczos basis vectors never ex-
ceeds a prespecified bound that is proportional to the number of eigenvalues
sought. Moreover, as in the basic Lanczos process, only matrix-vector prod-
ucts are required with A. Peripheral storage of basis vectors for eigenvector
construction is not required.

By virtue of the fixed modest number of Lanczos basis vectors, it is computa-
tionally feasible to maintain full numerical orthogonality among the basis vectors.
The maintenance of orthogonality ensures that no spurious eigenvalues are computed.
This method is referred to as IRLM.

4. Adjusting alpha. Recasting the trust-region problem as a parameterized
eigenvalue problem together with the IRLM provides a viable approach to large-scale
problems if the optimal parameter α can be computed rapidly. Recall that the goal
is to adjust α so that

α− λ = φ(λ), φ′(λ) = ∆2,
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where

φ(λ) = −gTx, φ′(λ) = xTx,

with (A− λI)x = −g. One possibility would be to apply a standard iteration such as
the secant method to the problem

1

∆
− 1

‖xλ(α)‖ = 0.

The approach adopted here is to develop a special interpolation-based iteration
that takes advantage of the structure of the problem. This interpolation-based it-
erative method will take the following form: let φ̂(λ) interpolate φ and φ′ at some
previous iterate(s).

Algorithm 1.
1. Initialize α ← 0 and compute the smallest eigenvalue and corresponding

normalized eigenvector of Bα to obtain the initial iterates λ and x;

2. While
(∣∣∣‖x‖−∆

∆

∣∣∣ > tol
)

(a) Construct the interpolant φ̂ based on the current and perhaps previous
iterates;

(b) Let λ̂ satisfy φ̂′(λ̂) = ∆2;

(c) Put α+ = λ̂+ φ̂(λ̂);
(d) Compute the smallest eigenvalue and corresponding normalized eigen-

vector of Bα+ to get the new iterates λ+ and x+;
End

Two iterations of this type will be developed. One is based on just the previous
iterate and the other on the previous two iterates. The first is linearly convergent
and the second will prove to be superlinearly convergent. The initialization of α← 0
assures that the smallest eigenvalue of Bα is nonpositive and thus will satisfy the
optimality condition for the multiplier (cf. Lemma 2.1).

To construct the single point method, consider an interpolant of the form

φ̂(λ) =
γ2

δ − λ.

Let x1 and λ1 denote the current iterates corresponding to α so that

α− λ1 = −gTx1 with (A− λ1I)x1 = −g.
The interpolant must satisfy

γ2

δ − λ1
= −gTx1 and

γ2

(δ − λ1)2
= xT1 x1,

and from this it is straightforward to derive

δ = λ1 − gTx1

xT1 x1
and γ2 =

(gTx1)
2

xT1 x1
.

It is easy to show that δ =
xT1 Ax1

xT1 x1
, and this is a nice feature since it implies δ1 ≤ δ

where δ1 is the smallest eigenvalue of A. The formula for λ̂ in step 2 of Algorithm 1
is given by

λ̂ = δ +
gTx1

‖x1‖∆ ,
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and the updating formula to obtain α+ at step 3 is shown to be

α+ = λ̂+
γ2

δ − λ̂ = α+
(α− λ1)

‖x1‖
[
∆− ‖x1‖

∆

] [
∆ +

1

‖x1‖
]

after a little algebraic manipulation. This method may be shown to be linearly con-
vergent, but this convergence may be slow in some cases so it will not suffice to solve
the entire problem. However, it may be used to obtain a second iterate from an initial
guess to provide the starting values needed to initiate a method based upon interpo-
lating two previous iterates at each step. Since this is the only role it will play in the
algorithm, a convergence proof is not given here.

The two-point method is based upon an interpolant of the form

φ̂(λ) =
γ2

δ − λ + β(δ − λ) + η.

Let x1 and λ1 denote the current iterates and let x2 and λ2 denote the previous ones.
The pole δ is defined by

δ = min

(
δmin,

xT1 Ax1

xT1 x1

)
if ‖x1‖ < ∆ or ‖x2‖ < ∆

or

δ = max

(
xT1 Ax1

xT1 x1
,
xT2 Ax2

xT2 x2

)
if ‖x1‖ > ∆ and ‖x2‖ > ∆,

and then δmin ← min(δmin, δ). Here, δmin ≥ δ1 is the current best estimate to δ1,

the smallest eigenvalue of A. Initially, δmin is set to
xT1 Ax1

xT1 x1
, where x1 is the first

iterate obtained from the one point interpolation formula. These conditions have
been designed to assure that the iterates obtained by this interpolation scheme will
be well defined (see section 6).

The remaining three coefficients are determined to satisfy

φ̂(λ1) = −gTx1, φ̂′(λ1) = xT1 x1, φ̂′(λ2) = xT2 x2.

Satisfying the derivative conditions requires

γ2

(δ − λ1)2
− β = xT1 x1,

γ2

(δ − λ2)2
− β = xT2 x2,(4.1)

and it follows that

γ2 =
[xT2 x2 − xT1 x1][(δ − λ1)(δ − λ2)]

2

(λ2 − λ1)[2δ − (λ1 + λ2)]
,(4.2)

β =
γ2

(δ − λ1)2
− xT1 x1 =

xT2 x2(δ − λ2)
2 − xT1 x1(δ − λ1)

2

(λ2 − λ1)[2δ − (λ1 + λ2)]
,(4.3)

and

η = −gTx1 − β(δ − λ1)− γ2

(δ − λ1)
.
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The formula for λ̂ in step 2 is derived from the condition

γ2

(δ − λ̂)2
− β = ∆2

and yields

λ̂ = δ −
√

γ2

∆2 + β
.(4.4)

Finally, the formula for α+ is

α+ = λ̂+ η + β(δ − λ̂) +
γ2

δ − λ̂ .(4.5)

The formula (4.5) is, unfortunately, plagued with numerical cancellation problems,
and computational experience has shown that this will prevent superlinear conver-

gence when the quantity
∣∣∣‖x‖−∆

∆

∣∣∣ falls below the square root of working precision

(i.e., below 10−8 when working in double precision on a SUN workstation). After
considerable manipulation one may arrive at a mathematically equivalent update for-
mula that does achieve superlinear convergence to the level of working precision. This
formula is

α+ = α+
(δ − λ1)ω

(1 +
√

1 + ω)
√

1 + ω

[
∆2 − xT1 x1

1 +
√

1 + ω
+ xT1 x1 + 1

]
,(4.6)

where

ω =

[
∆2 − xT1 x1

xT2 x2 − xT1 x1

] [(
δ − λ1

δ − λ2

)2

− 1

]
.

Of course, the formula (4.6) is only used in place of formula (4.5) when the quantity
1 + ω ≥ 0 and this is eventually satisfied as λj → λ∗.

Considering the branch of the function φ that is supposed to be approximated
by these formulas, it is desirable that the formula (4.2) yields a positive number and
that the number β+ ∆2 appearing under the square root sign in (4.4) is also positive
so that the iteration will be well defined. These conditions are indeed satisfied and
this will be established in section 6. In section 6 it will also be established that the
iteration based upon the two point formula is locally and superlinearly convergent.
However, both iterations can break down when faced with the so-called hard case.

5. The hard case. There is one particularly difficult situation that may arise
in trust-region problems. This is referred to in [10] as the hard case. It can only occur
when the vector g is orthogonal to the eigenspace S1 ≡ {q : Aq = qδ1} corresponding
to the smallest eigenvalue δ1 of A. The precise statement is as follows.

Lemma 5.1. Let p = −(A− δ1I)†g. If δ1 ≤ 0 and ‖p‖ < ∆ then the solutions to
(2.1) consist of the set

So ≡ {x : x = p+ z, z ∈ S1, ‖x‖ = ∆}.
In the statement of Lemma 5.1 the symbol † denotes the Moore–Penrose generalized
inverse. This lemma is proved in [14] and its computational implications are discussed
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in [10]. The following lemma is a restatement of a result given in [10] that is useful
in dealing with the hard case.

Lemma 5.2. Let 0 < σ < 1 be given and suppose

(A− λI)p = −g, λ ≤ 0,

with (A− λI) positive semidefinite. If

‖p+ z‖ = ∆ and zT (A− λI)z ≤ −σ(gT p+ λ∆2)

then

ψ∗ ≤ ψ(p+ z) ≤ 1
2 (1− σ)(gT p+ λ∆2) ≤ (1− σ)ψ∗,

where ψ∗ ≤ 0 is the optimal value of (2.1).
Moré and Sorensen used this lemma to detect near hard case behavior and ter-

minate the iterative solution to (2.1) early. In that setting, explicit eigeninformation
was not available and deemed too expensive to obtain. Instead, a suitable point z was
obtained from the LINPACK condition estimator [3] applied to the Cholesky factor
of (A − λI). In the present setting, the Cholesky factor is not computed but the
necessary eigeninformation will be readily available.

The reformulation leading to the key relation (2.3) depends upon the ability to
normalize the selected eigenvector of the bordered matrix to have its first component
set to one. This is of course impossible when the first component of this eigenvector
vanishes. Interestingly enough, the hard case occurs precisely when this happens.

Lemma 5.3. Every vector of the form (0, qT )T with q ∈ S1 is an eigenvector of
the bordered matrix (

α gT

g A

)
if and only if g is orthogonal to S1.

The proof of this lemma is straightforward and will be omitted.
Generally, a near hard case condition is painfully obvious in practice. If the

search for the optimal α discussed in section 4 is initiated with α = 0 then the first
iterate or its successor given by the one point interpolation formula typically will have
an extremely small first component in the eigenvector corresponding to the smallest
eigenvalue of the bordered matrix Bα. If the vector (ν, qT )T is an eigenvector of
length one for the bordered matrix corresponding to the smallest eigenvalue λ, then
satisfying a test of the form √

1− ν2 > κ∆|ν|
with κ >> 1 detects the hard case. Moreover, since (A− λI)q = −gν it follows that

‖(A− λI)q‖
‖q‖ =

‖g‖|ν|√
1− ν2

≤ ‖g‖
κ∆

,(5.1)

and choosing κ = ‖g‖
ε∆ assures ‖(A−λI)q‖

‖q‖ ≤ ε and hence that λ , q are an approximate

eigenpair for A.
If a hard case condition has been detected, set λU = λ (note λU is an upper

bound on the optimal λ∗) and z = q/‖q‖. Put

ρ ≡ zTAz = λU − ν(gT q)/(qT q)
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and enter the following iteration with x1, λ1 as the most recent iterates obtained
before detection of the hard case.

Algorithm 2.
Let θ ∈ (0, 1) and λ1 < λ∗ < λU .
Repeat:
1. α← (1− θ)λU + θλ1 − gTx1 + (1− θ)(λU − λ1)(x

T
1 x1);

2. Compute λ and (ν, qT )T the smallest eigenvalue and corresponding vector of
Bα;

3. Put x2 ← q/ν , λ2 ← λ and let τ satisfy ‖x2 + zτ‖ = ∆;
4. If τ2(ρ− λ2) < −σ(gTx2 + λ2∆

2) then stop with x← x2 + zτ ;
5. If ‖x2‖ > ∆ then λU ← λ2 , α ← min(2 ∗ λU , α − |α|) else x1 ← x2,
λ1 ← λ2;

End
In the computational tests that follow, θ = .0001, σ = .000001, and ε = .00001 in the
formula for κ as defined above.

Note that on entering this hard case iteration λU will be a good under estimate
to δ1, the smallest eigenvalue of A. Moreover, λU will be the first iterate to be greater
than the optimal λ∗. If a previous iterate to the right of λ∗ did not pass the hard
case test then no subsequent iterates will either, due to safeguarding. This assures
that the bracketing condition at the beginning of Algorithm 2 is valid. Finally, the
positive number σ in step 4 is the σ of Lemma 5.2.

The update at step 1 is derived from linear interpolation of φ and its first deriva-
tive at λ1 and then solving for the α that would produce a new λ̂ = (1 − θ)λU + θλ
if φ were linear. In other words, α satisfies

α− λ̂ = φ(λ1) + φ′(λ1)(λ̂− λ1) = −gTx1 + xT1 x1(λ̂− λ1),

with λ̂ = θλ1 + (1− θ)λU .
Since φ is convex on the interval (−∞, δ1), the new λ2 obtained by solving the

bordered problem with this α will satisfy λ1 < λ2 < λ̂. Moreover, the length of the
interval (λ1, λU ) will always shrink.

Lemma 5.4. Assume θ < 1
4 . Let λ+

1 and λ+
U be the updated values of λ1 and λU

obtained from one pass through the hard case iteration. Then

|λ+
U − λ+

1 | ≤ (1− θ)|λU − λ1|.
Proof. By its construction, λ2 will satisfy φ(λ2) = α−λ2. Substituting the defined

value of α gives

φ(λ2) = (1− θ)λU + θλ1 + φ(λ1) + (1− θ)(λU − λ1)(x
T
1 x1)− λ2.

Rearranging terms will give

φ(λ2)− φ(λ1) = λ1 − λ2 + (1− θ)[1 + xT1 x1](λU − λ1).(5.2)

It is straightforward to show

φ(λ2)− φ(λ1) = (λ2 − λ1)x
T
2 x1,

and substituting this into (5.2) and rearranging terms will give

(λ2 − λ1)(1 + xT2 x1) = (1− θ)(1 + xT1 x1)(λU − λ1).
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If ‖x2‖ < ∆ then λ+
1 = λ2 and λ+

U = λU . Hence,

λ+
U − λ+

1 = λU − λ2

= λU − λ1 − (λ2 − λ1)

=

[
1− (1− θ) (1 + xT1 x1)

(1 + xT2 x1)

]
(λU − λ1)

=

[
(x2 − x1)

Tx1

(1 + xT2 x1)
+ θ

(1 + xT1 x1)

(1 + xT2 x1)

]
(λU − λ1).(5.3)

Now, if λ2 − λ1 <
1
4 (λU − λ1) then

(x2 − x1)
Tx1

(1 + xT2 x1)
=

(λ2 − λ1)x
T
1 A

−1
2 x1

(1 + xT2 x1)

≤ (λ2 − λ1)

(δ1 − λ2)

xT1 x1

(1 + xT2 x1)

≤
[ 1

4 (λU − λ1)

(δ1 − λ1)− (λ2 − λ1)

]
xT1 x1

(1 + xT1 x1)

≤
1
4 (λU − λ1)
3
4 (λU − λ1)

= 1
3 ,

where A2 ≡ A− λ2I . Thus

λ+
U − λ+

1 ≤ ( 1
3 + θ)(λU − λ1) <

3
4 (λU − λ1)

follows from (5.3). If λ2 − λ1 ≥ 1
4 (λU − λ1) then

λ+
U − λ+

1 = λU − λ2 = (λU − λ1)− (λ2 − λ1) ≤ 3
4 (λU − λ1),

and in both cases the desired result holds since 1
4 < (1− θ). Now suppose ‖x2‖ ≥ ∆.

Then λ+
U = λ2 and λ+

1 = λ1 and it follows that

λ+
U − λ+

1 = (1− θ) (1 + xT1 x1)

(1 + xT2 x1)
(λU − λ1) < (1− θ)(λU − λ1).

This establishes the result.

This result establishes convergence but is far from indicative of what will occur
in practice. A value θ = .001 works well in practice even though this lemma would
indicate a potentially slow rate of convergence with this value. This is because the
point λ2 almost always satisfies ‖x2‖ < ∆.

Satisfaction of the stopping rule at step 4 assures that the conditions of Lemma
5.2 are satisfied so the accepted point x1 satisfies

ψ(x∗) ≤ ψ(x1) ≤ (1− σ)ψ(x∗).

In many applications, including the two mentioned previously, a value of σ = .01 is
used and this is generally satisfied very rapidly indeed.
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6. Convergence. In this section, the issues of forcing convergence and deter-
mining the rate of local convergence will be discussed. It will be shown that the
iterates based upon the two point rational interpolation formulas are well defined and
are locally convergent at a superlinear rate. This may be of considerable interest
computationally, since evaluating the function φ and its derivative requires the com-
putation of the smallest eigenvalue and corresponding eigenvector of the bordered
matrix Bα, and this is potentially very expensive. Note, however, in practice one is
often interested in just a few digits of accuracy and then superlinear convergence is of
little consequence. Nevertheless, it is reassuring to know this rapid convergence can
be expected when higher accuracy is needed.

There is very little to say about safeguarding. Perhaps in the future with more
computational experience this will become an important issue. In the computational
results presented here, a fairly standard simple safeguard was used to obtain an
interval of uncertainty and then to assure that this interval is updated on each
iteration and required to decrease. This safeguard rarely forced a modification of the
step given by the two point formula in Algorithm 1.

The main purpose of this section is to establish the local superlinear convergence
of the iteration defined by Algorithm 1. It must be established that in the standard
case where Algorithm 1 applies, the iterates are well defined in a neighborhood and
converge to the solution at a superlinear rate. This is formally stated in the following.

Theorem 6.1. Suppose the solution x∗ to (2.1) is on the boundary of the trust
region and that {λk} is a sequence of iterates produced by Algorithm 1 using the two
point scheme (with λk, λk+1 corresponding to λ, λ+, respectively). Then there is a
neighborhood N of λ∗ such that λ1, λ2 ∈ (N ) implies the sequence {λk} will be well
defined, remain in N , and converge superlinearly to λ∗ with the corresponding iterates
xk converging superlinearly to x∗.

The proof of this theorem is through a sequence of three lemmas. Lemma 6.2
shows that the iterates are well defined by establishing the validity of (4.4) regardless
of whether or not they are close to the solution. Lemma 6.3 is a technicality used to
establish the basic asymptotic results. These asymptotic results established in Lemma
6.4 give the final result.

In order to present this local convergence result as simply as possible, it shall
be useful to introduce some notation. The subscript 1 shall indicate the most recent
iterate, and the subscript 2 shall denote the previous iterate. Thus λ1 and λ2 are
the current and previous approximations to the optimal λ∗, and λ1 is the smallest
eigenvalue of the bordered matrix Bα. The updated λ+ is the smallest eigenvalue of
the updated Bα+

, and α∗ will denote the value of α that gives the optimal parameter
λ∗ and corresponding solution vector x∗. The notation Aj ≡ A−λjI for j = 1, 2 and
A∗ ≡ A − λ∗I will be used. Thus xj = −A−1

j g for j = 1, 2 and x∗ = −A−1
∗ g. At a

general point λ the notation Aλ ≡ A − λI and xλ ≡ −A−1
λ g will be used. Finally,

the notation O((λ∗ − λ1)
j) will be used to denote a quantity whose absolute value is

bounded by a fixed positive constant times the quantity |λ∗−λ1|j for any value of λ1

in a sufficiently small neighborhood of λ∗ (j = 0, 1, 2).

First, the fact that the iterates are well defined shall be established. In this
development it is useful to note

xT2 x2 − xT1 x1 = gT (A−2
2 −A−2

1 )g

= gTA−2
2 (A1 −A2)(A1 +A2)A

−2
1 g

= (λ2 − λ1)[x
T
2 A

−1
1 x2 + xT1 A

−1
2 x1].(6.1)
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From this it follows that

γ2 =
[xT2 x2 − xT1 x1][(δ − λ1)(δ − λ2)]

2

(λ2 − λ1)[2δ − (λ1 + λ2)]

=
[xT2 A

−1
1 x2 + xT1 A

−1
2 x1][(δ − λ1)(δ − λ2)]

2

2δ − (λ1 + λ2)
.(6.2)

Now, with the exception of the hard case, the smallest eigenvalue of the bordered
matrix Bα is always less than the smallest eigenvalue δ1 of A and δ > δ1. Hence,
xT2 A

−1
1 x2 > 0, xT1 A

−1
2 x1 > 0, and 2δ − (λ1 + λ2) > 0. Therefore, the formula (4.2)

for γ2 does indeed yield a positive number.
Moreover, the number ∆2 + β appearing under the square root sign in (4.4) is

always nonnegative.
Lemma 6.2. The quantity ∆2 + β in (4.4) is always nonnegative.
Proof. If either xT1 x1 ≤ ∆2 or xT2 x2 ≤ ∆2 then ∆2 + β ≥ 0, since

∆2 + β =
γ2

(δ − λ1)2
+ (∆2 − xT1 x1)

=
γ2

(δ − λ2)2
+ (∆2 − xT2 x2)

is implied by (4.1). Otherwise, it may be assumed without loss of generality that
xT∗ x∗ ≡ ∆2 < xT1 x1 < xT2 x2 and hence that λ∗ < λ1 < λ2. In this case the pole δ

satisfies δ = max(
xT1 Ax1

xT1 x1
,
xT2 Ax2

xT2 x2
). Observe that the function

ρ(λ) ≡ xTλAxλ
xTλxλ

is decreasing on the interval (λ1, δ1) since the Cauchy–Schwarz inequality implies

(xTλAλxλ)(x
T
λA

−1
λ xλ) ≥ (xTλA

1/2
λ A

−1/2
λ xλ)

2 = (xTλxλ)
2,(6.3)

and hence

ρ
′
(λ) = 2

[
1− (xTλAλxλ)(x

T
λA

−1
λ xλ)

(xTλxλ)
2

]
≤ 0

for all λ ∈ (λ1, δ1). It follows that

δ − λ ≥ ρ(λ1)− λ ≥ ρ(λ)− λ =
(xTλAλxλ)

xTλxλ
> 0

for all λ ∈ (λ1, δ1). From (4.3) it may be found that

∆2 + β =
(xT2 x2 − xT∗ x∗)(δ − λ2)

2 − (xT1 x1 − xT∗ x∗)(δ − λ1)
2

(δ − λ1)2 − (δ − λ2)2
.(6.4)

Now, λ∗ < λ1 < λ2 < δ implies δ − λ∗ > δ − λ1 > δ − λ2 > 0 so the denominator in
(6.4) is positive and the result will be established if it is shown that the function

σ(λ) ≡ (xTλxλ − xT∗ x∗)(δ − λ)2
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is strictly increasing on the interval (λ∗, δ). Differentiating σ with respect to λ gives

σ
′
(λ) = 2(δ − λ)[xTλA

−1
λ xλ(δ − λ)− (xTλxλ − xT∗ x∗)](6.5)

≥ 2(δ − λ)(xTλxλ)

[
(xTλAλxλ)(x

T
λA

−1
λ xλ)

(xTλxλ)
2

− 1 +
xT∗ x∗
xTλxλ

]
> 0,

which again follows from (6.3). This implies σ(λ) is increasing on the interval λ ∈
(λ1, δ1), and since

∆2 + β =
σ(λ2)− σ(λ1)

(δ − λ1)2 − (δ − λ2)2
,

it follows that ∆2 +β > 0 when λ∗ < λ1 < λ2 < δ and the result is established.

It has just been demonstrated that the iterates are well defined and it is now
necessary to establish the local rate of convergence. To this end it is useful to establish
a technical lemma that will facilitate the proof of the final desired result.

Lemma 6.3. The intermediate point λ̂ given by (4.4) satisfies

λ̂− λ1 =

(
δ − λ1

2

)(
∆2 − xT1 x1

β + xT1 x1

)
+O((λ1 − λ∗)2).(6.6)

Proof. The result is established using a Taylor expansion of the square root
function near 1. The formulas of Algorithm 1 give

λ̂ = δ −
√

γ2

∆2 + β

= δ − (δ − λ1)

√√√√ γ2

(δ−λ1)2

γ2

(δ−λ1)2
+ (∆2 − xT1 x1)

= δ − (δ − λ1)

√√√√ 1

1 +
∆2−xT1 x1

β+xT1 x1

= δ − (δ − λ1)

[
1− 1

2

(
∆2 − xT1 x1

β + xT1 x1

)]
+O((λ1 − λ∗)2).

Simplifying this last term yields the desired formula (6.6).

The updating formula for α will now be used to establish a result to relate λ+−λ∗
to λ1 − λ∗.

Lemma 6.4. There is a neighborhood N of λ∗ such that the iterate λ+ produced
at steps 3 and 4 of Algorithm 1 using formula (4.5) to compute α+ based upon points
λ2, λ1 ∈ (N ) will satisfy

(λ+ − λ∗) = (λ1 − λ∗)µ(λ1, λ2)O(1) +O((λ1 − λ∗)2),(6.7)

where

µ(λ1, λ2)→ 0 as λ1, λ2 → λ∗.
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Proof. The proof begins with the formula

α+ = λ̂+ η + β(δ − λ̂) +
γ2

δ − λ̂ .

Using the definition

η = −gTx1 − β(δ − λ1)− γ2

(δ − λ1)

and the fact that

β(δ − λ̂) +
γ2

δ − λ̂ = 2β(δ − λ̂) + (δ − λ̂)∆2,

substituting into the above formula gives

α+ = λ̂− gTx1 + 2β(λ1 − λ̂) + (δ − λ̂)∆2 − (δ − λ1)x
T
1 x1.

Since −gTx1 = α− λ1, it follows after substitution and simplification that

α+ = α+ (λ1 − λ̂)[2β + ∆2 − 1] + (δ − λ1)(∆
2 − xT1 x1).(6.8)

Now utilize the relation α+ = λ+ − gTx+ and α∗ = λ∗ − gTx∗ to see that

α+ − α∗ = λ+ − λ∗ − gT (x+ − x∗)
= λ+ − λ∗ + gT (A−1

+ −A−1
∗ )g

= λ+ − λ∗ + gTA−1
+ (A∗ −A+)A−1

∗ g

= (λ+ − λ∗)(1 + xT+x∗).(6.9)

Similarly,

α− α∗ = (λ1 − λ∗)(1 + xT1 x∗).

Subtracting α∗ from both sides of (6.8) above and substituting for α+−α∗ using (6.9)
and Lemma 6.2 gives

(λ+ − λ∗)(1 + xT+x∗)

= (λ1 − λ∗)(1 + xT1 x∗)− (δ − λ1)(∆
2 − xT1 x1)

[
2β + ∆2 − 1

2β + 2xT1 x1
− 1

]
+O((λ1 − λ∗)2)

= (λ1 − λ∗)(1 + xT1 x∗)− (∆2 − xT1 x1)(δ − λ1)

[
(∆2 − xT1 x1)− (1 + xT1 x1)

2β + 2xT1 x1

]
+O((λ1 − λ∗)2).

Since

∆2 − xT1 x1 = xT∗ x∗ − xT1 x1

= (λ∗ − λ1)[x
T
∗A

−1
1 x∗ + xT1 A

−1
∗ x1]



156 D. C. SORENSEN

and since

2(β + xT1 x1) = 2
γ2

(δ − λ1)2

=
[xT2 A

−1
1 x2 + xT1 A

−1
2 x1][(δ − λ2)]

2

δ − 1
2 (λ1 + λ2)

= O(1),

it follows that

(6.10)

(λ+ − λ∗)(1 + xT+x∗)

= (λ1 − λ∗)(1 + xT1 x∗)

− (λ1 − λ∗)(1 + xT1 x1)

[
xT∗A

−1
1 x∗ + xT1 A

−1
∗ x1

xT2 A
−1
1 x2 + xT1 A

−1
2 x1

] [
(δ − 1

2 (λ1 + λ2))(δ − λ1)

(δ − λ2)(δ − λ2)

]
+O((λ1 − λ∗)2)

= (λ1 − λ∗)(xT1 x∗ − xT1 x1)

− (λ1 − λ∗)(1 + xT1 x1)

([
xT∗A

−1
1 x∗ + xT1 A

−1
∗ x1

xT2 A
−1
1 x2 + xT1 A

−1
2 x1

] [
(δ − 1

2 (λ1 + λ2))(δ − λ1)

(δ − λ2)(δ − λ2)

]
− 1

)
+O((λ1 − λ∗)2).

Noting that

(λ1 − λ∗)(xT1 x∗ − xT1 x1) = −(λ1 − λ∗)2xT1 A−1
∗ x1

and that

(1 + xT1 x1)

(1 + xT+x∗)
= O(1),

substituting into (6.10) establishes

(λ+ − λ∗) = (λ1 − λ∗)µ(λ1, λ2)O(1) +O((λ1 − λ∗)2),(6.11)

where

µ(λ1, λ2) ≡
[
xT∗A

−1
1 x∗ + xT1 A

−1
∗ x1

xT2 A
−1
1 x2 + xT1 A

−1
2 x1

] [
(δ − 1

2 (λ1 + λ2))(δ − λ1)

(δ − λ2)(δ − λ2)

]
− 1.

Since

µ(λ1, λ2)→ 0 as λ1, λ2 → λ∗,

the proof is complete.

The previous discussion together with Lemmas 6.2–6.4 establishes the proof of
Theorem 6.1.
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Table 7.1

Average behavior for different tolerances.

Trust mvecs iters Cg mvecs Ratio
tol = .0001 59.3 4.2 44.4 1.34

tol = .000001 98.1 8.4 58.0 1.69
tol = .00000001 132.8 12.3 72.2 1.84

7. Computational results and conclusions. In this final section, a limited
set of computational results shall be presented to illustrate the viability of the ap-
proach presented here. These results are not meant to be exhaustive. They should be
regarded as preliminary results intended to illustrate selected aspects of the behavior
of this approach. They have been selected to illustrate behavior associated with dif-
ferent problem conditions. A comparison with the corresponding cost of solving the
requisite linear systems via conjugate gradients to various accuracy levels is given.
Behavior relative to widely different values of ∆ are also demonstrated. Superlinear
convergence is verified and hard case behavior is illustrated in the following examples.

The methods described in sections 3–5 were implemented in MATLAB, version
4.1. All experiments were carried out on a SUN SPARC station IPX. The floating
point arithmetic is IEEE standard double precision with machine precision of εM ≡
2−52 ≈ 2.2204 · 10−16. In all cases the IRLM described in section 3 was used to
solve the eigenproblems. The number of Lanczos basis vectors was limited to nine.
Six shifts (i.e., six matrix vector products) were applied on each implicit restart. The
iteration was halted as soon as the smallest Ritz value had a Ritz estimate (3.2) below
the specified tolerance.

The first experiment presents the performance on the problem (2.1) with the
matrix A = L− 5 ∗ I, where L is set to the standard 2-dimensional discrete Laplacian
on the unit square based upon a 5-point stencil with equally-spaced mesh points.
The shift of −5 was introduced to make the matrix indefinite. A sequence of 20
related problems were solved. The order of A was n = 1024 in all cases. The trust-
region radius was fixed at ∆ = 100 for all of the problems. For each problem, a
random vector g was constructed with entries uniformly distributed on (0, 1) and the
problem was solved three times with a tolerance of 10−4, 10−6, and 10−8. In Table
7.1 the average number of trust-region iterations and average number of matrix vector
products w ← Av per trust-region iteration are reported. In addition, the average
number of matrix-vector products required to solve the system (A − λI)x = −g
using the conjugate-gradient method is given. These tests indicate that a trust-
region solution requires fewer than twice as many matrix-vector products on average
than the number needed to solve a single linear system to the same accuracy using
the conjugate-gradient method. The accuracy requirement of the eigenvalue solution
computed by the IRLM at each step was relaxed and made proportional to the relative
accuracy of the computed solution. More specifically, ‖Bαq − qλ‖ < τ1/1000, where

τ1 = min(10−6,
∣∣∣‖x‖−∆

∆

∣∣∣). In addition to this, the inner IRLM iteration was initialized

with the solution from the previous outer trust-region iteration.
The second experiment illustrates how the size of the trust-region parameter ∆

may affect the solution process. In these problems the matrices were distributed in
the form A = UDUT with D being a diagonal matrix with diagonal elements selected
randomly from a uniform distribution on (−.5, .5). The matrix U = I − 2uuT with
the vector u and the vector g constructed with randomly distributed elements and
then normalized to have unit length. The matrix A was of order n = 1000. The
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Table 7.2

Behavior for different trust-region radii.

∆ 100 10 1 .1 .01 .001 .0001
Trust iters 13 8 4 4 4 4 4
Matvecs 579 240 36 36 36 36 36

CG-matvecs 1307 384 51 39 30 26 24

‖g + (A− λI)x‖ (-4) (-6) (-12) (-15) (-15) (-15) (-15)∣∣∆−‖x‖
∆

∣∣ (-7) (-7) (-10) (-9) (-11) (-13) (-14)

trust-region radius ∆ was varied by a factor of 10 through the values 100, 10, ..., .0001

and each problem was solved to the level
∣∣∣∆−‖x‖∆

∣∣∣ < 10−6. By way of comparison, the

conjugate-gradient method was used to solve the same linear systems (A−λjI)x = −g
using the parameter λj provided by the eigensolution of Bαj at the jth step of the
trust-region iteration. Each system was solved by conjugate gradients to the same level
of accuracy as the solution provided from the eigenvalue solution. The total number
of matrix-vector products required by the eigenvalue method is to be compared to
the number required by the conjugate-gradient method. These results are presented
in Table 7.2.

The entries in parentheses in Table 7.2 represent powers of 10 (i.e., (-4) repre-
sents 10−4). The row labeled Trust iters gives the number of iterations required in
Algorithm 1. The row labeled Matvecs gives the number of matrix-vector products
required to solve the resulting eigenvalue problems, and the row labeled CG-matvecs
gives the number of matrix-vector products required by the conjugate-gradient itera-
tion to solve the same linear systems. Note that for small trust-region radii there is
not a significant difference in the required number of matrix-vector products but the
conjugate-gradient method has a much easier time for smaller values of ∆ than for
larger values. This is because the matrix A− λI will have a very large value of λ and
hence will act as though there are essentially two distinct eigenvalues when the value
of ∆ is small. Just the opposite situation occurs when the value of the trust-region
radius gets larger. The eigenvalue problems do get more difficult to solve but the
conjugate-gradient method has more trouble with these systems than the eigenvalue
method. This phenomena is partially explained in [11]. When the spectrum is not
clustered, it is often more difficult to solve the linear system by conjugate gradients
than it is to find an extreme eigenvalue.

The next results verify the superlinear rate of convergence for the two point
iteration. In this case the matrix A is again set to A = L − 5I with L being the
2-dimensional discrete Laplacian on the unit square, but the order of A was n = 256
in this case. The trust-region radius was set at ∆ = 10 for all of the problems. Again,
a random vector g was constructed with entries uniformly distributed on (−.5, .5) and
the problem was solved with a tolerance of 10−11. In Table 7.3 the progressive decrease

in the magnitude of ∆−‖x‖
∆ is charted as the iteration proceeds. The required number

of iterations was 6 and it took 144 matrix-vector products to solve the associated
eigenvalue problems. Each eigenproblem was solved to the accuracy level ‖Bαv −
vλ‖ ≤ 10−9.

To study the behavior of the algorithm in the hard case, the same matrix A =
L − 5I of order 256 was used. In order to generate the hard case the vector g was
randomly generated as before and then the operation g ← g − q(qT g) was performed
to orthogonalize g to the eigenvector q corresponding to the smallest eigenvalue of
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Table 7.3

Verification of superlinear convergence.

Iter
∆−‖x‖

∆

1 0.8730
2 -0.1028
3 0.0063
4 7.1389e-05
5 -4.8522e-08
6 1.2491e-12

Table 7.4

The hard case.

Iter

∣∣∣ zT (A−λI)z
(gT p+λ∆2)

∣∣∣
1 0.2916
2 0.1448
3 0.0631
4 0.0221
5 0.0049
6 3.8942e-04
7 2.9174e-06
8 8.5908e-09

A. Then a “noise” vector of norm 10−8 was added to g. In this test the trust-region
radius was ∆ = 100. A number of different problems were solved and the following
behavior of one of the problems was typical of all of them. In every problem the
hard case was detected on the second regular iteration of Algorithm 1 and then the
iteration of Algorithm 2 was entered. Table 7.4 displays the ratio∣∣∣∣zT (A− λI)z

(gT p+ λ∆2)

∣∣∣∣ ,
and the iteration was halted when this ratio was less than σ = .000001, where σ is
the tolerance introduced in Lemma 5.2 (see step 4 of Algorithm 2).

The final solution was on the trust-region boundary to within working precision
and it required a total of 11 eigenvalue problems which required 291 matrix-vector
products. One of these was done between the transition from Algorithm 1 to Algo-
rithm 2 in order to assure that a lower bound on α had been obtained. This step is
not reported in Table 7.4. The behavior of this iteration seemed to be more sensi-
tive to the level of accuracy required by the eigensolution than in the standard case.
A rational approximation was tried instead of the linear interpolation and this per-
formed poorly. However, more testing is needed and perhaps a modification of the
scheme for the hard case will lead to improvements. No testing was done on large
matrices since it was desirable to have complete control over which eigenvectors the
vector g would be orthogonalized against. Moreover, no testing was done with higher
dimensional eigenspaces corresponding to the smallest eigenvalue. Finally, special
consideration may be called for in the case of least squares problems arising from the
discretization of ill-posed continuous problems. These problems will be of the form
min{‖Mx − b‖ : ‖x‖ ≤ ∆}, and for ill-posed problems, the matrix A = MTM will
be singular or nearly singular and the vector g = MT b will be orthogonal or nearly
orthogonal to the corresponding null space of A. The method described by Golub
and von Matt [6] may be better suited to this situation, and this comparison should
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be made.
Although a direct comparison to the secant method has not been made here,

the results that have been compiled with respect to the performance of the conjugate-
gradient iteration may be used to draw some conclusions. Two possibilities for a secant
iteration come to mind. The first would be to apply the secant method directly to
the problem of adjusting λ to obtain

1

∆
− 1

‖xλ‖ = 0

using the conjugate-gradient method to solve the resulting linear systems of the form
(A−λI)x = −g. An immediate problem with this approach is to discover the range of
λ for which (A−λI) is positive definite. Moreover, the systems that would have to be
solved would be as computationally demanding for the conjugate-gradient iteration
as the ones arising within the iteration presented here. The computational results
indicate this approach would be inferior to the eigenvalue approach for modest to
large trust-region radii and roughly comparable for small radii.

A second possibility would be to use the eigenvalue formulation (2.2) to obtain
points xλ(α) but to apply the secant method to the problem

1

∆
− 1

‖xλ(α)‖ = 0

in order to adjust the parameter α instead of using the specialized iteration derived
in section 4. This method was coded and computational tests showed it to be inferior
to the method presented here. It took many more iterations in general than the
specialized iteration based upon rational interpolation.

These results indicate promise for this approach to solving the large-scale trust-
region subproblem. The examples given here were solved to tolerances which are
unlikely to arise in most applications. This was done to get some indication of the
asymptotic behavior and to verify the convergence results presented in section 6.
While these preliminary tests are very encouraging, further experience with testing
and with actual application will be necessary.
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Abstract. Newton methods of the linesearch type for large-scale minimization subject to linear
inequality constraints are discussed. The purpose of the paper is twofold: (i) to give an active–set-
type method with the ability to delete multiple constraints simultaneously and (ii) to give a relatively
short general convergence proof for such a method. It is also discussed how multiple constraints can
be added simultaneously. The approach is an extension of a previous work by the same authors for
equality-constrained problems. It is shown how the search directions can be computed without the
need to compute the reduced Hessian of the objective function. The convergence analysis states that
every limit point of a sequence of iterates satisfies the second-order necessary optimality conditions.
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1. Introduction. We consider a method for finding a local minimizer of the
problem

minimize
x∈IRn

f(x)

subject to Ax ≥ b,
(1.1)

where A is an m × n matrix and f ∈ C2. We are interested in the case when n and
possibly m are large and when second derivatives of f are available. The method is
a Newton method of the linesearch type using an active-set strategy to identify the
constraints that are active at the solution, where the active set at each iteration may
change significantly. No assumptions are made about the number of constraints active
at the solution or in the problem. In the approach advocated, it is not necessary to
make any initial transformation of the problem such as transforming it into canonical
form. The method proposed builds on a method we proposed recently for the equality-
constrained problem [11] and requires only a single matrix factorization per iteration.

Linearly constrained optimization has been studied quite extensively over the
years; see, e.g., Gill, Murray, and Wright [17, Chapter 5] and Fletcher [10, Chapter 11].
As mentioned above, our interest is in linesearch methods of the active-set type, i.e.,
methods that solve a sequence of equality-constrained subproblems. Methods of this
type, designed to give limit points that satisfy the first-order optimality conditions,
have been given by, e.g., Rosen [28], Goldfarb [18], Ritter [25, 26, 27], and Byrd and
Shultz [6]. Similarly, linesearch methods designed to give limit points that satisfy the
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second-order necessary optimality conditions have been given by, e.g., McCormick [20]
and Gill and Murray [13]. Methods for large-scale linearly constrained problems
are given by, e.g., Buckley [1] and Murtagh and Saunders [23]. The motivation for
our work is to give a method for large-scale problems together with a concise and
comprehensive convergence analysis. The method proposed here gives limit points
that satisfy the second-order necessary optimality conditions and it is based on a single
matrix factorization per iteration. Although only linesearch methods are considered
in this paper, trust-region methods with similar convergence properties have been
proposed; see, e.g., Gay [12].

2. Notation and assumptions. The method proposed generates a sequence
{xk}∞k=0 of iterates of the form

xk+1 = xk + αkpk,

where pk is a search direction and αk is determined by a linesearch along pk. It is
assumed that fk ≡ f(xk), the gradient gk ≡ ∇f(xk), and the Hessian Hk ≡ ∇2f(xk)
can be evaluated. The definition of pk is given in section 3 and the conditions on αk
are discussed in section 3.5. We denote by aTi the ith row of A and by bi the ith
component of b. At a point xk, a constraint aTi x ≥ bi is said to be active if aTi xk = bi,
inactive if aTi xk > bi, and violated if aTi xk < bi. We denote by Ak a matrix comprising
a subset of the rows of A that correspond to constraints active at xk. Similarly, bk
is the vector of the corresponding elements of b. We denote by Wk ⊆ {1, 2, . . . ,m}
the indices of the rows of A in Ak and refer to Wk as the working set at iteration
k. The notation Wk+1\Wk is used for the set of indices that belong to Wk+1 but
not to Wk. (Note that Wk+1\Wk is defined also when Wk 6⊆ Wk+1.) The matrix Zk

denotes an orthonormal matrix whose columns form a basis for the null space of Ak.
Note that Zk need not be known; our use of this matrix is for theoretical purposes
only. We shall assume that A0 has full row rank. Then, the rules we give in section
3.6 for updating Ak ensure that Ak has full rank for all k. In section 5.1 it is shown
how A0 may be obtained without making any assumptions about A, and in section
5.6 it is shown how Ak may be updated while maintaining the full row rank. For a
symmetric matrix M , we use the notation λmin(M) ≥ 0 for M positive semidefinite
and λmin(M) > 0 for M positive definite but this is just for notational purposes, and
the eigenvalues are not computed. For a sequence I ⊆ {0, 1, . . .}, the abbreviated
notation limk∈I is used for limk→∞,k∈I .

Throughout, the following assumptions are made:
A1. The objective function f is twice continuously differentiable.
A2. The initial feasible point x0 is known, and the level set {x : Ax ≥ b, f(x) ≤

f(x0)} is compact.
A3. The constraint matrix associated with the active constraints has full row rank

at all points that satisfy the second-order necessary optimality conditions if
these constraints are regarded as equalities. Formally, let x̄ denote a feasible
point of (1.1), let AA denote the matrix associated with the active constraints
at x̄, and let ZA denote a matrix whose columns form an orthonormal basis
for the null space of AA. If it holds that

ZT
A∇f(x̄) = 0 and λmin(ZT

A∇2f(x̄)ZA) ≥ 0,

then AA has full row rank.
Assumption A3 states that the problem does not have primal degenerate second-

order constrained stationary points (dual degeneracy may occur). Any algorithm for
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general problems we are familiar with, for which primal nondegeneracy does not need
to be assumed, requires an iteration that in itself has a subiteration. Our purpose
here is to devise algorithms that do not require such subiterations since our primary
concern is to solve large problems. Nonetheless, degeneracy (or near degeneracy) is
possible and needs to be dealt with in any practical implementation. In practice
degeneracy may be dealt with by techniques that allow the standard iteration to be
used; see, e.g., Gill et al. [14]. Such a technique is used within the MINOS code,
see Murtagh and Saunders [24], which has been used to solve thousands of practical
problems. The consequence of using this approach to degeneracy is that the solution
obtained may be infeasible. However, the degree of infeasibility may be set at a level
similar to that which arises due to finite precision. Indeed, even if degeneracy was
not present such techniques are necessary in an endeavor to make the matrix of active
constraints well conditioned. Discussions on theoretical aspects of degeneracy are
given in Burke and Moré [3, 4], Burke [2], and Burke, Moré, and Toraldo [5].

3. Definition of the algorithm. The search direction pk is a sum of three
directions. More specifically,

pk = sk + dk + qk,

where a nonzero sk is a descent direction of bounded norm in the null space of Ak, a
nonzero dk is a direction of negative curvature with bounded norm in the null space of
Ak, and a nonzero qk is a descent direction of bounded norm such that Akqk ≥ 0 and
aTjqk > 0 for some j ∈ Wk. At each iteration, a set of Lagrange multiplier estimates
πk, associated with Ak, is required. In this section, the required properties of sk, dk,
πk, and qk are given, and in section 5 an appropriate way of computing the directions
for large-scale problems is discussed.

3.1. Properties of sk. A nonzero sk has to have bounded norm and be a descent
direction in the null space of Ak, i.e., satisfy gTksk < 0 and Aksk = 0. We also require
that sk be a sufficient descent direction in the following sense:

lim
k∈I

gTksk = 0 ⇒ lim
k∈I

ZT
kgk = 0 and lim

k∈I
sk = 0,(3.1)

where I is any subsequence.

3.2. Properties of dk. We require a nonzero dk to be a nonascent direction
of negative curvature in the null space of the Ak, i.e., gTkdk ≤ 0, dTkHkdk < 0, and
Akdk = 0. Furthermore, the norm of dk has to be bounded and the curvature has to
be sufficient in the sense that

lim
k∈I

dTkHkdk = 0 ⇒ lim inf
k∈I

λmin(ZT
kHkZk) ≥ 0 and lim

k∈I
dk = 0,(3.2)

where I is any subsequence.

3.3. Properties of πk. At each iteration, a vector of Lagrange multiplier esti-
mates, πk, is required. The vector πk must satisfy

lim
k∈I

‖ZT
kgk‖ = 0 ⇒ lim

k∈I
‖gk −AT

kπk‖ = 0,(3.3)

where I is any subsequence. We define πmin,k = mini(πk)i and use this notation
throughout.
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3.4. Properties of qk. If πmin,k ≥ 0 or Wk 6⊆ Wk−1, we set qk = 0. This is to
say that we take at least one step towards minimality for a given Ak before considering
deleting constraints. When qk 6= 0 we require it to be a descent direction that moves
off at least one constraint in the working set and remains feasible with respect to the
others, i.e., gTkqk < 0 and 0 6= Akqk ≥ 0. Furthermore, the norm of qk has to be
bounded and it is also required that the qk’s are such that

lim
k∈I

gTkqk = 0 ⇒ lim inf
k∈I

πmin,k ≥ 0 and lim
k∈I

qk = 0,(3.4a)

aTi qk > 0 ⇒ (πk)i ≤ νπmin,k for k ∈ I, i ∈ Wk,(3.4b)

where I is any subsequence such that Wk ⊆ Wk−1 for all k ∈ I and ν is a preassigned
tolerance, (0 < ν ≤ 1).

3.5. Definition of the iterates. We follow Moré and Sorensen [21] and Fors-
gren and Murray [11] in the linesearch and adapt it to cope with inequality constraints.
For the sake of completion, the linesearch is reviewed here, and the properties that
are subsequently required for the linear inequality-constrained case are given in Lem-
mas 4.1, 4.2, and 4.3 below.

Iteration k takes the following form. The search direction is obtained as pk =
sk + dk + qk, where sk, dk, and qk satisfy the conditions of sections 3.1–3.4. Define
φk(α) = f(xk+αpk). Sections 3.1–3.4 give pk = 0 if and only if φ′k(0) = 0 and φ′′k(0) ≥
0. The linesearch is designed to give limk→∞ φ′k(0) = 0 and lim infk→∞ φ′′k(0) ≥ 0.
An upper bound on the steplength is computed as

ᾱk = min

{
αmax, min

i:aT
i
p
k
<0

aTi xk − bi
−aTi pk

}
,

where αmax, (αmax ≥ 1) is a fixed upper bound on the maximum steplength. If ᾱk = 0,
then αk = 0. Otherwise, the steplength αk is determined such that αk ∈ (0, ᾱk]
satisfies

φk(αk) ≤ φk(0) + µ(φ′k(0)αk + 1
2 min{φ′′k(0), 0}α2

k)(3.5)

and at least one of

|φ′k(αk)| ≤ η|φ′k(0) + min{φ′′k(0), 0}αk| or(3.6a)

αk = ᾱk,(3.6b)

where 0 < µ < 0.5 and µ ≤ η < 1. Finally, xk+1 = xk + αkpk. The conditions of
sections 3.1–3.4 give φ′k(0) ≤ 0 for all k, and φ′k(0) = 0 if and only if pk = dk. It
follows from Moré and Sorensen [21, Lemma 5.2] that αk is well defined.

We refer to a step αk as restricted if

αk = min
i:aT

i
p
k
<0

aTi xk − bi
−aTi pk

,

i.e., a constraint is encountered in the linesearch at iteration k. Otherwise, the step
is referred to as unrestricted. Hence, a restricted step always satisfies (3.6b) whereas
an unrestricted step satisfies at least one of αk = αmax or (3.6a).
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3.6. Properties of Ak. The initial working-set matrix A0 is required to have
full row rank and contain constraints active at x0. To give the rule for updating Wk,
define

W0
k = {i ∈ Wk : aTi pk = 0}.

Let Pa
k denote the index set of constraints that are encountered in the linesearch at

iteration k, i.e.,

Pa
k = {i 6∈ Wk : aTi pk < 0, aTi xk+1 = bi}.

Note that either of W0
k and Pa

k may be the empty set. We then define Wk+1 =
W0

k ∪Wa
k , where Wa

k ⊆ Pa
k and the associated Ak+1 are required to satisfy

Pa
k 6= ∅ ⇒ Wa

k 6= ∅ and(3.7a)

Ak+1 has full row rank.(3.7b)

The implication of (3.7a) is that if new constraints are encountered in the linesearch,
at least one of them has to be added. If Ak has full row rank, (3.7b) will trivially hold
if Wa

k = ∅. Otherwise, care has to be taken to ensure that Ak+1 has full row rank.
This is further discussed in section 5.6.

Note that an implication of the above conditions is that a step αk is restricted if
and only if Wk+1\Wk 6= ∅.

4. Convergence results for linear inequality constraints. Lemmas 4.1, 4.2,
and 4.3 below review results from unconstrained optimization originally proposed by
Moré and Sorensen [21]. These give results for unrestricted steps. The remainder of
this section then establishes the convergence results for linear inequality-constrained
problems.

The following lemma gives some properties of the iterates for a sequence generated
by the above linesearch conditions.

Lemma 4.1. Given assumptions A1–A3, assume that a sequence {xk}∞k=0 is
generated as outlined in section 3. Then

(i) limk→∞ αkφ
′
k(0) = 0;

(ii) limk→∞ α2
k min{φ′′k(0), 0} = 0;

(iii) limk→∞ ‖xk+1 − xk‖ = 0.
Proof. Rearrangement of (3.5) gives

φk(0)− φk(αk) ≥ −µ(φ′k(0)αk + 1
2 min{φ′′k(0), 0}α2

k).

Since µ > 0, φ′k(0) ≤ 0, and the objective function is bounded from below on the
feasible region, (i) and (ii) follow.

To show (iii), we write xk+1−xk = αkpk and show that limk→∞ ‖αkpk‖ = 0. Since
αk and ‖pk‖ are bounded, if limk→∞ ‖αkpk‖ 6= 0, there must exist a subsequence I
and ε1 > 0 and ε2 > 0 such that αk ≥ ε1 and ‖pk‖ ≥ ε2 for k ∈ I. From the
existence of ε1, (i) implies limk∈I φ′k(0) = 0 and (ii) implies lim infk∈I φ′′k(0) ≥ 0.
Since φ′k(0) = gTkpk = gTk(sk + dk + qk) and it holds that gTksk ≤ 0, gTkdk ≤ 0,
and gTkqk ≤ 0, (3.1) implies limk∈I sk = 0 and (3.4) implies limk∈I qk = 0. Hence,
since φ′′k(0) = pTkHkpk and limk∈I ‖pk − dk‖ = 0, (3.2) implies limk∈I dk = 0. Thus,
limk∈I ‖pk‖ = 0. This contradicts the existence of ε2, thus establishing (iii).

The following lemma relates αk to φ′k(0) for an unrestricted step. The implication
is that αk is bounded away from zero if φ′k(0) is bounded away from zero.
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Lemma 4.2. Given assumptions A1–A3, assume that a sequence {xk}∞k=0 is
generated as outlined in section 3. If, at iteration k, an unrestricted step is taken,
then either αk = αmax or there exists a θk, (0 < θk < αk) such that

αk(φ
′′
k(θk) + ηmax{−φ′′k(0), 0}) ≥ −(1− η)φ′k(0).(4.1)

Proof. Since φ′k(0) ≤ 0, it follows from (3.6) that if αk is unrestricted and αk <
αmax, it satisfies

− φ′k(αk) ≤ −ηφ′k(0) + ηmax{−φ′′k(0), 0}αk.(4.2)

Further, since φ′k is a continuously differentiable univariate function, the mean-value
theorem ensures the existence of a θk ∈ (0, αk) such that

φ′k(αk) = φ′k(0) + αkφ
′′
k(θk).(4.3)

A combination of (4.2) and (4.3) now gives (4.1), as required.
Finally, the following lemma gives some properties of subsequences of unrestricted

iterates for a sequence generated by the above linesearch conditions.
Lemma 4.3. Given assumptions A1–A3, assume that a sequence {xk}∞k=0 is

generated as outlined in section 3. Let I denote a subsequence of iterations where
unrestricted steps are taken; then

(i) limk∈I φ′k(0) = 0;
(ii) lim infk∈I φ′′k(0) ≥ 0;
(iii) limk∈I ZT

kgk = 0 and lim infk∈I λmin(ZT
kHkZk) ≥ 0.

Proof. To show (i), assume by contradiction there is a subsequence I ′ ⊆ I such
that φ′k(0) ≤ −ε1 < 0 for k ∈ I ′. Lemma 4.2 in conjunction with assumptions A1
and A2 then implies that lim supk∈I′ αk 6= 0, contradicting Lemma 4.1. Hence, the
assumed existence of I ′ is false, and we conclude that (i) holds.

Similarly, to show (ii), assume by contradiction that there is a subsequence I ′′ ⊆ I
such that φ′′k(0) ≤ −ε2 < 0 for k ∈ I ′′. Since αk > 0 and φ′k(0) ≤ 0, Lemma 4.2 implies
that for k ∈ I ′′ there exists θk ∈ (0, αk) such that

φ′′k(θk)− ηφ′′k(0) ≥ 0.(4.4)

Lemma 4.1 gives limk∈I′′ αk = 0, and thus (4.4) cannot hold for k sufficiently large.
Consequently, the assumed existence of I ′′ is false, and (ii) holds.

Finally, we show that (i) and (ii) imply (iii). Since φ′k(0) = gTkpk = gTk(sk+dk+qk)
and it holds that gTksk ≤ 0, gTkdk ≤ 0, and gTkqk ≤ 0, (i) and (3.1) imply limk∈I ZT

kgk =
0 and limk∈I sk = 0. Further, (i) and (3.4a) imply limk∈I qk = 0. Hence, since φ′′k(0) =
pTkHkpk and limk∈I ‖pk − dk‖ = 0, (ii) and (3.2) imply lim infk∈I λmin(ZT

kHkZk) ≥ 0
and, thus, (iii) holds.

We now extend these results to the case of linear inequality constraints. The
first lemma shows that if there exists a subsequence of iterates at which a constraint
is deleted with the smallest multiplier negative and bounded away from zero and
for which no constraints were deleted at the previous iteration, then eventually a
constraint will be added.

Lemma 4.4. Given assumptions A1–A3, assume that a sequence {xk}∞k=0 is
generated as outlined in section 3. If there is a subsequence I and an ε > 0 such that
qk−1 = 0, qk 6= 0, and πmin,k < −ε for k ∈ I, then there is an integer K such that
Wk+1\Wk 6= ∅ for all k ∈ I and k ≥ K.
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Proof. Suppose that there is a subsequence I and an ε > 0 such that qk−1 = 0,
qk 6= 0, and πmin,k < −ε for k ∈ I. Now assume that there is a subsequence I ′ ⊆ I such
that an unrestricted step is taken for k ∈ I ′. Lemma 4.3 implies that limk∈I′ φ′k(0) = 0.
On the other hand, (3.4a) ensures the existence of a subsequence I ′′ ⊆ I ′ and a
positive constant ε2 such that gTkqk ≤ −ε2 for all k ∈ I ′′. However, since gTksk ≤ 0
and gTkdk ≤ 0, this implies that φ′k(0) ≤ −ε2 for all k ∈ I ′, which is a contradiction.
Hence, the assumed existence of the subsequence I ′ is false, and there must exist a K
such that for k ∈ I and k ≥ K a restricted step is taken, i.e., Wk+1\Wk 6= ∅ for all
k ∈ I and k ≥ K.

Assumption A3 can now be used to show that for a subsequence of iterates where
constraints are deleted, but no constraints were deleted at the previous iteration, the
smallest multiplier is nonnegative in the limit.

Lemma 4.5. Given assumptions A1–A3, assume that a sequence {xk}∞k=0 is
generated as outlined in section 3. If there is a subsequence I such that qk−1 = 0 and
qk 6= 0 for k ∈ I, then lim infk∈I πmin,k ≥ 0.

Proof. Assume that there exists a subsequence I and an ε > 0 such that qk−1 = 0,
qk 6= 0, and πmin,k < −ε for k ∈ I. For each k ∈ I, let lk denote the following
iteration with least index such that Wlk = Wlk−1; i.e., an unrestricted step is taken
at iteration lk − 1 and qlk−1 = 0. Lemma 4.4 implies that there is an integer K such
that Wk+1\Wk 6= ∅ for all k ∈ I and k ≥ K. The properties of qk from section 3.4
imply that qk+1 = 0 for k ∈ I, k ≥ K. Consequently, for k ≥ K, lk is the iteration
with least index following k where no constraint is added in the linesearch. Since
there can be at most min{m,n} consecutive iterations where a constraint is added, it
follows from (iii) of Lemma 4.1 that limk∈I ‖xk − xlk‖ = 0. Consequently, there must
exist a point x̄, which is a common limit point to {xk}k∈I and {xlk}k∈I . By taking
appropriate subsequences, there exists a subsequence I ′ ⊆ I such that limk∈I′ xk = x̄
and limk∈I′ xlk = x̄. Again, by taking appropriate subsequences, there must exist a
subsequence I ′′ ⊆ I ′ such that Wk is identical for every k ∈ I ′′ and Wlk is identical
for every lk ∈ J , where J denotes the subsequence {lk}k∈I′′ . Define WI ≡ Wk for
any k ∈ I ′′ and WJ ≡ Wlk for any lk ∈ J .

Since all constraints corresponding to WI are active at x̄ and an infinite number
of unrestricted steps are taken where the working set is constant, it follows from
assumptions A1 and A2 in conjunction with (iii) of Lemma 4.1 and (iii) of Lemma 4.3
that limk∈I′′ ZT

I gk = 0 and lim infk∈I′′ λmin(ZT
IHkZI) ≥ 0, where ZI denotes a matrix

whose columns form an orthonormal basis for the null space of AI , the constraint
matrix associated with WI . Consequently, (3.3) and the full row rank of AI imply
that limk∈I′′ πk = πI , where πI satisfies

∇f(x̄) = AT
Iπ

I =
∑
i∈WI

aiπ
I
i .(4.5)

By a similar reasoning and notation for ZJ and AJ we have limk∈I′′ ZT
J glk = 0,

lim infk∈I′′ λmin(ZT
JHlkZJ) ≥ 0, and limk∈I′′ πlk = πJ , where πJ satisfies

∇f(x̄) = AT
Jπ

J =
∑
i∈WJ

aiπ
J
i .(4.6)

Combining (4.5) and (4.6), we obtain∑
i∈WI\WJ

aiπ
I
i +

∑
i∈WI∩WJ

ai
(
πIi − πJi

)− ∑
i∈WJ\WI

aiπ
J
i = 0.(4.7)
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By assumption A3, the vectors ai, i ∈ WI ∪WJ are linearly independent. Hence, it
follows from (4.7) that

πIi = 0 for i ∈ WI\WJ ,(4.8a)

πIi = πJi for i ∈ WI ∩WJ ,(4.8b)

πJi = 0 for i ∈ WJ\WI .(4.8c)

Since Lemma 4.4 implies that there is an integer K such that Wk+1\Wk 6= ∅ for all
k ∈ I and k ≥ K, we conclude that WJ\WI 6= ∅. Since no constraints have been
deleted between iterations k and lk for k ∈ I ′′, any constraints whose index is in the
set WI\W J must have been deleted in an iteration k ∈ I ′′. Since I ′′ ⊆ I, it follows
that πmin,k ≤ −ε for k ∈ I ′′. From the rule for moving off a constraint, (3.4b), we
can deduce that (πk)i ≤ −νε for k ∈ I ′′ and i ∈ WI\W J , where ν ∈ (0, 1). Since
limk∈I′′ πk = πI , we conclude that πIi ≤ −νε for i ∈ WI\W J . Hence, (4.8a) implies
that WI\WJ = ∅. Consequently, it must hold that |WJ | ≥ |WI | + 1 and, by (4.8c),
πJ has at least one component zero.

We can conclude from (4.8b) that πmin,lk < −0.5ε for k ∈ I ′′ and k sufficiently
large. The rules for computing qk, (3.4a), ensure that there is a subsequence I ′′′ ⊆ I ′′

such that qlk 6= 0 for all k ∈ I ′′′. From the definition of lk, it holds that qlk−1 = 0
for all k ∈ I ′′′. Therefore, if J ′ = {lk : k ∈ I ′′′}, we may replace I by J ′ and
repeat the argument. Since |WJ | ≥ |WI |+ 1 and |Wk| ≤ min{m,n} for any k, after
having repeated the argument at most min{m,n} times we have a contradiction to
assumption A3, implying that the assumed existence of a subsequence I such that
qk−1 = 0 and qk 6= 0 and πmin,k < −ε for k ∈ I is false. Thus, the result of the lemma
follows.

We are now in the position to give the main convergence result. In addition to
the global convergence established here, we also add a well-known rate-of-convergence
result from Moré and Sorensen [22].

Theorem 4.6. Given assumptions A1–A3, assume that a sequence {xk}∞k=0 is
generated as outlined in section 3. Then, any limit point x∗ satisfies the second-order
necessary optimality conditions ; i.e., if the constraint matrix associated with the active
constraints at x∗ is denoted by AA, there is a vector πA such that

∇f(x∗) = AT
AπA, πA ≥ 0,

and it holds that

λmin(ZT
A∇2f(x∗)ZA) ≥ 0,

where ZA denotes a matrix whose columns form an orthonormal basis for the null
space of AA.

If, in addition, λmin(ZT
A∇2f(x∗)ZA) > 0 and πA > 0 hold, then limk→∞ xk = x∗.

Further, for k sufficiently large, it follows that if sk = −ZA(ZT
AHkZA)−1ZT

Agk then
sk is sufficient in the sense of (3.1), pk = sk, and αk = 1 satisfies (3.5) and (3.6).
Moreover, for this choice of sk and αk, the rate of convergence is at least q-quadratic,
provided the second-derivative matrix is Lipschitz continuous in a neighborhood of x∗.

Proof. Let x∗ denote a limit point of a generated sequence of iterates. By as-
sumption A2, there is a subsequence I such that limk∈I xk = x∗. We claim that this
implies the existence of a subsequence I ′ such that limk∈I′ xk = x∗, qk−1 = 0 and
Ak−1 = Ak = Â for each k ∈ I ′, where Â denotes a matrix which is identical for
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each k ∈ I ′. For k ∈ I, an iterate lk is defined as follows. If qk 6= 0, let lk be the
iteration with largest index that does not exceed k for which qlk−1 = 0. Since no
constraints are deleted immediately upon adding constraints, we obtain qlk−1 = 0,
qlk 6= 0, Wlk−1 = Wlk , and k − m ≤ lk ≤ k. If qk = 0, let lk denote the follow-
ing iteration with least index such that Wlk = Wlk−1. If qlk−1 6= 0, the properties
of qlk−1 and the rules for updating the working set give Wlk 6= Wlk−1. Hence, for
this case, we must have qlk−1 = 0. Since no constraints are deleted immediately
upon adding constraints, it follows that lk is the following iteration with least index
when no constraint is added. For this case, we obtain qlk−1 = 0, Wlk−1 = Wlk , and
k + 1 ≤ lk ≤ k + m. It follows from (iii) of Lemma 4.1 that limk∈I ‖xk − xlk‖ → 0,
and hence limk∈I xlk = x∗. With {lk}k∈I defined this way, since there is only a finite
number of different active-set matrices, the required subsequence I ′ can be obtained
as a subsequence of {lk}k∈I .

Since, for each k ∈ I ′, an unrestricted step is taken at iteration k−1, assumptions
A1 and A2 in conjunction with property (iii) of Lemma 4.3 give

ẐT∇f(x∗) = 0 and λmin(ẐT∇2f(x∗)Ẑ) ≥ 0,(4.9)

where Ẑ denotes an orthonormal matrix whose columns form a basis for the null space
of Â. Since limk∈I′ ẐT gk = 0 and Â has full row rank, it follows from (3.3) and (4.9)
that

∇f(x∗) = ÂTπ̂ for π̂ = lim
k∈I′

πk.(4.10)

It remains to show that mini π̂i ≥ 0. Assume that there is a subsequence I ′′ ⊆ I ′

and an ε > 0 such that πmin,k < −ε for k ∈ I ′′. Lemma 4.5 shows that there exists
a K such that qk = 0 for k ∈ I ′′ and k ≥ K. But this contradicts (3.4a), and since
π̂ = limk∈I′ πk, we conclude that

min
i
π̂i ≥ 0.(4.11)

A combination of (4.9), (4.10), and (4.11) now ensures that x∗ satisfies the second-
order necessary optimality conditions. If there are constraints in AA that are not in
Â, the associated Lagrange multipliers are zero, i.e., πA equals π̂ possibly extended
by zeros. Also, in this situation, the range space of ZA is contained in the range space
of Ẑ. Hence, λmin(ẐT∇2f(x∗)Ẑ) ≥ 0 implies λmin(ZT

A∇2f(x∗)ZA) ≥ 0.
To show the second half of the theorem, note that if πA > 0, then we must have

π̂ = πA, and it follows from (4.10) that there cannot exist a subsequence Ĩ ′ ⊆ I ′ such
that πmin,k < 0 for k ∈ Ĩ ′. This implies that there is an iteration K̃ such that Ak = Â

and qk = 0 for k ≥ K̃. Then the problem may be written as an equality-constrained
problem in the null space of Â, namely

minimize
x∈IRn

f(x)

subject to Âx = b̂,
(4.12)

where b̂ denotes the corresponding subvector of b. If ẐT∇2f(x∗)Ẑ is now positive
definite, then (iii) of Lemma 4.1 and (3.5) ensure that the limit point is unique, i.e.,
limk→∞ xk = x∗. From the continuity of f , it follows that ẐTHkẐ is positive def-
inite for k sufficiently large. Hence, it must hold that dk = 0 and pk = sk for k
sufficiently large. If sk = −ZA(ZT

AHkZA)−1ZT
Agk, then sk is sufficient in the sense of
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(3.1) provided that k ≥ K and xk is sufficiently close to x∗. Also, this choice of sk is
the Newton step for solving (4.12), and it follows from Moré and Sorensen [22, p. 53]
that αk = 1 eventually satisfies (3.5) and (3.6). Moreover, Moré and Sorensen [22,
Theorem 2.3] show that under these assumptions limk→∞ xk = x∗ and the rate of con-
vergence is q-quadratic provided the second-derivative matrix is Lipschitz continuous
in a neighborhood of x∗ [22, Theorem 2.8].

5. Computation of the search direction for large-scale problems. We
now show how to compute sk, dk, πk, and qk that satisfy the properties of sections
3.1, 3.2, 3.3, and 3.4, respectively. A way of updating Ak to satisfy the properties of
section 3.6 is also given. Our particular interest is large-scale problems for which no
prior assumptions are made about the number of constraints in the problem or the
number of constraints active at the solution. This precludes the use of the reduced
Hessian.

Forsgren and Murray [11] describe how suitable search directions can be com-
puted for large-scale linear equality-constrained problems without the need to form
the reduced Hessian. The technique they describe can be utilized also in the current
context for computing a suitable descent direction sk, a suitable Lagrange multiplier
vector πk, and a suitable direction of negative curvature dk. We briefly review this
approach here. The key procedure is an indefinite symmetric factorization of the
Karush–Kuhn–Tucker (KKT) matrix Kk, where

Kk =

(
Hk AT

k

Ak 0

)
.(5.1)

The factorization is an LBLT factorization, i.e., a factorization of the form

ΠT
kKkΠk = LkBkL

T
k,

where Πk is a permutation matrix, Lk is a unit lower-triangular matrix, and Bk is
a symmetric block-diagonal matrix whose diagonal blocks are of size 1 × 1 or 2 ×
2. For a general LBLT factorization, the permutations are performed in order to
obtain a matrix Lk that is sparse and well conditioned; see, e.g., Duff and Reid [8],
[9]. It is shown in Forsgren and Murray [11] that by potentially requiring additional
permutations, suitable sk and dk can be computed from one single factorization of Kk.
We demonstrate below that the additional quantities πk and qk can also be computed
from the same factors. In the discussion below, the inertia of ZT

kHkZk is required.
Note that this inertia can be deduced from the inertia of Kk; see Gould [19, Lemma
3.4]. First we show how to choose A0.

5.1. Finding an A with full row rank. It is required that A0 has full row
rank. Let Ā0 denote the matrix composed of all the rows of A corresponding to the
active set at x0. A straightforward way to determine A0 is to form an LU -factorization
of ĀT

0 . An alternative approach, which fits well with the discussion of section 5, is
to form the symmetric factorization of K0 described in Forsgren and Murray [11],
with A0 = Ā0. In forming the factorization a redundant constraint is identified if its
associated pivot is zero. The factorization may then be terminated prematurely when
only redundant rows are left.
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5.2. Computation of sk and πk. The computation of sk and πk is identical
to the computation of sk in Forsgren and Murray [11]. We solve(

H̄k AT
k

Ak 0

)(
sk

−πk

)
=

(
−gk

0

)
,(5.2)

and H̄k = Hk when ZT
kHkZk is sufficiently positive definite; otherwise, H̄k is a mod-

ification of Hk such that ZT
kH̄kZk is sufficiently positive definite and has bounded

norm. It is shown in Forsgren and Murray [11] how the factors of K̄k may be ob-
tained directly from those of Kk, where K̄k denotes the modified matrix of (5.2) and
Kk is given by (5.1). The matrix K̄k is bounded away from a singular matrix, H̄k

is bounded, and ZT
kH̄kZk is positive definite with bounded condition number and

smallest eigenvalue bounded away from zero. It is straightforward to verify that sk
from (5.2) can be written as

sk = −Zk(Z
T
kH̄kZk)

−1ZT
kgk,(5.3)

and it follows that sk is sufficient in the sense of (3.1). Moreover, assumptions A1 and
A2 ensure that sk has bounded norm if evaluated in the set {x : Ax ≥ b, f(x) ≤ f(x0)}.

A combination of (5.2) and (5.3) gives

gk −AT
kπk = H̄kZk(Z

T
kH̄kZk)

−1ZT
kgk,

and it follows that πk satisfies (3.3).

5.3. Computation of dk. The computation of dk is identical to the computa-
tion of dk in Forsgren and Murray [11]. If ZT

kHkZk is positive definite then dk = 0;
otherwise, we may define a suitable dk as the solution of a system of the form(

Hk AT
k

Ak 0

)(
dk

−µk

)
=

(
uk

0

)

for some suitable vector uk. Forsgren and Murray [11] show how to compute dk by a
single solve with the triangular factor Lk without the need to form uk explicitly. They
also show that dk is sufficient in the sense of (3.2) and that it has bounded norm.

5.4. Computation of qk. We may compute a suitable qk using the matrix K̄k

and the vector πk from (5.2). As was mentioned when describing the computation of
sk and πk, the factors of K̄k may be obtained directly from those of Kk. For a positive
tolerance ν, (0 < ν ≤ 1), we first compute a vector vk such that (vk)i = −(πk)i if
(πk)i ≤ νπmin,k and (vk)i = 0 if (πk)i > νπmin,k. The direction qk is then obtained
from the system (

H̄k AT
k

Ak 0

)(
qk

−ηk

)
=

(
0

vk

)
.(5.4)

The following lemma shows that a nonzero qk is a descent direction such that
Akqk ≥ 0.

Lemma 5.1. Let sk and πk be defined from (5.2). If πmin,k < 0 and qk and ηk
are defined from (5.4), then qTkgk = πTkvk ≤ −π2

min,k and Akqk = vk ≥ 0.
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Proof. Premultiplication of both sides of (5.4) by the vector (sTk −πTk ) from (5.2)
yields

(
sTk −πTk

)( H̄k AT
k

Ak 0

)(
qk

−ηk

)
=
(
sTk −πTk

)( 0

vk

)
.(5.5)

Utilization of (5.2) and the symmetry of H̄k in the left-hand side of (5.5) yields

(
−gTk 0

)( qk

−ηk

)
=
(
sTk −πTk

)( 0

vk

)
.(5.6)

Simplification of (5.6) gives qTkgk = πTkvk. The definition of vk yields

πTkvk = −
∑

i:(πk)i≤νπmin,k

(πk)
2
i ≤ −π2

min,k.

Moreover, it follows from the definition of vk that vk ≥ 0, and (5.4) implies Akqk =
vk ≥ 0, as required.

The norm of πk is bounded because of the properties of K̄k and assumptions A1
and A2. Hence, since ZT

kH̄kZk is positive definite and has bounded norm, we conclude
that qk computed from (5.4) has bounded norm. It follows from (5.4) that aTi qk = 0
if (πk)i > νπmin,k for i ∈ Wk, and hence (3.4b) holds. Lemma 5.1 implies that

lim
k∈I

gTkqk = 0 ⇒ lim inf
k∈I

πmin,k ≥ 0,(5.7)

where I is any subsequence such that qk is computed from (5.4) for k ∈ I and hence
(3.4a) holds.

5.5. Combination of the search direction. It is not specified in sections 3.1–
3.4 exactly how to choose sk, dk, πk, and qk. Sections 5.2–5.4 give suitable ways of
computing these quantities. In certain situations these components are necessarily
zero; if ZT

kgk = 0 then sk = 0, if ZT
kHkZk is positive semidefinite then dk = 0, and

if πmin,k ≥ 0 or Wk 6⊆ Wk−1 then qk = 0. However, it may be desirable occasionally
to let some components be zero even when it is not necessary. For example, having
a nonzero qk whenever possible may not be the most efficient strategy. If the current
reduced Hessian has many negative eigenvalues this suggests more constraints should
be active rather than less. It is possible to impose a rule that only considers deleting
constraints when to do so significantly impacts pk. The property (3.4a) required of
qk suggests having an additional condition saying that qk = 0 if

πmin,k ≥ β
(
gTksk + dTkHkdk

)
,

where β is a positive constant. Since Lemma 4.3 implies that limk→∞ gTksk = 0
and limk→∞ dTkHkdk = 0 for unrestricted steps, such a condition does not impact on
(3.4a), and hence it does not alter the convergence analysis. Similar conditions can
be imposed to set sk = 0 or dk = 0 at certain iterations.

5.6. The update of Ak. The working-set matrix Ak is required to have full row
rank. A straightforward way to ensure this property is to add at most one constraint
at every iteration, as the following lemma shows.
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Lemma 5.2. Given assumptions A1–A3, assume that a sequence {xk}∞k=0 is
generated as outlined in section 3. If A0 has full row rank, |Wk+1| ≤ |W0

k | + 1,

aTi pk < 0 for all k ≥ 0, and i ∈ Wk+1\Wk, then each Ak has full row rank.

Proof. See, e.g., Gill et al. [16, Lemma 2.1].

Although the computed search directions described in sections 5.2–5.4 are not
designed specifically to add more than one constraint per iteration, the convergence
analysis presented gives room for defining algorithms that add any number of active
constraints, as long as the working-set matrix has full row rank. The issue would
be twofold: (i) to modify the definitions of the search directions, so as to make
more than one new constraint become active in the linesearch, while still maintaining
the required properties of these directions, and (ii) to maintain the full rank of the
working-set matrix. This approach may be advantageous for certain problems, e.g.,
problems where all constraints are simple bounds. In this situation, it is known a
priori that any working-set matrix will have full row rank. Techniques similar to
gradient projection, see, e.g., Calamai and Moré [7], might prove useful for altering
the search direction.

6. Primal degeneracy. Assumptions A1 and A2 ensure that the objective func-
tion is sufficiently smooth and the iterates remain in a feasible region. Assumption A3
implies that no primal degenerate second-order constrained stationary points exist.
Although for nonlinear problems degeneracy is not as common in practice as it is for
linear programming problems, there are problems for which A3 does not hold. Con-
sequently, in a practical implementation of our algorithm some technique to handle
degeneracy is necessary. The nature of degeneracy is different for nonlinear problems.
In linear programming the main concern is degenerate vertices. In effect the iterate
is at the degenerate stationary point. In a nonlinear problem we may never be at
the stationary point. Moreover it is likely not to be a vertex. What we are likely to
encounter is rank deficient active-set matrices for which the number of rows is less
than n, and we are not at a constrained stationary point. We need only be concerned
if we plan to delete constraints. In exact arithmetic we could define a subiteration to
search for a suitable active set. A method of implementing this strategy that makes
use of the known factorization of the KKT matrix is described in Gill et al. [15].
Such an approach is an improvement over algorithms based on sequential quadratic
programming where a subiteration may be necessary at each iteration of the quadratic
programming subproblem. The difficulty with this strategy is the need to define the
active set. In inexact arithmetic precisely what is the active set is not clear. We
prefer therefore to rely on the approach adopted by Gill et al. [14]. This technique
allows infeasibility tolerances on the constraints that are altered at each iteration.
The impact on the algorithm is that a zero step is never taken. The consequences of
allowing infeasibility tolerances is that the solution obtained may be infeasible. How-
ever, the maximum degree of infeasibility may be specified. In practice the maximum
infeasibility allowed when solving nonlinear problems is unlikely to be attained and
is in any event consistent with the infeasibility that results from the impact of finite
precision operations. An advantage of this approach is that it is equally useful for
handling near degeneracy. This is likely to be common on problems where the linearly
constrained problem being solved is an approximation to a nonlinearly constrained
problem whose Jacobian is rank deficient at the solution. The use of a procedure
similar to that in [14] is in any event essential in practice for the purpose of trying to
introduce a choice in the definition of Ak in an attempt to ensure that the condition
number of Ak is not too large. For example, if infeasibilities are allowed then nearly



METHODS FOR LINEAR INEQUALITY-CONSTRAINED MINIMIZATION 175

dependent active constraints need not be included in the working set. The search
direction will not be exactly orthogonal to the constraint normals of the constraints
ignored but it will be close, hence the next iterate will not be too infeasible.

7. Discussion. A convergence analysis for an algorithm to solve linear inequality-
constrained optimization problems has been presented. The algorithm is described
in broad terms by assuming the availability at each iteration of three directions with
certain properties. It has also been shown how to compute all the required search
directions from a single symmetric indefinite factorization of the KKT matrix. Such
an algorithm is well suited to solving large-scale problems. Unlike some alternatives
the efficiency of the method is not dependent on either the active set or the null space
of the active set being small.

For convenience of notation, the problem is stated in all-inequality form (1.1),
but we emphasize that the analysis can be modified in a straightforward manner to
cover the case with a mixture of inequality and equality constraints. A particularly
attractive feature of the algorithm described is that the problem does not have to be
transformed into a specific form.

Acknowledgments. We thank the referees for their helpful comments and crit-
icism, which significantly improved the presentation.
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Abstract. This work presents a global convergence theory for a broad class of trust-region
algorithms for the smooth nonlinear programming problem with equality constraints. The main
result generalizes Powell’s 1975 result for unconstrained trust-region algorithms.

The trial step is characterized by very mild conditions on its normal and tangential components.
The normal component need not be computed accurately. The theory requires a quasi-normal com-
ponent to satisfy a fraction of Cauchy decrease condition on the quadratic model of the linearized
constraints. The tangential component then must satisfy a fraction of Cauchy decrease condition
on a quadratic model of the Lagrangian function in the translated tangent space of the constraints
determined by the quasi-normal component. Estimates of the Lagrange multipliers and the Hessians
are assumed only to be bounded.

The other main characteristic of this class of algorithms is that the step is evaluated by using the
augmented Lagrangian as a merit function with the penalty parameter updated using the El-Alem
scheme. The properties of the step and the way that the penalty parameter is chosen are sufficient
to establish global convergence.

As an example, an algorithm is presented that can be viewed as a generalization of the Steihaug–
Toint dogleg algorithm for the unconstrained case. It is based on a quadratic programming algorithm
that uses a step in a quasi-normal direction to the tangent space of the constraints and then takes
feasible conjugate reduced-gradient steps to solve the reduced quadratic program. This algorithm
should cope quite well with large problems for which effective preconditioners are known.

Key words. constrained optimization, global convergence, trust regions, equality constrained,
nonlinear programming, conjugate gradient, inexact Newton Method
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1. Introduction. This work is concerned with the development of a global con-
vergence theory for a broad class of algorithms for the equality constrained minimiza-
tion problem:

(EQC) ≡
{

minimize f(x)
subject to C(x) = 0.

The functions f : <n → < and C : <n → <m are at least twice continuously differen-
tiable where C(x) = (c1(x), . . . , cm(x))T and m < n.

Our purpose is to generalize to constrained problems a powerful theorem given in
1975 by Powell for unconstrained problems.

The global convergence theory that we establish in this work holds for a class of
nonlinear programming algorithms for (EQC) that is characterized by the following
features:

∗ Received by the editors October 14, 1992; accepted for publication (in revised form) October 6,
1995. This research was supported by DOE DE-FG005-86ER25017, CRPC CCR-9120008, AFOSR-
F49620-95-1-0210, and the REDI Foundation.

http://www.siam.org/journals/siopt/7-1/23888.html
† Department of Computational and Applied Mathematics & Center for Research on Parallel

Computation, Rice University, P. O. Box 1892, Houston TX 77251 (dennis@ariel.rice.edu).
‡ Department of Mathematics, Faculty of Science, Alexandria University, Alexandria, Egypt

(elalem@alex.eun.eg).
§ Departamento de Matematica, Universidad Nacional del Sur, Avenida Alem 1253, 8000 Bahia

Blanca, Argentina.

177



178 J. DENNIS, M. EL-ALEM , AND M. MACIEL

1. The algorithms of the family use the trust-region approach as a globalization
strategy.

2. All these algorithms generate steps that satisfy our mild conditions on the
trial step’s normal and tangential components. It is important to note that
the condition on our “quasi-normal” step snc , that ‖snc ‖2 ≤ K1‖C(xc)‖2 for
some independent constant K1, is always satisfied under our hypotheses if
a truly normal component is used for the trial step. The other conditions
are that the quasi-normal component satisfies a fraction of Cauchy decrease
condition on the quadratic model of the linearized constraints and that the
tangential component (as measured from the quasi-normal component) sat-
isfies a fraction of Cauchy decrease on the quadratic model of the reduced
Lagrangian function associated with (EQC).

3. The estimates of the Lagrange multiplier vector and the Hessian matrix are
assumed only to be bounded uniformly across all iterations.

4. The step is evaluated for acceptance by using the augmented Lagrangian
function with penalty parameter updated by the El-Alem scheme [9]. A key
point here is that the step is computed before the penalty parameter, which
will be used to evaluate the step, is updated.

Points 1 and 3 are satisfied by the algorithms of Byrd, Schnabel, and Shultz [2];
Omojokun [21]; Celis, Dennis, and Tapia [4]; and Powell and Yuan [23]. The first two
papers require a normal, rather than just a quasi-normal, snc in point 2.

We use the following notation: the sequence of points generated by an algorithm
is denoted by {xk}. This work also uses subscripts -, c, and + to denote the previous,
the current, and the next iterates, respectively. However, when we need to work with
a whole sequence we will use the index k. The matrix Hc denotes the Hessian of the
Lagrangian at the current iterate or an approximation to it. Subscripted functions
mean the function value at a particular point; for example, fc = f(xc), `c = `(xc, λc),
and so on. Finally, unless otherwise specified, all the norms are `2-norms, and we use
the same symbol 0 to denote the real number zero and the zero vector.

The rest of the paper is organized as follows: in section 2, we review the concept
of fraction of Cauchy decrease. In section 3, we review the SQP algorithm. In section
4, we survey existing trust-region algorithms for solving problem (EQC). In section
5, we present a general trust-region algorithm with the conditions that the trial step
must satisfy. In section 6 we state the algorithm. Sections 7 and 8 present the global
convergence theory that we have developed. In section 7.1, we state the assumptions
under which global convergence is established. In section 7.2, we discuss some proper-
ties of the trial steps. In section 7.3, we study the behavior of the penalty parameter.
Section 8 presents our main global convergence result. In section 9, we present, as an
example, an algorithm that solves problem (EQC), and we prove that it fits the as-
sumptions of the paper. This algorithm was one we had in mind as motivation for the
convergence theory. It can be viewed as a generalization to the constrained problem
of the Steihaug–Toint dogleg algorithm for the unconstrained case. This algorithm
has worked quite well for some large problems. Finally, we make some concluding
remarks in section 10.

2. Fraction of Cauchy decrease condition. Consider the following uncon-
strained minimization problem

(UCMIN) ≡
{

minimize f(x)
subject to x ∈ <n,
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where f : <n → < is a continuously differentiable function. A trust-region algorithm
for solving the above problem is an iterative procedure that computes a trial step as
an approximate solution to the following trust-region subproblem:

(TRS) ≡
{

minimize mc(s) = fc +∇fTc s + 1
2s

TGcs
subject to ‖s‖ ≤ δc,

where Gc is the Hessian matrix ∇2fc or an approximation to it and δc > 0 is a given
trust-region radius. For a complete survey see Moré [18] and the book by Dennis and
Schnabel [7].

To assure global convergence, the step is required only to satisfy a fraction of
Cauchy decrease condition. This means that sc must predict via the quadratic model
function mc at least as much as a fraction of the decrease given by the Cauchy step
on mc; that is, there exists a constant σ > 0 fixed across all iterations, such that

mc(0)−mc(sc) ≥ σ[mc(0)−mc(s
cp
c )],(2.1)

where scpc = −tcpc ∇fc and its step length

tcpc =

{ ‖∇fc‖2
∇fTc Gc∇fc if ‖∇fc‖3

∇fTc Gc∇fc ≤ δc and ∇fTc Gc∇fc > 0,
δc

‖∇fc‖ otherwise.

Thus, scpc is the steepest descent step for mc inside the trust region.
The form of (2.1) we use to prove convergence is given in the following technical

lemma. More details about the role of this lemma in the convergence theory of trust-
region algorithms can be found in Carter [3], Moré [18], Powell [22], and Shultz,
Schnabel, and Byrd [25].

Lemma 2.1. If the trial step sc satisfies a fraction of Cauchy decrease condition,
then

mc(0)−mc(sc) ≥ σ

2
‖∇fc‖min

{‖∇fc‖
‖Gc‖ , δc

}
.(2.2)

Proof. See Powell [22] for the proof.
We end this section by stating Powell’s powerful theorem for unconstrained trust-

region algorithms. The proof can be found in Powell [22]. More details about the
convergence theory for trust-region algorithms for unconstrained optimization can be
found in Fletcher [14], Moré [18], Moré and Sorensen [19], and Sorensen [26].

Theorem 2.2. Let f : <n → < be continuously differentiable and bounded below
on the level set {x ∈ <n : f(x) ≤ f(x0)}. Assume that the sequence {Gk} is uniformly
bounded. If {xk} is the sequence generated by any trust-region algorithm that satisfies
(2.1) or (2.2), then

lim inf
k→∞

‖∇fk‖ = 0.

Notice that this theorem does not prove convergence to a solution of the un-
constrained problem; rather, it proves a “weak” first-order convergence. However,
we do not see that as the point of this theorem, nor is it surprising given the weak
assumptions on the sequence of local models. In other words, this theorem is not
about convergence conditions on a quasi-Newton method. Such a theorem would be
expected to be based on analyzing some way of estimating the Hessian, and we all
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know how important the method for estimating the Hessian is in the practical perfor-
mance of a trust-region algorithm. In the unconstrained case, one version of Powell’s
theorem, which says that the sequence of gradients converges to zero, requires the
additional hypothesis that the gradient is uniformly continuous. The algorithms here
would probably require a uniformly continuous reduced gradient, a strengthening of
the assumptions used here. The related algorithms mentioned earlier also prove weak
first-order stationary convergence, as do we.

The point of this line of research is not to give a convergence proof for a specific
SQP approach using a specific Lagrange multiplier estimation technique and perhaps
an exact merit function. Instead, the point is to give an analysis of the local quadratic-
model/trust-region paradigm for unconstrained optimization. In that context, this
theorem says that the power of using a trust-region globalization is that if the first-
order information is correct, then little is required of the second-order information.
Specifically, the sequence of model Hessians need only be bounded.

Our theory is analogous for problem (EQC). In this case, the local model of the
problem is generally taken to be a linear model of the constraints and a quadratic
model of the Lagrangian. The information in the local model depends on the La-
grange multiplier estimates as well as second-order information. In this paper, we
identify a way to extend the unconstrained paradigm to problem (EQC) for which
the only requirement is boundedness of the sequence of model Lagrange multipliers
and Hessians.

3. The SQP algorithm. The Lagrangian function ` : <n×<m → < associated
with problem (EQC) is the function

`(x, λ) = f(x) + λTC(x),

where λ = (λ1, . . . , λm)T is a Lagrange multiplier vector estimate.
A common algorithm for solving problem (EQC) is the successive quadratic pro-

gramming algorithm. It is an iterative procedure. At each iteration, a step sQP and
associated Lagrange multiplier ∆λQP are obtained by solving the following quadratic
program:

(QP) ≡
{

minimize qc(s) = 1
2s

THcs +∇x`
T
c s + `c

subject to ∇CT
c s + Cc = 0,

where the matrix Hc is the Hessian of the Lagrangian at (xc, λc) or an approximation
to it.

Unfortunately, the SQP algorithm cannot be guaranteed to work without modifi-
cation. There is a fundamental difficulty in the definition of the SQP step because the
second-order sufficiency condition need not hold at each iteration. By this we mean
that the matrix Hc need not be positive definite on the null space of ∇CT

c ; hence the
QP subproblem may have no solution or many solutions. This difficulty will not arise
near a solution of problem (EQC) if the standard assumptions for Newton’s method
hold at the solution. For this reason, the SQP algorithm usually performs very well
locally. See Tapia [28] for more details.

An effective modification that deals with the lack of positive definiteness on the
null space is the use of a trust-region globalization strategy. This takes us to the
following section.

4. Existing trust-region algorithms for (EQC). A straightforward way to
extend the trust-region idea to problem (EQC) is to add a trust-region constraint to
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the (QP) subproblem to restrict the size of the step. So, at each iteration, we solve
the following trust-region subproblem: minimize qc(s) = 1

2s
THcs +∇x`

T
c s + `c

subject to ∇CT
c s + Cc = 0,

‖s‖ ≤ δc.

However, in this straightforward approach, observe that the trust-region constraint
and the linearized constraints may be inconsistent, so that the model subproblem
does not have a solution. To overcome this difficulty, two main approaches have been
introduced for dealing with the case when {s : ∇CT

c s+ Cc = 0} ∩ {s : ‖s‖ ≤ δc} = ∅.
They are the tangent-space approach and the full-space approach. We describe them
briefly in the next section. More details can be found in Maciel [17]. See also Byrd,
Schnabel, and Shultz [2]; Celis, Dennis, and Tapia [4]; Omojokun [21]; Powell and
Yuan [23]; and Vardi [31], [32].

4.1. The tangent-space approach. In this approach the trial step is deter-
mined as sc = snc +stc, where snc is the quasi-normal component and stc is the tangential
component with respect to the null space of the constraint Jacobian. The component
snc is in the trust region, and ideally it truly is normal to the null space N (∇CT

c ).
The substep stc is the component of the step in the tangent space of the constraints
given by stc = Wcs̄

t
c, with s̄tc ∈ <n−m and Wc is an n× (n−m) matrix whose columns

form a basis for N (∇CT
c ).

This raises two questions to be answered. We must say how to determine snc , and
given snc we must say how to determine stc. We proceed in reverse order. Given snc we
determine stc by considering the transformed subproblem minimize qc(s

t + snc )
subject to ∇CT

c s
t = 0,

‖st‖ ≤ δ̄c,

where δ̄c =
√
δ2
c − ‖snc ‖2. We choose stc by using one of the standard unconstrained

trust-region trial-step selection methods on this reduced problem.
These algorithms have the trust region capability of dealing quite well with zero

or negative curvature in the tangent space of the constraints. Thus, nonexistence of
an SQP step at the current iterate is readily handled.

To choose snc , Byrd, Schnabel, and Shultz [2] and Vardi [31],[32] suggest relaxing
the linearized constraints by replacing Cc by αCc, where α ∈ (0, 1] is chosen to ensure
that the above trust-region subproblem is feasible. Thus, snc = −α∇Cc(∇CT

c ∇Cc)−1Cc.
Observe that if α = 0 then∇CT

c s+αCc = 0 contains s = 0 and hence for any σ ∈ (0, 1]
there is some ασ ∈ (0, 1) for which {s : ∇CT

c s + ασCc = 0} ∩ {s : ‖s‖ ≤ σδc} 6= ∅.
The drawback of the above approach is that the step depends on the parameter

α; it is not clear how to choose it.
Omojokun [21], used this approach to compute a trial step that does not depend

on α by choosing snc to be the step that solves the following problem:{
minimize 1

2‖∇CT
c s + Cc‖2

subject to ‖s‖ ≤ σδc

for 0 < σ < 1.
It might appear that Omojokun has traded the choice of α for the choice of σ,

but in fact σ is easy to choose. Some nominal value like σ = 0.8 is used throughout,
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and the particular value of σ at a given iteration is allowed to be in some uniformly
bounded strict subinterval like (0.7, 0.9). This subinterval corresponds to stopping
criteria on a trust-region algorithm to solve for snc . See Moré [18], Moré and Sorensen
[19], or Dennis and Schnabel [7].

4.2. The full-space approach. The other approach to overcoming the problem
of inconsistency is the full-space approach. Algorithms based on this approach com-
pute sc at once in the whole <n space instead of considering the decomposition of the
trial step. This has the advantage of avoiding the computation of a Moore–Penrose
pseudoinverse solution.

The first example we know of this category of trust-region subproblems is the
CDT subproblem proposed by Celis, Dennis, and Tapia [4]. Instead of considering
the linearized constraint ∇CT

c s + Cc = 0, they replace it by a particular inequality:
‖∇CT

c s + Cc‖ ≤ θc, where θc ∈ <. The CDT subproblem can be written as follows: minimize qc(s)
subject to ‖∇CT

c s + Cc‖ ≤ θc,
‖s‖ ≤ δc.

The key to the CDT subproblem (and its variants) is the choice of θc. For more
details, see Williamson [33]. Celis, Dennis, and Tapia [4] choose θc based on a fraction
of Cauchy decrease condition on ‖∇CT

c s+Cc‖2. They ask the step to satisfy for some
r1 ∈ (0, 1],

‖Cc‖2 − ‖Cc +∇CT
c s‖2 ≥ r1{‖Cc‖2 − ‖∇CT

c s
cp
c + Cc‖2}.

This can be done by choosing

θ2
c = (θfcd

c )2 ≡ r1‖∇CT
c s

cp
c + Cc‖2 + (1− r1)‖Cc‖2,(4.1)

where scpc solves the problem minimize 1
2‖∇CT

c s + Cc‖2
subject to ‖s‖ ≤ rδc,

s = −t∇CcCc, t ≥ 0.

Note that in this case, the CDT subproblem minimizes the quadratic model of `
over a set of steps inside the trust region. Specifically, the set is of those steps that
give at least r1 times as much decrease in the `2-norm of the residual of the linearized
constraints as does the Cauchy step.

In order to prevent the possibility of having only a single feasible point for the
subproblem and so not to have a meaningful trust-region subproblem, it is suggested
that r < 1; for instance r = 0.8.

5. A general trust-region algorithm. In this section we describe a very in-
clusive class of trust-region algorithms.

The typical form of trust-region algorithms for solving (EQC) is basically as
follows: at the current point xc with associated multiplier estimate λc, a step sc
is computed by solving some trust-region subproblems, and a Lagrange multiplier
estimate λ+ is obtained by using a scheme. The point x+, where x+ = xc + sc, is
tested using some merit function to decide whether it is a better approximation to a
solution x?. Such merit functions often involve a penalty parameter, which is updated
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using a scheme. The trust-region radius is then adjusted and a new quadratic model
is formed.

In our requirements on the trust-region algorithm, the way of computing the
trial steps is replaced by some conditions the steps must satisfy, and the estimates
of the Lagrange multiplier vectors and the Hessian matrices need only be uniformly
bounded. This allows the inclusion of a wide variety of trust-region algorithms and it
is exactly in the spirit of Powell’s Theorem 2.2 for unconstrained trust-region methods.
In section 9, we present an example algorithm that satisfies these mild conditions.

5.1. Computing the trial steps. We first write the trial step as sc = stc + snc ,
where stc and snc are, respectively, the tangential and a quasi-normal component. We
do not require that snc be normal to the tangent space.

We require that the components snc and stc satisfy a fraction of Cauchy decrease
condition on appropriate model functions. At the current iterate, if Cc 6= 0, then
we require that the quasi-normal component give at least as much decrease as scpc =
−ncp

c ∇CcCc on the quadratic model of the linearized constraints in a trust region of
radius rδc, where the step length ncp

c is given by

ncp
c =

{ ‖∇CcCc‖2
‖∇CT

c ∇CcCc‖2 if ‖∇CcCc‖3
‖∇CT

c ∇CcCc‖2 ≤ δ̂c,
δ̂c

‖∇CcCc‖ otherwise,

where δ̂c = rδc and 0 < r < 1. In words, the step snc is chosen from the set of steps
that satisfy a fraction of Cauchy decrease condition on the quadratic model of the
linearized constraints inside ‖s‖ ≤ δ̂c. Equivalently, snc lies in the set

Sc = {s : ‖s‖ ≤ δ̂c} ∩ {s : ‖∇CT
c s + Cc‖2 ≤ (θfcd

c )2},
where (θfcd

c )2 is given by (4.1). Because the quasi-normal component snc is not required
to be normal to the tangent space, a condition on the step is needed to ensure global
convergence. In particular, the following condition is required:

‖snc ‖ ≤ K1‖Cc‖,(5.1)

where K1 is some positive constant independent of the iteration.
If snc is normal to the tangent space, this condition holds (see Lemma 7.1) as long

as K1 is greater than a uniform bound on the norm of the right inverse for ∇C(x)T .
When snc is not normal to the tangent space, we do not suggest choosing K1 and
enforcing (5.1). Rather, we suggest (as in section 9) that (5.1) is enforced naturally
by any reasonable algorithm for computing a linearly feasible point.

We deal with the quasi-normal components of the trial steps, assuming that they
satisfy (5.1). We are indebted to Robert Michael Lewis for informing us of the effec-
tiveness of this feature in the algorithm which he has implemented to solve a PDE
inverse problem [6]. Specifically, this allows special linear algebra developed for sim-
ulation constraints to be used in place of prohibitively large least-squares solutions.

Now we use the quasi-normal component to pick a linear manifold Mc, parallel
to the null space of the constraints. We select the tangential component in Mc. Let
Mc = {s : ∇CT

c s = ∇CT
c s

n
c }. Thus, Mc ∩ {s = st + snc : ‖s‖ ≤ δc} 6= ∅.

Observe that in the set Sc we are taking a fraction of δc in order to forestall the
case that Mc lies too close to the boundary of the trust region of radius δc.

On the manifold Mc, we consider a quadratic model qc(s) of the Lagrangian
function associated with problem (EQC). Then when WT

c ∇qc(snc ) 6= 0, we ask the
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tangential component to satisfy a fraction of Cauchy decrease condition from snc on
qc(s) reduced toMc. That is sc = stc + snc ∈ Gc ∩Mc, where

Gc = {s = st + snc : ‖s‖ ≤ δc, qc(s)− qc(s
n
c ) ≤ σ[qc(s

n
c − tcpc WcW

T
c ∇qc(snc ))− qc(s

n
c )]}

for some σ > 0 and

tcpc =


‖WT

c ∇qc(snc )‖2
∇qc(snc )TWcH̄cWT

c ∇qc(snc )
if

‖WT
c ∇qc(snc )‖2‖WcW

T
c ∇qc(snc )‖

∇qc(snc )TWcH̄cWT
c ∇qc(snc )

≤ δ̄c

and ∇qc(snc )TWcH̄cW
T
c ∇qc(snc ) > 0,

δ̄c
‖WcWT

c ∇qc(snc )‖ otherwise,

(5.2)

where H̄c = WT
c HcWc is the reduced Hessian matrix and δ̄c is the maximum length of

the step allowed inside the setMc ∩ {s = st + snc : ‖s‖ ≤ δc} in the negative reduced
gradient direction −WT

c ∇qc(snc ).
It is easy to see that δ̄c satisfies

(1 + r)δc > δ̄c > (1− r)δc.(5.3)

We have intentionally not stated the computation of the tangential component as a
trust-region subproblem. Condition 5.2 is a lopsided condition in the sense that δ̄c
is direction dependent because the quasi-normal step is not the center of the natural
trust region for the reduced quadratic. A better step might come from minimizing the
reduced quadratic inMc∩{s = st+ snc : ‖s‖ ≤ δ̄c}, and an ideal step would probably
come from minimizing the reduced quadratic in Mc ∩ {s = st + snc : ‖s‖ ≤ δc}. In
any case, both result in steps that satisfy our conditions.

We have defined the tangent space Cauchy step along −WT
c ∇qc(snc ), which is

the steepest descent direction for qc(s
n
c +Wcs̄

t) in the `2-norm. The steepest descent
direction in the ‖Wc · ‖-norm would be −[WcW

T
c ]−1WT

c ∇qc(snc ). Of course, as long as
[WcW

T
c ]−1 is uniformly bounded, which seems a reasonable assumption, then either

step satisfies a fraction of Cauchy decrease condition with respect to the other, and our
theory holds for either. We do not need this boundedness assumption for our choice of
Cauchy step. For a particular application, the choice of variables may be determined
by which form of the reduced problem is easiest to precondition. See the discussion
after Algorithm 9.2. For the problems of interest to us −[WcW

T
c ]−1WT

c ∇qc(snc ) would
be an extremely expensive—or impossible—direction to compute.

5.2. Updating the model Lagrange multiplier and the model Hessian.
The method for estimating the multiplier λc is left unspecified. We only require
that the sequence of estimates {λk} be bounded. Any approximation to the Lagrange
multiplier vector that produces a bounded sequence can be used. For example, setting
λk to a fixed vector (or even the zero vector) for all k is valid. Similarly, we require
only boundedness of the sequence {Hk} of approximate Hessians. Thus, all Hk = 0
is allowed. Note that, here, we are not addressing the question of the choices of
the Lagrange multiplier and Hessian estimates that produce an efficient algorithm.
We are addressing some weak assumptions on those estimates {λk} and {Hk} that
produce a globally convergent algorithm. For example, our theory applies to a form
of successive linear programming with an elliptical move limit.

5.3. The choice of the merit function. Let xc be the current iterate. We
need to decide if a trial step chosen to satisfy snc ∈ Sc and sc = snc + stc ∈ Gc ∩Mc is
a good step; that is, we decide if the step sc gives a new iterate x+ that is a better
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approximation than xc to a solution x? of (EQC). In constrained optimization, the
meaning of better approximation should consider improvement not only in f but also
in the constraint violation ‖C‖. The evaluation of the trial step requires the choice
of a merit function, which usually involves the objective function and the constraint
violations.

Here, we use the augmented Lagrangian as a merit function

L(x, λ; ρ) = f(x) + λTC(x) + ρC(x)TC(x), ρ > 0.(5.4)

This function has been used as a merit function in trust-region algorithms also by
Celis, Dennis, and Tapia [4]; El-Alem [9], [10]; and Powell and Yuan [23].

El-Alem [10] and Powell and Yuan [23] use the formula λ(x) = −(∇C(x)T∇C(x))−1

∇C(x)T∇f(x) for updating the Lagrange multiplier. For this particular choice of the
multiplier, λ is a function of x and (5.4) is an exact penalty function. This means
that if ρ is sufficiently large, then the solution to problem (EQC) is an unconstrained
minimizer of the penalty function. See Fletcher [12], [13].

Celis, Dennis, and Tapia [4] and El-Alem [9], on the other hand, with a particular
choice of the multiplier, have treated the multiplier as an independent parameter
that really only enters in the merit function for accepting the step and updating the
other parameters in the algorithm. In other words, one never explicitly uses the merit
function in computing the optimization step; it is used only for evaluating the steps.
The effect on the trial step computation of the multiplier estimates is in the tangential
component through the estimate of the Hessian of the Lagrangian. This is a major
difference between merit function roles in trust region algorithms and in line-search
algorithms.

In the context of a line-search globalization strategy, Gill, Murray, Saunders,
and Wright [15] and Schittkowski [24] have considered the augmented Lagrangian as
a merit function but also as an objective function for choosing the step along the
direction of search. They have treated the multiplier as an independent variable and
proved global convergence for their algorithms.

In summary, we believe that having an exact penalty function as a merit function
is, of course, a desirable property, especially in line-search algorithms. On the other
hand, in practice, one never really knows whether the penalty constant has been
chosen so that the exactness property holds. In [8], [9] global convergence for a
particular trust-region method is shown with no assumption of exactness.

In this work, the choice of the multiplier estimate is left open and λ = 0 is allowed,
in which case one is using the `2 penalty function as a merit function.

5.4. Evaluating the trial step. Let sc be a trial step chosen to satisfy the
conditions of section 5.1. We accept it if it produces sufficient improvement in the
merit function. To measure this improvement, we compare the actual reduction and
predicted reduction in the merit function from the current iterate xc to the new one
x+ = xc + sc. The actual reduction is defined by

Aredc(sc; ρc) = L(xc, λc; ρc)− L(x+, λ+; ρc)(5.5)

= `(xc, λc)− `(x+, λ+) + ρc(‖Cc‖2 − ‖C+‖2),

and the predicted reduction is defined to be

Predc(sc; ρc) = L(xc, λc; ρc)−Q(sc,∆λc; ρc),(5.6)
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where Q(sc,∆λc; ρc) = `(xc, λc)+∇x`(xc, λc)
T sc+

1
2s

T
c Hcsc+(∆λc)

T (Cc+∇CT
c sc)+

ρc(‖Cc +∇CT
c sc‖2).

We accept the step and set x+ = xc+ sc if Aredc
Predc

≥ η1, where η1 ∈ (0, 1) is a fixed

constant. A typical value for η1 is 10−4.

5.5. Updating the trust-region radius. The strategy that we follow for up-
dating the trust-region radius is based on the standard rules for the unconstrained
case. More details can be found in Dennis and Schnabel [7] or Fletcher [14]. However,
for our global convergence theory we use a modification due to Zhang, Kim, and Las-
don [34] (see also El Hallabi and Tapia [11]). This modification is of no importance
in practice; it is merely an analytic formality. At the beginning we set constants
δmax ≥ δmin and each time we find an acceptable step, we start the next iteration
with a value of δ+ ≥ δmin. In short, δc can be reduced below δmin while seeking an
acceptable step, but δ+ ≥ δmin must hold at the beginning of the next iteration after
finding an acceptable step. The following is the scheme for evaluating the step and
updating the trust-region radius.

Algorithm 5.1. Evaluating the step and updating the trust-region ra-
dius
Given the constants: 0 < α1 < 1, α2 > 1 and 0 < η1 < η2 < 1 and δmax ≥ δc ≥
δmin > 0.

While Aredc
Predc

< η1 (* e.g., η1 = 10−4 *)
Do not accept the step.
Reduce the trust-region radius: δc ← α1‖sc‖ (* e.g., α1 = 0.5 *), and
compute a new trial step sc.

End while
If η1 ≤ Aredc

Predc
< η2 (* e.g., η2 = 0.5 *) then

Accept the step: x+ = xc + sc.
Set the trust-region radius: δ+ = max{δc, δmin}.

End if
If Aredc

Predc
≥ η2 then

Accept the step: x+ = xc + sc.
Increase the trust-region radius:

δ+ = min{δmax,max{δmin, α2δc}}(5.7)

(* e.g., α2 = 2 *).
End if
It is worth noting that in practice one might have another branch in which some

η 3
2
∈ (η1, η2) is used to reduce the trust-region radius if η1 ≤ Aredc

Predc
≤ η 3

2
. A typ-

ical value for η 3
2

is .1, and the motivation is to try to avoid the expense of a next
unacceptable trial step. Another modification sometimes used in practice is to allow
internal doubling. This can be viewed loosely as letting α2 in (5.7) depend on Aredc

Predc
.

See Dennis and Schnabel, [7, p. 144]. The present analysis would allow these niceties,
but to avoid further complication, we do not include them here. Observe that in (5.5)
and (5.6) we have expressed the quantities Ared and Pred as functions of ρ. Thus,
although ρc does not effect the choice of the trial step sc, we need to determine ρc be-
fore deciding the acceptance of the step sc. The right choice of the penalty parameter
is one of the most important issues for algorithms that use the augmented Lagrangian
as a merit function. This takes us to the following section.

5.6. The penalty parameter. Numerical experience with nonlinear program-
ming algorithms that use the augmented Lagrangian as a merit function has shown



A THEORY FOR GENERAL TRUST-REGION-BASED ALGORITHMS 187

that good performance of the algorithm depends on keeping the penalty parameter
as small as possible. See Gill, Murray, and Wright [16]. On the other hand, global
convergence theories developed by El-Alem [8], [9] and Powell and Yuan [23] require
that the sequence {ρk} be nondecreasing. El-Alem [8] requires that ρ be chosen so
that the predicted decrease in the merit function is at least as much as the decrease
in ‖∇CT

c s + Cc‖2.
We consider as an update formula for the penalty parameter El-Alem’s scheme

given in [9], since it ensures that the merit function is predicted to decrease at each
iteration by at least a fraction of Cauchy decrease in the quadratic model of the
constraints. This indicates compatibility with the fraction of Cauchy decrease condi-
tions imposed on the trial steps. In addition, good performance was reported when
implementing this scheme. See Williamson [33]. It can be stated as follows:

Algorithm 5.2. Updating the penalty parameter
1. Initialization

Set ρ−1 = 1 and choose a small constant β > 0.
2. At the current iterate xc, after sc has been chosen:

Compute

Predc(sc; ρ−) = qc(0)− qc(sc)−∆λTc (Cc +∇CT
c sc) + ρ−[‖Cc‖2 − ‖∇CT

c sc + Cc‖2].

If Predc(sc; ρ−) ≥ ρ−
2 [‖Cc‖2 − ‖∇CT

c sc + Cc‖2],
then set ρc = ρ−,

else set ρc = ρ̄c + β, where

ρ̄c =
2[qc(sc)− qc(0) + ∆λTc (Cc +∇CT

c sc)]

‖Cc‖2 − ‖∇CT
c sc + Cc‖2 .

End if
The initial choice of the penalty parameter ρ−1 is arbitrary. However, it should

be chosen consistent with the scale of the problem. Here, we take ρ−1 = 1 for
convenience.

An immediate consequence of the above algorithm is that at the current iteration
we have

Predc(sc; ρc) ≥ ρc
2

[‖Cc‖2 − ‖Cc +∇CT
c sc‖2].(5.8)

5.7. Termination of the algorithm. We use first-order necessary conditions
for problem (EQC) to terminate the algorithm. The algorithm is terminated if
‖WT

c ∇x`c‖ + ‖Cc‖ ≤ εtol, where εtol > 0 is a prespecified constant and Wc is a
matrix with columns forming a basis for the null space. We require that {Wk} be
uniformly bounded in norm for all k.

6. Statement of the algorithm. We present a formal description of our class
of nonlinear programming algorithms.

Algorithm 6.1. The NLP algorithm.
step 0. (Initialization)

Given x0, λ0, compute W0.
Choose δ0, δmin, δmax, and εtol > 0.
Set ρ−1 = 1 and β > 0.

step 1. (Test for convergence)
If ‖WT

c ∇x`(xc)‖+ ‖C(xc)‖ ≤ εtol
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then terminate.
End if

step 2. (Compute a trial step)
If xc is feasible then

(a) find a step stc that satisfies a fraction of Cauchy decrease condition
on the quadratic model qc(s) of the Lagrangian around xc. (This
might be done by solving a trust-region subproblem since snc = 0 is
available. See section 5.1)

(b) Set sc = stc.
else (* C(xc) 6= 0 *)

(a) Compute a quasi-normal step snc that satisfies a fraction of Cauchy
decrease condition on the square norm quadratic model of the lin-
earized constraints. (See section 5.1)

(b) If WT
c ∇q(snc ) = 0

then set stc = 0
else find stc that satisfies a fraction of Cauchy decrease condition

on the quadratic model qc(s
n
c + s) from snc . (Perhaps not by

solving a specific trust-region subproblem. See section 5.1)
End if

(c) Set sc = snc + stc.
End if

step 3. (Update λc)
Choose an estimate λ+ of the Lagrange multiplier vector.
Set ∆λc = λ+ − λc.

step 4. (Update the penalty parameter)
Update ρ− to obtain ρc by using Algorithm 5.2.

step 5. (Evaluate the step)
Compute

Aredc(sc; ρc) = `(xc, λc)− `(x+, λ+) + ρc(‖Cc‖2 − ‖C+‖2).
Evaluate the step and update the trust-region radius by using Algorithm 5.1.
If the step is accepted

then update Hc and go to step 1.
else

go to step 2.
End if

The above represents a typical trust-region algorithm for solving problem (EQC).
We leave the way of computing the trial steps undefined. This will allow the inclusion
of a wide variety of trial step calculation techniques. For similar reasons we left the
way of updating the Lagrange multiplier vector and the Hessian matrix undefined.

In the next two sections we prove global convergence of the above algorithm class.

7. The global convergence theory. Before beginning our global convergence
theory, let us give an overview of the steps that comprise this theory.

The trial step is chosen to satisfy a sufficient predicted decrease condition, the
fraction of Cauchy decrease. Note that in our algorithm, we assume that the tangential
and the quasi-normal components of any trial step each satisfy this condition. In
Lemma 7.2, we will express this in a technical form similar to inequality (2.2).

The definition of predicted reduction is shown to give an approximation to the
actual reduction that is accurate to within the square of the trial step length times
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the penalty parameter. This is proved in Lemma 7.5. However, we emphasize again
that the step is not chosen to maximize the predicted decrease.

We introduce some notation for the quantities computed during the trial steps.
We have not introduced this notation up to now because it obscures the simplicity of
the algorithm. However, in the analysis that follows we need to show some properties
of every trial step, not just the successful steps {sk}. Therefore, let δik, s

i
k, and ρik

denote the quantities set by Algorithm 6.1 as it searches for an acceptable step. Thus,
δ0
k = δk at the first trial step of the kth iteration, s0k is set by the first time through

step 2, and ρ0
k is set using ρ−1

k = ρk−1 the first time through step 4. If the trial step sik
is acceptable, then sk = sik, ρk = ρik, and δik is updated to become δk+1. In short, the
algorithm is simpler to explain and code if one counts only successful steps. However,
for the analysis, one needs a way to refer unambiguously to all the trial steps.

The model Lagrange multipliers also may depend on i. However, to keep the
notation as simple as possible, we do not make this dependence explicit.

The penalty parameters ρik are shown to be bounded for εtol > 0 as long as the
algorithm does not terminate. The technique is to prove that at any iteration k in
which the penalty parameter is increased we have that the product of the penalty
parameter ρik and the trust-region radius δik are bounded by a constant that does not
depend on k or i (this is done in Lemma 7.10), and the sequence of the trust-region
radii δik is bounded away from zero (this is shown in Lemma 7.11). The proofs show
the crucial role that is played by setting the trust region to be no smaller than δmin

after every acceptable step. See section 5.5. Finally, under the assumption that the
algorithm does not terminate, the penalty parameter ρk is shown to be bounded. The
proof is given in Lemma 7.12.

The algorithm is shown to be well defined in the sense that at a given iterate it
either terminates or it finds an acceptable step after finitely many trials. This result
is proved in Theorem 8.1. Using the above results and Theorem 8.1, the trust-region
radius is shown to be bounded away from zero. The proof is given in Lemma 8.2.

Finally, in Theorem 8.4, it is shown that for any εtol > 0, the algorithm always
terminates, i.e., the termination condition of the algorithm is met after finitely many
iterations.

7.1. The problem assumptions. We start by stating the assumptions under
which global convergence is proved for Algorithm 6.1. Assumptions A1–A5 (see below)
are used by Byrd, Schnabel, and Shultz [2]; El-Alem [8], [9], [10], and Powell and Yuan
[23], and their particular choices of Lagrange multiplier vectors satisfy A6.

Let the sequence of iterates {xk} generated by the algorithm satisfy
A1. For all k, xk and xk + sik ∈ Ω, where Ω is a convex set of <n.
A2. f, C ∈ C2(Ω).
A3. rank(∇C(x)) = m for all x ∈ Ω.
A4. f(x),∇f(x), ∇2f(x), C(x), ∇C(x), (∇C(x)T∇C(x))−1, W (x), and
∇2ci(x) for i = 1, . . . ,m are all uniformly bounded in Ω.

A5. The matrices Hk, k = 1, 2, . . . are uniformly bounded.
A6. The vectors λk, k = 1, 2, . . . are uniformly bounded.
Assumption A4 means that for all x ∈ Ω, there exist positive constants ν, ν0, ν1,

ν2, ν3, ν4, ν5, and ν6 such that ‖f(x)‖ ≤ ν, ‖∇f(x)‖ ≤ ν0, ‖C(x)‖ ≤ ν1, ‖∇C(x)‖ ≤
ν2, ‖(∇C(x)T∇C(x))−1‖ ≤ ν3, ‖∇2f(x)‖ ≤ ν4, ‖∇2ci(x)‖ ≤ ν5 for all i = 1, . . . ,m,
and ‖W (x)‖ ≤ ν6.

An immediate consequence of assumptions A4 and A5 is the existence of a con-
stant ν7 > 0 that does not depend on k such that ‖Hk‖ ≤ ν7, ‖WT

k Hk‖ ≤ ν7, and
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‖WT
k HkWk‖ ≤ ν7.
Assumption A6 means that for all x ∈ Ω there exists a constant ν8 > 0 that does

not depend on k, such that ‖λk‖ ≤ ν8.
The following three subsections are devoted to presenting lemmas needed to prove

global convergence.

7.2. Properties of the trial step. The following lemma shows that condition
(5.1) holds for the normal component sik

n
of sik when it is truly normal to the tangent

space.
Lemma 7.1. At the current iterate xk, let the trial step component sik

n
actually be

normal to the tangent space. Under the problem assumptions, there exists a constant
K1 > 0 independent of the iterates such that

‖sik
n‖ ≤ K1‖Ck‖.(7.1)

Proof. Because sik
n

is actually normal to the tangent space, we have

‖sik
n‖ = ‖∇Ck(∇CT

k ∇Ck)−1∇CT
k s

i
k‖

= ‖∇Ck(∇CT
k ∇Ck)−1(Ck +∇CT

k s
i
k − Ck)‖

≤ ‖∇Ck(∇CT
k ∇Ck)−1‖[‖Ck +∇CT

k s
i
k‖+ ‖Ck‖].

Now, using the fact that ‖Ck +∇CT
k s

i
k‖ ≤ ‖Ck‖ we have

‖sik
n‖ ≤ 2 · ‖∇Ck(∇CT

k ∇Ck)−1‖ · ‖Ck‖.
The rest follows from the problem assumptions.

The following lemma expresses in a workable form the pair of fraction of Cauchy
decrease conditions imposed on the trial steps.

Lemma 7.2. If the trial steps satisfy the conditions given in step 2 of Algorithm
6.1, then under the problem assumptions there exist positive constants K2, K3, and
K4 independent of the iterates such that

‖Ck‖2 − ‖Ck +∇CT
k s

i
k

n‖2 ≥ K2‖Ck‖min{K3‖Ck‖, rδik}(7.2)

and

qk(s
i
k

n
) − qk(s

i
k)(7.3)

≥ σ

2
‖WT

k ∇qk(sik
n
)‖min

{
1− r

ν6
δik,K4‖WT

k ∇qk(sik
n
)‖
}
.

Proof. The proof is an application of Lemma 2.1 to the two subproblems, followed
by a use of the problem assumptions and (5.3).

Now we deal with the trial steps assuming that they satisfy inequalities (7.2) and
(7.3). In what follows, we use implicitly the identity ∇CT

k s
i
k
n

= ∇CT
k s

i
k.

Lemma 7.3. Under the problem assumptions, there exists a constant K5 > 0
independent of the iterates such that

qk(0)− qk(s
i
k

n
)−∆λk

T (Ck +∇CT
k s

i
k

n
) ≥ −K5‖Ck‖.(7.4)

Proof. Consider

qk(0)− qk(s
i
k

n
) = −∇x`

T
k s

i
k

n − 1

2
(sik

n
)THks

i
k

n

≥ −‖∇x`k‖ ‖sik
n‖ − 1

2
‖Hk‖ ‖sik

n‖2

= −
(
‖∇x`k‖+

1

2
‖Hk‖ ‖sik

n‖
)
‖sik

n‖.
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Using (5.1), the fact that ‖sikn‖ < δmax, λk and ∆λk are bounded, and ‖Ck +
∇CT

k s
i
k‖ ≤ ‖Ck‖, and the problem assumptions, we have

qk(0)− qk(s
i
k

n
)−∆λk

T (Ck +∇CT
k s

i
k) ≥ −K5‖Ck‖,

and we obtain the desired result.
The following lemma gives an upper bound on the difference between the actual

reduction and the predicted reduction.
Lemma 7.4. Under the problem assumptions, there exist positive constants

K6, K7, and K8, independent of k, such that

|Aredk(sik; ρik)− Predk(s
i
k; ρ

i
k)| ≤ K6‖sik‖2 + K7ρ

i
k‖sik‖3 + K8ρ

i
k‖sik‖2‖Ck‖.(7.5)

Proof. The proof follows directly from El-Alem [9].
If the penalty parameter is uniformly bounded, the next lemma shows that the

predicted reduction provides an approximation to the actual reduction that is accurate
to within the square of the step length.

Lemma 7.5. Under the problem assumptions, there exists a constant K9 > 0 that
does not depend on k such that

|Aredk(sik; ρik)− Predk(s
i
k; ρ

i
k)| ≤ K9ρ

i
k‖sik‖2.(7.6)

Proof. The proof follows directly from the above lemma and the fact that ‖sik‖
and ‖Ck‖ are bounded.

7.3. The decrease in the model. This section deals with the predicted de-
crease in the merit function produced by the trial step. We start with a lemma.

Lemma 7.6. Let sik be generated by Algorithm 6.1. Then under the problem
assumptions for any positive ρ the predicted decrease in the merit function satisfies

Predk(s
i
k; ρ) ≥

σ

2
‖WT

k ∇qk(sik
n
)‖ min

{
K4‖WT

k ∇qk(sik
n
)‖ , 1− r

ν6
δik

}
−K5‖Ck‖+ ρ[‖Ck‖2 − ‖∇CT

k s
i
k + Ck‖2],(7.7)

where K5 is as in Lemma 7.3.
Proof. We have

Predk(s
i
k; ρ) = qk(0)− qk(s

i
k)−∆λk

T (Ck +∇CT
k s

i
k)

+ρ[‖Ck‖2 − ‖∇CT
k s

i
k + Ck‖2]

= (qk(s
i
k

n
)− qk(s

i
k))

+(qk(0)− qk(s
i
k

n
))−∆λk

T (Ck +∇CT
k s

i
k)

+ ρ[‖Ck‖2 − ‖∇CT
k s

i
k + Ck‖2].

From (7.3) and Lemma 7.3 we have

Predk(s
i
k; ρ) ≥

σ

2
‖WT

k ∇qk(sik
n
)‖ min

{
K4‖WT

k ∇qk(sik
n
)‖ , 1− r

ν6
δik

}
−K5‖Ck‖+ ρ[‖Ck‖2 − ‖∇CT

k s
i
k + Ck‖2].

Hence the result is established.



192 J. DENNIS, M. EL-ALEM , AND M. MACIEL

If xk is feasible, then the predicted reduction does not depend on ρk, so we take
ρk as the penalty parameter from the previous iteration. The question now is how
near to feasibility must an iterate be in order that the penalty parameter need not be
increased. The answer is given by the following lemma.

Lemma 7.7. Assume that the algorithm does not terminate at the current iterate.
If ‖Ck‖ ≤ αδik, where α satisfies

α ≤ min

{
εtol

3δmax
,

εtol
3ν7K1δmax

,
σεtol
12K5

min

{
K4εtol
3δmax

,
1− r

ν6

}}
,(7.8)

then for any positive ρ,

Predk(s
i
k; ρ) ≥

σ

4
‖WT

k ∇qk(sik
n
)‖ min

{
K4‖WT

k ∇qk(sik
n
)‖ , 1− r

ν6
δik

}
+ ρ[‖Ck‖2 − ‖∇CT

k s
i
k + Ck‖2].(7.9)

Proof. If the algorithm does not terminate at xk, then ‖WT
k ∇x`k‖+ ‖Ck‖ > εtol,

and since ‖Ck‖ ≤ αδik with α ≤ εtol
3δmax

, therefore, ‖Ck‖ ≤ εtol
3 and the reduced gradient

satisfies ‖WT
k ∇x`k‖ > 2

3εtol. Now,

‖WT
k ∇qk(sik

n
)‖ = ‖WT

k (∇x`k + Hks
i
k

n
)‖

≥ ‖WT
k ∇x`k‖ − ‖WT

k Hks
i
k

n‖
≥ 2

3
εtol − ν7K1‖Ck‖ ≥ 2

3
εtol − ν7K1αδ

i
k.

But since α ≤ εtol
3ν7K1δmax

, it follows that

‖WT
k ∇qk(sik

n
)‖ ≥ 1

3
εtol.

From Lemma 7.6, we have

Predk(s
i
k; ρ) ≥

σ

2
‖WT

k ∇qk(sik
n
)‖ min

{
1− r

ν6
δik , K4‖WT

k ∇qk(sik
n
)‖
}

−K5‖Ck‖+ ρ[‖Ck‖2 − ‖∇CT
k s

i
k + Ck‖2].

Since ‖WT
k ∇q(sikn)‖ > 1

3εtol, we have

Predk(s
i
k; ρ) ≥

σ

4
‖WT

k ∇qk(sik
n
)‖ min

{
1− r

ν6
δik , K4‖WT

k ∇qk(sik
n
)‖
}

+
σ

12
εtol min

{
1− r

ν6
δik ,

εtolK4

3

}
−K5αδ

i
k + ρ[‖Ck‖2 − ‖∇CT

k s
i
k + Ck‖2].

Thus

Predk(s
i
k; ρ) ≥

σ

4
‖WT

k ∇qk(sik
n
)‖ min

{
1− r

ν6
δik , K4‖WT

k ∇qk(sik
n
)‖
}

+
σεtolδ

i
k

12
min

{
1− r

ν6
,
εtolK4

3δmax

}
−K5αδ

i
k + ρ[‖Ck‖2 − ‖∇CT

k s
i
k + Ck‖2],
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and since

α ≤ σεtol
12K5

min

{
K4εtol
3δmax

,
1− r

ν6

}
,

we have

Predk(s
i
k; ρ) ≥

σ

4
‖WT

k ∇qk(sik
n
)‖ min

{
K4 ‖WT

k ∇qk(sik
n
)‖ , 1− r

ν6
δik

}
+ ρ[‖Ck‖2 − ‖∇CT

k s
i
k + Ck‖2].

This completes the proof.
Inequality (7.9) with ρ = ρi−1

k guarantees that if the algorithm does not terminate
and if ‖Ck‖ ≤ αδik, then the penalty parameter at the current trial step does not need
to be increased in step 2 of Algorithm 6.1. This is equivalent to saying that any
increases in the penalty parameter occur only when ‖Ck‖ > αδik.

Lemma 7.8. Given εtol > 0, there exists K10 > 0, which depends on εtol but
not on k or i such that at any trial step sik of iteration k at which the algorithm does
not terminate and ‖Ck‖ ≤ αδik, where α is as in Lemma 7.7, the following inequality
holds:

Predk(s
i
k; ρ

i
k) ≥ K10δ

i
k.(7.10)

Proof. Since the algorithm does not terminate and ‖Ck‖ ≤ αδik, where α is as in
(7.8), then from (7.9) and using a similar argument as in Lemma 7.7, we can write

Predk(s
i
k; ρ

i
k) ≥

σεtol
12

min

{
1− r

ν6
δik,

K4εtol
3

}
≥ σεtol

12
min

{
1− r

ν6
,
K4εtol
3δmax

}
δik.

Defining

K10 =
σεtol
12

min

{
1− r

ν6
,
K4εtol
3δmax

}
,

we have Predk(s
i
k; ρ

i
k) ≥ K10δ

i
k and this is the desired result.

In the next section we will discuss the role of the penalty parameter in the global
convergence of the nonlinear programming algorithm.

7.4. The behavior of the penalty parameter. In this section we discuss
the behavior of the penalty parameter. The crucial result here is that the sequence
{δik} of trust-region radii is bounded away from zero at those iterations for which
the penalty parameter is increased at some trial step. This allows us to conclude
under the nontermination hypothesis that the sequence {ρik} of penalty parameters is
bounded.

According to the rule for updating the penalty parameter, we use the penalty
parameter from the previous trial step if the amount of predicted decrease with the
old penalty parameter is at least a fraction of the decrease in the quadratic model of
the linearized constraints; that is, if

Predk(s
i
k; ρ

i−1
k ) ≥ ρi−1

k

2
[‖Ck‖2 − ‖Ck +∇CT

k s
i
k‖2],(7.11)

then ρik = ρi−1
k . Otherwise, we use ρik = ρ̄k

i + β, which enforces (5.8). See section
5.6.

Lemma 7.9. Let {ρik} be the sequence of penalty parameters generated by the
algorithm. Then
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1. {ρik} forms a nondecreasing sequence;
2. if the penalty parameter is increased, it will increase by at least β;
3. if the penalty parameter is not increased, then inequality (7.11) will hold.
Proof. The proof is straightforward.
Lemma 7.10. Let k, i be any pair of indices such that ρik is increased at the ith

trial step of the kth iteration. If the algorithm does not terminate at xk, then there
exists K11 > 0 which depends on εtol but does not depend on k or i such that for every
j ≥ i,

ρjkδ
j
k ≤ K11.(7.12)

Proof. If ρik is increased at the ith trial step of the kth iteration, then it is updated
by the rule

ρik =
2[qk(s

i
k)− qk(0) + ∆λTk (Ck +∇CT

k s
i
k)]

‖Ck‖2 − ‖Ck +∇CT
k s

i
k‖2

+ β.

Hence,

ρik
2

[‖Ck‖2 − ‖Ck +∇CT
k s

i
k

n‖2] = [qk(s
i
k)− qk(0)] + ∆λk

T (Ck +∇CT
k s

i
k

n
)

+
β

2
[‖Ck‖2 − ‖Ck +∇CT

k s
i
k

n‖2]

= [qk(s
i
k)− qk(s

i
k

n
)]

+ [qk(s
i
k

n
)− qk(0)] + ∆λTk (Ck +∇CT

k s
i
k

n
)

+
β

2
[−2(∇CkCk)T sik

n − ‖∇CT
k s

i
k

n‖2].

Applying (7.2) to the left-hand side and (7.3) and Lemma 7.3 to the right-hand side,
we can obtain the following:

ρikK2

2
‖Ck‖min { rδik , K3‖Ck ‖ }

≤ −σ
2
‖WT

k ∇qk(sik
n
)‖min

{
K4‖WT

k ∇qk(sik
n
)‖ , 1− r

ν6
δik

}
+ K5‖Ck‖ − β(∇CkCk)T sik

n − β

2
‖∇CT

k s
i
k

n‖2

≤ K5‖Ck‖ − β(∇CkCk)T sik
n

≤ K5‖Ck‖+ β‖∇Ck‖ ‖Ck‖ ‖sik
n‖

≤ (K5 + β‖∇Ck‖ ‖sik
n‖)‖Ck‖.

Then,

ρik
K2

2
min {rδik , K3‖Ck‖} ≤ K5 + βν2δmax.

Since at the current trial step the penalty parameter increases, from Lemma 7.7 we
have ‖Ck‖ > αδik. Hence

ρik
K2

2
min {rδik , K3αδ

i
k} ≤ K5 + βν2δmax
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and

ρikδ
i
k ≤

2K5 + 2βν2δmax

K2 min {r , K3α} .

Now if j ≥ i, then δjk ≤ δik. Assume without loss of generality that ρjk = ρik,
i.e., that the ith trial step was the most recent increase with respect to j. Then
ρjkδ

j
k ≤ ρikδ

i
k, and defining

K11 =
2K5 + 2βν2δmax

K2 min {r , K3α} ,

we obtain the desired result.
The following lemma gives a lower bound for the sequence {δik} for those iterates

at which the algorithm does not terminate and the penalty parameter is increased.
In the next section, we do away with the assumption that the penalty parameter is
increased.

Lemma 7.11. Let the penalty parameter be increased at the ith trial step of the kth
iteration. Then under the problem assumptions, if the algorithm does not terminate,
there exists δ̃, which depends on εtol but does not depend on the iterates, such that

δik ≥ δ̃.(7.13)

Proof. To begin, we note that if i = 0, i.e., we are at the first trial step of iteration
k, then by Algorithm 5.1, δk cannot have become smaller than δmin during the course
of the iteration. Thus, we can restrict our attention to the case where i ≥ 1.

Our proof will consist of showing the existence of δ̃ such that δik ≥ δ̃ whether or not

sik is acceptable. Remember that for all the rejected trial steps we have δj+1
k = α1‖sjk‖.

We consider two cases:
(i) ‖Ck‖ > αδjk for all j = 0, . . . , i.

(ii) ‖Ck‖ > αδjk does not hold for some j between 0 and i.

(i) Consider the case where the constraint violation ‖Ck‖ > αδjk for all j = 0, . . . , i.
We have from Lemma 7.5,

|Aredk(sjk; ρjk)− Predk(s
j
k; ρ

j
k)| ≤ K9ρ

j
k‖sjk‖2.

Now since ‖Ck‖ > αδjk, then from the way of updating ρjk and using inequality (7.2),
we have

Predk(s
j
k; ρ

j
k) ≥

ρjk
2

[‖Ck‖2 − ‖Ck +∇CT
k s

j
k‖2]

≥ ρjk
2
K2‖Ck‖ min{K3α, r}δjk.

Hence

|Aredk(sjk; ρjk)− Predk(s
j
k; ρ

j
k)|

Predk(s
j
k; ρ

j
k)

≤ 2K9‖sjk‖
K2‖Ck‖ min{K3α, r} .(7.14)

Since all the steps sjk for j = 0, . . . , i− 1 are rejected, it must be the case that

1− η1 <

∣∣∣∣∣Aredk(sjk; ρjk)Predk(s
j
k; ρ

j
k)
− 1

∣∣∣∣∣ .(7.15)
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So from (7.14) and (7.15), we have

‖sjk‖ ≥
(1− η1)K2min{αK3, r}

2K9
‖Ck‖ for all j = 0, . . . , i− 1.(7.16)

Since δik = α1‖si−1
k ‖ and since ‖Ck‖ > αδ0

k, it follows that

δik = α1‖si−1
k ‖ ≥ α1

[
(1− η1)K2 min{αK3, r}

2K9

]
αδ0

k.(7.17)

Now according to the rule for updating the trust-region radius, we know that δ0
k ≥

δmin. Then

δik ≥
α1(1− η1)K2min{αK3, r}

2K9
αδmin = K12.(7.18)

(ii) If ‖Ck‖ > αδjk does not hold for all j = 0, . . . , i, then there exists a largest
index l, 0 ≤ l < i such that ‖Ck‖ ≤ αδlk holds.

If i = l + 1, then from the way of updating the trust-region radius, δik = α1‖slk‖.
On the other hand, if i 6= l + 1, since ‖Ck‖ > αδjk for all j = l + 1, . . . , i, then from
(7.16) we have

‖sjk‖ ≥
(1− η1)K2min{αK3, r}

2K9
‖Ck‖ for all j = l + 1, . . . , i− 1.

Now because si−1
k and sl+1

k are rejected trial steps and using ‖Ck‖ > αδl+1
k , we can

write

δik = α1‖si−1
k ‖

≥ α1
(1− η1)K2min{αK3, r}

2K9
‖Ck‖

≥ α1α
(1− η1)K2min{αK3, r}

2K9
δl+1
k

≥ α2
1α

(1− η1)K2min{αK3, r}
2K9

‖slk‖.(7.19)

So if we set

K13 = min

{
α1, α

2
1α

(1− η1)K2min{αK3, r}
2K9

}
,

then we have

δik ≥ K13‖slk‖.(7.20)

Therefore, using the above inequality and Lemma 7.10,

ρlk ‖slk‖ ≤ ρik
δik
K13

≤ K11

K13
= K14.

From (7.5) we have

|Aredk(slk; ρlk)− Predk(s
l
k; ρ

l
k)| ≤ [K6 + (K7 + αK8)ρ

l
k‖slk‖]‖slk‖δlk.
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Therefore,

|Aredk(slk; ρlk)− Predk(s
l
k; ρ

l
k)| ≤ [K6 + (K7 + αK8)K14]‖slk‖δlk.(7.21)

Also, since ‖Ck‖ ≤ αδlk, then from Lemma 7.8 we have

Predk(s
l
k; ρ

l
k) ≥ K10δ

l
k.(7.22)

Using (7.21), (7.22), and the fact that slk is rejected, we obtain

1− η1 <

∣∣∣∣Aredk(slk; ρlk)Predk(slk; ρ
l
k)
− 1

∣∣∣∣ ≤ [K6 + K7K14 + αK8K14]‖slk‖
K10

.

Hence

‖slk‖ ≥
(1− η1)K10

K6 + K7K14 + αK8K14
.(7.23)

Now, using (7.20) and (7.23), we obtain the bound

δik ≥ K13
(1− η1)K10

K6 + K7K14 + αK8K14
= K15.

Defining

δ̃ = min{δmin,K12,K15}
we obtain the desired bound.

Now we can show that the nondecreasing sequence of penalty parameters gener-
ated by the nonlinear programming Algorithm 6.1 is bounded.

Lemma 7.12. Under the problem assumptions, if the algorithm does not terminate
then there is some ρ?, which depends on εtol, for which

lim
k→∞

ρk = ρ? <∞.(7.24)

Furthermore, there exists some index kρ such that ρk = ρ? for every k ≥ kρ.
Proof. We need to show that ρ? ≥ ρik for all pairs k, i. Clearly, it suffices to

consider the sequence ρik of different ρk’s, where the double index k, i means that the
penalty constant was increased to be ρik at the ith trial step of the kth iteration. Thus,
there may be no terms or more than one term for a given k. Then from Lemmas 7.10
and 7.11, we have

ρik ≤
K11

δik
≤ K11

δ̃
.

Therefore {ρk} is a bounded sequence, and since it is nondecreasing, there exists
ρ? <∞ such that

lim
k→∞

ρk = ρ?.

Now since the existence of ρ? ensures that ρk is bounded, and since we know that
every increase is by at least β, there must be at most finitely many increases, and the
proof is complete.

This last result and the following one play crucial roles in the proof of the global
convergence of Algorithm 6.1.

Lemma 7.13. Under the problem assumptions, if the algorithm does not terminate
then the augmented Lagrangian is bounded on Ω.

Proof. The proof is immediate from the boundedness of the penalty constant and
the problem assumptions.
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8. The main global convergence results. This section is devoted to present-
ing our main global convergence results. We start with the finite termination theorem,
where we show that the general nonlinear programming algorithm is well defined. In
section 8.2, we present more properties of the trust-region radius sequence generated
by the algorithm under the assumption that it does not terminate. In section 8.3, we
prove global convergence of our algorithm.

8.1. The finite termination theorem. The following lemma shows that the
nonlinear programming Algorithm 6.1 is well defined in the sense that at each iteration
we can find an acceptable step after a finite number of trial step computations or,
equivalently, trust-region reductions. This allows us to drop the consideration of trial
steps and only consider “successful trial steps,” {sk}.

Theorem 8.1. Under the problem assumptions, unless some iterate xk satisfies
the termination condition of Algorithm 6.1, an acceptable step from xk is found after
finitely many trial steps.

Proof. The proof follows from Theorem 5.1 of El-Alem [9].
Lemma 8.2. Under the problem assumptions, assume that the algorithm does not

terminate. Then there exists δ? > 0, which depends on εtol but does not depend on
the iterates, such that for all k, i,

δik ≥ δ?.(8.1)

Proof. The proof is very similar to the proof of Lemma 7.11.
To begin, we note that if the first trial step is acceptable, then by Algorithm 5.1,

δk cannot have become smaller than δmin during the course of the iteration. Thus,
we can restrict our attention to the case where there is at least one unsuccessful trial
step. Let us assume then that we have j unsuccessful steps. Our proof consists of
showing the existence of δ̃ such that δjk ≥ δ̃ whether or not sjk is acceptable, i.e., is

sk. Remember that for all the rejected trial steps we have δj+1
k = α1‖sjk‖ < δjk.

We consider two cases:
(i) ‖Ck‖ > αδik for all i = 0, . . . , j.
(ii) ‖Ck‖ > αδik does not hold for some i such that 0 < i ≤ j.
The proof of (i) is exactly the same as in the proof of Lemma 7.11, so let us

proceed to (ii).
(ii) Now if ‖Ck‖ > αδik does not hold for all i = 0, . . . , j, as in Lemma 7.11, we let l

be the largest index such that ‖Ck‖ ≤ αδlk holds. Now, since ‖Ck‖ ≤ αδik for all i ≤ l,
it follows from Lemma 7.8 that for all such i, Predk(s

i
k; ρ

i
k) ≥ K10δ

i
k. Furthermore,

from Lemma 7.5, |Aredk(sik; ρik)−Predk(s
i
k; ρ

i
k)| ≤ K9ρ

i
k‖sik‖2, and because the step

sik is an unacceptable step, we have

1− η1 <

∣∣∣∣Aredk(sik; ρik)Predk(sik; ρ
i
k)
− 1

∣∣∣∣ ≤ K9ρ
i
k‖sik‖2

K10δik
≤ K9ρ

?‖sik‖
K10

.

The above inequality implies that for all i ≤ l,

δik ≥ ‖sik‖ ≥
(1− η1)K10

K9ρ?
.

For all i > l we have from (7.20) and the above inequality,

δik ≥ K13‖slk‖ ≥ K13
(1− η1)K10

K9ρ?
.

It remains only to collect the constants as in Lemma 7.11.
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8.2. The global convergence results. Now we present our main global con-
vergence result. Namely, under the problem assumptions, the general nonlinear pro-
gramming algorithm generates a sequence of iterates {xk}, which has at least a subse-
quence that converges to a stationary point of problem (EQC). We start with a proof
that if the algorithm does not terminate it will converge to a feasible point.

Theorem 8.3. Under the problem assumptions, if there exists εtol > 0 such that

‖WT
k ∇x`k‖+ ‖Ck‖ > εtol

for all k, then

lim
k→∞

‖Ck‖ = 0.(8.2)

Proof. We prove (8.2) by contradiction. We begin by assuming that there exists
an infinite sequence of indices {kj} such that ‖Ck‖ is bounded away from zero for all
k ∈ {kj}. This implies that there exists τ > 0 such that for all k ∈ {kj}, ‖Ck‖ ≥ τ .
Now for each kj ≥ kρ, where kρ is as in Lemma 7.12, we have from (5.8) and (7.2)
that

Predkj ≥
ρkj
2

[‖Ckj‖2 − ‖Ckj +∇CT
kjskj‖2]

≥ K2ρ
?

2
‖Ckj‖min{K3‖Ckj‖, rδkj}

≥ K2ρ
?τ

2
min{K3τ, rδ?} = K16 > 0.

Remember that we are only looking at successful steps at this point in the analysis,
so

Lkj − Lkj+1 = Aredkj ≥ η1Predkj ≥ η1K16 > 0.(8.3)

Since {Lk} is bounded below, a contradiction arises if we let kj go to infinity.
Theorem 8.4. Under the problem assumptions, given any εtol > 0, the algorithm

terminates because

‖WT
k ∇xlk‖+ ‖Ck‖ < εtol.(8.4)

Proof. Notice that if we suppose that the algorithm does not terminate and
that some subsequence of {‖WT

k ∇x`k‖} converges to zero, then nontermination is
immediately contradicted by Theorem 8.3.

So, let us suppose that ‖WT
k ∇x`k‖ ≥ τ1, for some τ1 > 0. Since ‖Ck‖ goes to

zero by Theorem 8.3 and the sequence of trust-region radii is bounded below by δ?,
there exists an index N1 > kρ such that for all k ≥ N1, ‖Ck‖ ≤ αδ? ≤ αδk, with α as
in (7.8). Therefore, by Lemma 7.8 with the i taken so that sik = sk was the successful
step and by Lemma 8.2, we have again an infinite sequence of steps in which the
actual decrease in L is at least η1K10δ?. This contradicts the boundedness of L and
completes the proof.

9. An example algorithm. In this section we propose, as an example, a par-
ticular step choice algorithm for step 2 of Algorithm 6.1. We include different ways for
computing snc according to the dimension of the problem. We then state the complete
algorithm for finding the trial step. Finally, in section 9.5 we show that the trial step
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generated by this algorithm satisfies the pair of fraction of Cauchy decrease conditions
and (5.1).

The step choice algorithm we propose in this section is based on a conjugate
directions method. It can be viewed as a generalization of the Steihaug–Toint dogleg
algorithm for the unconstrained problem. This algorithm is much like a trust-region
version of an algorithm due to Nash [20].

9.1. The Steihaug–Toint dogleg algorithm. This section describes the gen-
eralized dogleg algorithm introduced by Steihaug [27] and Toint [30] for approximating
the solution of problem (TRS) (see section 2). This algorithm is based on the linear
conjugate gradient method.

Algorithm 9.1. Steihaug–Toint dogleg algorithm for (TRS)
Given xc, δc, and ξc ≤ ξ < 1.

step 0: (Initialization)
Set ŝ0 = 0.
Set r0 = −(Gcŝ0 +∇fc).
Set d0 = r0.
Set i = 0.

step 1: Compute γi = dTi Gcdi.
If γi > 0 then go to step 2 .
Otherwise (* di is a direction of negative or zero curvature *)
compute τ > 0 such that ‖ŝi + τdi‖ = δc.
Set sc = ŝi + τdi and terminate.

step 2: Compute αi = ‖ri‖2
γi

.
Set ŝi+1 = ŝi + αidi.
If ‖ŝi‖ < δc go to step 3:
Otherwise (* the step is too long, take the dogleg step *)
compute τ > 0 such that ‖ŝi + τdi‖ = δc.
Set sc = ŝi + τdi and terminate.

step 3: Compute ri+1 = ri − αiGcdi.

If ‖ri+1‖
‖r0‖ ≤ ξc, then

set sc = ŝi+1 and terminate.

step 4: Compute βi = ‖ri+1‖2
‖ri‖2 .

Set di+1 = ri+1 + βidi.
Set i = i + 1 and go to step 1:

The Steihaug–Toint dogleg algorithm is well known for being suitable for large-
scale unconstrained problems. It can be used in the framework of any general trust-
region algorithm for solving problem (UCMIN).

9.2. Computing a quasi-normal component. We start our proposed step
choice algorithm by finding a quasi-normal component snc of the trial step. This step
must satisfy a fraction of Cauchy decrease condition on the constraint norm inside
the inner trust region. It determines for us which translate of the null space of the
constraint Jacobian will be the one in which we choose the next iterate.

We repeat, because it is so important, that we do not require that snc be normal
to the tangent space but only that it satisfy (5.1). In fact, we will see below that
one way we might choose the quasi-normal component is by finding a linearly feasible
point and just scaling it back onto the inner trust region.

9.2.1. Via Craig’s algorithm. First we note that we can solve for a linearly fea-
sible point by using Craig’s algorithm on the underdetermined linear system ∇CT

c s+
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Cc = 0 (see [5]). Craig’s algorithm consists of making the transformation s = ∇Ccy
and applying the standard conjugate gradient algorithm to the following m×m linear
system:

∇CT
c ∇Ccy + Cc = 0.

This implies that

scraigc = smn
c = −∇Cc(∇CT

c ∇Cc)−1Cc.

Furthermore, the result is the Moore–Penrose pseudoinverse constraint normal, and
it requires no more than m iterations. Preconditioning is very important of course,
but how to do it certainly depends on the particular application.

Therefore, we can find the step snc by a Steihaug–Toint version of Craig’s algorithm
in the inner trust region of radius rδc. In this algorithm, iterates are generated until
we find the desired constraint normal smn

c such that ‖smn
c ‖ ≤ rδc or until scraigj and

scraigj+1 straddle the rδc trust-region boundary. For the first case, we set snc = smn
c . For

the second case, we choose the dogleg step: sdog
c ∈ [scraigj , scraigj+1 ]∩ {s : ‖s‖ = rδc} and

set snc = sdog
c .

It is not difficult to prove that each Craig iterate is the `2 projection of the origin
onto the subspace of the tangent space spanned by the steps up to that point and that
each {scraigj } satisfies (5.1). Now, the Craig steps may not give monotone increasing
`2 length, so a more aggressive strategy that works perfectly well with our theory is to
take the last pair of Craig iterates that straddle the trust-region boundary. In either
case, by convexity, sdog

c also satisfies (5.1). Furthermore, it is clear that snc = sdog
c

satisfies the fraction of Cauchy decrease condition required by step 2 of Algorithm
6.1.

9.2.2. Via a linearly feasible point. There are some problems for which
Craig’s method might be too slow and too hard to precondition to use the “inner
Steihaug–Toint” algorithm given above. Or someone might prefer to do an imple-
mentation that computes a linearly feasible point slfc either by Craig’s method or by
some special application-dependent methods. When this is the case, snc can be taken
to be the projection of slfc back onto the inner trust region. If slfc satisfies (5.1), then
so does snc .

Suppose we have any linearly feasible point slfc that satisfies (5.1). Then, if it is
inside the inner trust region, we can take snc to be that point, and it clearly satisfies
the fraction of Cauchy decrease condition required by step 2 of Algorithm 6.1. If
‖slfc ‖ ≥ rδc, then we take

snc =
rδc
‖slfc ‖

· slfc .

A classical mathematical programming way to compute a linearly feasible point
that encompasses some special purpose methods we have seen for certain inverse
problems is as follows. Divide s into so-called basic and nonbasic components. Let us
assume that we have done so, and using column pivoting we write ∇CT as ∇CT =
[B|N ], where B is a nonsingular matrix corresponding to the basic components of s.

This corresponds to Wc = [−B
−1
c Nc

In−m
]. Now since

∇CT
c s = BcsB + NcsN = −Cc,
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we have

sB = −B−1
c (Cc + NcsN ),

and then if we choose sN = 0 and sB = −B−1
c Cc, a feasible point will be

slfc = (sB , sN )T = (−B−1
c Cc, 0)T .

As long as {‖B−1
k ‖} is uniformly bounded by some constant γ∗, slfc satisfies (5.1)

where the constant here is γ∗. This is a standard assumption for important classes of
discretized optimal control problems, though it is stronger than our assumption that
[∇C(xc)

T∇C(xc)]
−1 is uniformly bounded.

9.3. Computing the tangential component. We now assume that we have
the quasi-normal component step snc . We start the process of computing the tangent
space component stc by formatting the basis matrix Wc ∈ <n×(n−m). The columns of
Wc form a basis to the null space of the constraints N (∇CT

c ).
We then transfer the constrained problem into an unconstrained trust-region prob-

lem of dimension n−m, in the following form:{
minimize 1

2 s̄
tT H̄cs̄

t +∇qc(snc )TWcs̄
t + q(snc )

subject to ‖Wcs̄
t + snc ‖ ≤ δc,

where s̄tc ∈ Rn−m, and set stc = Wcs̄
t
c. The step stc is the component in the tangent

space of the constraints and the matrix H̄c = WT
c HcWc ∈ <(n−m)×(n−m) is the

reduced Hessian matrix. Now we use the Steihaug–Toint algorithm to determine s̄tc
such that ‖Wcs̄

t + snc ‖ ≤ δc.
The complete algorithm for finding the trial step is presented in the following

section.

9.4. Conjugate reduced gradient algorithm for EQC. Here we write, in
more detail, the example algorithm for computing a trial step.

Algorithm 9.2. The CRG step choice algorithm
Given xc ∈ <n, δc > 0, and ξc ≤ ξ < 1.

I. FEASIBILITY:
(1) If xc is feasible go to II.
(2) Determine snc . (* Use, for example, snc = sdog

c or snc = rδ
‖slfc ‖s

lf
c and

slfc = (−B−1
c Cc, 0)T . *)

II. MINIMIZATION:
(* Find sc by applying the CRG/Steihaug–Toint algorithm, to minimize qc(s)

subject to ∇CT
c (s− snc ) = 0

‖s‖ ≤ δc.

starting from s = snc *)
step 0: (Initialization)

Set ŝ0 = snc .
Set r0 = −WT

c (Hcs
n
c +∇x`c).

Set d0 = r0.
Set i = 0.
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step 1: Compute γi = dTi Hcdi.
If γi > 0 then go to step 2:,
otherwise (* di is a direction of negative or zero curvature *)
compute τ > 0 such that ‖ŝi + τdi‖ = δc.
Set sc = ŝi + τdi and terminate.

step 2: Compute αi = ‖ri‖2
γi

.
Set ŝi+1 = ŝi + αidi.
If ‖ŝi‖ < δc go to step 3:,
otherwise (* the step is too long, take the dogleg step *)
compute τ > 0 such that ‖ŝi + τdi‖ = δc.
Set sc = ŝi + τdi and terminate.

step 3: Compute ri+1 = ri − αiW
T
c Hcdi.

If ‖ri+1‖
‖r0‖ ≤ ξc, then

set sc = ŝi+1 and terminate.

step 4: Compute βi = ‖ri+1‖2
‖ri‖2 .

Set di+1 = ri+1 + βidi.
Set i = i + 1 and go to step 1:

It is worth noting here that this way of computing the tangent step does not have
the property that once a step goes outside the trust region it cannot come back in
if the cg iteration were continued. This means that the relaxed SQP step might lie
inside the trust region, but the algorithm above might not return this more desirable
step if the gradient scale and trust-region scale are inconsistent.

It would be better otherwise, of course, but the steps given here lead to con-
vergence, and we hope that near the solution, when it becomes important to take
SQP steps, the trust region will be large enough to compensate for the difference in
shape. If the implementer wanted to be more aggressive, there are various ways to
deal with this situation that fit our theory. For example, we could take the dogleg
step based on the last time the cg iteration leaves the trust region rather than the
first. Our concern here is to prove convergence theorems for the weakest conditions
on the algorithm and to show that reasonable algorithms satisfy those conditions, not
to advocate particular implementation details of no consequence to the theory.

9.5. Sufficient decrease by the steps. In this section we show that the con-
jugate reduced gradient algorithm produces steps that satisfy the conditions we im-
pose on the steps in step 2 of Algorithm 6.1. In particular, we show that both the
quasi-normal and the tangential components of the trial steps satisfy their respective
fraction of Cauchy decrease conditions.

The following lemma gives a bound on the reducer matrix Wc. The proof is
straightforward, so we omit it.

Lemma 9.3. Under the problem assumptions, if there is a uniform bound on the
matrix B(x)−1, then the reducer matrix

W (x) =

[ −B(x)−1N(x)
In−m

]
is bounded for all x ∈ Ω.

The following lemma shows that the quasi-normal component snc satisfies a frac-
tion of Cauchy decrease condition on the quadratic model of the linearized constraints.

Lemma 9.4. Let sc be a step generated by Algorithm 9.2 at the current iterate.
Then sc satisfies a fraction of Cauchy decrease condition on the quadratic model of
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the linearized constraints, i.e.,

‖Cc‖2 − ‖Cc +∇CT
c sc‖2 ≥ K2‖Cc‖ min{rδc , K3‖Cc‖},(9.1)

where K2 and K3 are constants independent of the iterates.
Proof. Suppose that we are applying Craig’s algorithm to find snc . Let {s1, s2, . . .}

be the sequence of iterates generated by the algorithm, hence for all i.

si = argmin{‖∇CT
c s + Cc‖, s ∈ span{p1, . . . , pi}}.

Assume that ‖si‖ ≤ rδc and ‖si+1‖ ≥ rδc. Therefore

sdog
c = αsi + (1− α)si+1 with α ∈ [0, 1].

It is easy to see that

‖∇CT
c si + Cc‖ ≤ ‖∇CT

c s
cp
c + Cc‖

and

‖∇CT
c si+1 + Cc‖ ≤ ‖∇CT

c s
cp
c + Cc‖.

By convexity,

‖∇CT
c s

dog
c + Cc‖ ≤ ‖∇CT

c s
cp
c + Cc‖.

Thus,

‖Cc‖2 − ‖Cc +∇CT
c s

dog
c ‖2 ≥ ‖Cc‖2 − ‖Cc +∇CT

c s
cp
c ‖2.

Thus we can apply Lemma 2.1.
Now suppose that snc is given by snc = γcs

lf
c , with γc = rδc

‖slfc ‖ when ‖slfc ‖ > rδc and

γc = 1 otherwise. When γc = 1, we have

‖Cc‖2 − ‖∇CT
c s

n
c + Cc‖2 = ‖Cc‖2 − ‖∇CT

c s
lf
c + Cc‖2 = ‖Cc‖2.

When γc < 1, we have

‖Cc‖2 − ‖Cc +∇CT
c s

n
c ‖2 = ‖Cc‖2 − ‖Cc + γc∇CT

c s
lf
c ‖2

≥ ‖Cc‖2 − [(1− γc) ‖Cc‖+ γc ‖Cc +∇CT
c s

lf
c ‖]2

= [1− (1− γc)
2] ‖Cc‖2 ≥ γc‖Cc‖2.

The desired result follows from the definition of slfc and Lemma 9.3.
The following lemma shows that the null-space component stc satisfies a fraction

of Cauchy decrease condition on the quadratic model of the Lagrangian.
Lemma 9.5. Let sc be a trial step generated by the algorithm. Then under the

problem assumptions, there exists a positive constant K4 which does not depend on xc
such that

qc(s
n
c )− qc(sc) ≥ σ

2
‖WT

c ∇qc(snc )‖ min

{
K4‖WT

c ∇qc(snc )‖ , (1− r)

ν6
δc

}
.

Proof. Since we are solving the reduced problem{
minimize 1

2 s̄
tT H̄cs̄

t +∇qc(snc )TWcs̄
t + q(snc )

subject to ‖Wcs̄
t + snc ‖ ≤ δc,
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which is an unconstrained trust-region subproblem, the proof is immediate from The-
orem 2.5 of Steihaug [27] followed by the use of the problem assumptions and Lemma
9.3.

We state the following lemma here for completeness.

Lemma 9.6. The quasi-normal component computed by our proposed step choice
algorithm satisfies

‖snc ‖ ≤ K1‖Cc‖,

where K1 is a positive constant independent of c.

Proof. The proof is given with the discussion of how to compute a quasi-normal
component. See section 9.2.

10. Discussion and concluding remarks. We have established a global con-
vergence theory for a broad class of nonlinear programming algorithms for the smooth
problem with equality constraints. The class includes algorithms based on the full-
space approach and the tangent-space approach. The family is characterized by gen-
erating steps that satisfy very mild conditions on the normal and tangential compo-
nents. The normal component satisfies a fraction of Cauchy decrease condition on the
quadratic model of the linearized constraints and the tangential component satisfies a
fraction of Cauchy decrease condition on the quadratic model of the Lagrangian func-
tion associated with the problem, reduced to the tangent space of the constraints. Of
course the step, which is the sum of these components, satisfies both conditions.

The augmented Lagrangian was chosen as a merit function. The scheme for up-
dating the penalty parameter is the one proposed by El-Alem [9] since it predicts
that the merit function is decreased at each iteration by at least a fraction of Cauchy
decrease on the quadratic model of the linearized constraints. This indicates compat-
ibility with the fraction of Cauchy decrease conditions imposed on the trial steps.

In presenting the algorithm, we have left open the way of computing the trial
steps to satisfy the double fraction of Cauchy decrease condition. This allows the
inclusion of a wide variety of trial step calculation techniques. For the same reason
we have left unspecified the way of approximating the Lagrange multiplier vector and
the Hessian matrix.

With respect to the trial steps, we have suggested an algorithm of the class that
should work quite well for large problems. The algorithm is a generalization of the
Steihaug–Toint dogleg algorithm for the unconstrained case. This algorithm was one
we had in mind as motivation for the convergence theory.

The least-squares or projection formula can be used as a scheme for estimating
the multiplier since it fits the condition imposed on the multiplier updating scheme.
Namely, under the standard assumptions, it produces bounded multipliers for the
local models. For large problems, λ = −B−1∇Bf is likely to be a much preferable
formula because of the cost of the least-squares solution. Furthermore, this matches
better with the reducer matrix W , especially for problems where B can be easily
identified; see Dennis and Lewis [6]. In either case, the uniform boundedness of {λk}
follows from the problem assumptions.

The exact Hessian matrix perhaps can be gotten by using automatic differentia-
tion or an adjoint integration approach. See Bischof et al. [1]. However, an approxi-
mation to the Hessian of the Lagrangian can be used. Also, for example, setting Hk

to a fixed matrix (e.g., Hk = 0) for all k is valid. The question of how to use a secant
approximation of the Hessian of the Lagrangian in order to produce a more efficient
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algorithm is a research topic. We believe that Tapia [29] will be of considerable value
here.

A related question that has to be looked at is the search for preconditioners to
produce more efficient algorithms. We believe that the reducer matrix W should play
a role in that search; see Dennis and Lewis [6].

This theory is developed for the equality constrained case, but it can be applied
to the general case by one of the strategies known as EQP and IQP. Here, we mean
that in the EQP strategy the choice of the active set is made outside the algorithm
that determines the step, whereas in the IQP strategy, that choice is made inside
the procedure that determines the step. Since the active set may change at each
iteration, the choice of the submatrix B, will be strongly affected. Certainly, this is
an important topic that deserves to be investigated.
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Abstract. A hybrid algorithm consisting of a Gauss–Newton method and a second-order method
for solving constrained and weighted nonlinear least squares problems is developed, analyzed, and
tested. One of the advantages of the algorithm is that arbitrarily large weights can be handled
and that the weights in the merit function do not get unnecessarily large when the iterates diverge
from a saddle point. The local convergence properties for the Gauss–Newton method are thor-
oughly analyzed and simple ways of estimating and calculating the local convergence rate for the
Gauss–Newton method are given. Under the assumption that the constrained and weighted linear
least squares subproblems attained in the Gauss–Newton method are not too ill conditioned, global
convergence towards a first-order KKT point is proved.

Key words. nonlinear least squares, optimization, parameter estimation, weights
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1. Introduction. Assume that f : Rn → Rm is a twice continuously differ-
entiable function and that W = diag(ω1, . . . , ωm) is a diagonal matrix with weights
ωi ≥ 0. We will discuss the Gauss–Newton method and a second-order method for
solving the problem

min
x∈Rn

1

2
‖W 1/2f(x)‖2,(1.1)

where ‖ · ‖ denotes the 2-norm. For simplicity and without loss of generality, we
assume that the weights are normalized and sorted such that

ω1 ≥ · · · ≥ ωm ≥ 1.(1.2)

The normalization is easily done by first sorting out the zero weights, reducing the
problem, and then dividing the remaining nonzero weights with the smallest positive
weight.

To our knowledge, all existing algorithms for solving (1.1) are based on the un-
weighted problem

min
x∈Rn

1

2
‖g(x)‖2,(1.3)

where g(x) = W 1/2f(x); see also [1]. Assume that the ordinary Gauss–Newton
method is used to solve (1.3). The search direction, p, is then obtained by solving

min
p

1

2
‖Kp+ g‖2,(1.4)
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where K = ∇g. Note that (1.4) is solved as an unweighted problem and thus the
condition of this problem is determined by ‖K‖ ‖K†‖, where K† is the pseudoinverse
of K.

If, on the other hand, we linearize (1.1) without explicitly multiplying J = ∇f
with the weights, we solve the weighted linear least squares problem

min
p

1

2
‖W 1/2(Jp+ f)‖2(1.5)

to obtain the search direction p. The condition for the problem (1.5) is mainly de-
termined by ‖B‖ ‖J‖, where BJ = In. For a more detailed discussion on condition
numbers for (1.5), see [12]. The problem (1.4) may be very ill conditioned (regarded
as an unweighted linear least squares problem) despite the fact that (1.5) is well con-
ditioned (regarded as a weighted linear least squares problem). Obviously it is very
important to look at (1.1) as the class of weighted nonlinear least squares problem.

Another important advantage of using (1.1) instead of (1.3) is that the former
defines a more general problem class than the latter. This is evident if we allow the
weights to be infinitely large. To be more precise, we define the vector λ ∈ Rm by
the equations

Mλ = f, M = diag(µ1, . . . , µm),(1.6)

where µi = 1/ωi and infinite weights correspond to zero elements in M . Note that
if µi = 0 then λi is the Lagrange multiplier corresponding to the ith constraint and
consequently λi is not defined by (1.6). We will return to the proper way of calculating
these Lagrange multipliers. Problem (1.1) is rewritten, using (1.6), as

min
λ,x

1

2
λTMλ s.t. Mλ = f(x).(1.7)

Hence, by allowing infinite weights, our original problem formulation (1.1) defines the
class of weighted nonlinear least squares problems with nonlinear equality constraints.
To be even more specific, we assume that we have p infinite weights such that

M = diag(0p,M2), M2 = diag(µp+1, . . . , µm),

where µp+1 > 0. Problem (1.7) can now be stated as

min
λ,x

1

2
λT2 M2λ2 s.t. f1(x) = 0, M2λ2 = f2(x),(1.8)

where λ =
[
λT1 , λ

T
2

]T
and f =

[
fT1 , f

T
2

]T
. An equivalent formulation of problem (1.8)

without using λ is

min
x

1

2
‖W 1/2

2 f2(x)‖2 s.t. f1(x) = 0,(1.9)

where W2 = M−1
2 . Of course, we could have started by defining our problem as

the one in (1.9) instead of (1.5) (without the need of (1.7) and (1.8)), but then the
notations would get unnecessarily complicated.

In the next section we describe the Gauss–Newton method for solving (1.1). The
local convergence properties of the Gauss–Newton method are analyzed in section 3,
and in section 4 we show that, under certain assumptions on nondegeneracy, global
convergence is achieved. If the Gauss–Newton method is too slow or does not converge
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and second derivatives are available at a reasonable cost, then the Newton method
may be used to solve (1.1). However, when there are large and possibly infinite
weights, a pure Newton method based on forming the Hessian of g(x) may not work
or, with infinite weights, is not even defined. The natural approach is then to use the
perturbation method [9] that we will call the generalized Newton–Raphson method
(the gNR method). In section 5 we construct and analyze an algorithm for solving
(1.1) based on the gNR method. Computational experiments are presented in section
6 and, finally, we discuss our results and give hints of possible future work.

2. The Gauss–Newton method using the system equations. In the Gauss–
Newton method, the nonlinear least squares problem (1.1) is linearized around the
current iteration point, xk, and the search direction, pk, is computed as the solution
to

min
pk

1

2
‖W 1/2(fk + Jkpk)‖2,(2.1)

where fk = f(xk), Jk = ∇f(xk). The next iterate is xk+1 = xk + αkpk, where αk is
the steplength. In the presence of large weights, possibly infinite, it is adequate to
reformulate (2.1) as [

M J
JT 0

] [
λ
p

]
=

[ −f
0

]
,(2.2)

where for simplicity we have dropped the iteration index k. There are several names
for the linear system of equations in (2.2) such as the equilibrium equations, the system
equations, or the augmented system equations. We call (2.2) the system equations and
the matrix in (2.2) is called the system matrix. A less obvious reason for using (2.2)
is that the elements in λ corresponding to infinite weights are approximations to the
Lagrange multipliers and that λ can be used in a second-order method as described
in section 5.

The following lemma gives the relevant conditions for the system matrix to be
nonsingular.

Lemma 2.1. The system matrix in (2.2) is nonsingular if and only if the rows in
J that correspond to infinite weights are linearly independent and J has full column
rank.

There exist several stable algorithms that solve (2.2); see, e.g., [5] for further
references. We have chosen to use the modified QR decomposition, see [5], and the
reasons are the following. The modified QR decomposition is simple and easy to
compute and it is identical to the ordinary QR decomposition when the weights are
equal. The modified QR decomposition is also easily reused in the second order gNR
method; see section 5.

The modified QR decomposition of J ∈ Rm×n is defined as

JΠ = Q

[
R
0

]
, QMQT = M,(2.3)

where Q ∈ Rm×m, R ∈ Rn×n is an upper triangular matrix and Π is a permutation
matrix. The decomposition in (2.3), with Q and R nonsingular, exists if and only if
the system matrix in (2.2) is nonsingular (see Lemma 2.1).

The system equations are solved with the modified QR decomposition in the
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following way. Using the decomposition (2.3) in (2.2) we get M

[
R
0

]
[
RT , 0

]
0

[ QTλ
ΠT p

]
=

[ −Q−1f
0

]
.(2.4)

If we make the partition M = diag(Mn,Mm−n), the solution to (2.4) is

p = −Π
[
R−1, 0

]
Q−1f, λ = −Q−T

[
0

M−1
m−n

]
Q−1f.(2.5)

3. The local rate of convergence for the Gauss–Newton method. In
this section we will describe the local convergence properties of the Gauss–Newton
method described in the previous section. Our analysis depends upon the perturbation
analysis of the constrained and weighted linear least squares problem done in [12, 11].
After having defined the inverse of the system matrix, using the same notation as in
[12], we state and prove two important theorems on the local convergence rate for
xk − x̂ and Jkpk (the projected residual). In fact, the local convergence properties of
these two quantities are, as we shall see, very similar. Finally, we show that Jkpk and
the local convergence rate for xk− x̂ and Jkpk are independent of the parametrization
in Rn.

Assuming that x̂ is a solution of (1.1), we define f̂ = f(x̂) and the corresponding
notation for other quantities evaluated at x̂.

A necessary condition for our algorithm to converge without regularization is that
the system matrix in (2.2) has full rank, and it is convenient to make the following
definition.

Definition 3.1. If the system matrix in (2.2) is nonsingular at x we say that x
is a nondegenerate point.

At a nondegenerate point the inverse of the system matrix in (2.2) is given by[
M J
JT 0

]−1

=

[
Y BT

B −BMBT

]
,(3.1)

where BJ = In; i.e., B is a generalized inverse of J ; see [12]. From (2.5) we immedi-
ately get

B = Π
[
R−1, 0

]
Q−1.(3.2)

The following theorem describes the local behavior of xk−x̂ where xk+1 = xk+pk.
Theorem 3.1. Assume that {pk} are generated by solving (2.2) and that all

points xk = xk−1 + pk−1 are nondegenerate. If x̂ is the solution of (1.1) and λ̂ is the
vector λ from (2.2) at x̂, then

qk+1 = BkMBT
k

m∑
i=1

λ̂iT̄iqk +
1

2
Bk

 qTk T 1qk
...

qTk Tmqk

 ,(3.3)

where qk = xk − x̂, T̄i =
∫ 1

0
f ′′i (x̂+ τqk)dτ , and T i = 2

∫ 1

0
(1− τ)f ′′i (xk − τqk)dτ .

Proof. From xk+1 = xk −Bkfk we get

qk+1 =
[
qk −Bk(fk − f̂)

]
−Bkf̂ .(3.4)
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Using the Taylor expansion

f(x̂) = f(xk − qk) = fk − Jkqk +

∫ 1

0

(1− τ)

 qTk f
′′
1 (xk − τqk)qk

...
qTk f

′′
m(xk − τqk)qk

 dτ,
the first term in (3.4) can be expressed as

qk −Bk(fk − f̂) =
1

2
Bk

 qTk T 1qk
...

qTk Tmqk

 .(3.5)

To express the second term, −Bkf̂ , in (3.4), we use the perturbation identity (2.2)
(p. 16 in [12]), which says that

p̂− pk = −B̂f̂ +Bkfk = Bk(Jk − Ĵ)p̂−BkMBT
k (Jk − Ĵ)T λ̂+Bk(fk − f̂).

Since p̂ = −B̂f̂ = 0, we get

−Bkf̂ = BkMBT
k (Jk − Ĵ)T λ̂.(3.6)

Using the identity

(Jk − Ĵ)T =

∫ 1

0

[f ′′1 (x̂+ τqk)qk, . . . , f
′′
m(x̂+ τqk)qk] dτ,

equation (3.6) becomes

−Bkf̂ = BkMBT
k

m∑
i=1

λ̂iT̄iqk.(3.7)

The equations (3.5) and (3.7) inserted into (3.4) give the theorem.
The Gauss–Newton method can be written as

xk+1 = ϑ(xk), ϑ(x) = x−B(x)f(x),(3.8)

and with x̂ = ϑ(x̂) we get

qk+1 = xk+1 − x̂ = ϑ(xk)− ϑ(x̂) = ∇ϑ(x̂)qk +O(‖qk‖2).(3.9)

From Theorem 3.1 we conclude that

∇ϑ(x̂) = B̂MB̂T
m∑
i=1

λ̂if̂
′′
i ,(3.10)

and from [8] we get the following theorem.
Theorem 3.2. Define

Hx = ∇ϑ(x̂) = B̂MB̂T
m∑
i=1

λ̂if̂
′′
i(3.11)

and κi as the eigenvalues of Hx. Then

lim sup
k→∞

‖xk+1 − x̂‖
‖xk − x̂‖ ≤ max

i
|κi|.
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It is easy to get an estimation of the local convergence rate if we use the matrix
B defined by (3.2), because then B̂MB̂T = ΠR̂−1MnR̂

−TΠT .
A useful quantity for estimating how close xk is to the solution, x̂, is the projected

residual Jkpk = −JkBkfk, where JkBkfk is the oblique projection of fk onto R(Jk).
The following theorem shows that Jkpk locally has the same convergence behavior as
xk − x̂.

Theorem 3.3. Assume that {pk} are generated by solving (2.2) and that all
points xk = xk−1 + pk−1 are nondegenerate. If λ(xk) is the vector λ from (2.2) at xk
then

sk+1 = M
m∑
i=1

λi(xk)S̄isk +
1

2
Jk+1Bk+1

 sTk S1sk
...

sTk Smsk

 ,(3.12)

where sk = −Jkpk, S̄i = BT
k+1

∫ 1

0
f ′′i (xk + τpk)dτBk, and Si = 2BT

k

∫ 1

0
(1− τ)f ′′i (xk +

τpk)dτBk.
Proof. Denote the projection JkBk by Pk. Then we have

sk = −Jkpk = JkBkfk = Pkfk.

Using the Taylor expansion

fk+1 = fk + Jkpk +

∫ 1

0

(1− τ)v(τ)dτ,(3.13)

where v(τ) = [pTk f
′′
1 (xk + τpk)pk, . . . , p

T
k f

′′
m(xk + τpk)pk]

T , by multiplying with Pk+1

we obtain

sk+1 = Pk+1(I − Pk)fk + Pk+1

∫ 1

0

(1− τ)v(τ)dτ.(3.14)

Since BkJk = I, the equality Bksk = −pk holds, and we can identify the last term in
equation (3.14) as

Pk+1

∫ 1

0

(1− τ)v(τ)dτ =
1

2
Jk+1Bk+1

 sTk S1sk
...

sTk Smsk

 .(3.15)

From (3.1) we get

Y J = 0, JB = I −MY, YMY = Y,(3.16)

and hence

Pk+1(I − Pk) = (Pk+1 − Pk)(I − Pk) =(3.17)

(Jk+1Bk+1 − JkBk)(I − JkBk) = −M(Yk+1 − Yk)(I − JkBk).

From the perturbation identity (2.1) (p. 16 in [12]) we get

Yk+1 − Yk = −Yk+1δJkBk −BT
k+1(δJk)

TYk,(3.18)

where δJk = Jk+1−Jk. Using (3.18) and the fact that Yk+1δJkBk(I−JkBk) vanishes,
the equation (3.17) becomes

Pk+1(I − Pk) = MBT
k+1(δJk)

TYk(I − JkBk) = MBT
k+1(δJk)

TYk,
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where the last equality follows from (3.16). The identities λk = −Ykfk and Bksk =
−pk together with a Taylor expansion of (δJk)

T give

Pk+1(I − Pk)fk = −MBT
k+1(δJk)

Tλk = M
m∑
i=1

λi(xk)S̄isk.(3.19)

The theorem follows by inserting (3.15) and (3.19) into (3.14).
The matrix corresponding to Hx for the projected residual, sk, is

Hs = MB̂T
m∑
i=1

λ̂if̂
′′
i B̂,

and it is easy to show that Hx and Hs have the same nonzero eigenvalues. Hence, we
have the following corollary from Theorem 3.3.

Corollary 3.1. Define Bk from the inverse of the system matrix in (3.1). If
sk = −JkBkfk then

lim sup
k→∞

‖sk+1‖/‖sk‖ ≤ max
i
|κi|,

where κi are the eigenvalues of the matrix Hx defined in (3.11).
The relation (3.12) can also be used to determine when ‖sk+1‖/‖sk‖ reflects

the linear convergence rate and if a second-order method should be used. If the
convergence of the Gauss–Newton method is slow, we use a higher order method if

1

2
‖Jkpk‖ ≤ ‖M‖ ‖λ(xk)‖.(3.20)

See also Algorithm 6.1.
Several of the above quantities are invariant under a change of parametrization

x = x(θ), and as an example we have the following theorem.
Theorem 3.4. The matrix

Hs = MB̂T
m∑
i=1

λ̂if̂
′′
i B̂

is independent of the parametrization in Rn.
Proof. Assume that x = x(θ) and x̂ = x(θ̂). Define C = ∂x/∂θ and y(θ) =

f(x(θ)). We want to show that

Hy = MB̂T
y

m∑
i=1

λ̂iŷ
′′
i B̂y = Hs,

where B̂y is the generalized inverse of ∇y(θ̂). Now, consider the Taylor expansion

f(x(θ + ∆θ)) = f(x) + JC∆θ +
1

2
(Jhx + hf ) +O(‖∆θ‖3),(3.21)

where

hx =

 ∆θTx′′1(θ)∆θ
...

∆θTx′′n(θ)∆θ

 , hf =

 (C∆θ)T f ′′1 (x)C∆θ
...

(C∆θ)T f ′′m(x)C∆θ

 .
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By comparing the Taylor expansion (3.21) with the Taylor expansion

y(θ + ∆θ) = y(θ) +∇y ∆θ +
1

2
hy +O(‖∆θ‖3),(3.22)

where hy = [∆θT y′′1 (θ)∆θ, . . . ,∆θT y′′m(θ)∆θ]T , and using JTλ = 0 we conclude that

By = C−1B,
m∑
i=1

λiy
′′
i (θ) =

m∑
i=1

λiC
T f ′′i (x)C.(3.23)

From (3.23) we finally get

BT
y

m∑
i=1

λiy
′′
i By = BTC−T

m∑
i=1

λiC
T f ′′i CC

−1B = BT
m∑
i=1

λif
′′
i B,

which proves the theorem.
A consequence of Theorem 3.4 is that the local convergence for θk− θ̂ is the same

as for xk − x̂.
The main argument for choosing Jp as a measure of the closeness to the solution

is the following theorem which is a direct consequence of (3.23).
Theorem 3.5. The projection of f on R(J), JBf = −Jp, is independent of the

parametrization in Rn.

4. Global convergence. In this section we assume that xk, where k is the
iteration index, is nondegenerate and that pk is the solution of (2.2) at xk. If nothing
else is stated we assume that all limits denoted by → are when k → ∞ and that all
sums with no explicitly stated upper or lower limit are from one to infinity.

4.1. The merit function. As a merit function we have chosen

Φ(x,D) =
1

2
f(x)TDf(x),(4.1)

where D = diag(d1, . . . , dm), 1 ≤ di ≤ ωi.
The goal is to find a matrix Dk of merit weights and a steplength αk at each

iteration such that global convergence towards a first-order Kuhn–Tucker point can
be proved. To compute Dk we will use the approximation

Ψ(xk, p,D) =
1

2
(fk + Jkp)

TD(fk + Jkp)

of Φ(xk + p,D). For a fixed matrix D, we define φ(α) = Φ(xk + αpk, D). Obviously
a sufficient condition on pk to be a descent direction to Φ(x,D) at xk is that φ′(0) =
pTk J

T
k Dfk < 0.
We realize that we can determine a good matrix, Υ(xk), of merit weights by

solving

min
Υ=diag(u1,...,um)

‖Υ‖ s.t.

{
1− δ ≤ arg{ minα Ψ(xk, αpk,Υ) }
ξi ≤ ui ≤ ωi, i = 1, . . . ,m,

(4.2)

where δ is a small positive constant and ξi is a lower limit for the weights determined
by some previously computed weights; see below. There is always a solution to (4.2)
because

lim
Υ→W

arg{ min
α

Ψ(xk, αpk,Υ) } = 1.
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Note that keeping the weights not too large is important in practice, but for the global
convergence it is only the constraints in (4.2) that must be satisfied. We will now
describe the algorithm for computing the merit weights Dk, using Υ(xk), such that
Dk does not become unnecessarily large. We first describe a method for solving (4.2)
and then an algorithm for computing the actual merit weights Dk.

When solving (4.2) we have chosen to use the max-norm since this gives a simple
algorithm. The problem (4.2) can be rewritten as

min ‖u‖∞ s.t. yTu ≥ 0, ξ ≤ u ≤ ω,(4.3)

where u is the diagonal in Υ(xk), ω is the diagonal in W , and yi = −fisi − (1− δ)s2i
with s = Jp. Note that when Jp is given the problem, (4.3) consists of only vectors
and no matrices. The first step in our algorithm is to reduce (4.3) such that ui = ξi
if yi ≤ 0. We then get the new problem

min ‖ū‖∞ s.t. ȳT ū ≥ ρ, ξ̄ ≤ ū ≤ ω̄,(4.4)

where ū, ξ̄, ω̄, and ȳ are the corresponding parts of u, ξ, ω, and y left after the reduction
and ρ = −∑i|yi≤0 yiξi. If ȳT ξ̄ ≥ ρ we are ready with the solution ū = ξ̄. Otherwise

we choose ūi = ρ/eT ȳ, where e is a vector of ones, and thus attain equality in the
constraints. If ūi > ωi or ūi ≤ ξi we set ūi = ωi and ūi = ξi, respectively. Again we
can reduce the problem to a copy of (4.4) but where the vectors are shorter and ρ
is smaller. The procedure is then repeated until the whole of u is found. It is easily
realized that the infinite weights in ω do not change the algorithm and the algorithm
will terminate with a solution of (4.4).

We determine the actual merit weights Dk from the solution Υ(xk) of (4.2). The
weights may get large close to a saddle point, and when the iterates diverge from this
saddle point (that is always the case with the Gauss–Newton method) we would like
the weights to decrease. This is accomplished by saving say, t older versions, V1, . . . , Vt,
of the merit weight matrices. Initially, at iteration k = 1, we have Vi := Im, i = 1, . . . , t

and at the kth iteration we update Vi = diag(ν
(i)
1 , . . . , ν

(i)
m ), as in Algorithm 4.1.

Algorithm 4.1.

Solve (4.2) for the vector u(xk).
for i = 1:m

d
(k)
i := max{ui(xk), ν(t)

i }
If d

(k)
i > d

(k−1)
i

Let ν
(1)
i ≥ · · · ≥ ν

(j−1)
i ≥ d

(k)
i ≥ ν

(j)
i ≥ · · · ≥ ν

(t−1)
i be the new

sequence ν
(1)
i , . . . , ν

(t)
i .

end
end

In Algorithm 4.2 our Gauss–Newton algorithm is described with line search and
quadratic merit function.

Algorithm 4.2.

k := 1; Initiate the start vector xk.
while not convergence

Compute Jk and fk.
Compute pk from (2.2) using the modified QR decomposition of Jk.
Determine Dk from Algorithm 4.1.
Determine the steplength αk such that
φ(αk) ≤ φ(0) + µαkφ

′(0), 0 < µ < 1.
xk+1 := xk + αkpk; k := k + 1
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end

4.2. Proving global convergence. We will need the following two technical
lemmas to prove that our algorithm is globally convergent. In the lemmas we use dk
as an arbitrary diagonal element in Dk.

Lemma 4.1. Assume that dk ≥ 0, k = 1, . . . and that {dk} is bounded. Let
{dkj} be the subsequence of {dk} such that dkj+1

> dkj . Then the positive series∑
(dkj+1

− dkj ) converges if and only if
∑ |dk+1 − dk| converges.

Proof. Take

b+N =
∑

ak > 0
1 ≤ k ≤ N − 1

ak, b−N = −
∑

ak ≤ 0
1 ≤ k ≤ N − 1

ak,

where ak = dk+1 − dk. Obviously b+N =
∑

kj≤N−1(dkj+1
− dkj ), b

+
N − b−N = dN − d1

and b+N + b−N =
∑N−1

k=1 |dk+1 − dk|. Hence, if
∑N−1

k=1 |dk+1 − dk| converges, then
b+N =

∑
kj≤N−1 |dkj+1 − dkj | converges too. Now assume that b+N converges to b+,

dN−d1 = b+N−b−N ≥ −d1, and b+ ≥ b+N imply b++d1 ≥ b−N . Hence, {b−k } is a bounded
sequence that increases to a limit b− and

∑ |dk − dk−1| converges to b+ + b−.
Lemma 4.2. Assume that an arbitrary component, dk, in the diagonal of Dk

stays bounded as k → ∞ and let vk be the corresponding diagonal element in Vt.
Then limk→∞ vk = limk→∞ dk and the series

∑ |dk+1 − dk| converges.
Proof. Let us first exclude the trivial case where vk becomes equal to the upper

bound ω for a finite k.
The sequence {vk} is an increasing infinite sequence. Hence, lim vk exists and is

denoted v. Take d = lim inf dk and d̄ = lim sup dk. Let ε be an arbitrary small but
fixed positive number. Then dk > d̄ − ε for more than t k-values. Hence, v > d̄ − ε
and since ε > 0 was arbitrary, this implies that v ≥ d̄. From dk ≥ vk it follows that
d ≥ v and thus we have v ≥ d̄ ≥ d ≥ v and consequently dk → v.

Let {dik} be the subsequence of {dk} with dik+1
> dik . From Lemma 4.1 we know

that the series
∑ |dk+1 − dk| converges if and only if

∑
(dik+1

− dik) converges. Let
us now prove that the latter series converges. From vik ≤ dik it follows that

dik+1
− dik ≤ (dik+1

− vik+1
) + (vik+1

− vik)

and hence ∑
(dik+1

− dik) ≤
∑

[ (dik+1
− vik+1

) + (vik+1
− vik) ].

Since
∑

(vik+1
− vik) is a subseries of

∑
(vk+1 − vk) and vk increases to v, the series∑

(vik+1
− vik) converges. Since

∑
(dik+1

− dik) is a positive series, it is sufficient to
prove that it is bounded. Hence, it only remains to prove that the series

∑
(dik+1

−
vik+1

) converges. Since di2 > di1 , the saved older weights are updated in step i1.
When we reach di1+t

there have been t updates, and vi1+t
equals one of the earlier

dij , j = 1, . . . , t. In this way we can eliminate both this vi1+t
and the corresponding

dij . In the same way it is seen that vi1+t+1
equals one of the dij . That pair can also

be eliminated from the series. We go on and eliminate elements in this way to get∑
(dik − vik) = (dj1 + · · ·+ djq )− (vk1

+ · · ·+ vkq ),

where q ≤ t. Thus the positive series
∑

(dik+1
− vik+1

) is bounded and so converges.
That completes the proof.
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Our main global convergence theorem covers both bounded and unbounded se-
quences of merit weights.

Theorem 4.3. Let {xk} and {Dk} be generated by Algorithm 4.2. Assume that
{xk} is bounded and that the system matrix in (2.2) is nonsingular in the closure of
{xk}. Then the sequence {xk} has either finite termination at a KKT point or an
accumulation point that is a KKT point of (1.1).

Proof. It is trivial that there is finite termination just at KKT points. Let us now
assume that we have an infinite sequence. Algorithm 4.2 implies that it is sufficient
to consider the following two cases:

(i) ‖Dk‖ → ∞,
(ii) {‖Dk‖} is bounded.

These cases will now be treated separately.
(i) There exists a subsequence {xik} of {xk} such that ‖Dik‖ → ∞ monotonically.

Since {xik} is bounded, it is possible to choose a subsequence {xjk} of {xik} such
that xjk → x̃ for some x̃. From Algorithm 4.2 it follows that ‖Dk‖ → ∞ only when
‖Υ(xjk)‖ → ∞. Since Υ(x) is continuous for all points in the closure of {xk} except
KKT points, x̃ is both an accumulation point of {xk} and a KKT point.

(ii) From the inequality

Φ(xN , DN )− Φ(x1, D1) ≤
1

2
sup{‖fk‖2}

N−1∑
i=1

‖Di+1 −Di‖ −
N−1∑
k=1

(Φ(xk, Dk)− Φ(xk+1, Dk)),

one can prove that a point x̃ cannot be an accumulation point of {xk} if there exist
constants ε > 0 and δ > 0 such that

Φ(xk, Dk)− Φ(xk+1, Dk) ≥ ε, ‖xk − x̃‖ ≤ δ.(4.5)

(The proof of (4.5) is a trivial extension of a similar proof in [7, pp. 21–22].)
From Lemma 4.2 we know that

∑ ‖Di+1−Di‖ converges and from the Goldstein–
Armijo condition in Algorithm 4.2 for a given Dk, it follows that for every point x̃ in
the closure of {xk} that is not a KKT point, there exist constants ε > 0 and δ > 0
such that (4.5) is satisfied. Hence, only KKT points remain as possible accumulation
points. That proves the theorem in case (ii).

4.3. Line search. We have chosen to keep things simple and therefore we use
a standard cubic interpolation from [3] to approximate the minimum of our merit
function φ(α). Another more efficient line search algorithm can be found in [6].

4.4. Regularization. We use a simple form of subspace minimization described
for the unweighted and constrained case in [7]. We have not been able to prove a
general global convergence result such as the one in Theorem 4.3, but as we shall see
in the computational experiments, our regularization seems to work appropriately.

5. The generalized Newton–Raphson method. A constrained Newton method
for solving (1.9) can be based on the quadratic subproblem

min
p

pTJT2 W2f2 +
1

2
pT (JT2 W2J2 + Ḡ)p s.t. f1 + J1p = 0,(5.1)

where Ḡ = −∑p
i=1 λif

′′
i +

∑m
i=p+1 ωifif

′′
i and λi, i = 1, . . . , p, are first-order approx-

imations of the Lagrange multipliers. The solution, p̄, to (5.1) is given by the linear
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system of equations [
M J
JT −Ḡ

] [
ν̄
p̄

]
=

[ −f
0

]
.(5.2)

The main disadvantage with using (5.2) is that for very large weights in W2, the
quadratic subproblem (5.1) and the matrix in (5.2) may be very ill conditioned.

To avoid the ill conditioning due to large weights in W2, we solve[
M J
JT −G

] [
ν
p

]
=

[ −f
0

]
,(5.3)

where G = −∑m
i=1 λif

′′
i and λ is from (2.2). This method is the gNR method.

The gNR method has an interesting theoretical motivation. Assume that we have
reached a point xk. From the first-order approximation (1.5) it is known that xk
solves the perturbed problem

min
x∈Rn

1

2
‖W 1/2z(x)‖2,(5.4)

where z(x) = f(x)−Pkfk and Pk = JkBk is a projection onto R(Jk). Hence, we know
the solution xk of (5.4) and want to compute the solution of the perturbed problem

min
x∈Rn

1

2
‖W 1/2(z(x) + Pkfk)‖2.(5.5)

Then we can use the quadratic approximation of z(x) at xk to compute a solution of
problem (5.5) whose error is O(‖Pkfk‖2). If we change back to the original notations
in f(x), this perturbed solution is found by solving problem (5.3) for f = fk.

From (5.3) it is seen that there exists a matrix Nk such that pk = −Nkfk =
−NkPkfk. With x̂ as the solution to (1.1) and z(x̂)− z(xk) ≡ f(x̂)− f(xk), we have

f(x̂) = f(xk)− JkNkPkfk +O(‖Pkfk‖2).(5.6)

Take xk+1 = xk − Nkfk. Then from the quadratic approximation in (5.6) we get
‖xk+1 − x̂‖ = O(‖Pkfk‖2) = O(‖xk − x̂‖2).

From (5.6) it is also seen that JkNk only depends on the surface and not on the
parametrization in x, and consequently Jkpk is independent of the parametrization
in Rn. The gNR method is in fact the only quadratically convergent method with
Jkpk independent of the parametrization. To see this we assume that there exists
another method which computes p̃k = −Ñkfk and hence Jkp̃k = −JkÑkfk. The series
expansion (5.6) is unique and we have JkÑk = JkNk, which implies that Ñk = Nk.

If we define Z1 as a matrix whose columns span the null space of J1, we call p a
descent direction if pTZT

1 J
T
2 f2 < 0. A drawback with both the constrained Newton

method based on (5.2) and the gNR method is that a nonsingular matrix in (5.2)
or (5.3) is not sufficient for p to be a descent direction. However, we use the gNR
method only when we are close to the solution, see (3.20) and Algorithm 6.1, and
therefore we use the gNR method undamped. From (2.2) we get λ, needed for G, and
the Gauss–Newton search direction and if the matrix in (5.3) is singular we use the
already available Gauss–Newton direction.

If we use the modified QR decomposition to solve (2.2), it is possible to reduce
the size of the system in (5.3). Ignoring the permutation matrix, it is possible to
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rewrite (5.3) as  Q−1MQ−T
[
R
0

]
[
RT , 0

] −G

[ QT ν
p

]
=

[ −Q−1f
0

]
.(5.7)

Now QMQT = M implies that Q−1MQ−T = M and we can reduce (5.7) to[
Mn R
RT −G

] [
η
p

]
=

[ −ξ
0

]
,(5.8)

where Mn = diag(µ1, . . . , µn) and η and ξ are the first n elements in QT ν and Q−1f ,
respectively.

The matrix in (5.8) may be indefinite and we must either use a stable method for
indefinite systems (see, e.g., [4]) or add some condition on the submatrices in (5.8).
One possibility of the latter kind is to assume that R is well conditioned and use RT

to reduce (5.8) to [
RT −G
0 R +MnR

−TG

] [
η
p

]
=

[
0

−ξ
]
.(5.9)

The solution is p = −(R+MnR
−TG)−1ξ if the matrix R+MnR

−TG is nonsingular;
otherwise, we take a Gauss–Newton step.

6. Computational experiments. The algorithm we use in our tests is shown
below.

Algorithm 6.1.

k := 1; Close := false; Second := false
Initialize x, Vj , j = 1, . . . , t, T ol,Maxiter; βk := 10 · Tol
while βk > Tol and k < Maxiter

Determine the Jacobian J and the vector f .
Compute the GN direction p and λ by solving (2.2).
α := 1; βk+1 := ‖Jp‖; Rate := βk+1/βk; GN := true
If regularization was needed then Second := false.
If Close and Second and Rate > 0.5

Compute the gNR direction, pgNR, by solving (5.3).
If the matrix in (5.3) is nonsingular then
p := pgNR; GN := false.

end
If GN

Compute the merit weights by Algorithm 4.1.
Determine the steplength α using the line search described
in section (4.3) with the merit function φ(α).

end
x := x+ αp; Close := βk+1 ≤ 2‖M‖ ‖λ‖; k := k + 1; Second := true

end
To use a pure Gauss–Newton method then the variable Second has a fixed value

of false.
We have tested our algorithm on three different problems described in the Ap-

pendix: Schittkowski 308 [10], Boggs 2, and Boggs 8 [2]. The intention with the tests
is not to show that the algorithms are faster than other existing algorithms but to
show how our algorithms handle large weights and inadequate models (ill condition-
ing in the linear problems). Another important aim with the tests is to verify our
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Table 1

Schittkowski 308 with the Gauss–Newton method.

k ‖λk − λ̂‖ ‖xk − x̂‖ ‖Jkpk‖ γk ηk Ψk max d
(k)
i αk

1 7.6 0.55 3.0 0.55 3.0 5.0 1.0 1.0
2 2.8 0.34 0.55 0.63 0.19 2.8 3.9 0.32
3 1.6 3.1e-2 0.39 9.2e-2 0.72 3.2 13 1.0
4 0.16 1.4e-3 6.1e-2 4.6e-2 0.15 3.0 1.0 1.0
5 7.3e-3 6.6e-5 2.7e-3 4.6e-2 4.4e-2 3.0 99 1.0
6 3.4e-4 3.0e-6 1.2e-4 4.6e-2 4.6e-2 2.9 3.9 1.0
7 1.5e-5 1.4e-7 5.7e-6 4.7e-2 4.6e-2 3.0 1.0e+2 1.0
8 7.2e-7 6.5e-9 2.7e-7 4.6e-2 4.7e-2 3.0 1.0e+2 1.0
9 3.3e-8 3.0e-10 1.2e-8 4.6e-2 4.6e-2 3.0 1.0e+2 1.0
10 1.5e-9 1.4e-11 5.6e-10 4.6e-2 4.6e-2 3.0 1.0e+2 1.0
11 7.0e-11 6.3e-13 2.6e-11 4.6e-2 4.6e-2 3.0 1.0e+2 1.0

Table 2

Schittkowski 308 with the gNR method.

k ‖λk − λ̂‖ ‖xk − x̂‖ ‖Jkpk‖ αk

1 7.6 0.55 3.0 1.0
2 2.8 0.34 0.55 0.32
3∗ 1.6 1.7e-2 0.39 1.0
4∗ 8.6e-2 1.2e-5 3.2e-2 1.0
5∗ 5.9e-5 5.6e-12 2.2e-5 1.0
6∗ 2.9e-11 2.3e-16 1.1e-11 1.0

theoretical results on the local convergence rate. Therefore it has been natural to use
small and simple test problems.

We define γk = ‖xk+1−x̂‖/‖xk−x̂‖ and ηk = ‖Jk+1pk+1‖/‖Jkpk‖ as two different
measures of the convergence rate for the Gauss–Newton method. We emphasize that
ηk is an excellent way of estimating the convergence rate when regularization is not
needed and when x̂ is not known.

The first problem, Schittkowski 308, is first solved with the Gauss–Newton method
and the result is in Table 1. The largest weight is 1020 and if the weights are multi-
plied explicitly with f , forming g = W 1/2f , then the algorithm breaks down because
of numerical instability. Note the slow growth of the merit weights. The first problem
solved with the gNR method is shown in Table 2. The asterisk indicates that the gNR
method was used in that step. The second problem, Boggs 2, is a constrained prob-
lem and it has been solved with the Gauss–Newton method, Table 3, and the gNR
method, Table 4. All the merit weights for the Gauss–Newton method were equal to
one and are not shown in Table 3. The remaining two test problems illustrate the
regularization. The rank of the problem is shown under the headline Rank. In Table
5 the second test problem, Boggs 2, is solved with the Gauss–Newton method when
the Jacobian is rank deficient at the starting point. In the third problem, Boggs 8,
the Jacobian at the solution is rank deficient and the result is shown in Table 6.

7. Discussion. We claim that we have developed an efficient and fairly robust
algorithm for solving (1.1) (with possibly infinite weights as discussed in the intro-
duction). However, it is difficult for us to measure the effectiveness of the algorithm
because there are, to our knowledge, no other algorithms that can solve such a general
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Table 3

Boggs 2 with the Gauss–Newton method.

k ‖λk − λ̂‖ ‖xk − x̂‖ ‖Jkpk‖ γk ηk Ψk αk

1 0.18 0.46 5.2 0.46 5.2 14 0.1
2 7.1e-2 0.22 4.6 0.47 0.88 11 0.37
3 1.2e-2 2.8e-2 2.3 0.13 0.50 2.6 1.0
4 1.1e-3 1.3e-3 0.39 4.5e-2 0.17 9.3e-2 1.0
5 2.4e-4 2.5e-4 7.3e-3 0.10 1.9e-2 1.6e-2 1.0
6 6.4e-5 6.6e-5 3.0e-4 0.27 4.2e-2 1.6e-2 1.0
...

...
...

...
...

...
...

...
14 1.8e-9 1.8e-9 8.3e-9 0.27 0.27 1.6e-2 1.0
15 4.7e-10 4.9e-10 2.2e-9 0.27 0.27 1.6e-2 1.0
16 1.3e-10 1.3e-10 6.0e-10 0.27 0.27 1.6e-2 1.0
17 3.4e-11 3.5e-11 1.6e-10 0.27 0.27 1.6e-2 1.0
18 9.2e-12 9.5e-12 4.3e-11 0.27 0.27 1.6e-2 1.0

Table 4

Boggs 2 with the gNR method.

k ‖λk − λ̂‖ ‖xk − x̂‖ ‖Jkpk‖ αk

1 0.18 0.46 5.2 0.1
2 7.1e-2 0.22 4.6 0.37
3 1.2e-2 2.8e-2 2.3 1.0
4 1.1e-3 1.3e-3 0.39 1.0
5 2.4e-4 2.5e-4 7.3e-3 1.0
6 6.4e-5 6.6e-5 3.0e-4 1.0
7∗ 1.7e-5 1.4e-9 8.1e-5 1.0
8∗ 4.4e-10 1.4e-15 1.1e-8 1.0
9∗ 8.2e-16 1.0e-15 1.9e-15 1.0

Table 5

Boggs 2, Gauss–Newton, and rank deficient at the starting point.

k ‖Jkpk‖ γk Ψk max d
(k)
i αk Rank

1 10 10 1.1e+2 4.0 0.10 2
2 5.6 0.54 15 1.0 0.10 3
..
.

..

.
..
.

..

.
..
.

..

.
..
.

7 1.7 0.58 1.5 1.0 0.47 3
8 0.66 0.39 0.27 1.0 0.30 3
9 0.47 0.71 0.14 1.0 0.12 3
...

...
...

...
...

...
...

14 0.26 0.81 4.2e-2 1.0 0.23 3
15 0.16 0.63 2.7e-2 1.0 1.0 3
16 0.13 0.81 2.5e-2 1.0 1.0 3
...

...
...

...
...

...
...

31 1.3e-10 0.27 1.6e-2 1.0 1.0 3
32 3.4e-11 0.27 1.6e-2 1.0 1.0 3
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Table 6

Boggs 8, Gauss–Newton, and rank deficient at the solution.

k ‖Jkpk‖ γk Ψk max d
(k)
i αk Rank

1 2.0 2.0 2.0 1.0 0.44 5
2 1.3 0.64 0.83 1.0 5.0e-2 5
...

...
...

...
...

...
...

28 1.1 1.0 0.65 1.0 3.4e-10 5
29 1.1 0.99 1.6 3.5 9.5e-7 4
...

...
...

...
...

...
...

38 0.29 0.99 0.65 3.5 1.1e-5 4
39 0.51 1.7 0.84 8.0 1.0 3
40 0.27 0.53 0.64 3.5 1.0 3
41 0.21 0.79 0.53 3.5 5.3e-5 4
...

...
...

...
...

...
...

53 4.2e-9 0.25 0.50 3.5 1.0 4
54 1.0e-9 0.25 0.50 3.5 1.0 3
55 2.2e-16 2.1e-7 0.50 3.5 1.0 3

problem as (1.1).

The local convergence properties are well understood for the Gauss–Newton al-
gorithm. It is especially interesting that the local convergence results are valid for the
whole problem class defined by (1.1) and that they are independent of the parametriza-
tion in Rn.

The merit function is especially suited for our weighted and constrained problem,
and our technique for choosing the merit weights is effective and does not lead to
unnecessarily large weights.

As for robustness, we have shown that our algorithm is globally convergent when
the iteration points are nondegenerate. It remains to find a way to regularize when
the rows in J corresponding to very large weights become (almost) linearly dependent.
We believe that this is a difficult and challenging problem to solve.

Appendix: Test problems. In this appendix we define our three test problems
and the weight sequences. We also give the starting points, xstart, solutions, x̂, and
the residuals f(x̂). The examples are from [10] and [2] and include unconstrained as
well as constrained problems.

Schittkowski 308 [10] . This is an unconstrained problem which we have modified
by incorporation of weights.

f = [cos(x2), sin(x1), x
2
1 + x2

2 + x1x2]
T

W = diag(1020, 102, 1)
xstart = [1, 1]T

x̂ = [−0.036173, 1.5708]T

f(x̂) = [−1.6081 · 10−16,−0.036165, 2.4119]T

Boggs 2 [2] . This is a constrained problem where the Jacobian is rank deficient
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at the second starting point, xstart2.

f = [x1(1 + x2
2) + x4

3 − 4− 3
√

2, x1 − 1, x1 − x2, (x2 − x3)
2]T

W = diag(∞, 1, 1, 1)
xstart1 = [1, 1, 1]T

xstart2 = [1, 0, 0]T

x̂ = [1.1049, 1.1967, 1.5353]T

f(x̂) = [−1.7764 · 10−15, 0.10486,−0.091815, 0.11464]T

Boggs 8 [2] . This is a constrained problem where the Jacobian is rank deficient
at the solution.

f = [x1 + x2
4 − 1, x2

1 + x2
2 − x2

5 − 1, x1, x2, x3]
T

W = diag(∞,∞, 1, 1, 1)
xstart = [1, 1, 1, 1, 1]T

x̂ = [1, 0, 0,−2.2352 · 10−7,−3.2386 · 10−5]T

f(x̂) = [4.1949 · 10−10,−2.0974 · 10−10, 1, 0, 0]T
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Abstract. We investigate the properties of a new merit function which allows us to reduce a
nonlinear complementarity problem to an unconstrained global minimization one. Assuming that
the complementarity problem is defined by a P0-function, we prove that every stationary point
of the unconstrained problem is a global solution; furthermore, if the complementarity problem is
defined by a uniform P -function, the level sets of the merit function are bounded. The properties of
the new merit function are compared with those of Mangasarian–Solodov’s implicit Lagrangian and
Fukushima’s regularized gap function. We also introduce a new simple active-set local method for
the solution of complementarity problems and show how this local algorithm can be made globally
convergent by using the new merit function.
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1. Introduction. We consider the nonlinear complementarity problem

(NC) F (x) ≥ 0, x ≥ 0, F (x)Tx = 0,

where F : Rn → Rn is continuously differentiable everywhere. Recent research on the
numerical solution of problem (NC) has focused on the development of globally con-
vergent algorithms. To this end, two approaches have been investigated: the reformu-
lation of the nonlinear complementarity problem as a minimization one and the use of
continuation methods. Strictly related to the first approach is the equation-reduction
approach, which tries to solve problem (NC) by solving an equivalent system of equa-
tions, while interior-point methods are close to the continuation approach. There
exists a considerable body of literature on the theoretical properties of continuation
methods, and interior-point methods appear to be valuable in the practical solution of
linear complementarity problems. However, in past years the minimization approach
seems to have raised much more interest, and most if not all of the proposals and
developments of practical algorithms for the solution of nonlinear complementarity
problems follow this approach.

The minimization approach is based on the introduction of a merit function whose
(possibly constrained) global minima are the solutions of the nonlinear complemen-
tarity problem; the latter problem is then solved by means of suitable minimization
algorithms. The definition of a merit function is often, if not always, based on a
preliminary equation reformulation of the complementarity problem. More precisely,
one first defines a system of equations H(x) = 0, whose solutions coincide with the
solutions of the complementarity problem, and then uses as merit function ‖H(x)‖2
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(or ‖H(x)‖). Before continuing our discussion we give a formal definition of merit
function.

Definition 1.1. Let C ⊆ Rn be given. A merit function for problem (NC) is
a nonnegative function M : C → R such that x̄ is a solution of problem (NC) iff
x̄ ∈ C and M(x̄) = 0, i.e., iff the solutions of problem (NC) coincide with the global
solutions of the problem

(PM) min M(x), x ∈ C,
with zero optimal value.

Note that if the complementarity problem has no solution then a merit function
must either have global solutions with positive objective value or no global solutions
at all.

It is not difficult to find a merit function for problem (NC); the challenging task
is to find a merit function which enjoys useful properties from the computational
point of view. For example, one could consider the merit function M(x) = F (x)Tx,
whose global minimizers on the set C := {x|x ≥ 0, F (x) ≥ 0} are the solutions of
the complementarity problem (NC). But seeking these global minimizers is not easy
because, even in very simple cases, the structure of C may be very complicated and
the minimization problem can have stationary points which are not global solutions.
There have been several proposals of merit functions (or equation reformulations); the
seminal work is [21], where a smooth equation reformulation is given. Other papers
related to smooth reformulations include, e.g., [8, 12, 13, 16, 17, 18, 23, 25, 38];
nonsmooth reformulations, instead, are used in, e.g., [5, 9, 14, 28, 34, 37, 41, 42].
It is often difficult, if at all possible, to compare different merit functions; however,
we think that the main points which should be considered when assessing a merit
function M are as follows:

1. the conditions under which every stationary point of problem (PM) is a global
solution;

2. the conditions under which the level sets L(α) := {x ∈ Rn : x ∈ C,M(x) ≤
α} are bounded;

3. the degree of smoothness of M ;
4. the structure of the set C.

Obviously, all of these points have a great practical significance. The numerical
performance of algorithms based on problem (PM) should also be considered, even if
one should always keep in mind that the numerical results are also dependent on the
particular algorithm chosen to solve problem (PM).

There is generally a trade-off between simplicity of problem (PM) and its proper-
ties. In what concerns the function M , differentiable merit functions tend to be more
ill conditioned than nondifferentiable ones and do not generally allow us to develop
superlinearly convergent algorithms for degenerate problems. On the other hand,
nondifferentiable merit functions do not have these drawbacks but generally require
ad hoc complex minimization algorithms. In what concerns the set C, constrained
reformulations are usually valid under weaker assumptions than their unconstrained
counterparts, but solving a constrained minimization problem is more difficult than
solving an unconstrained one.

In order to put this work in perspective and also to illustrate the points discussed
above, we now briefly recall the properties of two recently proposed merit functions:
the implicit Lagrangian of Mangasarian and Solodov [23] and Fukushima’s regularized
gap function [12] (see also [2]). These two merit functions are, in our opinion, among
the most interesting proposals in the field.
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The implicit Lagrangian is defined as follows (to simplify we have fixed a free
parameter):

Mms(x) := xTF (x) +
1

4

(||[x− 2F (x)]+||2 − ‖x‖2 + ||[F (x)− 2x]+||2 − ‖F (x)‖2) ,
where [x]+ = max(x, 0), taken componentwise. Mms is a merit function with C = Rn,
so that solving (NC) is equivalent to finding the unconstrained global solutions of the
problem {min Mms(x)}. Furthermore, the merit function Mms enjoys the following
properties.

• Mms is continuously differentiable.

• If the Jacobian of F is a positive definite matrix for every x then every stationary
point of problem (PM) is a global minimum point of problem (PM) [43].

• If F is strongly monotone and globally Lipschitzian then the level sets L(α) are
bounded [43].

The regularized gap function of Fukushima is defined for variational inequalities.
When specialized to nonlinear complementarity problems it becomes the following (to
simplify, we have fixed a free parameter):

Mfa(x) := xTF (x) +
1

2

(||[x− F (x)]+||2 − ‖x‖2
)
.

Mfa is a merit function with C = Rn
+, so solving (NC) is equivalent to finding the

global solutions of the simply constrained minimization problem {min Mfa(x) : x ∈
Rn

+}. Furthermore, the merit function Mfa enjoys the following properties.

• Mfa is continuously differentiable.

• If the Jacobian of F is a positive definite matrix for every x in C, then every
stationary point of Problem (PM) is a global minimum point of problem (PM) [12].

• If F is strongly monotone then the level sets L(α) are bounded [39].

We note that the implicit Lagrangian merit function is simpler than the regu-
larized gap function, since it only requires an unconstrained minimization, but the
condition for having bounded level sets is stronger for the implicit Lagrangian than
for the regularized gap function.

The purpose of this paper is twofold: on the one hand, we study a new merit
function which can be used to reformulate the nonlinear complementarity problem as
a smooth, unconstrained minimization problem; on the other hand, we propose a glob-
ally convergent algorithm for the solution of problem (NC) and study its theoretical
properties.

The new merit function is based on the following two-variable convex function:

φ(a, b) :=
√
a2 + b2 − (a+ b).

The most interesting property of this function is that, as is easily verified,

φ(a, b) = 0 ⇐⇒ a ≥ 0, b ≥ 0, ab = 0.(1)

Note also that φ is continuously differentiable everywhere but in the origin. The
function φ was introduced by Fischer [10] in 1992; since then it has attracted the
attention of many researchers, and it has proved to be a valuable tool [7, 11, 13, 16,
18, 32, 40].
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By exploiting (1), it is readily seen that the following system of nonsmooth equa-
tions is equivalent to the nonlinear complementarity problem:

Φ(x) =



φ(x1, F1(x))
...

φ(xi, Fi(x))
...

φ(xn, Fn(x))

 = 0.

It is then obvious that the function

Ψ(x) :=
1

2
‖Φ(x)‖2 =

1

2

n∑
i=1

φ(xi, Fi(x))2

is a merit function with C = Rn, so solving (NC) is equivalent to finding the uncon-
strained global solutions of the problem {min Ψ(x)}. We shall prove that the merit
function Ψ enjoys the following properties.
• Ψ is continuously differentiable; furthermore, if every Fi is an SC1 function,

then Ψ is also an SC1 function (we recall that this means that Ψ is continuously
differentiable and its gradient is semismooth; see section 2 for a formal definition).
• If F is a P0-function then every stationary point of problem (PM) is a global

minimum point of problem (PM).
• If F is a uniform P -function then the level sets L(α) are bounded.
Furthermore, we should also add that Φ is semismooth (see [24, 33]), and this

is a significant analytical property; in particular, we note that semismoothness is a
stronger and more far reaching property than B-differentiability, the latter being a
property often used in recent years in the study of nonlinear complementarity prob-
lems [14, 28, 41, 42].

The theoretical properties of Ψ seem to be superior to those of the implicit La-
grangian and of the regularized gap function. In fact, the function Ψ allows us to solve
the nonlinear complementarity problem by an unconstrained minimization, and the
conditions under which every stationary point of the merit function is a global min-
imizer and the level sets are bounded are substantially weaker. Actually, as pointed
out by one of the referees, both the implicit Lagrangian and the new merit function
are in the same order of the natural residual [20, 40] so that also the level sets of
the implicit Lagrangian are bounded if F is a uniform P -function. In this particu-
lar respect the function Ψ simply appears to be easier to analyze than the implicit
Lagrangian.

Also, the differentiability properties of Ψ seem more interesting, and actually
the semismoothness of Φ and the SC1 property of Ψ are very important from an
algorithmic point of view [6, 24, 29, 30, 31, 33]. It is worth noting that the system
Φ(x) = 0 is nonsmooth, but the merit function Ψ(x) = 1

2‖Φ(x)‖2 is, surprisingly,
smooth. Thus our reformulation of the complementarity problem as a minimization
one seems to inherit the advantages of both nonsmooth and smooth merit functions,
while mitigating their drawbacks. In particular we note that since Ψ is continuously
differentiable, it is very easy to force global convergence of algorithms by using the
gradient of the merit function. On the other hand, we are able to prove, for the first
time in the case of smooth merit functions, quadratic convergence even to degenerate
solutions.
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The merit function Ψ has also been independently introduced by Geiger and
Kanzow [13]. Their results are, however, weaker than those reported above or simply
different. In particular they showed that every stationary point of the merit function
is a global minimum point if F is monotone, while the level sets of Ψ are bounded
if F is strongly monotone. Their analysis of the differential properties of Ψ is cruder
than ours and, to define superlinear convergent algorithms for the solution of the
complementarity problem, they require the solutions to be nondegenerate. On the
other hand, Geiger and Kanzow describe an interesting algorithm for the solution of
strongly monotone complementarity problems which does not require the evaluation
of the Jacobian of F .

In this paper we also illustrate the usefulness of the merit function through the
description of a technique for globalizing a local algorithm for the solution of comple-
mentarity problems. The local algorithm itself is, we think, worthy of attention; it is
an active-set algorithm which reduces the solution of the complementarity problem to
the solution of a lower-dimensional system of smooth equations by Newton’s method.
This local algorithm is quadratically convergent under a mild assumption, which is
weaker than the classical regularity assumption required by the method of Robinson
[36] and Josephy [15]; in particular it does not require nondegeneracy of the solution,
as opposed to the methods of [8, 12, 13, 14, 16, 17, 23, 25, 38]. Furthermore, it requires
just the solution of a reduced linear system at each iteration. The local algorithm
is globalized in a very cheap and simple way by using the merit function Ψ. We
show that the overall algorithm is globally convergent and, under appropriate, mild
assumptions, eventually reduces to the local, fast algorithm, thus retaining its conver-
gence rate. Furthermore, the algorithm is finitely convergent on a wide class of linear
complementarity problems. The numerical behavior of the algorithm is illustrated in
[7] and the results reported there show that the algorithm is quite promising.

This paper is organized as follows. In the next section we recall various definitions
related to complementarity problems and to differentiability of functions. In section
3 we analyze the differential properties of Φ and Ψ, while in section 4 we prove the
main properties of the function Ψ. A local algorithm for the solution of problem (NC)
and its globalization through the merit function Ψ are discussed in section 5. Finally,
in the last section we make some conclusive remarks.

We close this section by giving a list of the notation employed.

If f : Rn → R is differentiable at x then the column vector ∇f(x) is the gradient
of the function f at the point x. If f is a locally Lipschitz function at x then the
set of column vectors ∂f(x) is the set of subgradients of f at x, i.e., the generalized
gradient.

If F : Rn → Rm is differentiable at x then the m × n matrix ∇F (x) is a matrix
whose ith column is the gradient of Fi at the point x. If F is a Lipschitz mapping at
x then the set of m× n matrices ∂F (x) is the generalized Jacobian of F at x.

We remark that, as usual, there is an inconsistency in this notation. If F is single
valued then the generalized Jacobian is a set of row vectors and does not coincide with
the generalized gradient but with the set of all the transpose subgradients. Also note
that if F is differentiable then its generalized Jacobian is not ∇F (x) but ∇F (x)T .

The standard notation used in nonsmooth analysis for “operations” between sets
is also used here. In particular, if A and B are sets of n-dimensional vectors then

A+B = {c ∈ Rn|c = a+ b with a ∈ A, b ∈ B}.
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If A is a set of n× n matrices and B is a set of n-vectors,

AB = {c ∈ Rn|c = ab with a ∈ A, b ∈ B}.
The Euclidean norm is denoted by ‖·‖, and S(x̄, δ) ⊆ Rn denotes the closed Euclidean
sphere of center x̄ and radius δ, i.e., S(x, δ) = {x ∈ Rn|‖x − x̄‖ ≤ δ}. If Ω is a
nonempty subset of Rn, dist{x|Ω} := infy∈Ω ‖y−x‖ denotes the (Euclidean) distance
of x to Ω.

If M is an n × n matrix with elements Mij , i, j = 1, . . . n, and I and J are
index sets such that I, J ⊆ {1, . . . n}, we denote by MIJ the |I| × |J | submatrix of M
consisting of elements Mij , i ∈ I, j ∈ J . If w is an n vector, we denote by wI the
subvector with components wi, i ∈ I.

2. Background material. In this section we review some definitions related to
nonlinear complementarity problems and to differential properties of functions which
will be used in the sequel.

A solution to the nonlinear complementarity problem (NC) is a vector x̄ ∈ Rn

such that

F (x̄) ≥ 0, x̄ ≥ 0, F (x̄)T x̄ = 0.

We define the following three index sets which are associated with the solution x̄

α := {i|x̄i > 0}, β := {i|x̄i = 0 = Fi(x̄)}, γ := {i|Fi(x̄) > 0}.
The solution x̄ is said to be nondegenerate if β = ∅.

In the following definition, we introduce two notions of regularity which play a
central role in our analysis and which have also been widely used in the analysis of
nonlinear complementarity problems.

Definition 2.1. We say that the solution x̄ is
• b-regular if, for every index set δ such that α ⊆ δ ⊆ α ∪ β, the principal

submatrix ∇Fδδ(x̄) is nonsingular ;
• R-regular if ∇Fαα(x̄) is nonsingular and the Schur complement of ∇Fαα(x̄) in( ∇Fαα(x̄) ∇Fαβ(x̄)

∇Fβα(x̄) ∇Fββ(x̄)

)
is a P-matrix (see below).

We recall that the above mentioned Schur complement is defined by

∇Fββ(x̄)−∇Fβα(x̄)∇Fαα(x̄)−1∇Fαβ(x̄).

Note that R-regularity coincides with the notion of regularity introduced by Robinson
in [36] (see also [35], where the same condition is called strong regularity) and is strictly
related to similar conditions used, e.g., in [9, 25, 28]. If x̄ is a nondegenerate solution
then the b-regularity condition can be equivalently stated as follows: the vectors
∇Fi(x̄), i ∈ α, and ei, i ∈ γ are linearly independent (ei indicates the ith column of
the identity matrix); b-regularity has been employed, e.g., in [16, 23, 25]. It is known
that R-regularity implies b-regularity [28] and local uniqueness of the solution x̄ [35];
furthermore, b-regularity also implies the local uniqueness of the solution x̄; see [19]
or Proposition 5.4.

We make use of the following linear algebra definitions and properties.
Definition 2.2. A matrix M ∈ Rn×n is a
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• P0-matrix if every of its principal minors is nonnegative ;
• P -matrix if every of its principal minors is positive;
• R0-matrix if the linear complementarity problem

Mx ≥ 0, x ≥ 0, xTMx = 0,

has 0 as its unique solution.
It is obvious that every P -matrix is also a P0-matrix, and it is known [4] that

every P -matrix is an R0-matrix. We shall also need the following characterization of
P0-matrices [4].

Proposition 2.3. A matrix M ∈ Rn×n is a P0-matrix iff for every nonzero
vector x there exists an index i such that xi 6= 0 and xi(Mx)i ≥ 0.

We need the following concepts which concern nonlinear functions.
Definition 2.4. A function F : Rn → Rn is a
• P0-function if, for every x and y in Rn with x 6= y, there is an index i such that

xi 6= yi, (xi − yi)[Fi(x)− Fi(y)] ≥ 0;

• P -function if, for every x and y in Rn with x 6= y, there is an index i such that

(xi − yi)[Fi(x)− Fi(y)] > 0;

• uniform P -function if there exists a positive constant µ such that, for every x
and y in Rn, there is an index i such that

(xi − yi)[Fi(x)− Fi(y)] ≥ µ‖y − x‖2;
• monotone function if, for every x and y in Rn,

(x− y)T [F (x)− F (y)] ≥ 0;

• strictly monotone function if, for every x and y in Rn with x 6= y,

(x− y)T [F (x)− F (y)] > 0;

• strongly monotone function if there is a positive constant µ such that, for every
x and y in Rn,

(x− y)T [F (x)− F (y)] ≥ µ‖y − x‖2.

It is obvious that every monotone function is a P0-function, every strictly mono-
tone function is a P -function, and every strongly monotone function is a uniform
P -function. Furthermore, it is known that the Jacobian of every continuously differ-
entiable P0-function is a P0-matrix [26] and that if the Jacobian of a continuously
differentiable function is a P -matrix for every x, then the function is a P -function
[26]. If F is affine (that is, if F (x) = Mx + q) then F is a P0-function iff M is a
P0-matrix, while F is a (uniform) P -function iff M is a P -matrix (note that in the
affine case, the concept of uniform P -function and P -function coincide).

In the remaining part of this section we recall some basic definitions about semi-
smoothness and SC1 functions.

Semismooth functions were introduced in [24] and they immediately showed to
be relevant to optimization algorithms. Recently, the concept of semismoothness has
been extended to vector-valued functions [33].
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Definition 2.5. Let F : Rn → Rm be locally Lipschitz at x ∈ Rn. We say that
F is semismooth at x if

lim
H∈∂F (x+tv′)
v′→v,t↓0

Hv′(2)

exists for any v ∈ Rn.
Semismooth functions lie between Lipschitz functions and C1 functions. Note

that this class is strictly contained in the class of B-differentiable functions.
It is known (see [24, 33]) that
(a) continuously differentiable functions and convex functions are semismooth.

The composites of semismooth functions are semismooth;
(b) if a function F is semismooth at x, then F is directionally differentiable at x,

and the directional derivative F ′(x; d) is equal to the limit (2).
We can now give the definition of SC1 function.
Definition 2.6. A function f : Rn → R is said to be an SC1 function if f is

continuously differentiable and its gradient is semismooth.
SC1 functions can be viewed as functions which lie between C1 and C2 functions.

Semismooth systems of equations form an important class, since they often occur in
practice and many of the classical methods for their solution (e.g., Newton’s method)
can be extended to solve such problems [29, 31, 33]. Analogously, many classical
results concerning the minimization of C2 functions can be extended to the minimiza-
tion of SC1 functions (see, e.g., [6, 30] and references therein), which, in turn, play
an important role in many optimization problems. Under very mild differentiability
assumptions on F , the new merit function we will introduce in the next section is an
SC1 function.

3. Differential results. In this section we study the differential properties of
Φ and Ψ. In particular, we give an estimate of the generalized Jacobian of Φ and a
sufficient condition for the nonsingularity of all its elements at a solution of (NC). We
also establish that Φ is semismooth, Ψ is continuously differentiable, and Ψ is SC1

if F is an SC1 function. Unless stated otherwise, we assume that F is everywhere
continuously differentiable.

Proposition 3.1.

∂Φ(x)T ⊆ (A(x)− I) +∇F (x)(B(x)− I),(3)

where I is the n×n identity matrix and A(x) and B(x) are possibly multivalued n×n
diagonal matrices whose ith diagonal element is given by

Aii(x) =
xi

‖(xi, Fi(x))‖ , Bii(x) =
Fi(x)

‖(xi, Fi(x))‖
if (xi, Fi(x)) 6= 0 and by

Aii(x) = ξi, Bii(x) = ρi for every (ξi, ρi) such that ‖(ξi, ρi)‖ ≤ 1

if (xi, Fi(x)) = 0.
Proof. By known rules on the evaluation of the generalized Jacobian (see [3],

Proposition 2.6.2 (e)),

∂Φ(x)T ⊆ (∂Φ1(x)× · · · × ∂Φn(x)).
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If i is such that (xi, Fi(x)) 6= 0, then it is easy to check that Φi(x) is differentiable
and

∇Φi(x) = ∇φ(xi, Fi(x)) =

(
xi

‖xi, Fi(x)‖ − 1

)
ei +∇Fi(x)

(
Fi(x)

‖xi, Fi(x)‖ − 1

)
.

If i is such that (xi, Fi(x)) = 0, by using the theorem on the generalized gradient of
a composite function (see [3], Theorem 2.3.9 (iii)) and recalling that

∂‖0, 0‖ = {(ξi, ρi) : ‖(ξi, ρi)‖ ≤ 1},
we get

∂Φi(x) = ∂φ(xi, Fi(x)) = (ξi − 1)ei +∇Fi(x)(ρi − 1).

From these equalities the proposition easily follows.
By exploiting estimate (3), it is now possible to give a sufficient condition for the

nonsingularity of all the elements in the generalized Jacobians of Φ at a solution of the
nonlinear complementarity problem. This result is important from the algorithmic
point of view; see section 5 and [33].

Proposition 3.2. Suppose that x̄ is an R-regular solution of problem (NC).
Then every matrix in ∂Φ(x̄) is nonsingular.

Proof. Using expression (3) and taking into account that x̄ is a solution of the
nonlinear complementarity problem, any matrix C belonging to ∂Φ(x)T can be written
in the following partitioned form:

C =


−∇Fαα ∇Fαβ(Bββ − Iββ) 0αγ

−∇Fβα ∇Fββ(Bββ − Iββ) + (Aββ − Iββ) 0βγ

−∇Fγα ∇Fγβ(Bββ − Iββ) −Iγγ

 .(4)

It is easy to see that these C are nonsingular iff the “left upper corner”

G =

( −∇Fαα ∇Fαβ(Bββ − Iββ)

−∇Fβα ∇Fββ(Bββ − Iββ) + (Aββ − Iββ)

)
(5)

is nonsingular. Showing that the matrix G is nonsingular is equivalent to showing
that the only solution of the system

−Gy = −G
(

yα
yβ

)
= 0

is the zero vector (we have changed sign for simplicity). This system can be rewritten
as { ∇Fααyα +∇Fαβ(Iββ −Bββ)yβ = 0,

∇Fβαyα +∇Fββ(Iββ −Bββ)yβ = −(Iββ −Aββ)yβ ,

from which, recalling that ∇Fαα is nonsingular by the R-regularity assumption, we
obtain, solving the first equation with respect to yα and substituting into the second
equation,{

yα = −∇F−1
αα∇Fαβ(Iββ −Bββ)yβ ,

(∇Fββ −∇Fβα∇F−1
αα∇Fαβ)(Iββ −Bββ)yβ = −(Iββ −Aββ)yβ ,

(6)
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where (∇Fββ−∇Fβα∇F−1
αα∇Fαβ) = (G/∇Fαα) is by definition the Schur complement

of ∇Fαα in G and is hence a P-matrix by the R-regularity assumption. Then, showing
the nonsingularity of G is equivalent to showing that the only vector which solves the
second equation of (6), i.e.,

(G/∇Fαα)(Iββ −Bββ)yβ = −(Iββ −Aββ)yβ ,(7)

is yβ = 0. We proceed by contradiction, assume that there exists a solution yβ 6= 0,
and consider two cases.

(1) (Iββ − Bββ)yβ = 0. Define I = {i : (yβ)i 6= 0}. Note that I 6= ∅ because
we are assuming yβ 6= 0. This means that Bii = 1 for every i ∈ I, which, in turn,
implies Aii = 0 for every i ∈ I by the definition of the matrices A and B. Hence
−(Iββ −Aββ)yβ 6= 0 and this is absurd.

(2) (Iββ − Bββ)yβ 6= 0. The components of (Iββ − Bββ)yβ and −(Iββ − Aββ)yβ
which are both nonzero (if any) have opposite signs. This implies, by (7),

[(Iββ −Bββ)yβ ]i [(G/∇Fαα)(Iββ −Bββ)yβ ]i ≤ 0, ∀i ∈ β.

Since (G/∇Fαα) is a P-matrix this is only possible if (Iββ − Bββ)yβ = 0, again we
have a contradiction and the proof is complete.

Another important property of Φ is that it is a semismooth function. Also, this
property is very important from the computational point of view.

Proposition 3.3. The function Φ is semismooth.

Proof. The function Φ is semismooth iff every of its components is semismooth
[33]. But Φi(x) is the composite of the convex function φ : R2 → R and of the
differentiable function (xi, Fi(x))T : Rn → R2. Since convex and differentiable func-
tions are semismooth and the composite of semismooth functions is semismooth, the
proposition is proved.

We now pass to consider the differential properties of the function Ψ. The first
result is somewhat surprising and states that Ψ is continuously differentiable.

Proposition 3.4. The function Ψ(x) is continuously differentiable and its gra-
dient is ∂Φ(x)TΦ(x).

Proof. By known rules on the calculus of generalized gradients (see [3], Theorem
2.6.6), it holds that ∂Ψ(x) = ∂Φ(x)TΦ(x). Since it is easy to check that ∂Φ(x)TΦ(x) is
single valued everywhere because the zero components of Φ(x) cancel the “multivalued
columns” of ∂Φ(x)T , we have by the corollary to Theorem 2.2.4 in [3] that Ψ(x) is
continuously differentiable.

The second result about the differentiability properties of Ψ is that if F is SC1

then Ψ is also SC1. This result will not be explicitly used in this paper, but we think
that it is of great significance and that it also explains the good numerical behavior
of algorithms based on the merit function Ψ.

Proposition 3.5. If every Fi is an SC1 function, then Ψ(x) is an SC1 function.

Proof. The function Ψ = 1
2

∑n
i=1 φ(xi, Fi)

2 is SC1 if every

1

2
φ2 = (x2

i + F 2
i + xiFi)− (xi + Fi)‖xi, Fi‖

is SC1. It is obvious that it is sufficient to show that the term (xi + Fi)‖xi, Fi‖ is
SC1. It is easy to check that (xi + Fi)‖xi, Fi‖ is continuously differentiable and that
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its gradient is
(ei +∇Fi) ‖xi, Fi‖+ (xi + Fi)

[(
xi

‖xi,Fi‖ − 1
)
ei +

(
Fi

‖xi,Fi‖ − 1
)
∇Fi

]
if (xi, Fi) 6= (0, 0),

0
if (xi, Fi) = (0, 0).

Again, to check that this gradient is semismooth, we only need to check that every
component is semismooth. This, in turn, reduces to checking that the “troublesome”
terms {

(xi+Fi)Fi
‖xi,Fi‖ if (xi, Fi) 6= (0, 0),

0 if (xi, Fi) = (0, 0)

and {
(xi+Fi)xi
‖xi,Fi‖ if (xi, Fi) 6= (0, 0),

0 if (xi, Fi) = (0, 0)

are semismooth (note that the term ‖xi, Fi‖ is semismooth since it is the composite
of the convex and hence semismooth, norm function, and semismooth functions). We
will check this only for the first term; the proof for the second one is analogous.

Since the composite of semismooth functions is semismooth we only have to show
that

η(a, b) =

{
(a+b)b
‖a,b‖ if (a, b) 6= (0, 0),

0 if (a, b) = (0, 0)

is semismooth. First we show that it is locally Lipschitzian. This is obvious every-
where but in the origin, so let us consider this point. We first note that∣∣∣∣ (a+ b)b

‖a, b‖ − 0

∣∣∣∣ = |(a+ b)b|
‖a, b‖ =

|(a+ b)| |b|
‖a, b‖ ≤

√
2
‖a, b‖‖a, b‖
‖a, b‖ =

√
2‖(a, b)−(0, 0)‖.(8)

Furthermore, in points different from the origin, it is readily seen that ∇η(c, d) is
given by

∇η(c, d) =

 d‖c,d‖−(cd+d2) c
‖c,d‖

‖c,d‖2
(c+2d)‖c,d‖−(cd+d2) d

‖c,d‖
‖c,d‖2

 ,(9)

and it is easy to verify that the norm of ∇η(c, d) is bounded on any bounded set which
does not contain the origin.

Consider now a convex, open bounded neighborhood Ω of the origin. We want to
show that there exists a positive constant L such that for every pair of points y and z
belonging to Ω we have |η(z)− η(y)| ≤ L‖z − y‖. To this end we consider two cases.

(a) The origin does not belong to the closed segment [y, z]. In this case we can
apply the theorem of the mean and obtain

|η(z)− η(y)| ≤ |η(y) +∇η(w)T (z − y)− η(y)| ≤M‖z − y‖,
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where w is a point belonging to the open segment (z, y) and M is any positive constant
majorizing the norm of the gradient of η on the bounded set Ω \ {0}.

(b) The origin belongs to the closed segment [y, z]. In this case we have ‖z−y‖ =
‖z‖+ ‖y‖, so that, exploiting (8), we can write

|η(z)− η(y)| ≤ |η(z)− 0|+ |η(y)− 0| ≤
√

2(‖z‖+ ‖y‖) =
√

2‖z − y‖.

Hence the local Lipschitzianity of η in the origin is proved with L = max{√2,M}.
To check semismoothness we also only have to check semismoothness in (0, 0),

since in other points η(a, b) is continuously differentiable and hence semismooth. To
check semismoothness in (0, 0) we employ Theorem 2.3 (iv) in [33] which states that
the locally Lipschitzian function η is semismooth at (0, 0) iff, for every ζ ∈ ∂η((0, 0)+
(c, d)) with (c, d)→ 0, it holds that

ζT
(

c
d

)
− η′((0, 0); (c, d)) = o(‖(c, d)‖).(10)

To this end we first note that it is easy to check, using the very definition of directional
derivative, that

η′((0, 0); (c, d)) = η(c, d).(11)

Furthermore, taking into account that for every (c, d) 6= (0, 0), η((0, 0) + (c, d)) is
differentiable, the vector ζ in the theorem of Qi–Sun reduces to ∇η(c, d). Employing
(11) and (9), it is now easy to check that the left-hand side of (10) is identically 0, so
η is semismooth and the proof is complete.

4. Properties of Ψ. In this section we prove two important results on the func-
tion Ψ. The first result states that if F is a P0-function then every point such that
∇Ψ(x) = 0 is a global minimum point of Ψ; the second result establishes that if F is
a uniform P-function then Ψ has bounded level sets.

The importance of these two properties and relations to similar results in the
literature have already been discussed in the introduction.

Theorem 4.1. Suppose that F is a P0-function. Then every stationary point of
Ψ is such that Ψ(x) = 0.

Proof. Suppose that ∇Ψ(x) = 0. This means that

[(A(x)− I) +∇F (x)(B(x)− I)] Φ(x) = 0;(12)

we want to show that Φ(x) = 0.
Suppose the contrary. Consider the vector (B(x) − I)Φ(x). By its structure, it

is easy to see that its ith component is different from 0 iff Φi(x) 6= 0. In fact, if
Φi(x) 6= 0, (Bii(x) − 1)Φi(x) can be 0 iff Bii(x) = 1. But Φi(x) 6= 0 means that one
of the following situations occurs:

1. xi 6= 0 and Fi(x) 6= 0;
2. xi = 0 and Fi(x) < 0;
3. xi < 0 and Fi(x) = 0.

In every case it is obvious, by the definition of B, that Bii(x) 6= 1, so (Bii(x) −
1)Φi(x) 6= 0.

Similar reasonings can be repeated for the vector (A(x) − I)Φ(x). Then it is
easy to verify that if Φ(x) 6= 0, then (B(x) − I)Φ(x) and (A(x) − I)Φ(x) are both
different from 0 and have their nonzero elements in the same positions; such nonzero
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elements have the same sign. But then for (12) to hold it would be necessary for
∇F (x) to “revert the sign” of all the nonzero elements of (B(x) − I)Φ(x), which,
by Proposition 2.3, contradicts the fact that ∇F (x) is a P0 matrix (because F is a
P0-function).

The proof of the next theorem uses a technique which was introduced by Geiger
and Kanzow [13] in order to prove the same theorem in the case of strongly monotone
functions.

Theorem 4.2. Suppose that F is a uniform P -function. Then the level sets of
Ψ are bounded.

Proof. The proof is by contradiction. Assume that a sequence {xk} exists such
that limk→∞ ‖xk‖ = ∞ and

Ψ(xk) ≤ Ψ(x0).(13)

Define the index set J = {i : {xki } is unbounded}. Since {xk} is unbounded, J 6= ∅.
Let {zk} denote a bounded sequence defined in the following way:

zki =

{
0 if i ∈ J,
xki if i 6∈ J.

From the definition of {zk} and the assumption on F , we get

µ
∑

i∈J(xki )
2 = µ‖xk − zk‖2
≤ maxi∈{1,.,n}

(
xki − zki

) (
Fi(x

k)− Fi(z
k)
)

= maxi∈J xki
(
Fi(x

k)− Fi(z
k)
)

= xkj
(
Fj(x

k)− Fj(z
k)
)

= |xkj |
∣∣Fj(xk)− Fj(z

k)
∣∣ ,

(14)

where µ is the positive constant of the definition of P-function and j is one of the
indices for which the max is attained and which we have, without loss of general-
ity, assumed to be independent of k. Since j ∈ J , we can assume, without loss of
generality, that

{|xkj |} → ∞.(15)

Dividing by |xkj |, (14) then gives us µ|xkj | ≤
∣∣Fj(xk)− Fj(z

k)
∣∣; this in turn, since

Fj(z
k) is bounded, implies {∣∣Fj(xk)∣∣}→∞.(16)

However, (15) and (16) imply {∣∣φ(xkj ), Fj(x
k)
∣∣}→∞,

which contradicts (13).
In the linear case, the following stronger result easily can be derived from Theorem

2.1 (c) in [40] (see also [11]).
Theorem 4.3. Suppose that the F is affine, i.e., that F (x) = Mx + q. Then

lim‖x‖→∞Ψ(x) =∞ iff M is an R0-matrix.
As one of the referees pointed out, by using the results of this section one can

easily obtain a new proof of the result of Aganagic and Cottle [1], which shows that
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a linear complementarity problem with a matrix M which is both a P0- and an R0-
matrix has a nonempty solution set for all q. In fact, if M is an R0-matrix, then the
level sets of Ψ are bounded by Theorem 4.3, so the function Ψ has at least one global
minimizer x̄. On the other hand, x̄ is a stationary point and hence, if M is also a
P0-matrix, x̄ is a solution of the complementarity problem by Theorem 4.1.

5. The algorithm. The merit function Ψ can be used in several ways to define
globally convergent algorithms for the solution of nonlinear complementarity prob-
lems. For example, one could simply use an off-the-shelf algorithm to minimize Ψ. In
this section we use the merit function in a different, but classical, way. We first define
a fast, local algorithm for the solution of problem (NC). Then we globalize this local
algorithm by performing an Armijo-type linesearch using the “local” direction, but
we revert to the antigradient of Ψ when the “local” direction is not a good descent
direction for the merit function. Note that this scheme follows exactly the same lines
used in the classical stabilization scheme for Newton’s method for the unconstrained
minimization of a twice continuously differentiable function. The crucial point will be
to show that eventually the gradient direction is never used and the stepsize of one is
accepted, so, locally, the global algorithm coincides with the local one, thus ensuring
a fast asymptotic convergence rate. We remark that this is neither the only way to
exploit the function Ψ nor, possibly, the best one. However, we note that the local
algorithm enjoys several interesting properties and that the overall global algorithm,
in spite of its simplicity, performs surprisingly well. See [7].

5.1. The local algorithm. In this section we describe a local algorithm for the
solution of nonlinear complementarity problems. The algorithm generates a sequence
of points {xk} defined by

xk+1 = xk + dk.

To motivate the local algorithm we first consider a simplified situation. Suppose that
x̄ is a solution of problem (NC), that x̄ is nondegenerate, and that we know the sets
A and N of variables which are 0 or positive at x̄:

A := {i|x̄i = 0}, N := {i|x̄i > 0}.
Then, in order to determine x̄N , we would only need to solve the system of equations
Fi(xN , 0A) = 0, i ∈ N . Provided that ∇FNN (x̄N , 0A) is nonsingular, we could
apply Newton’s method to this system, thus setting xk+1

N = xkN + dkN , where dkN is
the solution of the following linear system:

(∇FNN (xkN , 0A))TdkN = −FN (xkN , 0A).(17)

Obviously, in general we do not know the sets A and N and, furthermore, we would
like to avoid the nondegeneracy assumption, which is often not met in practice. We
then define dk in two steps. At each iteration we first estimate the sets A and N ,
thus fixing some of the components of dk, then we calculate the remaining part of dk

by solving a reduced linear system. We approximate the sets A and N by the sets Ak

and Nk defined by

Ak := {i|xki ≤ εFi(x
k)}, Nk := {i|xki > εFi(x

k)},
where ε is a fixed positive constant. By exploiting continuity it is very easy to check
that the following result holds.
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Proposition 5.1. Suppose that x̄ is a solution of problem (NC). Then for every
fixed positive ε, there exists a neighborhood Ω of x̄ such that for every xk belonging
to Ω,

γ ⊆ Ak ⊆ γ ∪ β,
α ⊆ Nk ⊆ α ∪ β.

Furthermore, if x̄ is nondegenerate, then γ = Ak and α = Nk.
Based on this result it seems reasonable to define dk in the following way:

dkAk = −xkAk ,(18)

while dkNk is the solution of the linear system

(∇FNkNk(xk))TdkNk = −FNk(xk) + (∇FAkNk(xk))TxkAk .(19)

The definition of dkAk is very natural, since if we estimate that Ak is the set of variables
which are zero at x̄, by (18) we obtain

xk+1
Ak = 0.(20)

With regard to (19), we note that if x̄ is nondegenerate, Ak = γ by Proposition
5.1; since xk+1

Ak = 0 by (20), (19) reduces to (17). Roughly speaking, the extra term

(∇FAkNk(xk))TxkAk in (19) is needed to deal with degeneracy. This will be clearer
from the proof of the following theorem, where we have collected the main properties
of this local algorithm.

Theorem 5.2. Suppose that x̄ is a b-regular solution of problem (NC). Then
there exists a neighborhood Ω of x̄ such that, if xo belongs to Ω, the algorithm defined
above is such that

a. all the linear systems which have to be solved are uniquely solvable ;
b. {xk} → x̄;
c. the convergence rate of the sequence {xk} to x̄ is at least superlinear. If the

Jacobian of F is locally Lipschitzian at x̄, then the convergence rate is quadratic.
Proof. Let A be an index set such that

γ ⊆ A ⊆ γ ∪ β(21)

and denote by N its complement, i.e., N = {1, . . . , n} \A. Consider the function

HA(x) =

[
FN (x)
xA

]
.

By (21) we have that HA(x̄) = 0; furthermore, we can write

∇HA(x̄) =

( ∇FNN (x̄) O
∇FAN (x̄) IAA

)
,(22)

which clearly shows, taking into account the b-regularity assumption and (21), that
∇HA(x̄) is nonsingular. Hence we can apply Newton’s method to the solution of
system HA(x̄) = 0 and, thanks to the nonsingularity of the Jacobian at the solution
x̄, all standard results hold: in particular, there exists a neighborhood ΩA of x̄ such
that if x0 belongs to ΩA, the sequence {xk} determined by the Newton methods is well
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defined and converges to x̄. The convergence rate is at least superlinear, quadratic if
the Jacobian of F is Lipschitz continuous.

We now note that it is readily seen, using (22), that the vector dk defined by
(18)–(19) can also be equivalently obtained as the Newton’s direction for the solution
of the system HAk(x) = 0; that is,

dk = − [∇HAk(xk)T
]−1

HAk(xk).

By Proposition 5.1 we have γ ⊆ Ak ⊆ γ ∪ β, so the algorithm defined by (18)–(19)
can be seen as a sequence of Newton’s steps for a finite number of functions which all
have the same solution x̄ and whose Jacobians are all nonsingular at x̄. The theorem
then follows by taking

Ω =
⋂

A:γ⊆A⊆γ∪β
ΩA.

An interesting feature of the local algorithm is that, under the b-regularity as-
sumption, it is finitely convergent in the case of linear complementarity problems.

Theorem 5.3. Suppose that x̄ is a b-regular solution of a linear complementarity
problem. Then there exists a neighborhood Ω such that if x0 belongs to Ω, the algorithm
above finds the solution x̄ in a single step.

Proof. Take Ω to be any neighborhood of x̄ for which

γ ⊆ A0 ⊆ γ ∪ β.
By reasoning as in the proof of the previous theorem and using the same notation
introduced there, we see that d0 can be seen as the Newton’s direction for the solution
of the nonsingular linear system

HA0(x) =

[
FN0(x)
xA0

]
= 0,

which has the unique solution x̄. The assertion then easily follows by the fact that
Newton’s method solves nonsingular linear systems in one iteration.

The properties reported in the two previous theorems are the natural extensions
of the classical results for Newton’s method for systems of smooth equations. It is
worth pointing out the following points.
• No nondegeneracy assumption is needed.
• Only reduced linear systems are solved at each iteration.
• The points generated can violate the constraint x ≥ 0.
Although it’s very simple, we think the local algorithm outlined above enjoys some

interesting properties. If we compare it to the classical local linearization method of
Josephy [15] and Robinson [36], we see that we have two advantages: the regularity
assumption required (b-regularity) is weaker than the R-regularity assumption used
in [36]; furthermore, the methods described in [36] require, at each iteration, the
solution of a full dimensional linear complementarity problem, which is obviously a
computationally more intensive task than solving a linear system. Recently Pang
[27] has shown that it is possible to relax the R-regularity assumption in a Josephy–
Robinson scheme. However, using this weaker assumption, the linear complementarity
problem that has to be solved at each iteration can have multiple solutions and a
suitable one has to be selected; this is by no means an easy task. There exist other
local methods which solve, at each iteration, only a (full dimensional) linear system.



A MERIT FUNCTION FOR THE NCP 241

See, e.g., [8, 13, 16, 17, 23, 38]; however, as far as we are aware, all of these methods
require nondegeneracy of the solution to get superlinear convergence.

We conclude this section by pointing out a simple by-product of the proof tech-
nique used in Theorem 5.2, namely a new and simple proof that b-regularity implies
local uniqueness of the solution x̄. This result slightly improves on Corollary 4.7 in
[22] by relaxing the twice continuous differentiability of F used there and was first
obtained in [19].

Proposition 5.4. Suppose that a solution x̄ of an (NC) is b-regular. Then x̄ is
a locally unique solution.

Proof. The proof is by contradiction. Suppose that we can find a solution x̃ to
the complementarity problem as close as we want to x̄, and define the following index
sets:

α̃ := {i|x̃i > 0}, β̃ := {i|x̃i = 0 = Fi(x̃)}, γ̃ := {i|Fi(x̃) > 0}.
By continuity it is easy to check that, if x̃ is sufficiently close to x̄, we have

α ⊆ α̃, β̃ ⊆ β, γ ⊆ γ̃,

from which we easily get

γ ⊆ γ̃ ⊆ γ̃ ∪ β̃ ⊆ γ ∪ β.(23)

However, (23) implies that we can find a set A such that

γ ⊆ A ⊆ γ ∪ β and γ̃ ⊆ A ⊆ γ̃ ∪ β̃,
which in turn, using the notation of the proof of Theorem 5.2, implies that both x̄ and
x̃ are solutions of the system of equations HA(x) = 0. But we have already observed
in the proof of Theorem 5.2 that the b-regularity of x̄ implies the nonsingularity of the
Jacobian ∇HA(x̄) (see (22)). So x̄ is a locally unique solution of the system HA(x) =
0, and this contradicts the arbitrary closeness of x̃, thus proving the proposition.

5.2. The global algorithm. In this section we exploit the merit function to
globalize, in a simple way, the local algorithm.

Global Algorithm.
Data: x0 ∈ Rn, ε > 0, ρ > 0, p > 1, β ∈ (0, 1

2 ), σ ∈ (0, 1).
Step 0: Set k = 0
Step 1: (stopping criterion) If the stopping criterion is satisfied stop.
Step 2: Calculate the “local direction” dk according to (18)–(19).

If system (19) is not solvable set dk = −∇Ψ(xk).
Step 3: If

Ψ(xk + dk) ≤ σΨ(xk),(24)

set xk+1 = xk + dk

set k ← k + 1 and go to Step 1.
Step 4: (linesearch) If dk does not satisfy the following test

∇Ψ(xk)Tdk ≤ −ρ‖dk‖p,(25)

set dk = −∇Ψ(xk). Find the smallest ik = 0, 1, 2, . . . such that

Ψ(xk + 2−i
k

dk) ≤ Ψ(xk) + β2−i
k∇Ψ(xk)Tdk(26)
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set xk+1 = xk + 2−i
k

dk

set k ← k + 1 and go to Step 1.
A few comments are in order. At Step 1 any reasonable stopping criterion can

be used. Note that in our case we can use not only classical measures of optimality,
like the norm of the vector of the residual, but also measures connected to the merit
function like, for example, the norm of the gradient of Ψ. At Step 2 we try to calculate
the “local” search direction defined by (18)–(19). If this direction is not well defined
we switch to the antigradient of the merit function. Then we exploit the fact that if
the nonlinear complementarity problem is solvable, the optimal value of Ψ is 0. So if
for some constant σ ∈ (0, 1), test (24) is satisfied, we accept the stepsize of one. If
this test is passed an infinite number of times this will obviously lead to the function
value tending to zero as desired. Should test (24) not be satisfied, we perform in Step
4 a classical linesearch procedure to determine the step size. In this latter case we
possibly switch to the antigradient, see test (25), in order to ensure that the search
direction is “sufficiently” downhill.

The aim of the acceptability test of Step 3 is twofold. On the one hand it gives
us one more chance to accept the stepsize of one; on the other hand it makes it easier
to prove the superlinear convergence rate of the algorithm. A test close to (24) has
been proposed, with similar purposes, in [31].

To prove the convergence properties of the global algorithm we need three lemmas.
The first one is similar to a result contained in Theorem 3.1 of [31]; however, we use
a stronger assumption obtaining, correspondingly, a stronger result.

Lemma 5.5. Let H : Rn → Rn be a semismooth function and let x̄ ∈ Rn be such
that H(x̄) = 0 and such that every matrix in the generalized Jacobian of H at x̄ is
nonsingular. Suppose that we are given two sequences {xk} and {dk} such that

(i) {xk} → x̄,

(ii) lim ‖xk+dk−x̄‖
‖xk−x̄‖ = 0.

Then

lim
k→∞

‖H(xk + dk)‖
‖H(xk)‖ = 0.(27)

Proof. Since H is semismooth at x̄, we can write, by Proposition 1 of [29],

H(xk + dk) = H(x̄) +W k(xk + dk − x̄) + o(‖xk + dk − x̄‖)

for all W k ∈ ∂H(xk + dk), and

H(xk) = H(x̄) + Zk(xk − x̄) + o(‖xk − x̄‖)

for all Zk ∈ ∂H(xk). Since H(x̄) = 0, these relations imply that

lim
k→∞

‖H(xk + dk)‖
‖H(xk)‖ = lim

k→∞
‖W k(xk + dk − x̄) + o(‖xk + dk − x̄‖)‖

‖Zk(xk − x̄) + o(‖xk − x̄‖)‖

≤ lim
k→∞

‖W k(xk + dk − x̄)‖+ ‖o(‖xk + dk − x̄‖)‖
| ‖Zk(xk − x̄)‖ − ‖o(‖xk − x̄‖)‖ |

= lim
k→∞

‖W k(xk + dk − x̄)‖
(
1 + ‖o(‖xk+dk−x̄‖)‖

‖Wk(xk+dk−x̄)‖
)

∣∣∣‖Zk(xk − x̄)‖
(
1− ‖o(‖xk−x̄‖)‖

‖Zk(xk−x̄)‖
)∣∣∣



A MERIT FUNCTION FOR THE NCP 243

≤ lim
k→∞

2‖W k(xk + dk − x̄)‖
1
2‖Zk(xk − x̄)‖ = 0,

where we have taken into account (ii) and the fact that, by the nonsingularity assump-
tion on the generalized Jacobians of H at x̄ and by its boundedness, the sequences of
matrices {W k} and {Zk} are such that there exist two positive constants cm and cM
such that cm ≤ ‖W k‖ ≤ cM and cm ≤ |detZk| ≤ cM for all k, so that

‖W k(xk + dk − x̄)‖ = Θ(‖xk + dk − x̄‖), and ‖Zk(xk − x̄)‖ = Θ(‖xk − x̄‖).
The chain of inequalities obviously implies the thesis.

Lemma 5.6. Let x̄ be an R-regular solution of the nonlinear complementarity
problem, and suppose that we are given two sequences {xk} and {dk} such that

(i) {xk} → x̄,

(ii) lim ‖xk+dk−x̄‖
‖xk−x̄‖ = 0.

Then

lim
k→∞

Ψ(xk + dk)

Ψ(xk)
= 0.

Proof. From Proposition 3.2, every matrix in the generalized Jacobian of Φ at x̄
is nonsingular. From Proposition 3.3, Φ is semismooth so that Lemma 5.5 applies to
the system Φ(x) = 0. Therefore, the assertion follows by squaring (27).

Lemma 5.7. Suppose that {xk} and {dk} are subsequences of points and corre-
sponding directions generated by the global algorithm. If {xk} → x̄ and {dk} → 0,
then ∇Ψ(x̄) = 0.

Proof. If dk = −∇Ψ(xk) for an infinite number of indices k, the lemma trivially
follows by the continuity of the gradient of Ψ. So, without loss of generality, we
examine the case in which dk is always generated according to (18)–(19). Furthermore,
we can also assume, subsequencing if necessary, that Ak = A and Nk = N ; i.e., the
sets Ak and Nk are independent of the iteration. Since we are assuming {dk} → 0,
(18) implies

x̄A = 0,(28)

which, by (19) and the boundedness of ∇FNN (xk), implies that

FN (x̄) = 0.(29)

By continuity and by the definition of the sets A and N , (28) and (29) imply

x̄N ≥ 0, FA(x̄) ≥ 0.(30)

Equations (28), (29), and (30) imply that x̄ is a solution of the nonlinear comple-
mentarity problem, so that it is a (global) minimum point of Ψ and hence
∇Ψ(x̄) = 0.

We can now prove the main result of this section.
Theorem 5.8. Let {xk} be the sequence of points generated by the global algo-

rithm. Then
a. every accumulation point of {xk} is a stationary point of Ψ;
b. if one of the limit points of {xk} is a b-regular solution of problem (NC) then

the sequence converges to this point ;
c. if {xk} → x̄ where x̄ is an R-regular solution of problem (NC) and ∇F is

locally Lipschitzian in a neighborhood of x̄ then
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1. eventually dk is always the “local” direction defined in the previous section
(i.e., the antigradient is never used eventually);

2. eventually the stepsize of one is always accepted so that xk+1 = xk + dk;
3. the convergence rate is quadratic.

Proof. (a): the proof is by contradiction. Suppose (renumber if necessary) that
{xk} → x̄ and that ∇Ψ(x̄) 6= 0; then we can assume without loss of generality that
test (24) is never passed and that

0 < δ ≤ ‖dk‖ ≤ D.(31)

If in fact, for a certain subsequence of points test (24) is passed, this would imply
that {Ψ(xk)} → 0, recalling that at each step Ψ(xk+1) < Ψ(xk), so x̄ is a global
minimum point and hence ∇Ψ(x̄) = 0. If on the other hand, for some subsequence
K, {‖dk‖} → 0, we have that ∇Ψ(x̄) = 0 by Lemma 5.7. Taking into account
that ∇Ψ(xk) is bounded and p > 1, ‖dk‖ cannot be unbounded because this would
contradict (25).

Then, since at each iteration (26) holds and Ψ is bounded from below on the
bounded sequence {xk}, we have that {Ψ(xk+1)−Ψ(xk)} → 0. This implies, by the
linesearch test,

{2−ik∇Ψ(xk)Tdk} → 0.(32)

We want to show that 2−i
k

is bounded away from 0. Suppose the contrary. Then,

subsequencing if necessary, we have that {2−ik} → 0 so that at each iteration the
stepsize is reduced at least once and (26) gives

Ψ(xk + 2−(ik−1)dk)−Ψ(xk)

2−(ik−1)
> β∇Ψ(xk)Tdk.(33)

By (31) we can assume, subsequencing if necessary, that {dk} → d̄ 6= 0. So, by passing
to the limit in (33), we get

∇Ψ(x̄)T d̄ ≥ β∇Ψ(x̄)T d̄.(34)

On the other hand, we also see, by (25), that ∇Ψ(x̄)T d̄ ≤ −ρ‖d̄‖p < 0, which contra-

dicts (34); hence 2−i
k

is bounded away from 0. But then (32) and (25) imply that
{dk} → 0 so that ∇Ψ(x̄) = 0 by Lemma 5.7 and point (a) is proved.

(b): since x̄ is a b-regular solution then x̄ is an isolated global minimum point of
Ψ by Proposition 5.4. Denote by Ω the set of limit points of the sequence {xk}; we
have that x̄ belongs to Ω which is therefore a nonempty set. Let δ be the distance of
x̄ to Ω \ x̄ if x̄ is not the only limit point of {xk}, 1; otherwise, i.e.,

δ =

{
dist{x̄|Ω \ x̄} if Ω \ x̄ 6= ∅,
1 otherwise;

since x̄ is an isolated solution δ > 0. Let us now indicate by Ω1 and Ω2 the following
sets:

Ω1 = {x ∈ Rn : dist{x|Ω} ≤ δ/4}, Ω2 = {x ∈ Rn : ‖x‖ ≥ ‖x̄‖+ δ}.
We have that for k sufficiently large, let us say for k ≥ k̄, xk belongs at least to
one of the two sets Ω1 and Ω2. Now let K be the subsequence of all k for which
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‖xk − x̄‖ ≤ δ/4 (this set is obviously nonempty because x̄ is a limit point of the
sequence). Since all points of the subsequence {xk}K are contained in the compact
set S(x̄, δ/4) and every limit point of this subsequence is also a limit point of {xk}, we
have that all the subsequence {xk}K converges to x̄, the unique limit point of {xk} in
S(x̄, δ/4). Since x̄ is b-regular, taking into account that ∇Ψ(x̄) = 0 and the definition
of dk, we have that {dk}K → 0. We then can find k̃ ≥ k̄ such that ‖dk‖ ≤ δ/4 if

k ∈ K and k ≥ k̃. Let now k̂ be any fixed k ≥ k̃ belonging to K; we can write

dist{xk̂+1|Ω \ x̄}≥ infy∈Ω\x̄{‖y − x̄‖} − (‖x̄− xk̂‖+ ‖xk̂ − xk̂+1‖)
≥ δ − δ/4− δ/4

= δ/2.

(35)

This implies that xk̂+1 cannot belong to Ω1 \ S(x̄; δ/4); on the other hand, since

xk̂+1 = xk̂ + αk̂dk̂ for some αk̂ ∈ (0, 1], we have

‖xk̂+1‖ ≤ ‖xk̂‖+‖αk̂dk̂‖ ≤ ‖x̄+(xk̂−x̄)‖+‖dk̂‖ ≤ ‖x̄‖+‖xk̂−x̄‖+‖dk̂‖ ≤ ‖x̄‖+δ/4+δ/4,

so that xk̂+1 does not belong to Ω2. Hence we get that xk̂+1 belongs to S(x̄; δ/4).

But then, by definition, we have that k̂+1 ∈ K, so by induction (recall that k̂+1 > k̃

also, so that ‖dk̂+1‖ ≤ δ/4) we have that every k > k̃ belongs to K and the whole
sequence converges to x̄.

(c): since x̄ is R-regular, we have that it is also b-regular; so the local direction
(18)–(19) is well defined. The three assertions then easily follow by Theorem 5.2, test
(24), and Lemma 5.6.

In general we can only guarantee that every limit point x̄, if any, is a stationary
point of Ψ. If Ψ(x̄) = 0 then x̄ is also a solution of the nonlinear complementarity
problem. According to what was proved in section 3, we can ensure that every limit
point of the sequence generated by the algorithm is a solution of problem (NC) if F
is a P0-function. If F is a uniform P -function, we can also guarantee the existence
of a limit point. Actually, in this latter case it is elementary to show that the whole
sequence converges to the unique solution of the complementarity problem. It is also
possible to give conditions on the function F only at x̄ which guarantee that x̄ is a
solution of the nonlinear complementarity problem; this leads to an analysis similar
to the one carried out in [9, 25, 28]. The most obvious of these conditions is that
∇F (x̄) is a P0-matrix, as can be easily seen from the proof of Theorem 4.1. However,
we do not pursue this kind of analysis here and leave it for future research.

In the linear case, Theorem 5.3 and Theorem 5.8 readily give the following result.
Theorem 5.9. Let {xk} be the sequence of points generated by the global al-

gorithm when applied to a linear complementarity problem. Suppose that one of the
limit points of {xk}, say x̄, is a b-regular solution. Then the algorithm converges in
a finite number of steps to x̄.

In particular, in the case of linear complementarity problems with F (x) = Mx+q,
we see, by Theorems 4.1 and 4.2, that the algorithm converges to the unique solution
of the problem in a finite number of steps if M is a P -matrix.

6. Conclusion. We have studied the properties of a new merit function which
allows us to reduce a nonlinear complementarity problem to an unconstrained min-
imization one under conditions weaker than those previously known. Based on this
merit function we have also defined a globally and superlinearly convergent algorithm
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for the solution of the nonlinear complementarity problem. The new algorithm has a
low cost per iteration if compared to algorithms with similar characteristics, and its
properties are established under very mild assumptions; the numerical results reported
in [7] are very encouraging.

We think that these results along with those reported in [13, 40] indicate that
the function Ψ is a very valuable tool in the solution of nonlinear complementarity
problems. In particular, we feel that the semismoothness of Φ and the SC1 property
of Ψ have not been fully exploited yet, even if we think that, following recent results
reported in [6, 29, 31, 33], they could lead to extremely interesting algorithms; we are
currently investigating these topics and hope to report on this research in the near
future.

REFERENCES

[1] M. Aganagic and R.W. Cottle, A note on Q-matrices, Math. Programming, 16 (1979),
pp. 374–377.

[2] G. Auchmuty, Variational principles for variational inequalities, Numer. Funct. Anal. Optim.,
10 (1989), pp. 863–874.

[3] F. H. Clarke, Optimization and Nonsmooth Analysis, John Wiley & Sons, New York, 1983.
[4] R. W. Cottle, J.-S. Pang, and R. E. Stone, The Linear Complementarity Problem, Aca-

demic Press, New York, 1992.
[5] S. P. Dirkse and M. C. Ferris, The PATH solver: A non-monotone stabilization scheme for

mixed complementarity problems, Optim. Methods Software, 5 (1995), pp. 123–156.
[6] F. Facchinei, Minimization of SC1 functions and the Maratos effect, Oper. Res. Lett., 17

(1995), pp. 131–137.
[7] F. Facchinei and J. Soares, Testing a new class of algorithms for nonlinear complementarity

problems, in Variational Inequalities and Network Equilibrium Problems, F. Giannessi and
A. Maugeri, eds., Plenum Press, New York, 1995, pp. 69–83.

[8] M. C. Ferris and S. Lucidi, Globally convergent methods for nonlinear equations, J. Optim.
Theory Appl., 81 (1994), pp. 53–71.

[9] M. C. Ferris and D. Ralph, Projected gradient methods for nonlinear complementarity prob-
lems via normal maps, in Recent Advances in Nonsmooth Optimization, D.Z. Du, L. Qi,
and R.S. Womersley, eds., World Scientific Publishers, Singapore, 1995, pp. 57–87.

[10] A. Fischer, A special Newton-type optimization method, Optimization, 24 (1992), pp. 269–284.
[11] A. Fischer, A special Newton-type method for positive semidefinite linear complementarity

problems, J. Optim. Theory Appl., 86 (1995), pp. 585–608.
[12] M. Fukushima, Equivalent differentiable optimization problems and descent methods for asym-

metric variational inequality problems, Math. Programming Ser. A, 53 (1992), pp. 99–110.
[13] C. Geiger and C. Kanzow, On the resolution of monotone complementarity problems, Com-

put. Optim. Appl., 5 (1996), pp. 155–173.
[14] P. T. Harker and B. Xiao, Newton’s method for the nonlinear complementarity problem: A

B-differentiable equation approach, Math. Programming Ser. A, 48 (1990), pp. 339–357.
[15] N. H. Josephy, Newton’s Methods for Generalized Equations, MRC Technical report 1965,

Mathematics Research Center, University of Wisconsin, Madison, WI, 1979.
[16] C. Kanzow, Some equation-based methods for the nonlinear complementarity problem, Optim.

Methods Software, 3 (1994), pp. 327–340.
[17] C. Kanzow, Nonlinear complementarity as unconstrained optimization, J. Optim. Theory

Appl., 88 (1996), pp. 139–155.
[18] C. Kanzow, Global Convergence Properties of Some Iterative Methods for Linear Comple-

mentarity Problems, Institute of Applied Mathematics, University of Hamburg, Hamburg,
Germany, 1993, revised 1994, Preprint. To appear in SIAM J. Optim.

[19] J. Kyparisis, Uniqueness and differentiability of solutions of parametric nonlinear comple-
mentarity problems, Math. Programming Ser. A, 36 (1986), pp. 105–113.

[20] Z.-Q. Luo, O.L. Mangasarian, J. Ren, and M.V. Solodov, New error bounds for the linear
complementarity problem, Math. Oper. Res., 19 (1994), pp. 880–892.

[21] O. L. Mangasarian, Equivalence of the complementarity problem to a system of nonlinear
equations, SIAM J. Appl. Math., 31 (1976), pp. 89–92.

[22] O. L. Mangasarian, Locally unique solutions of quadratic programs, linear and nonlinear
complementarity problems, Math. Programming, 19 (1980), pp. 200–212.



A MERIT FUNCTION FOR THE NCP 247

[23] O. L. Mangasarian and M. V. Solodov, Nonlinear complementarity as unconstrained and
constrained minimization, Math. Programming Ser. B, 62 (1993), pp. 277–297.

[24] R. Mifflin, Semismooth and semiconvex functions in constrained optimization, SIAM J. Con-
trol Optim., 15 (1977), pp. 957–972.
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Abstract. We introduce an approach, called the orthogonality theorem, for establishing the
convergence of several algorithms for solving variational inequalities. This theorem, as well as several
basic convergence theorems from the literature, impose the condition of strong-f-monotonicity on
the problem function. We analyze and introduce some new results concerning this condition and
provide a general overview of its properties. For example, we show the relationship between strong-
f-monotonicity and convexity.
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1. Introduction. We consider the variational inequality problem

VI(f,K) : find x∗ ∈ K ⊆ Rn : f(x∗)t(x− x∗) ≥ 0 for all x ∈ K,(1)

defined over a closed, convex (constraint) set K in Rn. In this formulation, f : K
⊆ Rn → Rn is a given function and x∗ denotes an (optimal) solution of the problem.
Variational inequality theory provides a natural framework for unifying the treatment
of equilibrium problems encountered in problem areas as diverse as economics, game
theory, transportation science, and regional science. Variational inequality problems
also encompass a wide range of generic problem areas, including mathematical opti-
mization problems, complementarity problems, and fixed-point problems.

The literature contains many algorithms for solving variational inequality prob-
lems. The convergence results for these algorithms involve the entire sequence of
iterates (e.g., [7], [29]), some subsequence of iterates (e.g., [19], [25]), or the sequence
of averages of the iterates (e.g., [22], [30]). The review article by Harker and Pang [14],
the more recent ones by Pang [28] and by Florian and Hearn [10], the Ph.D. thesis
of Hammond [12], and the recent book by Nagurney [26] provide insightful surveys of
numerous convergence results and citations to many references in the literature.

The variational inequality problem is closely related to the following fixed-point
problem:

FP(T,K) : find x∗ ∈ K ⊆ Rn satisfying T (x∗) = x∗.(2)

In this problem statement T : K ⊆ Rn → K is a given map defined over a closed,
convex (constraint) set K in Rn. LetG be a given n×n positive definite and symmetric
matrix and I denote the identity map on Rn, i.e., I(x) = x. Let PrGK denote the
projection operator onto the set K with respect to the norm ‖x‖G = (xtGx)1/2. That
is, for any y ∈ Rn, PrGK(y) is the optimal solution to the problem minx∈K ‖x− y‖2G.
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Throughout this paper we will denote the ‖.‖I norm by ‖.‖. Nevertheless, most of
our results easily extend to a more general ‖.‖G norm. The following elementary
proposition illustrates a relationship between the variational inequality (1) and the
fixed-point problem (2).

Proposition 1.1. Let ρ be any positive constant, and T be the map T = PrGK(I−
ρG−1f). Then the solutions of the fixed-point problem FP(T,K) are the same as the
solutions of the variational inequality problem VI(f,K), if any.

Several references, [14] and [28] for example, provide more details on the relation-
ship between variational inequality and fixed-point problems.

Banach’s fixed-point theorem has been a standard convergence theorem for estab-
lishing the convergence of algorithms in many problem settings, including variational
inequalities. Two other results, Baillon’s theorem [2] (see [22]) and Opial’s lemma [27]
(see [11], [24], [35]), have also proven to be useful tools for establishing convergence
results for variational inequalities. In this paper, we briefly summarize the use of these
convergence conditions, and we introduce a new convergence result, the orthogonal-
ity theorem. This theorem states that under certain conditions, whenever the map
f , evaluated at an accumulation point of the sequence induced by an algorithm, is
orthogonal to the line segment between that accumulation point and some variational
inequality solution, then every accumulation point of that algorithm is a variational
inequality solution. Moreover, if the algorithm map is nonexpansive around a solu-
tion for some appropriately defined potential L, then the entire sequence converges
to a solution. As part of our discussion, we establish a relationship between the
orthogonality theorem and Opial’s lemma.

Some recent convergence results (see, for example, [11], [19], [22], [24], [35]) im-
pose the condition of strong-f-monotonicity on the problem function f . These results
and those in this paper suggest a natural question: what are the characteristics of
strongly f-monotone functions? To help answer this question, we examine several
properties of strong-f-monotonicity. In particular, we consider the relationship be-
tween convexity, or monotonicity in the general asymmetric case and a “weak” form
of strong-f-monotonicity. We also examine the relationship between the weak and
strong forms of strong-f-monotonicity.

The remainder of this paper is organized as follows. In section 2, we review
several convergence theorems, some algorithms that use them, and the conditions
required to ensure convergence for these algorithms. We also introduce and prove the
orthogonality theorem and compare it with Opial’s lemma. In section 3, we examine
properties of strong-f-monotonicity.

2. The orthogonality theorem. Banach’s celebrated fixed-point theorem is a
classical result that has been extensively used in the literature to establish the conver-
gence of many algorithms, including those for solving variational inequality problems.
The basic condition in this theorem is that the algorithm map is a contraction. Other
convergence theorems, which we summarize below, have also proven to be important
tools to researchers in establishing various convergence results. To state these con-
vergence results, we will impose several conditions on the underlying problem map f
and the algorithm map T . The norm ‖x‖G = (xtGx)1/2 induces an operator norm on
any operator B. Namely,

‖B‖G = sup
‖x‖G=1

‖Bx‖G.

When G = I, we let ‖B‖ denote ‖B‖I .
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Definition 1. A map T is a contraction map on K relative to the ‖.‖G norm if
for some contraction constant 0 < c < 1,

‖T (x)− T (y)‖2G ≤ c‖x− y‖2G for all x, y ∈ K.

The use of this condition usually requires that the problem function f be strongly
monotone on K relative to the ‖.‖G norm; that is, for some constant b > 0,

[f(x)− f(y)]tG[x− y] ≥ b‖x− y‖2G for all x, y ∈ K.

Other convergence results involve nonexpansive estimates.
Definition 2. A map T is a nonexpansive map on K relative to the ‖.‖G norm

if ‖T (x)− T (y)‖2G ≤ ‖x− y‖2G for all x, y ∈ K.
The use of this condition on the algorithm map T usually requires that the prob-

lem function f be strongly-f-monotone on K relative to the ‖.‖G norm in the sense
that for some constant a > 0,

[f(x)− f(y)]tG[x− y] ≥ a‖f(x)− f(y)‖2G for all x, y ∈ K.

We refer to the constant a as the monotonicity constant. Furthermore, researchers
often require the following condition of ordinary monotonicity on the problem function
f relative to the ‖.‖G norm:

[f(x)− f(y)]t[x− y] ≥ 0 for all x, y ∈ K.

Contraction, nonexpansiveness, monotonicity, and strong monotonicity are standard
conditions in the literature. Gabay [11] implicitly introduced the concept of strong-
f-monotonicity and Tseng [35], using the name co-coercivity, explicitly stated this
condition. Magnanti and Perakis [19], [20], [22] and Perakis [31] have used the term
strong-f-monotonicity for this condition, a choice of terminology that highlights the
similarity between this concept and the terminology strong monotonicity, which has
become so popular in the literature.

Researchers have established convergence properties for variational inequality al-
gorithms using the following basic theorems.

1. Banach’s fixed point theorem (Banach [16]). Let T be a map, T : K → K,
defined on a closed and convex subset K of Rn. If T is a contraction map on K relative
to the ‖.‖G norm, then for every point y ∈ K, the map T k(y) converges to a fixed
point of the map T .

2. Baillon’s theorem (Baillon [2]). Let T be a map, T : K → K, defined on a
closed, bounded, and convex subset K of Rn. If T is a nonexpansive map on K relative

to the ‖.‖G norm, then for every point y ∈ K the map Sk(y) = y+T (y)+···+Tk−1(y)
k

converges to a fixed point of the map T .
3. Averaging theorem (Dunn [8]). Let T : K → K be a map defined on a

closed, convex subset K of Rn and suppose the fixed-point problem (2) it defines has
a solution. Then if T is a nonexpansive map on K relative to the ‖.‖G norm, the
sequence

xk =
a1x1 + a2T (x1) + · · ·+ akT (xk−1)

a1 + · · ·+ ak
, x1 ∈ K,

converges to a fixed point of the map T whenever each ak > 0, a(k) = ak
a1+···+ak

, and∑∞
k=1 a(k)(1− a(k)) = +∞. This fixed point is also the limit of the projection of the

points xk on the set of fixed points of map T .
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4. Opial’s lemma (Opial [27]). Let T be a map, T : K → K, defined on
a closed and convex subset K of Rn. If T is a nonexpansive map on K relative
to the ‖.‖G norm and for every point y ∈ K, T is asymptotically regular, that is,
limk→+∞ ‖T k+1(y) − T k(y)‖G = 0, then the map T k(y) converges to a fixed point of
the map T .

The following elementary observation, together with Proposition 1.1, shows one
implication of Opial’s lemma for solving variational inequalities.

Proposition 2.1 (see Rockafellar [32]). Let ρ be a given constant, G some
positive definite and symmetric matrix, and f : K ⊆ Rn → Rn a given function.
Then the map I − ρG−1f is nonexpansive relative to the G norm if and only if f is
strongly f-monotone.

Proof. The map I − ρG−1f is nonexpansive if and only if for all x, y ∈ K,

‖(x− y)− ρG−1(f(x)− f(y))‖2G ≤ ‖x− y‖2G
or

‖x− y‖2G − 2ρ[f(x)− f(y)]t[x− y] + ρ2‖f(x)− f(y)‖2G−1 ≤ ‖x− y‖2G
or

[f(x)− f(y)]t[x− y] ≥ ρ

2
‖f(x)− f(y)‖2G−1 .

Let gmax be the largest eigenvalue of matrix G and gmin be the smallest eigenvalue of
matrix G. The last expression implies that f is strongly f-monotone with monotonicity
constant ρ

2gmax
, and, conversely, whenever f is strongly f-monotone with monotonicity

constant ρ
2gmin

, then the map I − ρG−1f is nonexpansive.
Opial’s lemma for variational inequalities. Suppose the function f : K ⊆

Rn → Rn in the variational inequality problem (1) is strongly f-monotone, with a
monotonicity constant ρ

2 . Let T = PrGK(I − ρG−1f). Suppose y ∈ K and that
‖T k+1(y) − T k(y)‖G −→k→+∞ 0. Then the map T k(y) converges to a variational
inequality solution.

Proof. Since the projection operator PrGK is nonexpansive and the composition of
nonexpansive maps is nonexpansive, by Proposition 2.1 T is nonexpansive. Therefore,
Opial’s lemma and Proposition 1.1 imply this result.

Note. The previous lemma provides a general framework for applying Opial’s
lemma to variational inequalities. Frequently, it is common to view solutions to
variational inequality algorithms as fixed points obtained in other ways than through
the map PrGK(I−ρG−1f). Therefore, there are alternate ways to apply Opial’s lemma
to variational inequality problems. We will use one such approach later in this section.

In order to obtain convergence results, researchers often use auxiliary potential
functions. L(x, x∗) = ‖x−x∗‖2G for some positive definite and symmetric matrix G is
an example. This potential (trivially) satisfies the properties L(x∗, x∗) = ‖x∗−x∗‖2G =
0 and |L(x, x∗)| ≥ ‖x − x∗‖2G. We will consider other functions that satisfy these
properties.

Definition 3. A potential function L : K ×K → R is coercive if L(x∗, x∗) = 0
and |L(x, x∗)| ≥ d‖x− x∗‖2G for some positive constant d.

Researchers have used the potential function L(x, x∗) = ‖x−x∗‖2G in convergence
proofs for projection, linearization, and other algorithms (see, for example, [3], [29]).
These proofs require that the map T be nonexpansive, relative to the ‖.‖G norm,
around every solution. Another example of a coercive potential is L(x, x∗) = M(x∗)−
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M(x) −M ′(x)t(x∗ − x) for some strongly convex function M : K ⊆ Rn → R. This
potential appears in Cohen’s auxiliary problem framework (see Remark 1(b) at the
end of this section and [4], [24] for more details concerning this framework). The
condition |L(x, x∗)| ≥ d‖x − x∗‖2G follows from the strong convexity of M . Another
coercive potential often used in convergence proofs is L(x, x∗) = F (x) − F (x∗) for
some strongly convex function F . In many cases F is the objective function of a
minimization problem corresponding to the variational inequality problem.

In [31] and in subsequent publications, we established the convergence of new
[19], [21] and some classical [20], [21] algorithms by implicitly using a common proof
technique, which we now state and prove.

The orthogonality theorem (see also [20]). Let T be a mapping, T : K → K,
defined over a closed and convex subset K of Rn. Assume that the map f : K →
K ⊆ Rn defining a variational inequality problem (1) is strongly f-monotone and
that the map T satisfies the following orthogonality condition: along a subsequence
{T kj (y)} ⊆ {T k(y)} for a given point y ∈ K,

f(T kj (y))t(T kj (y)− x∗) −→kj→∞ 0

for some variational inequality solution x∗. The condition assumes that variational
inequality problem VI(f,K) has at least one solution.

I. Then every accumulation point of the subsequence T kj (y) is a variational in-
equality solution.

II. Suppose that for every variational inequality solution x∗ and some real-valued
coercive potential function L(x, x∗), the map T is nonexpansive relative to L around
x∗ in the sense that

|L(T k+1(y), x∗)| ≤ |L(T k(y), x∗)|.
Then the entire subsequence {T kj (y)}∞k=0 converges to a variational inequality solu-
tion.

Proof. I. We show, under the assumptions of this theorem, that for all x ∈ K,
limkj→∞ f(T kj (y))t(x − T kj (y)) exists and limkj→∞ f(T kj (y))t(x − T kj (y)) ≥ 0.
Let x∗ be a variational inequality solution for which the orthogonality condition holds.
The definition of x∗ and the strong-f-monotonicity condition imply that for a constant
a > 0,

f(T kj (y))t(T kj (y)− x∗) = [f(T kj (y))− f(x∗)]t(T kj (y)− x∗) + f(x∗)t(T kj (y)− x∗)

≥ [f(T kj (y))− f(x∗)]t(T kj (y)− x∗) ≥ a‖f(x∗)− f(T kj (y))‖2 ≥ 0.

The orthogonality condition implies that the left-hand side of these inequalities ap-
proaches zero as kj →∞. Therefore,

lim
kj→+∞

‖f(x∗)− f(T kj (y))‖2 = 0 and so lim
kj→+∞

f(T kj (y)) = f(x∗).(3)

This result, together with the orthogonality condition, implies that

f(T kj (y))tT kj (y) −→kj→∞ f(x∗)tx∗.

Let x̄ be an accumulation point of the algorithm subsequence {T kj (y)}. Then for all
x ∈ K,

f(x̄)t(x− x̄) = lim
kj→∞

f(T kj (y))t(x− T kj (y)) = f(x∗)t(x− x∗) ≥ 0(4)
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since x∗ is a variational inequality solution. Therefore, x̄ is a variational inequality
solution.

II. If some potential L(x, x∗) satisfies the condition |L(x, x∗)| ≥ d‖x−x∗‖2G, d >
0, with L(x∗, x∗) = 0, and the map T is nonexpansive relative to L around every vari-
ational inequality solution x∗, then |L(T kj+1(y), x∗)| ≤ |L(T kj (y), x∗)|, and so the
sequence {|L(T kj (y), x∗)|} is nonincreasing and, therefore, convergent for every so-
lution x∗. Moreover, since |L(T kj (y), x∗)| ≥ d‖T kj (y) − x∗‖2G, the entire sequence
{T kj (y)} is bounded and therefore it has at least one accumulation point. We have
just shown that every accumulation point x̄ of the subsequence {T kj (y)} is a vari-
ational inequality solution. Therefore, |L(x̄, x̄)| = 0. If we set x∗ = x̄, then the
nonexpansiveness of |L(T kj (y), x∗)| implies that

0 ≤ d‖T kj (y)− x̄‖2G ≤ |L(T kj (y), x̄)| −→kj→∞ 0,

which implies that the entire subsequence T kj (y) converges to the solution x̄.
In contrast to Opial’s lemma, the orthogonality theorem applies to situations

when the algorithm sequence has multiple accumulation points. Later, in Figure 1,
we present an example with two accumulation points, which are both variational
inequality solutions.

One significant limitation of the orthogonality theorem, as stated, is that the
orthogonality condition requires a variational inequality solution x∗. Can we use the
theorem without having a solution in hand? Several references that we cited earlier
[3], [4], [19], [24], [29] have shown how to use coercive potential functions to establish
algorithmic convergence by implicitly considering solutions x∗.

The orthogonality theorem suggests a possible new potential function, the po-
tential P (x, z) = f(x)t(x − z). In particular, if x = T k(y) and z = x∗, then
P (T k(y), x∗) = f(T k(y))t(T k(y) − x∗). This is the potential used in the orthogo-
nality condition. This potential relates to the gap function

h(x) = f(x)tx− min
w∈K

f(x)tw = P (x, argminw∈Kf(x)tw) for all x ∈ K.

Hearn [15] introduced this gap function in the context of nonlinear programming
problems (see section 4 in [28]). A point x∗ is a solution of the variational inequality
problem if and only if x∗ is a global optimal solution of the problem minx∈K h(x)
and h(x∗) = 0. Observe that in general h(x) ≥ P (x, x∗). In [19], [21], and [31] we
have used this potential and the orthogonality theorem (implicitly or explicitly) in
convergence proofs, again by considering the solution x∗ only implicitly. In particular,
in [21] we have used this potential to establish the convergence of a descent framework
for solving variational inequalities, which includes as special cases the steepest descent
method, the Frank–Wolfe method (symmetric and asymmetric) linearization schemes
[29], and a generalized contracting ellipsoid method [13].

The following result shows another way to avoid explicit knowledge of a variational
inequality solution.

Proposition 2.2. Let VI(f,K) be a variational inequality problem with a mono-
tone problem function f . Consider any continuous mapping T : K → K satisfying
the property that every fixed point of this mapping is a variational inequality solution
(e.g., see Proposition 2.1). Then for every y ∈ K, the asymptotic regularity condi-
tion of T , i.e., limk→+∞ ‖T k+1(y)−T k(y)‖G = 0, implies the orthogonality condition
along any convergent subsequence {T kj (y)} ⊆ {T k(y)}, i.e.,

lim
kj→+∞

f(T kj (y))t(T kj (y)− x∗) = 0.
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Proof. When limk→+∞ ‖T k+1(y)−T k(y)‖G = 0 for some y ∈ K, the continuity of
the map T implies that every accumulation point x̄ of the sequence {T k(y)} satisfies
the condition ‖T (x̄) − x̄‖G = 0 and is therefore a fixed point of the map T . By as-
sumption, x̄ is also a variational inequality solution. But since x̄ solves the variational
inequality problem, the monotonicity of f implies that for any variational inequality
solution x∗, 0 ≥ f(x̄)t(x̄ − x∗) ≥ 0, and, therefore, for any convergent subsequence
{T kj (y)}, limkj→+∞ f(T kj (y))t(T kj (y)− x∗) = 0.

This proposition shows that for variational inequalities, Opial’s asymptotic regu-
larity condition, which does not require knowledge of a variational inequality solution,
implies the orthogonality condition. Therefore, in the context of variational inequal-
ities, the orthogonality theorem conditions are more general than those imposed in
Opial’s lemma.

Is the orthogonality condition more general or is this condition and asymptotic
regularity equivalent (when applied to variational inequalities)? Under what circum-
stances are these conditions equivalent? The following example shows that, in general,
the orthogonality condition is more general.

Example 1. Consider the symmetric Frank–Wolfe algorithm with problem iter-
ates xk: at each step k = 1, 2, . . . , the algorithm solves the linear program yk =
argminx∈Kf(xk−1)tx and then solves the following one-dimensional variational in-
equality problem, i.e., find xk ∈ [yk;xk−1] satisfying f(xk)t(x − xk) ≥ 0 for all x ∈
[yk;xk−1].

For more details on this algorithm see, for example, [12] and [25].
As shown by the following data, the algorithm’s iterates need not always satisfy

the asymptotic regularity condition.
Let K = {x = (x1, x2) ∈ R2 : 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1} be the feasible set and let

f(x) =


(x1 − 1

4 , 1) if 0 ≤ x1 ≤ 1
4

(0, 1) if 1
4 ≤ x1 ≤ 3

4

(x1 − 3
4 , 1) if 3

4 ≤ x1 ≤ 1


be the problem function f .

It is easy to see that f is a Lipschitz continuous and a strongly f-monotone
function (but not strictly or strongly monotone) with a symmetric Jacobian matrix.
For problems that satisfy these conditions, the orthogonality theorem (see [20]) and
several other proof techniques show that every accumulation point is a variational
inequality solution. The solutions of this problem are all the points x∗ = (x∗1, 0)
with 1

4 ≤ x∗1 ≤ 3
4 . If we initiate the algorithm at the point x0 = (0, 1

8 ), then step
k=1 solves at y1 = (1, 0) and x1 = ( 7

8 ,
1
64 ). Step k=2 solves at y2 = (0, 0) and

x2 = 13
49 ( 7

8 ,
1
64 ). Starting at the point x0 = (0, 1

8 ) (or any point (0, z) with z ≤ 1
8 ), the

algorithm induces two subsequences, {x2l−1}∞l=0 and {x2l}∞l=0 with two accumulation
points x∗ = ( 3

4 , 0) and x∗∗ = ( 1
4 , 0) that are both variational inequality solutions.

The asymptotic regularity condition and, therefore, Opial’s lemma does not hold
since limk→+∞ ‖xk − xk+1‖ = 1

2 . As is easy to check, the orthogonality condition
holds for both subsequences, so in this example the orthogonality theorem, but not
Opial’s lemma, applies. Figure 1 illustrates this example.

This example shows that in one algorithmic setting (the Frank–Wolfe algorithm)
for variational inequalities, the orthogonality condition is more general than asymp-
totic regularity. We now show that for certain classes of variational inequalities, for
a rather large class of algorithms, the two conditions are equivalent.
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Fig. 1. The orthogonality theorem.

General iterative scheme. This class of algorithms (see [7]) determines the
point xk+1 from the previous iterate xk by solving the variational inequality,

find xk+1 ∈ K satisfying g(xk+1, xk)t(z − xk+1) ≥ 0 for all z ∈ K.(5)

We assume that the underlying map g(x, y) satisfies two assumptions.

A1. g(x, y) is strongly f-monotone with respect x.

A2. g(x, x) = ρf(x) for some constant ρ > 0.

Examples. (ρ > 0 is a given constant)

(a) g(x, y) = ρf(y) +G(x− y) for a positive semidefinite, symmetric matrix G.

(b) g(x, y) = ρf(y)+[G(x)−G(y)], with G(x) = ∇K(x) for some convex function
K.

Note that xk+1 = xk solves the variational inequality (5) if and only if xk solves
the variational inequality (1). Therefore, in the context of this algorithm, fixed points
are the same as variational inequality solutions.

Proposition 2.3. Let VI(f,K) be a variational inequality problem. Consider the
general iterative scheme (5). Let T : K → K be a function that maps a point y = xk

into a point T (y) = xk+1 that solves (5). If the problem function f is monotone, K
is a bounded set and some constant C > 0 satisfies the condition ‖∇yg(x, y)‖ ≤ C
for all x, y ∈ K, then the asymptotic regularity condition on the map T implies the
orthogonality condition across the entire sequence. Conversely, if

1. the problem function f is strongly f-monotone with constant a,

2. the scheme’s function g(x, y) is strongly monotone relative to its x component,
i.e., for some constant b > 0, [g(x1, y) − g(x2, y)]

t[x1 − x2] ≥ b‖x1 − x2‖2 for all
x1, x2 ∈ K,

3. 0 < ρ < 4ab (often ρ = 1, then this condition requires 1 < 4ab),
then the orthogonality condition along some subsequence implies the asymptotic regu-
larity along that subsequence.

3’. Replacing 3 with the assumption that the orthogonality condition holds along
the entire sequence {T k(y)} (with no restrictions on ρ) also implies the asymptotic
regularity condition.
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Proof. “ ⇒ ” Set T k(y) = xk and T k+1(y) = xk+1. If T is asymptotically regular,
then limk→+∞ ‖xk − xk+1‖ = 0. The fact that g(x, x) = ρf(x), f is monotone, and
x∗ ∈ K is a variational inequality solution implies that

0 ≤ g(xk+1, xk)t(x∗ − xk+1) ≤ [g(xk+1, xk)− g(xk+1, xk+1)]t[x∗ − xk+1]

(an application of the mean value and Cauchy’s inequality imply that)

≤ lim
k→+∞

‖xk−xk+1‖·‖∇yg(x
k+1, y)‖·‖x∗−xk+1‖ ≤ C lim

k→+∞
‖xk−xk+1‖·‖x∗−xk+1‖ = 0.

Therefore, limk→+∞ g(xk+1, xk)t(x∗ − xk+1) = 0 and

lim
k→+∞

[g(xk+1, xk)− g(xk+1, xk+1)]t[x∗ − xk+1] = 0.

So ρ limk→+∞ f(xk+1)t(x∗ − xk+1) = limk→+∞[g(xk+1, xk+1)]t[x∗ − xk+1]

= lim
k→+∞

[g(xk+1, xk)]t[x∗ − xk+1]− [g(xk+1, xk)− g(xk+1, xk+1)]t[x∗ − xk+1] = 0.

Consequently, the orthogonality condition holds, i.e., limk→+∞ f(xk)t(x∗ − xk) = 0.
“ ⇐ ” Conversely, (a) assume that the orthogonality condition holds along some

subsequence, i.e., limkj→+∞ f(xkj )t(x∗− xkj ) = 0. Then the general iterative scheme
and the fact that xkj ∈ K imply that

0 ≤ g(xkj+1, xkj )t(xkj − xkj+1) = [g(xkj+1, xkj )− g(xkj , xkj )]t(xkj − xkj+1)

+ g(xkj , xkj )t(xkj − xkj+1)

(the strong monotonicity of g(x, y) relative to x, and the fact that g(x, x) = ρf(x)
implies that)

≤ −b‖xkj+1 − xkj‖2 + ρf(xkj )t(xkj − xkj+1) = −b‖xkj+1 − xkj‖2

+ ρf(xkj )t(xkj − x∗) + ρf(xkj )t(x∗ − xkj+1)

(from the definition of a VI(f,K) solution x∗)

≤ −b‖xkj+1 − xkj‖2 + ρf(xkj )t(xkj − x∗)

+ ρ[f(xkj )− f(x∗)]t(x∗ − xkj+1) = −b‖xkj+1 − xkj‖2 + ρf(xkj )t(xkj − x∗)

+ ρ[f(xkj )− f(x∗)]t(x∗ − xkj ) + ρ[f(xkj )− f(x∗)]t(xkj − xkj+1)

(strong-f-monotonicity implies that)

≤ −b‖xkj+1 − xkj‖2 + ρf(xkj )t(xkj − x∗)− aρ‖f(xkj )− f(x∗)‖2
+ ρ[f(xkj )− f(x∗)]t(xkj − xkj+1)

(by expanding ‖√a(f(xkj )− f(x∗))− 1
2
√
a
(xkj − xkj+1)‖2 and rearranging terms, we

obtain)

≤
[
−b+

ρ

4a

]
‖xkj+1 − xkj‖2 + ρf(xkj )t(xkj − x∗).
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If 0 < ρ < 4ab, then 0 < [b− ρ
4a ]‖xkj+1 − xkj‖2 ≤ ρf(xkj )t(xkj − x∗). Therefore, the

orthogonality condition along the subsequence xkj , i.e.,

lim
kj→+∞

f(xkj )t(xkj − x∗) = 0,

implies the asymptotic regularity along that subsequence, i.e.,

lim
kj→+∞

‖T kj+1(x0)− T kj (x0)‖ = 0.

(b) Assume that there are no restrictions on ρ and the orthogonality condition
holds along the entire sequence, i.e., limk→+∞ f(xk)t(x∗−xk) = 0. The argument that
led us to (3) in part (I) of the orthogonality theorem implies that limk→+∞ f(xk) =
f(x∗). Furthermore, as in part (a), we find that

0 ≤ −b‖xk+1 − xk‖2 + ρf(xk)t(xk − x∗) + ρ[f(xk)− f(xk+1)]t(x∗ − xk+1)

+ ρf(xk+1)t(x∗ − xk+1).

Therefore,

b‖xk+1−xk‖2 ≤ ρf(xk)t(xk−x∗)−ρf(xk+1)t(xk+1−x∗)+ρ[f(xk)−f(xk+1)]t(x∗−xk+1).

Cauchy’s inequality and the fact that K is a bounded set implies that

lim
k→+∞

b‖xk+1 − xk‖2 ≤ ρf(xk)t(xk − x∗)− ρf(xk+1)t(xk+1 − x∗)

+ ρ‖f(xk)− f(xk+1)‖.‖x∗ − xk+1‖ = 0.

Therefore, asymptotic regularity holds: limk→+∞ ‖xk+1 − xk‖ = 0. Notice that part
(b) holds regardless of the choice of ρ.

Remarks.
1. If we impose some conditions on the underlying data, several classical methods

for solving the variational inequality problem which are special cases of the general
iterative scheme satisfy the strong monotonicity condition on the scheme’s function
g.

(a) Linear approximation methods (see [29]), with g(x, y) = f(y) + A(y)t(x− y).
In this case, the matrix A(y) should be uniformly positive definite for all y and the
problem function f strongly f-monotone. The following examples are special cases of
this class of algorithms.

The linearized Jacobi method, with A(y) = diag(∇f(y)), which should have posi-
tive elements that are bounded away from zero as y varies.

The projection method, with A(y) = G, a positive definite matrix.
Newton’s method, with A(y) = ∇f(y), a uniformly positive definite matrix.
The quasi-Newton method, with A(y) = approx(∇f(y)), which we require to be

a uniformly positive definite matrix. The notation approxM represents an approxi-
mation of the matrix M .

The linearized Gauss–Seidel method, with A(y) = L(y) +D(y) or A(y) = U(y) +
D(y). (L(y) and U(y) are the lower and upper diagonal parts of the matrix ∇f(y).)
A(y) should be a uniformly positive definite matrix.

(b) Cohen’s auxiliary problem framework (see [4], [24]), with g(x, y) = ρf(y) +
G(x) − G(y). In this case, the problem function f should be strongly f-monotone
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Table 1

Convergence approaches.

What Theorems Which Algorithms What Conditions

Banach Projection [29], [7], [5], [3] strong monot., 0 < ρ < 2a/L2g
Banach Relaxation [1], [6] supx,y∈K ‖gy(x, y)‖ ≤ λα, 0 < λ < 1

Banach Original Steepest Descent [13] Df(x) p.d., Df(x)2 p.d.

Banach Cohen’s Aux. Probl. Fram. [4] strong monot., 0 < ρ < 2ab/L2

Banach Forw. and backw. step alg. [11] strong monot., 0 < ρ < 2a/g

Baillon Averages of Steepest Descent [13] Df(x) p.d., Df(x)2 p.s.d.
Baillon Averages of Short Step Steepest Descent [21] strong-f-monot., 0 < ρ ≤ 2a
Baillon Averages of Constr. Short Step Steepest Descent [21] strong-f-monot., 0 < ρ ≤ 2a
Baillon Averages of Projection [22] strong-f-monot., 0 < ρ ≤ 2a/g
Baillon Averages of Relaxation [22] supx,y∈K ‖gy(x, y)‖ ≤ α

Opial Forw.-backw. oper. splitting alg. [11] strong-f-monot., 0 < ρ < 2a/g
Opial Projection [11] strong-f-monot., 0 < ρ < 2a/g
Opial Cohen’s Aux. Probl. Framew. [24] strong-f-monot., 0 < ρ < 2ab
Opial Short Step Steepest Descent [21] strong-f-monot., 0 < ρ < 2a
Opial Constr. Short Step Steepest Descent [21] strong-f-monot., 0 < ρ < 2a/g
Opial Asymmetric Projection [35] G asym., p.d.,

G′−1/2[f(G′−1/2y) − (G − G′)G′−1/2y]
strong-f-mon., cnst. ≥ 1/2

Opial Modified Aux. Probl. Framew. [24] f −M strong mon., K′ strong mon., some ρ

Orthogonality Short Step Steepest Descent [21] strong-f-monot., 0 < ρ < 2a
Orthogonality Constr. Short Step Steepest Descent [21] strong-f-monot., 0 < ρ < 2a/g
Orthogonality Projection [22] strong-f-monot., 0 < ρ < 2a/g
Orthogonality Accum. pts. of Sym. Frank-Wolfe [22] strong-f-monot., symmetry, K 6=, comp., conv.
Orthogonality Accum. pts. of Affine Asym. Frank-Wolfe [21] affine, strong monot., near-square-symmetry
Orthogonality Accum. pts. of Affine descent Fram. [21] affine, strong monot., near-square-symmetry
Orthogonality Accum. pts. of Geometric Framework [19] strong-f-monot., K 6=, convex, compact
Orthogonality Cohen’s Aux. Probl. Framew. [4] strong-f-monot., 0 < ρ < 2ab
Orthogonality Asymmetric Projection [35] G asym., p.d.,

G′−1/2[f(G′−1/2y) − (G − G′)G′−1/2y]
strong-f-mon, cnst. ≥ 1/2

Orthogonality Modified Aux. Probl. Framew. [24] f −M strong mon., K′ strong mon., some ρ

and the function G should be strongly monotone. (In fact, Cohen assumes that
G(y) = M ′(y), that is a gradient matrix for a strongly convex function M .)

2. Table 1 illustrates the use of various convergence conditions for solving vari-
ational inequalities. As indicated in this table, the use of the orthogonality theorem
establishes the convergence of several algorithms whose convergence has not been
established using Opial’s lemma. These algorithms include the general geometric
framework [19], the Frank–Wolfe algorithm [20], and a descent framework [21].

Notes. In Table 1, G′ denotes the symmetric part of the matrix G involved
in the projection method, i.e., G′ = 1

2 (G + Gt). The constants involved are g =
min(eigenvalue of G), a is the strong-f-monotonicity constant, L is the Lipschitz
continuity constant, α = infx,y∈K (min(eigenvalue gx(x, y))) > 0, and b is the con-
stant involved in the strong convexity of the function K. Finally, the map M is the
monotone part of the function Gε that is involved in the modified auxiliary problem
framework (see [24] for more details).

Proposition 2.4. Let VI(f,K) be a variational inequality problem. Consider the
general iterative scheme (5) for maps g(x, y) that satisfy the assumptions A1 and A2.
Let T : K → K be a function that maps a point y = xk into a point T (y) = xk+1

that solves (5). Suppose K is a convex, compact set and f satisfies the following
incremental orthogonality condition:

lim
k→+∞

f(xk)t(xk − xk+1) = 0.

Then every accumulation point of the sequence {xk} is a solution.
Proof. (The proof is essentially the same as the proof of Proposition 2.3, with

g(xk+1, xk) playing the role of f(xk).) Suppose limxkj = x̄. Since g(xk, xk) = ρf(xk),
the definition of xk+1 and the strong-f-monotonicity of g(x, y) with respect to x implies
that

ρ lim
k→+∞

f(xk)t[xk+1 − xk]
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= lim
k→+∞

[ρf(xk)− g(xk+1, xk)]t[xk − xk+1] + lim
k→+∞

g(xk+1, xk)t(xk − xk+1)

≥ lim
k→+∞

[g(xk, xk)− g(xk+1, xk)]t[xk − xk+1] ≥ B lim
k→+∞

‖g(xk, xk)− g(xk+1, xk)‖2.

Therefore, limk→+∞ ‖g(xk, xk) − g(xk+1, xk)‖2 = 0. This result together with the
conditions limk→+∞ f(xk)t(xk − xk+1) = 0 and g(xk, xk) = ρf(xk) implies that

lim
k→+∞

ρf(xk)txk = lim
k→+∞

g(xk+1, xk)txk+1.

But then for all x ∈ K, the definition of xk+1 implies that

ρf(x̄)t(x− x̄) = lim ρf(xk)t(x− xk) = lim
k→+∞

g(xk+1, xk)t(x− xk+1) ≥ 0.

That is, x̄ is a variational inequality solution.
Proposition 2.5. (a) The asymptotic regularity condition on the map T implies

the incremental orthogonality condition. (b) If (i) the problem function f is strongly
f-monotone with a monotonicity constant a, and if (ii) the orthogonality condition
holds, then the incremental orthogonality condition holds.

Proof. (a) It is easy to see this result. (b) If x∗ is a variational inequality solution,
then the strong-f-monotonicity condition implies that

f(xk)t(xk − x∗) ≥ (f(xk)− f(x∗))t(xk − x∗) ≥ a‖f(xk)− f(x∗)‖2.
Therefore, the orthogonality condition

lim
k→+∞

f(xk)t(xk − x∗) = 0

implies that limk→+∞ ‖f(xk) − f(x∗)‖2 = 0, which in turn implies that limk→+∞
‖f(xk)− f(xk+1)‖2 = 0. Moreover, since

lim
k→+∞

f(xk)t(xk − xk+1)

= lim
k→+∞

f(xk)t(xk − x∗)− f(xk+1)t(xk+1 − x∗) + [f(xk+1)− f(xk)]t[xk+1 − x∗]

≤ lim
k→+∞

f(xk)t(xk−x∗)− lim
k→+∞

f(xk+1)t(xk+1−x∗)+ lim
k→+∞

‖f(xk+1)−f(xk)‖.‖xk+1−x∗‖

= 0.

Remarks.
1. The condition

lim
k→+∞

f(xk)t(xk − xk+1) = 0

also applies to schemes that include line searches. Let xk+1 = xk + a(k)(yk+1 − xk),
with a(k) found through a line search procedure, satisfying some assumptions (see
[23] for more details), and yk+1 found through the solution of a scheme (5). Then, if

lim
k→+∞

f(xk)t(xk − yk+1) = 0,
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Fig. 2.

a proof similar to the previous proposition again shows that every accumulation point
of the sequence xk is a VIP solution.

2. As we have noted, the incremental orthogonality condition is more general
than the asymptotic regularity condition and the orthogonality condition. Moreover,
as shown in Proposition 2.2, the orthogonality condition for a general scheme with an
algorithm function g(x, y) that is strongly monotone with respect to x is equivalent
to the asymptotic regularity condition. Therefore, by Opial’s lemma for any algo-
rithm satisfying these conditions, the entire sequence of iterates must converge to a
variational inequality solution. In contrast, the incremental orthogonality condition
permits the algorithm to have multiple accumulation points.

3. For fixed-point problems FP(T,K), f(xk) = xk − T (xk) and so yk+1 = T (xk)
and g(yk+1, xk) = yk+1 − T (xk). Therefore,

lim
k→+∞

f(xk)t(xk − yk+1) = lim
k→+∞

‖xk − T (xk)‖2 = 0

implies that every accumulation point of xk is a solution.

3. On the strong-f-monotonicity condition. As shown in the previous sec-
tion, and particularly as summarized in Table 1, the strong-f-monotonicity condition
plays an important role as an underlying condition for establishing the convergence
of several variational inequality algorithms. Moreover, as we have seen, it is a key
assumption in the orthogonality theorem. In this section we study this condition. In
particular, we examine the relationship between convexity and strong-f-monotonicity.
Is strong-f-monotonicity the “natural” generalization of convexity for asymmetric vari-
ational inequality problem functions? Figure 2 summarizes the results of this section.
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Table 2

Several types of monotonicity.

Type of monotonicity imposed upon f Definition∗ Differential condition∗
monotone on K [f(x) − f(y)](x − y) ≥ 0 ∇f(x) p.s.d.+

strongly f-monotone on K ∃a > 0, ∃a > 0

[f(x) − f(y)](x − y) ≥ a ‖ f(x) − f(y) ‖2
2
, [∇f(x)t − a∇f(x)t∇f(x2)] p.s.d.+

strictly strongly f-monotone on K∗∗∗ ∃a > 0, ∃a > 0,

[f(x) − f(y)](x − y) > a ‖ f(x) − f(y) ‖2
2

[∇f(x)t − a∇f(x)t∇f(y)] p.d.++

strictly monotone on K∗∗ [f(x) − f(y)](x − y) > 0 ∇f(x) p.d.++

strongly monotone on K∗∗ ∃a > 0, ∇f(x) uniformly p.d.++

[f(x) − f(y)](x − y) ≥ a ‖ x − y ‖2
2∗ Definition holds for all x, y ∈ K + p.s.d. means positive semidefinite

or all x ∈ K ++ p.d. means positive definite∗∗ Condition holds for x 6= y∗∗∗ Condition holds for f(x) 6= f(y)

3.1. Convexity and the weak differential form of strong-f-monotonicity.
First, consider the symmetric case in which f = ∇F for some twice differentiable
function F , and so ∇f(x) is symmetric for all x ∈ K. In this case, since strong-
f-monotonicity implies monotonicity, ∇f(x) is positive semidefinite for all x ∈ K
(see Table 2), and so strong-f-monotonicity implies that F is a convex function. Is
the converse true? That is, does convexity imply strong-f-monotonicity and, if not,
how far from convexity can we stray and yet ensure that the function f is strongly
f-monotone?

The following results give a partial answer to these questions. We begin by giving
two examples, one showing that convexity of F does not imply that f is strongly
f-monotone and a second showing that even when F is convex over a compact set, it
still might not be strongly f-monotone. In the second example, we use the fact (see
[19]) that a differentiable function f(x) from Rn to Rn is strongly f-monotone if and
only if it satisfies a differential condition: for some a > 0,

wt∇f(x)tw ≥ awt∇f(x)t∇f(y)w for all x, y, w ∈ Rn.(6)

Example 2. Consider the variational inequality with the feasible noncompact set
K = {x = (x1, x2) ∈ R2 : x1 ≥ 0, x2 ≥ 0} and the problem function f(x) = (x2

1, 1).

f(x) = ∇F (x) with F (x) =
x3
1

3 + x2, which is a convex function over K. In this
case, f is not strongly f-monotone on K since for y = (y1, y2) and x = (x1, x2), with
x1 = y1 + 2, no constant a > 0 satisfies the condition

[f(x)− f(y)]t[x− y] = 2[2y1 + 4] ≥ a‖f(x)− f(y)‖2 = a[2y1 + 4]2 for all y ∈ K.

Example 3. Consider the variational inequality with the feasible set K = {x =
(x1, x2) ∈ R2 : x1 ≤ 1, x2 ≤ 1, x1 + x2 ≥ 1, x1 ≤ x2} and problem function

f(x) =

(
x2

1

2
− (1− x2)

2

2
,−(1− x1)(1− x2)

)
.

∇f(x) = [ x1

1−x2

1−x2

1−x1
] is a symmetric, positive semidefinite matrix over K.

F (x) =
x3

1

6
+

(1− x1)(1− x2)
2

2

is convex in K, since its Hessian matrix is ∇2F (x) = ∇f(x). For the points x = (1, 1)
and y = ( 1

2 ,
1
2 ), ∇f(x) = [ 10

0
0 ] and ∇f(y) = 1

2 [ 11
1
1 ]. Then for all w = (w1, w2) ∈ R2,

wt∇f(x)tw = w2
1 and wt∇f(x)t∇f(y)w =

1

2
(w2

1 + w1w2),
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which implies that no constant a > 0 satisfies the condition

wt∇f(x)tw ≥ awt∇f(x)t∇f(y)w for all w = (w1, w2) ∈ R2,

since for limw1 = 0 and w2 = 1,

lim
wt∇f(x)t∇f(y)w

wt∇f(x)tw
= lim

1

2
+ lim

w2

2w1
= +∞.

In the following development, we use a weak differential form of the strong-f-
monotonicity condition (obtained by setting x = y in the differential form).

Definition 4. A function satisfies the weak differential form of strong-f-mono-
tonicity if for all w ∈ Rn and x ∈ K, some constant a > 0 satisfies the condition

wt∇f(x)w ≥ awt∇f(x)t∇f(x)w.(7)

For notational convenience we will say that f satisfies the strong form if it satisfies
(6) and satisfies the weak form if it satisfies (7). Note then that wt∇f(x)w = 0 for
any x and w implies that wt∇f(x)t∇f(x)w = 0 and ∇f(x)w = 0. Luo and Tseng
[18] have studied a class of matrices B = ∇f(x) that satisfy this property.

Definition 5 (see Luo and Tseng [18]). A matrix B is positive semidefinite plus
(p.s.d. plus) if it is positive semidefinite and

if xtBx = 0 implies that Bx = 0.

Luo and Tseng [18] have shown that the class of p.s.d. plus matrices B is equiv-
alent to the class of matrices that can be decomposed into the product B = P tP1P
for some P1 positive definite matrix and some (possibly nonsquare) matrix P . Note
that every symmetric, positive semidefinite matrix B is p.s.d. plus, since in this case
B = HtH for some matrix H and so xtBx = 0 implies xtHtHx = 0, which implies
that Hx = 0 and therefore Bx = 0.

After stating two elementary matrix results, we then establish a relationship be-
tween the convexity of F and the weak form for f .

Lemma 3.1. Suppose that M is a symmetric, positive semidefinite n× n matrix
and that d > 0 is the largest eigenvalue of M . Then if a ≥ 1

d ,

wtMw ≥ awtM tMw for all w ∈ Rn.

Proof. Any symmetric, positive semidefinite, nonzero matrix has an orthogonal
representation (see [33]) M = QtDQ for some orthogonal matrix Q and D, a diagonal
positive semidefinite matrix whose elements are the eigenvalues of M . Then

wtMw = wtQtDQw

while wtM tMw = wtQDtDQw.

Requiring wtMw ≥ awtM tMw for some constant a > 0 is equivalent to requiring∑
i

di(Qw)2i ≥ a
∑
i

d2
i (Qw)2i .

Since maxi di ≤ d and the matrix M is positive semidefinite, setting a = 1
d gives

di ≥ ad2
i for all i, which implies the inequality.
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We also make an observation about a general asymmetric matrix M .

Lemma 3.2. If the matrix M2 is positive semidefinite, then ‖M+Mt

2 w‖2 ≥ ‖Mw‖2
4 .

Proof. When M2 is positive semidefinite,∥∥∥∥M +M t

2
w

∥∥∥∥2

= wt

(
M +M t

2

)t(
M +M t

2

)
w

= wtM
2 + (M2)t +M tM +MM t

4
w ≥ ‖Mw‖2

4
.

Proposition 3.1 (see [20]). Suppose that F : K ⊆ Rn → R is a twice continu-
ously differentiable function and that the maximum eigenvalue of the Hessian matrix
∇2F (x) = ∇f(x) is uniformly bounded on K; i.e., if di(x) is the ith eigenvalue of
∇2F (x), then supx∈K [max{i=1,...,n}di(x)] ≤ d for some positive constant d. Then if
∇2F (x) is positive semidefinite for all x ∈ K, F is convex if and only if for all x ∈ K
and for all w ∈ Rn, wt∇f(x)w ≥ awt∇f(x)t∇f(x)w for some constant a > 0.

Proof. “⇒” The proof follows from Lemma 3.1 since the Hessian matrix∇2F (x) =
∇f(x) is positive semidefinite for all x ∈ K.

“⇐” The converse is easy to see. When the strong form (6) holds for all x = y,
then the Jacobian matrix is positive semidefinite and, therefore, the function F is
convex.

Corollary 3.1. Let F : K ⊆ Rn → R be a continuous function and ∇F
a Lipschitz continuous function in the sense that ||∇2F (x)|| ≤ L for some positive
constant L. Then F is a convex function if and only if ∇F is a weakly strong-f-
monotonicity function.

Remark. Proposition 3.1 and results in [19] imply that on a compact set (or a
problem function F with bounded eigenvalues of its Hessian matrix over K) F is
convex if and only if ‖I − a∇2F (x)‖ ≤ 1 for all x ∈ K. In applying the convergence
of the general iterative scheme (5), researchers have imposed a norm condition (see
[7], [29]).

Norm condition (inequality form):

‖g−1/2
x (x, x)gy(x, x)g−1/2

x (x, x)‖ ≤ 1 for all x ∈ K.(8)

Convergence results impose this condition as a strict inequality. Our previous obser-
vation implies the following result.

Corollary 3.2. Let f(x) = ∇F (x) and ∇f(x) be a symmetric matrix. If
gx(x, x) is a positive definite and symmetric matrix for all x ∈ K and the function
g(x, y) satisfies the conditions A1 and A2, then on a compact set (or a problem func-
tion F with bounded eigenvalues of its Hessian matrix over K), F is convex if and
only if g(x, y) satisfies the norm condition (8).

Proof. The proof follows from Proposition 3.1 and Theorem 6 in [22].
Corollary 3.2 shows that the less than or equal form of the norm condition (on a

compact set, or a problem function F where the Hessian matrix has bounded eigen-
values over K) together with the symmetry of ∇f(x) = ∇2F (x), is equivalent to
convexity. Therefore, we can view the norm condition as a form of “generalization” of
convexity and, therefore, as a “natural” condition to assume for asymmetric problems.

Although Proposition 3.1 shows a connection between convexity and strong-f-
monotonicity, it does not show that convexity implies strong-f-monotonicity since it
requires x = y in the differential condition. As our previous examples show, we
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need to impose additional structure on f or on K to ensure that the convexity of
F implies regular strong-f-monotonicity. In the following discussion, we address this
issue, considering two questions:

“What is the analog of Proposition 3.1 for the general asymmetric case?”
“How asymmetric can the Jacobian matrix be?”
Proposition 3.2. Suppose that f is a Lipschitz continuous function in the sense

‖∇f(x)‖ ≤ L for some positive constant L. If the Jacobian matrix ∇f(x) and the
squared Jacobian matrix (∇f(x))2 of the problem function f are positive semidefinite,
then f satisfies the weak form (7).

Moreover, the weak form (7) for f implies the positive semidefiniteness of the
Jacobian matrix of the problem function f , i.e., ordinary monotonicity.

Proof. Since∇f(x) is positive semidefinite, so is the symmetric matrix ∇f(x)t+∇f(x)
2 ,

which equals ∇2F (x) for some convex function F . Therefore, Corollary 3.1 as applied

to the symmetric matrix ∇f(x)t+∇f(x)
2 implies that for some constant a > 0 and for

all x and w,

wt∇f(x)w = wt∇f(x) +∇f(x)t

2
w ≥ a

∥∥∥∥∇f(x) +∇f(x)t

2
w

∥∥∥∥2

.

Lemma 3.2 then implies that

a

∥∥∥∥∇f(x) +∇f(x)t

2
w

∥∥∥∥2

≥ a

∥∥∥∥∇f(x)

2
w

∥∥∥∥2

≥ a

4
wt∇f(x)t∇f(x)w,

which is the weak form (7). Furthermore, the weak form (7) implies the positive
semidefiniteness of the Jacobian matrix.

Hammond and Magnanti [13] originally introduced the condition of positive def-
initeness of the squared Jacobian matrix while establishing the convergence of the
steepest descent method for variational inequalities. This condition implies that the
Jacobian matrix cannot be “very” asymmetric. In fact, the squared Jacobian ma-
trix is positive definite when the angle between ∇f(x)w and ∇f(x)tw is less than 90
degrees for all w ∈ Rn.

Proposition 3.3. The converse of the statements in Proposition 3.2 are not
valid.

Proof. To establish this result, we will provide counterexamples.
Example 4. The weak form (7) does not imply that the square of the Jacobian

matrix is positive semidefinite. Consider the function f(x) = Mx with the Jacobian

matrix M = [ c
−b

b
c ] and let 0 < c < b. Then M2 = [ c

2−b2
−2cb

2cb
c2−b2 ] is a negative definite

matrix, which means that M2 is not positive semidefinite. Nevertheless the function
f(x) = Mx is strongly f-monotone (and therefore satisfies the weak form (7)) with a
strong-f-monotonicity constant a = c

b2+c2 > 0 since

wtMw = c‖w‖2 =
c

b2 + c2
(b2 + c2)‖w‖2 = a‖Mw‖2.

Example 5. The differential form of monotonicity does not imply the weak form
(7). Consider the function f(x) = Mx with the Jacobian matrix M = [ 0b

−b
0 ] and

b 6= 0. M is a positive semidefinite matrix. M t − aM tM = [−ab
2

−b
b

−ab2 ] and since

b 6= 0, there is no value of the constant a > 0 for which M t − aM tM is a positive
semidefinite matrix, since when b 6= 0 for all values of a > 0, M t − aM tM is negative
definite. Therefore, f(x) = Mx is not a strongly f-monotone function (which in this
case coincides with the weak form (7)).
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3.2. The weak and strong forms of strong-f-monotonicity. To this point,
we have shown the relationship between convexity (monotonicity of f) and the weak
form (7) in the symmetric case. In the asymmetric case, we have shown that the
positive semidefiniteness of the squared Jacobian matrix together with the positive
semidefiniteness of the Jacobian matrix imply the weak form (7) and the monotonicity
condition. In the following discussion, we carry this analysis further to characterize
the strong-f-monotonicity condition for general nonlinear problem maps. We show
with a suitable boundedness assumption that

(i) the weak form is equivalent to ∇f being p.s.d. plus,
(ii) if ∇f satisfies a uniform version of p.s.d. plus, then it satisfies the strong form.
In stating the following result, we assume that ∇f(x) is a p.s.d. plus matrix and

therefore we can rewrite it as

∇f(x) = P (x)t

 0 0 0
0 P0(x) 0
0 0 0

P (x).

First, we make the following observation.
Lemma 3.3. Every p.s.d. plus matrix M(x) can be rewritten as

M(x) = P (x)t

 0 0 0
0 P0(x) 0
0 0 0

P (x)

for some n1(x)× n1(x) positive definite matrix P0(x) and some square matrix P (x).
Conversely, any matrix M(x) that is of this form is also p.s.d. plus.

Proof. “⇐” Luo and Tseng [18] have shown that it suffices to show that
whenever wtM(x)w = 0, then M(x)w = 0. Suppose M(x) can be written as

M(x) = P (x)t

 0 0 0
0 P0(x) 0
0 0 0

P (x).

Then

wtM(x)w = wtP (x)t

 0 0 0
0 P0(x) 0
0 0 0

P (x)w = [vt, yt, zt]

 0 0 0
0 P0(x) 0
0 0 0

 v
y
z



= ytP0(x)y = 0, with P (x)w =

 v
y
z

 ,
and y is a vector that has the same dimension as P0(x). But since P0(x) is a positive
definite matrix, y = 0 and, therefore,

P (x)t

 0
P0(x)y

0

 = P (x)t

 0 0 0
0 P0(x) 0
0 0 0

P (x)w = M(x)w = 0.

Therefore, M(x) is also a p.s.d. plus matrix.
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“⇒” Conversely, if an n×nmatrixM(x) is p.s.d. plus, then for some n1(x)×n1(x)
positive definite matrix P0(x), we can rewrite M(x) = P ′′(x)tP0(x)P ′′(x), with P ′′(x)
an n1 × n matrix. Then setting P (x)t = [P ′(x)t, P ′′(x)t, P ′′′(x)t] for any matrices
P ′(x) and P ′′′(x), with appropriate dimensions, we can conclude that M(x) can be
rewritten as

P (x)t

 0 0 0
0 P0(x) 0
0 0 0

P (x).

We should observe that in this representation, the matrix P0(x) is not necessarily
unique. We let Q(x) be a submatrix of P (x)tP (x) defined as follows: let I be an
identity matrix with the same dimension as P0(x); then 0 0 0

0 Q(x) 0
0 0 0

 = P (x)

 0 0 0
0 I 0
0 0 0

P (x)t,

so Q(x) = D(x)D(x)t + E(x)E(x)t + F (x)F (x)t when

P (x) =

 A(x) B(x) C(x)
D(x) E(x) F (x)
G(x) H(x) J(x)

 .
Proposition 3.4. Suppose that the matrix ∇f(x) is p.s.d. plus for all x ∈ K,

then the weak form (7) holds whenever the maximum eigenvalue of the matrix

B(x) =

[
P0(x) + P0(x)t

2

]− 1
2

P0(x)tQ(x)P0(x)

[
P0(x) + P0(x)t

2

]− 1
2

is bounded over the feasible set K by a constant d.
Conversely, if the weak form (7) holds, then the matrix ∇f(x) is a p.s.d. plus.
Proof. Suppose ∇f(x) is a p.s.d. plus matrix. Then

wt∇f(x)w = wtP (x)t

 0 0 0
0 P0(x) 0
0 0 0

P (x)w = wtP (x)t

 0 0 0

0 P0(x)+P0(x)t

2 0
0 0 0

P (x)w

= [vt, yt, zt]

 0 0 0

0 P0(x)+P0(x)t

2 0
0 0 0

 v
y
z

 , with P (x)w =

 v
y
z


and y a vector with the same dimension as P0(x). Then since P0(x) is positive definite,

wt∇f(x)w = yt
[
P0(x) + P0(x)t

2

]
y = yt

[
P0(x) + P0(x)t

2

] 1
2

.

[
P0(x) + P0(x)t

2

] 1
2

y.

Furthermore,

wt∇f(x)t∇f(x)w = wtP (x)t

 0 0 0
0 P0(x)t 0
0 0 0

P (x)P (x)t

 0 0 0
0 P0(x) 0
0 0 0

P (x)w
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= [0, ytP0(x)t, 0]P (x)P (x)t

 0
P0(x)y

0

 = ytP0(x)tQ(x)P0(x)y

= yt
[
P0(x) + P0(x)t

2

] 1
2
[
P0(x) + P0(x)t

2

]− 1
2

P0(x)tQ(x)P0(x)

·
[
P0(x) + P0(x)t

2

]− 1
2
[
P0(x) + P0(x)t

2

] 1
2

y.

Therefore, if b = [P0(x)+P0(x)t

2 ]
1
2 y, then wt∇f(x)w = btb and wt∇f(x)t∇f(x)w =

bt[P0(x)+P0(x)t

2 ]−
1
2P0(x)tQ(x)P0(x)[P0(x)+P0(x)t

2 ]−
1
2 b. Since the maximum eigenvalue

of B(x) is bounded over the feasible set K by a constant d, btB(x)b
btb ≤ d and so for

a = 1
d we have wt∇f(x)w ≥ awt∇f(x)t∇f(x)w for all w ∈ Rn and x ∈ K.

Conversely, if for some constant a > 0, wt∇f(x)w ≥ awt∇f(x)t∇f(x)w for all
x ∈ K and w ∈ Rn then, as we have observed previously, ∇f(x) is a p.s.d. matrix
and therefore p.s.d. plus.

Remark. In the symmetric case, the matrix B(x) = [P0(x)+P0(x)t

2 ]−
1
2 P0(x)tQ(x)·

P0(x)[P0(x)+P0(x)t

2 ]−
1
2 becomesB(x) = ([P0(x)]

1
2 )tQ(x)[P0(x)]

1
2 . Furthermore, B(x) =

D(x) since P0(x) = D(x) is a diagonal matrix whose diagonal elements are the pos-
itive eigenvalues di(x) of ∇f(x) and Q(x) = I. Therefore, requiring the maximum
eigenvalue of B(x) to be bounded over the feasible set K coincides with the assump-
tion of Proposition 3.1, i.e., supx∈K [maxi di(x)] ≤ d. So Proposition 3.4 is a natural
generalization of Proposition 3.1.

Corollary 3.3 (see [24]). Suppose a variational inequality problem is affine with
f(x) = Mx− c. Then the matrix M is p.s.d. plus if and only if its problem function
f is strongly f-monotone.

The proof of this result follows directly from Proposition 3.4 since in the affine
case the weak form (7) coincides with the strong form (6).

Proposition 3.1 showed the relationship between convexity and the weak form
(7). For the asymmetric case, the analog of convexity is monotonicity. Therefore,
we might wish to address the following question. What is the relationship between
monotonicity and strong-f-monotonicity for the general asymmetric case? Example
4 in the proof of Proposition 3.3 shows that monotonicity does not imply strong-f-
monotonicity. What additional conditions do we need to impose on the feasible set
K and the problem function f other than compactness to ensure that monotonicity
implies strong-f-monotonicity? Example 3 suggests that even in the symmetric case,
compactness and convexity are not enough. We need to impose additional assump-
tions. For this development, we use the following definition which applies to general
asymmetric matrices.

Definition 6. A matrix M(x) is uniformly p.s.d. plus if for every point x ∈ K,
we can express M(x) as

M(x) = P t

 0 0 0
0 P0(x) 0
0 0 0

P,
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with P independent of x. P0(x) is a positive definite or zero matrix of fixed dimension
n1 × n1 and is always in the same location in the bracketed matrix.

Remark. As our nomenclature shows, every uniformly p.s.d. plus matrix M(x) is
also p.s.d. plus.

Before continuing, we state a preliminary result about uniformly p.s.d. plus ma-
trices. We first set some notation. In the representation of a p.s.d. plus matrix as
specified in Definition 6, suppose we partition P compatibly with 0 0 0

0 P0(x) 0
0 0 0

 as P =

 A B C
D E F
G H I

 .
Proposition 3.5. If ∇f(x) is a uniformly p.s.d. plus matrix, then f is strongly

f-monotone whenever, for the values of x1 for which the matrix P0(x1) is positive
definite, the maximum eigenvalue of the matrix B(x1, x2)

tB(x1, x2) is bounded over
the feasible set K by some constant d2, with

B(x1, x2) =

[
P0(x1) + P0(x1)

t

2

]− 1
2

P0(x1)
tQP0(x2)

[
P0(x1) + P0(x1)

t

2

]− 1
2

.

Proof. First, we observe that if x1 ∈ K and P0(x1) = 0, then ∇f(x1) = 0 and,
therefore, for all a > 0 and x2 ∈ K, awt∇f(x1)

t∇f(x2)w ≤ wt∇f(x1)
tw, which is

the strong form (6). Now suppose that x1 ∈ K and P0(x1) is positive definite. The
uniform p.s.d. plus property implies that

wt∇f(x1)
t∇f(x2)w = wtP t

 0 0 0
0 P0(x1)

t 0
0 0 0

PP t

 0 0 0
0 P0(x2) 0
0 0 0

Pw.
Then

wt∇f(x1)
t∇f(x2)w = wtP t

 0 0 0
P0(x1)

tD P0(x1)
tE P0(x1)

tF
0 0 0

 0 DtP0(x2) 0
0 EtP0(x2) 0
0 F tP0(x2) 0

Pw

= [vt, yt, zt]

 0 0 0
P0(x1)

tD P0(x1)
tE P0(x1)

tF
0 0 0

 0 DtP0(x2) 0
0 EtP0(x2) 0
0 F tP0(x2) 0

 v
y
z

 ,

with Pw =

 v
y
z


and y a vector with the same dimension as P0(xi), i = 1, 2. Let Q = EEt+DDt+FF t.

Therefore, since P̄0(x1) = P0(x1)+P0(x1)
t

2 is a positive definite and symmetric matrix,

wt∇f(x1)
t∇f(x2)w = ytP0(x1)

tQP0(x2)y

= yt[P̄0(x1)]
1
2 [P̄0(x1)]

− 1
2P0(x1)

tQP0(x2)[P̄0(x1)]
− 1

2 [P̄0(x1)]
1
2 y.
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If b = [P̄0(x1)]
1
2 y, then wt∇f(x1)

tw = btb and

wt∇f(x1)
t∇f(x2)w = bt[P̄0(x1)]

− 1
2P0(x1)

tQP0(x2)[P̄0(x1)]
− 1

2 b

= btB(x1, x2)b ≤ btb‖B(x1, x2)‖ ≤ dbtb = dwt∇f(x1)
tw,

since the maximum eigenvalue of B(x1, x2)
tB(x1, x2) is bounded over the feasible set

K by a constant d2. This inequality shows that for all x1, x2 ∈ K and w ∈ Rn, the
constant a = min{ 1

d , 1} > 0 satisfies the condition

awt∇f(x1)
t∇f(x2)w ≤ wt∇f(x1)

tw,

which is the strong form (6) (see Table 2). Therefore, f is strongly f-monotone.
Remarks.
1. In Proposition 3.4 we show that when ∇f(x) is uniform p.s.d. plus, the weak

form (7) holds. The proof of Proposition 3.5 permits us to show that when ∇f(x)
is uniform p.s.d. plus and K is compact, the weak and strong forms of strong-f-
monotonicity are equivalent. To establish this result, we note that the steps of Propo-
sition 3.5 and the fact that the matrix [P0(x1)

tQP0(x1)] is positive definite and sym-
metric imply the following result. Let B(x1, x2) be defined as in Proposition 3.5 and
let d2 be the maximum eigenvalue of B(x1, x2)

tB(x1, x2) over the compact set K.

wt∇f(x1)
t∇f(x2)w = ytP0(x1)

tQP0(x2)y

= yt[P0(x1)
tQP0(x1)]

1
2 [P0(x1)

tQP0(x1)]
− 1

2P0(x1)
tQP0(x2)

· [P0(x1)
tQP0(x1)]

1
2 [P0(x1)

tQP0(x1)]
1
2 y

= btB(x1, x2)b ≤ ‖B(x1, x2)‖btb ≤ dbtb

= ytP0(x1)
tQP0(x1)y = wt∇f(x1)

t∇f(x1)w,

with b = [P0(x1)
tQP0(x1)]

1
2 y. Therefore, wt∇f(x1)

t∇f(x2)w ≤ dwt∇f(x1)
t∇f(x1)w,

which implies that the weak (7) and the strong forms (6) are equivalent.
2. Remark (1) implies that if ∇f(x) is uniformly p.s.d. plus and K is compact,

then for the general iterative scheme (5) (see [7], [29]), the strong form (6) is equivalent
to the norm condition (8) in a less than or equal form.

We now show how to check the uniform p.s.d. plus condition.
Definition 7 (see Sun [34]). A matrix M(x) satisfies the Hessian similarity

property over the set K if (i) M(x) is a positive semidefinite matrix for all x ∈ K
and (ii) for all w ∈ Rn and y, z ∈ K and for some constant r ≥ 1, M(x) satisfies the
condition

rwtM(z)w ≥ wtM(y)w ≥ 1

r
wtM(z)w.

Matrices that do not depend on x, i.e., M = M(x) for all x, and positive definite
matrices on compact sets K satisfy this property. In the latter case, we can choose
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r as the ratio of the maximum eigenvalue of M(x) over K divided by the minimum
eigenvalue of M(x) over K.

Sun [34] has established the following result.
Lemma 3.4. If a matrix is positive semidefinite and symmetric and satisfies the

Hessian similarity property, then it also satisfies the uniform p.s.d. plus property.
Corollary 3.4. If for a variational inequality problem VI(f,K), ∇f(x) is a

symmetric, positive definite matrix and the set K is compact, then ∇f(x) satisfies the
uniform p.s.d. plus property and the problem function f is strongly f-monotone.

Proof. When ∇f(x) is a symmetric, positive definite matrix and the set K is
compact, ∇f(x) satisfies the Hessian similarity condition. Lemma 3.4 implies the
uniform p.s.d. plus property. Therefore, Proposition 3.5 implies that f is a strongly
f-monotone problem function.

Corollary 3.5. If the Jacobian matrix ∇f(x) of a variational inequality problem
is symmetric and positive semidefinite and satisfies the Hessian similarity condition
and the set K is compact, then the problem function f is strongly f-monotone.

Proof. By Lemma 3.4, the Jacobian matrix ∇f(x) satisfies the uniform p.s.d.
plus condition and so the result follows from Proposition 3.5. The following result
provides a generalization of Proposition 3.5.

Proposition 3.6. Suppose that ∇f(x) can be written as

∇f(x) = P t



P1(x) ... 0 ... 0
...

. . .
...

...
...

0 ... Pi(x) ... 0
... ...

...
. . .

...
0 ... 0 ... Pm(x)

P.

The matrices Pi(x) for i = 1, 2, . . . ,m are either positive definite or zero and for all
i = 1, 2, . . . ,m, they have the same dimension n1 × n1 for all x; moreover, PP t = I.
Let

Bi(x1, x2) =

[
Pi(x1) + Pi(x1)

t

2

]− 1
2

Pi(x1)
tQPi(x2)

[
Pi(x1) + Pi(x1)

t

2

]− 1
2

;

then f is a strongly f-monotone function whenever for i = 1, . . . ,m and for the values
of x1 for which the matrix Pi(x1) is positive definite, the matrix Bi(x1, x2)

tBi(x1, x2)
has maximum eigenvalue that is bounded over the feasible set K by a constant d2

i .
Proof. We will first define the matrix

Di(x) = P t



0 ... 0 ... 0
...

. . .
...

...
...

0 ... Pi(x) ... 0
... ...

...
. . .

...
0 ... 0 ... 0

P.

Then ∇f(x) =
∑m

i=1 Di(x). Observe that since PP t = I, Di(x1)Dj(x2) = 0 for i 6= j.
Therefore, Proposition 3.5 permits us to conclude that

awt∇f(x1)
t∇f(x2)w = awt

m∑
i,j=1

(Di(x1)
tDj(x2))w = awt

m∑
i=1

(Di(x1)
tDi(x2))w
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= a

m∑
i=1

[wtDi(x1)
tDi(x2)w] ≤

m∑
i=1

wtDi(x1)
tw = wt∇f(x1)

tw

for a = 1/d and d = max{i=1,...,m} di.
Corollary 3.6. For a variational inequality problem VI(f,K) if the Jacobian

matrix ∇f(x) is a diagonal positive semidefinite matrix and the set K is compact,
then the problem function f is strongly f-monotone.

Proof. The proof of this result follows directly from Proposition 3.6 since the
diagonal positive semidefinite matrix∇f(x) is the sum of uniform p.s.d. plus matrices,
with Pi(x) as 1× 1 matrices that are zero or positive definite (zero or positive scalars
in this case) and with P = I.

Remarks.
(i) In Proposition 3.6 we could have made a more general “orthogonality” as-

sumption that Di(x1)Dj(x2) = 0 for i 6= j and for all x1, x2, which is the central
observation in its proof. Then Corollaries 3.3 through 3.6 and Proposition 3.7 would
become special cases of Proposition 3.6.

(ii) The condition on ∇f(x) in Proposition 3.6 requires that the matrices Pi(x)
have fixed dimensions and occupy a fixed location in the block diagonal matrix of
the Pi(x)s. Can these conditions be relaxed in any sense? Doing so would permit
us to define a broader class for which a p.s.d. plus type of condition would imply
strong-f-monotonicity.

Finally, we note that strong-f-monotonicity is related to the condition of firm
nonexpansiveness (used, for example, by Lions and Mercier [17], Eckstein and Bert-
sekas [9]).

Definition 8. A mapping T : K → K is firmly nonexpansive (or pseudocon-
tractive) over the set K if

‖T (x)− T (y)‖2 ≤ ‖x− y‖2 − ‖[x− T (x)]− [y − T (y)]‖2 for all x, y ∈ K.

Expanding ‖[x − T (x)] − [y − T (y)]‖2 as ‖x − y‖2 + ‖T (x) − T (y)‖2 − 2[T (x) −
T (y)]t[x− y] and rearranging shows the following.

Proposition 3.7. If a problem function f is strongly f-monotone for a constant
a ≥ 1, then it is firmly nonexpansive. Conversely, if a problem function f is firmly
nonexpansive, then it is strongly f-monotone for the constant a = 1.

Remark. To conclude this discussion, we note that most of the results in this
paper, including the orthogonality theorem, can be easily extended to a more general
form of variational inequality:

find x∗ ∈ K : f(x∗)t(x− x∗) + F (x)− F (x∗) ≥ 0 for all x ∈ K,

with f : K → Rn a continuous function, F : K → R a continuous and convex function,
and K a closed and convex subset of Rn.

Acknowledgment. We are grateful to the referees whose suggestions have led
to considerable improvements to this paper.
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Abstract. In 1952, A. J. Hoffman proved a fundamental result of an error bound on the distance
from any point to the solution set of a linear system in Rn. In SIAM J. Control, 13 (1975), pp. 271–
273, Robinson extended Hoffman’s theorem to any system of convex inequalities in a normed linear
space which satisfies the Slater constraint qualification and has a bounded solution set. This paper
studies any system of convex inequalities in a reflexive Banach space which has an unbounded solution
set. It is shown that Hoffman’s error bound holds for such a system when a related convex system,
which defines the recession cone of the solution set for the system, satisfies the Slater constraint
qualification.

Key words. error bounds, recession cones, recession functions
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1. Introduction. Consider the convex inequality system

x ∈ C ⊂ X, F (x) ≤ 0,(1)

where X is a real reflexive Banach space, C is a nonempty closed convex set, F (x) =
(f1(x), . . . , fm(x)) is a vector-valued function from X to Rm, and each fi is a con-
tinuous convex function on X. Let S be the set of all solutions to (1). We assume
throughout that S is nonempty. For a given p with 1 ≤ p ≤ ∞, Hoffman’s error
bound holds for the convex system (1) if there exists a positive constant τ such that

d(x, S) ≤ τ ||[F (x)]+||p for all x ∈ C ⊂ X,(2)

where d(x, S) = infy∈S ||x− y||, [·]+ is the positive part of a vector, and || · || and || · ||p
denote the norm on X and the p-norm on Rm, respectively.

For X = Rn, problems of Hoffman’s error bounds have been studied by many
authors (see [5, 12, 1, 18, 6, 8, 9, 17]). For other related error bound results, see
[4, 7, 13].

For X being an infinite-dimensional space, Robinson [14] proved that the error
bound (2) holds when S is bounded and (1) satisfies the Slater constraint qualification;
Ioffe [11] obtained the same bound when each fi is a continuous linear function. But
no one has demonstrated that (2) still holds under appropriate conditions when S is
unbounded, and each fi is not necessarily linear. This task will be undertaken here.

In this paper, we study how the information of the recession cone of S can be
used to provide a computable constant τ such that (2) holds. Specifically, we show
that if a related convex system (see (4) of section 2), which has the recession cone of
S as its solution set, satisfies the Slater constraint qualification, then the error bound
(2) holds. Our results are complementary to Robinson’s.

We now briefly give the notation and some of the basic concepts used below. We
denote the dual space of X by X∗. The spaces X and X∗ are paired in duality by

∗ Received by the editors April 17, 1995; accepted for publication September 27, 1995.
http://www.siam.org/journals/siopt/7-1/28483.html

† Department of Mathematical Sciences, Northern Illinois University, DeKalb, IL 60115 (deng@
math.niu.edu).
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the continuous bilinear form

〈x∗, x〉 = x∗(x),

defined on X∗×X. We denote the norms on X and X∗ by || · || and || · ||∗, respectively.
For a nonempty closed convex set U in X, we denote the indicator function of U

by δU (·).
For a nonempty closed convex set U in X and x̃ ∈ U , we define the normal cone

to the set U at x̃, denoted by NU (x̃), as follows [10, p. 47]:

NU (x̃) = {x∗ ∈ X∗|〈x∗, x− x̃〉 ≤ 0 for any x ∈ U} .
For a nonempty closed convex set U in X, we define the recession cone of U ,

denoted by U∞, as follows [16, Theorem 2A (e)]:

U∞ = {u ∈ X| there exist sequences of scalars µi > 0 and xi ∈ U such that

limi µi = 0 and limi µixi = u} .
According to [16, Theorem 2A (c)], U∞ can also be defined algebraically as

U∞ = {u ∈ X|U + u ⊂ U} .(3)

A proper lower semicontinuous (l.s.c.) convex function g on X is an everywhere-
defined function with values in (−∞,+∞], not identically +∞, such that epi g is a
closed convex set in X×R, where epi g denotes the epigraph of g. Its effective domain
is the nonempty convex set

dom g = {x ∈ X| g(x) < +∞}.
For a proper l.s.c. convex function g, we use ∂g(x) to denote the subdifferential

of g at x (∈ dom g).
For a proper l.s.c. convex function g, we use the recession cone of the epigraph

of g to define the recession function of g, denoted by g∞; that is,

epi(g∞) = (epi g)∞.

2. The main theorem. We begin with a proposition on the recession cone of
the intersection of convex sets in X. The proof of the proposition is similar to that
of [15, Corollary 8.3.3] when X = Rn. For the completeness, we give a proof.

Proposition 2.1. Suppose that {Ui|i ∈ I}, where I is an arbitrary index set, is
a family of nonempty closed convex sets in X and U = ∩i∈IUi is nonempty. Then
U∞ = ∩i∈IUi∞.

Proof. The recession cone U∞ ⊂ ∩i∈IUi∞ follows from the definition of recession
cone. On the other hand, let u ∈ U∞i for all i ∈ I. Then, for any x ∈ U , by (3),
u + x ∈ Ui for all i ∈ I. It follows that u + x ∈ U , and u ∈ U∞.

For a proper l.s.c. convex function g, we have the following proposition to com-
pute g∞.

Proposition 2.2 (see [16, Corollary 3C]). If g is a proper l.s.c. convex function,
then g∞ can be determined from any of the following formulas:

(a) g∞(u) = supx∈(dom g) {g(x + u)− g(x)},
(b) g∞(u) = supλ>0[g(x + λu)− g(x)]/λ for any x ∈ dom g,
(c) g∞(u) = sup

v∈cl(dom g∗)〈v, u〉,



276 SIEN DENG

where g∗ is the convex conjugate function of g.
From Proposition 2.2(c), g∞ is the support function of the nonempty closed con-

vex set cl(domg∗). Thus, g∞ is a proper l.s.c. convex function. For more about
recession cones and recession functions, see [15, 16].

Using Propositions 2.1 and 2.2(b), one can easily verify that the recession cone
S∞ of S given by (1) is the set of all solutions to the following convex inequality
system:

u ∈ C∞, f∞i (u) ≤ 0 for i = 1, 2, . . . ,m.(4)

If system (1) satisfies Robinson’s boundedness condition [14], then S∞ = {0}. For
S being unbounded, asymptotic constraint qualification assumptions [12, 1] are not
applicable to the infinite-dimensional case. In this paper, we introduce the following
Slater constraint qualification regarding the convex system (4).

Assumption 1. There exist a unit vector û ∈ C∞ and a constant τ > 0 such that
f∞i (û) ≤ −τ−1 for i = 1, 2, . . . ,m.

Remark 2.1. Under Assumption 1, S must be an unbounded set.
Now we are in a position to state the main theorem of this paper.
Theorem 2.3. Suppose that S is the set of all solutions to (1) and Assumption 1

holds. Then for any p with 1 ≤ p ≤ ∞,

d(z, S) ≤ τ ||[F (z)]+||p for all z ∈ C ⊂ X,

where τ is given by Assumption 1.
Proof. Let f(x) = max1≤i≤m{fi(x)}. Then f is a continuous convex function on

X, and S = {x ∈ C|f(x) ≤ 0}. Since X is reflexive and || · || is weak∗ l.s.c. (see [3]),
for any z ∈ C but not in S, there exists an x̄ in S such that ||x̄− z|| = d(z, S). Thus,

0 ∈ ∂||x̄− z||+ NS(x̄).

That is, there exist v1 ∈ ∂||x̄− z|| and v2 ∈ NS(x̄) with

0 = v1 + v2.

It follows from [10, p. 46] that ||x̄− z|| = 〈−v1, z − x̄〉 and ||v1||∗ = 1.
It is easy to see that f(x̄) = 0; otherwise, we could find a “better” point in S by the

convexity of S and the continuity of f . An immediate consequence of Assumption 1
is that there is an x0 ∈ C such that fi(x0) < 0 for i = 1, 2, ...,m. Therefore f(x0) < 0
and 0 6∈ ∂f(x̄). By the continuity of f , we have that δ{x|f(x)≤0}(·) is continuous at
x0. By applying [10, Theorem 0.3.3, p. 47] to δS(·) = δ{x|f(x)≤0}(·) + δC(·), we get

NS(x̄) = ∪λ≥0λ∂f(x̄) + NC(x̄).

Hence,

− v1 = v2 = λu1 + u2,(5)

where λ ≥ 0, u1 ∈ ∂f(x̄), and u2 ∈ NC(x̄). Since ∂f(x̄)=co{∂fi(x̄)|i ∈ I(x̄)},

u1 =
∑
i∈I(x̄)

µivi with µi ≥ 0,
∑

i∈I(x̄) µi = 1, and vi ∈ ∂fi(x̄) for i ∈ I(x̄),(6)
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where I(x̄) denotes the set of indices i for which fi(x̄) = f(x̄). By (3), x̄ + û ∈ C.
Thus 〈u2, û〉 = 〈u2, x̄ + û − x̄〉 ≤ 0. Since 1 = || − v1||∗ ≥ 〈−v1,−û〉, it follows from
(5) and (6) that

1 ≥ λ〈u1,−û〉+ 〈u2,−û〉 ≥ λ〈u1,−û〉 ≥ λ

 ∑
i∈I(x̄)

µi〈vi,−û〉
 .(7)

By Proposition 2.2(a), for each i with 1 ≤ i ≤ m, one has

−τ−1 ≥ f∞i (û) = sup
x∈domfi

{fi(x + û)− fi(x)}

≥ sup
x∈X

sup
v∈∂fi(x)

〈v, û〉 by the convexity of fi,

≥ sup
v∈∂fi(x̄)

〈v, û〉 ≥ 〈vi, û〉,

which, combining with (7), yields λ ≤ τ . Therefore,

||x̄− z|| = 〈−v1, z − x̄〉
= 〈λu1 + u2, z − x̄〉
≤ λ〈u1, z − x̄〉 since 〈u2, z − x̄〉 ≤ 0,

= λ
∑
i∈I(x̄)

µi〈vi, z − x̄〉

≤ λ
∑
i∈I(x̄)

µi(fi(z)− fi(x̄)) by the convexity of fi,

≤ λ
∑
i∈I(x̄)

µi max {fi(z), 0} since fi(x̄) = 0 for all i ∈ I(x̄),

≤ τ

 ∑
i∈I(x̄)

µqi

1/q ∑
i∈I(x̄)

(max {fi(z), 0})p
1/p

where 1/p + 1/q = 1,

≤ τ ||[F (z)]+||p.

This completes the proof.
Remark 2.2. When X = Rn, Assumption 1 implies the asymptotic constraint

qualification assumptions introduced in [1, 12] for S being unbounded. Thus, As-
sumption 1 can be viewed as a constraint qualification condition when X is an infinite-
dimensional reflexive Banach space and S is unbounded. One important feature of
Assumption 1 is that this assumption provides a verifiable condition such that (2)
holds with a computable constant τ .

The following proposition will be needed for Corollary 2.5.
Proposition 2.4. Let Y be a compact metric space. Suppose that g is continuous

on X × Y and g(·, y) is convex for each y ∈ Y . If f(x) = supy∈Y g(x, y), then f is
continuous convex on X.

Proof. It is evident that f is convex. To show that f is continuous, let xn → x̄. For
each xn, there is a yn ∈ Y such that f(xn) = g(xn, yn) since Y is compact. Without
loss of generality, by the compactness of Y , we can assume that {yn} converges to
some ȳ ∈ Y . Since g(xn, yn) ≥ g(xn, y) for all y ∈ Y , g(x̄, ȳ) = supy∈Y g(x̄, y) follows
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from the continuity of g at (x̄, ȳ). Hence,

lim
n→∞ f(xn) = lim

n→∞ g(xn, yn) = g(x̄, ȳ)

= sup
y∈Y

g(x̄, y) = f(x̄).

The result follows.
In view of Propositions 2.1, 2.4, and Theorem 2.3, we have the following corollary.
Corollary 2.5. Suppose that f is given in Proposition 2.4. For each y ∈ Y , let

g∞(·, y) be the recession function of g(·, y). Let C ⊂ X be a nonempty closed convex
set. Suppose that S̃ = {x ∈ C|f(x) ≤ 0} is nonempty and there exist a unit vector
û ∈ C∞ and a constant τ > 0 such that g∞(û, y) ≤ −τ−1 for all y ∈ Y . Then,

d(z, S̃) ≤ τ [f(x)]+ for all z ∈ C ⊂ X.

3. Examples of recession functions. To apply Theorem 2.3, one needs to
know recession functions of given continuous functions fi. In this section, we give
several examples of recession functions for some important convex functions.

Example 1. Suppose that X is a Hilbert space and L is a self-conjugate continuous
linear operator [2, p. 23] from X to X satisfying (a) 〈Lx, x〉 ≥ 0 for all x ∈ X (positive
semidefinite), and (b) ImL is closed in X, where ImL denotes the image of L. Then
f(x) = 1/2〈Lx, x〉 + 〈b, x〉 + c is a continuous convex function on X, where b ∈ X
and c is a constant. Since ImL = (KerL)⊥, where KerL denotes the kernel of L,
dom f∗ = (KerL)⊥ + b [2, Proposition 3.7]. It follows from Proposition 2.2(c) that

f∞(u) = 〈b, u〉+ δKer L(u).

Example 2 (see [15, p. 68]). Suppose that X = Rn. Let f(x) = log(ex1 + ex2 +
· · ·+ exn). Then

f∞(u) = max{u1, . . . , un}.
Example 3 (see [15, Theorem 9.3.]). Suppose that X = Rn. Let f1, . . . , fm be

continuous convex functions on Rn. Then

(f1 + · · ·+ fm)∞ = f∞1 + · · ·+ f∞m .

Example 4 (see [15, Theorem 9.4]). Suppose that X = Rn. For an arbitrary index
set I, let f(x) = supi∈I{fi(x)}, where each fi is a continuous convex function on Rn.
Then

f∞(u) = sup
i∈I

{f∞i (u)} .

Acknowledgments. The author thanks Professor R. F. Wheeler for several
stimulating discussions that led to an improved presentation of Theorem 2.3 and two
anonymous referees for their useful comments.
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IMPLEMENTATION OF A VARIANCE REDUCTION-BASED
LOWER BOUND IN A BRANCH-AND-BOUND ALGORITHM FOR
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Abstract. The efficient implementation of a branch-and-bound algorithm for the quadratic as-
signment problem (QAP), incorporating the lower bound based on variance reduction of Li, Pardalos,
Ramakrishnan, and Resende (1994), is presented. A new data structure for efficient implementation
of branch-and-bound algorithms for the QAP is introduced. Computational experiments with the
branch-and-bound algorithm on different classes of QAP test problems are reported. The branch-
and-bound algorithm using the new lower bounds is compared with the same algorithm utilizing the
commonly applied Gilmore–Lawler lower bound. Both implementations use a greedy randomized
adaptive search procedure for obtaining initial upper bounds. The algorithms report all optimal
permutations. Optimal solutions for previously unsolved instances from the literature, of dimensions
n = 16 and n = 20, have been found with the new algorithm. In addition, the new algorithm has
been tested on a class of large data variance problems, requiring the examination of much fewer nodes
of the branch-and-bound tree than the same algorithm using the Gilmore–Lawler lower bound.

Key words. combinatorial optimization, quadratic assignment problem, branch-and-bound,
GRASP, computer implementation, data structures, hashing function, hash table, lower bound, test
problems

AMS subject classifications. 90B80, 90C20, 90C35, 90C27, 65H20, 65K05

PII. S1052623494273393

1. Introduction. The quadratic assignment problem (QAP) can be stated as

min
p∈Π

n∑
i=1

n∑
j=1

aijbp(i)p(j),

where Π is the set of all permutations of {1, 2, . . . , n}, A = (aij) ∈ Rn×n, and B =
(bij) ∈ Rn×n. The QAP was first proposed by Koopmans and Beckmann in 1957
as a mathematical model for a set of indivisible economical activities [29]. A typical
example of the QAP is the facility location problem, in which a set of n facilities is to
be assigned to an equal number of locations. Between each pair of facilities there is
a given amount of flow, contributing a cost equal to the product of the flow and the
distance between the locations to which the facilities are assigned. Applications of
the QAP are abundant and can be found in [6, 20, 25, 30, 33, 38, 43]. Many classical
combinatorial optimization problems, such as the traveling salesman problem and the
graph partitioning problem, are special cases of the QAP.

A wide range of heuristics have been applied to find approximate solutions to the
QAP [10, 19, 33, 37, 39, 48, 49, 50]. Exact solution approaches have been limited to
instances of dimension n ≤ 15 and are based mostly on branch-and-bound. General
QAPs of dimension n > 15 are considered difficult large-scale problems.
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Branch-and-bound is an enumerative technique for solving combinatorial opti-
mization problems. Branching usually refers to a successive partitioning of the fea-
sible domain while bounding refers to the determination of lower and upper bounds
for the global optimal solution. Recently, Li, Pardalos, Ramakrishnan, and Resende
[32] proposed new lower bounds, based on reduction techniques, for the QAP. In this
paper, we show how to efficiently implement these bounds in a branch-and-bound
algorithm for the QAP. We report on computational experiments with a branch-and-
bound algorithm using the new bounds, as well as the Gilmore–Lawler lower bounds,
on a large set of test problems.

Before we conclude the introduction, let us define some notation and state some
assumptions used in this paper. Matrix A is referred to as the flow matrix, while B is
the distance matrix. For convenience of discussion, an instance of the QAP with flow
and distance matrices A and B is denoted as QAP(A,B). Without loss of generality,
it is assumed that the entries of matrices A and B are nonnegative [43]. We further
assume that the diagonal entries of matrices A and B are zero.

The paper is organized as follows. In section 2 we discuss issues related to branch-
and-bound algorithms. A specialized branch-and-bound approach for the QAP is
given in section 3. In section 4, an efficient implementation of the branch-and-bound
algorithm is considered. Computational results are summarized in section 5 and
concluding remarks are made in section 6.

2. Branch-and-bound algorithms. The underlying idea of a branch-and-bound
algorithm is to partition a given initial problem into a number of intermediate par-
tial problems of smaller sizes. Every subproblem is characterized by the inclusion of
one or more constraints. The decomposition is repeatedly applied to the generated
subproblems until each unexamined subproblem is decomposed, solved, or shown not
to lead to an optimal solution to the original problem. Branch-and-bound is essen-
tially a variant, or refinement, of backtracking that can take advantage of information
about the optimality of partial solutions to avoid considering solutions that cannot
be optimal—hence, to reduce the search space significantly.

The notation of Ibaraki [26] is employed to formally define a branch-and-bound
algorithm that will be needed in the sequel. Let P0 denote an optimization problem
and f denote the objective function to be minimized. The decomposition process
applied to P0 is represented by a rooted tree R = (P, E), where P is a set of nodes
and E is a set of arcs. The root of R, denoted P0, corresponds to the given problem
P0, and other nodes Pi correspond to partial problems Pi. The arc (Pi, Pj) ∈ E if and
only if Pj is generated from Pi by a decomposition. The set of terminal nodes of R,
denoted T , are those partial problems that are solved without further decomposition.
The level of Pi ∈ R, denoted L(Pi), is the length of the path from P0 to Pi in R. P0

has level 0. R is assumed to be a finite graph.

A branch-and-bound algorithm attempts to solve P0 by examining only a small
portion of R. This is accomplished by no longer proceeding along the branches rooted
at those nodes Pi that are either solved or found by test not to yield an optimal solu-
tion of P0 (i.e., F (Pi) > F (P0), where F (P ) = minx∈P f(x)). A lower bound function
g is calculated for each subproblem as it is created, to help eliminate unnecessary
search. This lower bound function represents a smallest possible cost of a solution to
that subproblem, given the subproblem’s constraints. Its values satisfy the following
conditions:

• g(Pi) ≤ F (Pi) for Pi ∈ P,
• g(Pi) = F (Pi) for Pi ∈ T ,
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• g(Pj) ≥ g(Pi) if Pj is a descendant of Pi.
A typical branch-and-bound algorithm consists of four major procedures: selec-

tion, branching, elimination, and termination test.
• Selection. At any step during the execution of the algorithm, there exists a

set A of problems that have been generated but not yet examined. The selection
procedure selects a single subproblem from the set A, based on a selection heuristic
function h. The set A is maintained in an ordered list by increasing values of h. The
following three heuristic searching strategies are commonly used:

− best-bound search: h ≡ g,
− depth-first search: h ≡ −L, or
− breadth-first search: h ≡ L, where L is the node level in R.
• Branching. A branching rule related to a given problem is used to generate new

smaller subproblems from the one selected by the selection procedure. Lower bounds
for the newly generated subproblems are calculated accordingly.

• Elimination. A newly created subproblem is deleted if its lower bound is greater
than or equal to that of the incumbent (the best feasible solution discovered up to
that point of the search).

• Termination Test. In some cases, with restrictive constraints, it may be possible
to define a number of auxiliary rules that help identify infeasible partial solutions.

In the selection procedure, the best-bound and depth-first search strategies are
used in most situations. Best-bound search minimizes the number of partial problems
decomposed prior to termination. However, it tends to consume an amount of memory
that is an exponential function of the problem size. On the other hand, depth-first
search consumes an amount of space that is only a linear function of the problem size,
and its implementation is relatively easy. The branch-and-bound algorithm terminates
when the list of active subproblems is empty, and the incumbent is the optimal solution
of the original problem.

3. Branch-and-bound algorithms for the QAP. Three classes of methods
have been used to find globally optimal solutions to the QAP. These methods include
cutting plane techniques, branch-and-bound methods, and dynamic programming.

Exact cutting plane algorithms have not succeeded to generate optimal solutions
for problems with dimension as small as n = 10 [4, 28]. They have, however, been
successfully applied to obtain good suboptimal permutations [7].

Branch-and-bound algorithms have been the most successful methods for proving
optimality of QAPs. Lower bounds are key to the computational performance of
these branch-and-bound algorithms. Lower bounds for the QAP can be categorized
into three groups. The first category includes the classical Gilmore–Lawler bound
(GLB) [22, 31] and related bounds. The second category consists of eigenvalue-based
bounds [18, 24, 23, 44]. The rest of the bounds are mostly based on reformulations of
the QAP and generally involve solving a number of linear assignment problems (e.g.,
[3, 11, 13, 16, 21]). A new class of lower bounds that belongs to the first category
was proposed by Li, Pardalos, Ramakrishnan, and Resende [32] and is described in
section 3.1.

One of the first exact branch-and-bound algorithms for the QAP is described in
[16], but no computational results are reported. In the book by Burkard and Derigs [8],
the Fortran source code for solving exactly QAPs with a branch-and-bound algorithm
is listed. Roucairol [47] proposed and implemented sequential and parallel branch-
and-bound algorithms on a Cray X-MP/48 (four processors) and solved the Nugent-12
(n = 12) test problem [40] in about 5 minutes but was unable to solve the Nugent-15
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(n = 15) instance, due to insufficient memory. Pardalos and Crouse [41] developed
another parallel implementation of a single assignment branch-and-bound algorithm
on an IBM 3090/400E (four processors). That implementation solved the Nugent-12
problem in half a minute and partially solved (examined 95% of the nodes of the
branch-and-bound tree) in about 30 minutes. More recently, Mautor and Roucairol
[36, 35] considered new approaches to reduce the size of the search tree in an exact
branch-and-bound algorithm and report computational results for some problems of
size up to n = 20. The long standing problem Nugent-20 (n = 20) was reportedly
solved in 1994 by Clausen [14]. In addition, QAPs of size up to n = 30, in which
the flow matrix is the weighted adjacency matrix of a tree, have been solved exactly,
using dynamic programming approaches [12]. Other exact approaches are described
in [43].

In this paper, we discuss an exact branch-and-bound algorithm that incorpo-
rates the new lower bound using efficient data structure techniques and the GRASP
heuristic [17] to find the initial upper bound.

3.1. A new class of lower bounds. A class of lower bounds based on optimal
reduction schemes for the QAP was proposed in [32]. For a given QAP(A,B), consider

a partition of A into the two matrices A1 = (a
(1)
ij ) and A2 = (a

(2)
ij ) such that A =

A1 +A2 and a partition of B into two matrices B1 = (b
(1)
ij ) and B2 = (b

(2)
ij ) such that

B = B1 +B2. For each pair {i, j}, i, j = 1, . . . , n, let

lij = min
p∈π, p(i)=p(j)

{
n∑

k=1

a
(1)
ik b

(1)
jp(k) +

n∑
k=1

a
(2)
ki bp(k)j(3.1)

+

n∑
k=1

akib
(2)
p(k)j −

n∑
k=1

a
(2)
ki b

(2)
p(k)j

}
,

where π is the set of all permutations of {1, 2, . . . , n}. Let L = (lij) be an n × n
matrix. The following theorem defines a new lower bound [32, Theorem 4.1].

Theorem 3.1. Let the matrix L be defined as above. The solution of the linear
assignment problem with cost matrix L is a lower bound for the corresponding QAP.

The classical Gilmore–Lawler bound [22, 31] (denoted here by GLB(A, B)) is
a special case in which neither matrix A nor B are partitioned. Different ways of
partitioning the matrices A and B (also referred to as reduction) yield different lower
bounds. The common reduction techniques used in the literature choose A2 and
B2 with constant column sums (often called constant columns). We refer to such
techniques as constant column reductions.

Let M = (mij) be a matrix in Rn×n. We treat a row vector mi, 1 ≤ i ≤ n, of
M as a 1 × n matrix and a column vector mT

j , 1 ≤ j ≤ n, as an n × 1 matrix. For
convenience of discussion, we use the following notation for average γ(M), variance
V (M), and total variance T (M,λ) of M :

γ(M) =
1

n2

n∑
i=1

n∑
j=1

mij ,

V (M) =
1

n2

n∑
i=1

n∑
j=1

(γ(M)−mij)
2
,

T (M,λ) = λ
n∑
i=1

V (mi) + (1− λ)V (M) for 0 ≤ λ ≤ 1.
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In our reduction scheme, we considered the partition A = A1 +A2, where A1 = A+∆
and A2 = −∆, such that the variances of A1 and A2, the sum of variances of the rows
of A1, and the sum of variances of the rows of A2 are minimized. This minimization
problem has been formulated as

minθ T (A+ ∆, λ) + (1− θ) T (−∆>, λ)(3.2)

such that∆ ∈ Rn×n,(3.3)

where λ and θ (0 ≤ λ, θ ≤ 1) are input parameters.
Motivated by the observation that for QAP(A,B) the tightness of GLB is in-

versely proportional to the variances of A and B, the following reduction schemes
were proposed in [32]:

• R-1: a
(1)
ij = aij − θ(ann − aij) and a

(2)
ij = θ(ann − aij), i, j = 1, . . . , n,

• R-2: a
(1)
ij = aij − θ(γ(aTn ) − γ(aTj )) and a

(2)
ij = θ(γ(aTn ) − γ(aTj )), i, j =

1, . . . , n.
Note that both reduction schemes are independent of the value of λ (c.f. [32]). One
new lower bound proposed in [32] is to use reduction scheme R-1. This lower bound is
denoted by LB1(θ). The other new lower bound proposed is to use reduction scheme
R-2. This lower bound is denoted LB2(θ). Both new lower bounds depend on the
parameter θ. Note that LB1(0.0) = GLB(A,B) and LB1(1.0) = GLB(AT , BT ).

In [32], it was observed empirically that θ = 0.5 and θ = 1.0 are good choices for
LB1(θ) and LB2(θ), respectively. Furthermore, in that study the bound LB2(1.0) was
slightly tighter than LB1(0.5). Consequently, in this implementation we use LB2(1.0).

For LB2(1.0) the computation is simpler. The variance minimization problem
(3.2–3.3) becomes

minV (A+ ∆)(3.4)

such that∆ ∈ Rn×n.(3.5)

The solution of (3.4–3.5) is simply

δij = γ(a>j )− γ(a>n ) for i, j = 1, . . . , n,

which is the constant column partitioning scheme.
The new lower bounds can be computed efficiently. Computing matrix ∆ to

partition matrices A and B takes only O(n2) time (c.f. [32]). By presorting the rows
of the flow and distance matrices A and B, one can compute lij (i, j = 1, . . . , n) in
O(n3). Hence the total running time is O(n3), which is the same as that for computing
GLB. Furthermore, the constant factor is small. Later in this paper, we show how to
efficiently incorporate these bounds into a branch-and-bound algorithm for the QAP.

Recently, Jansen [27] has derived an analytical closed form solution to (3.2–3.3).
That solution is given by

δij(θ) = θλ
1− θ

1− θλ
γ(ai) +

θ(1− λ) + θλ2(1− θ)− θ2λ2(1− θ)

(1− θλ)(1− λ+ θλ)
γ(A)

− λθ(1− θ)

1− λ+ θλ
γ(a>j )− θaij .

Note that, as θ → 1, δij(θ) → γ(A) − aij , which is the constant column reduction
partitioning scheme. Experimentally, we have observed that the constant column
reduction partitioning scheme is more effective and is easier to implement than the
closed form solution.
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3.2. The new branch-and-bound algorithm for QAP. The exact algorithm
presented in this section uses the branch-and-bound technique described in section 2.
The terms solution and permutation are used interchangeably in the discussion. The
algorithm consists of three steps.

In the first step, an initial upper bound is computed and an initial branch-and-
bound search tree is set up. Our branch-and-bound tree is a forest of n binary trees
(not necessarily a complete binary tree). Each node of the tree has a left and a right
child. For the purpose of describing the branching process, let us denote (at any node
of the branch-and-bound tree) SA to be the set of assignments (of facilities to sites)
that are always fixed at any node of the subtree rooted at this node (including this
node) and SE to be the set of excluded assignments, i.e., the assignments that are
forever excluded in any node of the subtree rooted at the current node (including the
current node). The sets SA and SE completely describe a node of the branch-and-
bound tree. Let SlA, SlE and SrA, SrE be the corresponding sets for the left and right
children of the current node. Currently unexplored nodes of the branch-and-bound
tree are organized as a heap with a key that is equal to the lower bound on the solution
to the original QAP obtainable by any node in the subtree rooted at this node. The
heap is organized in maximum order; i.e., the node with the largest lower bound is
first.

The initial best known upper bound is computed by the GRASP heuristic de-
scribed in [33, 45]. Let P = (p1, p2, . . . , pn) denote the initial solution found by the
GRASP heuristic; i.e., pi is the site assigned to facility i in this solution. We use the
notation {i → s} to indicate that facility i is assigned to site s. The initial search
tree consists of a forest of n isolated nodes, where for i = 1, . . . , n, SA of node i is
{1 → pi}, SE = ∅, and all n nodes have a key of 0.

In the second step, the four procedures of the branch-and-bound algorithm, as
described in section 2, are used as follows:

• Selection. The selection procedure simply chooses the node at the root of the
heap, i.e., the node with the maximum key.

• Branching. The branching procedure creates two children, the left and the
right children, as follows: let i be the smallest index of a facility that is not in any
assignment of SA and s be the index of a site that is not in any assignment of SA,
such that the assignment {i→ s} is not in SE . Then,

SlA = SA ∪ {i→ s},
SlE = ∅,
SrA = SA,

SrE = SE ∪ {i→ s},

and the key of the right child is the same as the key of the current node and the key
of the left child is the newly computed lower bound.

• Elimination. The elimination procedure compares the newly computed lower
bound of the left child to the incumbent and deletes the left child if its key is greater
than the incumbent, thus pruning the entire subtree rooted at the left child.

• Termination test. The algorithm stops if and only if the heap is empty.
In the final step, a best permutation found is taken as the global optimal permu-

tation.
The binary search tree has many interesting properties. First, observe that SlE is

set to ∅. This is a consequence of the relationship between SA and SE at every node
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of the branch-and-bound tree (as enumerated below). The SlA implicitly captures the
excluded assignment in SlE and so SlE can be set to a ∅. Other interesting properties
are listed below. All these properties enable us to derive the result on the maximum
depth of the branch-and-bound tree and the maximum number of nodes in the branch-
and-bound tree.

We denote by L the level of the binary tree, counting the root of the branch-
and-bound tree as level 1. The following properties hold for the branch-and-bound
tree:

• For any node of the branch-and-bound tree, if SE 6= ∅ then all assignments
in SE have exactly one facility index, and that index is one larger than the largest
facility index in SA.

• All site indices in SA ∪ SE are distinct.
• For any node, |SA|+ |SE | ≤ n.
• A node i is a right-ancestor of node j if node i is in the path from node j to

the root of the branch-and-bound tree and i is the right child of its parent. This
definition considers node i to be a right-ancestor of itself (i = j in the definition) if i
is a right child. Let ri be the number of right-ancestors for node i. At any level L of
the branch-and-bound tree and for any node i the following relation holds:

|SA|+ ri = L.

• For any node i of the branch-and-bound tree, we have that ri ≤ n2.
• The maximum depth of the branch-and-bound tree is n2. This property gives

a bound of at most 2n
2

branch-and-bound nodes.

4. Efficient computation of the new lower bound. To implement the new
lower bound in the above branch-and-bound scheme, we exploit some properties of the
bound. At each node of the branch-and-bound tree, the matrix L must be computed
and the corresponding linear assignment problem solved.

At a particular node of the branch-and-bound tree, let n′ denote the number
of facilities already assigned to sites. Let q be the corresponding partial assignment
vector. Let SA and SB denote the index sets of already assigned facilities and sites,
respectively (corresponding to the partial assignment q). Note that |SA| = |SB | = n′.
At the current node, a QAP of reduced size n−n′ remains to be solved. Theorem 3.1
can be used to obtain a lower bound for the reduced problem.

Let n′′ = n−n′ be the size of the reduced problem, and let Ā and B̄ be the corre-
sponding flow and distance matrices for the reduced problem. Recall from Theorem
3.1 that for i, j = 1, . . . , n′′, the element lij of L is given by

lij = min
p∈Π,p(i)=j

n′′∑
k=1

ā
(1)
ik b̄

(1)
jp(k) +

n′′∑
k=1

ā
(2)
ki b̄p(k)j(4.1)

+
n′′∑
k=1

ākib̄
(2)
p(k)j −

n′′∑
k=1

ā
(2)
ki b̄

(2)
p(k)j .

Equivalently, lij can be written as

lij = ā
(1)
ii b̄

(1)
jj + ā

(2)
ii b̄jj + āiib̄

(2)
jj − ā

(2)
ii b̄

(2)
jj(4.2)

+ min
p∈Π


n′′∑

k=1,k 6=i
ā
(1)
ik b̄

(1)
jp(k) +

n′′∑
k=1,k 6=i

ā
(2)
ki b̄p(k)j
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+
n′′∑

k=1,k 6=i
ākib̄

(2)
p(k)j −

n′′∑
k=1,k 6=i

ā
(2)
ki b̄

(2)
p(k)j

 .

The minimization problem in (4.2) can be solved by using minimal products [43].
In order to prune the entire branch-and-bound tree rooted at this particular node,

it is desirable to obtain a lower bound on any solution of the original problem with the
restriction of fixed q, i.e., any solution obtainable from the branch-and-bound subtree
rooted at the current node. If such a lower bound is available and is larger than the
incumbent, then one can fathom the branch-and-bound subtree rooted at the current
node. Let us call such a lower bound lb(q, SA, SB). Observe that lb(q, SA, SB) is not
necessarily a lower bound for the original problem. Since a partial assignment q exists
at this node, it can be advantageously combined with the lower bound available for
the reduced problem (Theorem 3.1) to obtain lb(q, SA, SB).

l′ij = lij +
∑
k∈SA

aikbjq(k) +
∑
k∈SA

akibq(k)j .(4.3)

Let lb∗ be the optimal solution to the linear assignment problem with costs l′ij .
lb(q, SA, SB) is defined by

lb(q, SA, SB) = lb∗ +
∑
k∈SA

akmbq(k)q(m) + amkbq(m)q(k).(4.4)

Theorem 4.1. lb(q, SA, SB) is a lower bound on any solution obtained from the
nodes of the branch-and-bound subtree rooted at the current node.

The proof of this theorem follows along the same lines of the proof of Theorem 3.1
given in [32].

The following lemmas, whose proofs follow from the above discussion, characterize
the properties of lb(q, SA, SB) that are useful in the implementation.

Lemma 4.1. A node of the branch-and-bound tree is uniquely determined by its
descriptor, the tuple (q, SA, SB).

Lemma 4.2. The matrix L of the reduced subproblem is uniquely determined by
SA and SB ; i.e., two branch-and-bound nodes having the same SA and SB will have
identical matrix L.

Lemma 4.3. In the complete branch-and-bound tree, there are n′! nodes whose
descriptor has identical index sets SA and SB.

Note that for all n′! branch-and-bound nodes, the values L are identical. The
implementation of the branch-and-bound algorithm exploits this key property. To do
this, we first need a definition. Define the signature of a node in a branch-and-bound
tree to be a function of SA and SB of that corresponding node. As the branch-and-
bound tree is traversed, the signature of each node is computed. In our implementa-
tion the signature is given by

σ(SA, SB) = 2n ·
∑
i∈SA

2i−1 +
∑
j∈SB

2j−1,

i.e., a binary positional representation, where n is the dimension of the original QAP.
With this signature we achieve uniqueness, in the sense that for every pair SA and SB
there corresponds one, and only one, signature σ(SA, SB). This is computationally
efficient, since it avoids collisions in the hash table. However, note that uniqueness is
not necessary.
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A hash table [2, 15] is a data structure for implementing dictionaries (dynamic
sets with the operations of insert, delete, and search). The expected time to search an
element in a hash table is O(1), which makes hash tables a computationally effective
data structure.

If the signature of this node does not match the signature of any previously
examined node, the matrix L of that node is computed and saved in a hash table.
Otherwise, the computation of L is unnecessary, since its values can be retrieved from
the hash table.

The use of signatures and the hash table, as prescribed above, does not avoid
having to solve a linear assignment problem at each node. Nevertheless, it reduces
substantially the bulk of the work of computing the entries of L.

The computational effort can further be reduced in case L needs to be computed.
Observe that the critical computations are the minimal products. Since we use a
constant column reduction scheme, we first determine the partitions Ā1, Ā2 and B̄1,
B̄2. The columns of Ā, B̄, Ā2, B̄2, Ā

>
1 , B̄>1 need to be sorted. Sorting dominates

the computational effort at each step of the minimal product computation. Note
that since Ā2 and B̄2 have constant columns, there is no need to sort all of the
columns of Ā2 and B̄2. Furthermore, observe that since the columns of Ā and B̄
are subvectors of the columns of the original A and B matrices, one can presort
the original columns once and store the permutation vectors to be retrieved when
the sorted columns of Ā and B̄ (of the current node) are needed. We make use of
two arrays of pointers for each matrix. Array of type invf(j) points to the column
number of the original matrix of column j is a subvector. Array of type preperm(i,k)
is the position of the ith element in the kth column in the sorted sequence. Collapsing
the retrieved permutation vectors obviates the need for sorting the columns of Ā and
B̄. Unfortunately, we still are required to sort the columns of matrices Ā1 and B̄1 at
each node. This is done with QuickSort [2]. Thus, the complexity of computing of
entries of L is bounded by O(n′′2 logn′′).

5. Computational results. In this section, we present experimental results
comparing the variance reduction-based branch-and-bound algorithm with a branch-
and-bound algorithm that differs only in the way the lower bounds are computed. The
former algorithm uses the LB2(1.0) variant of the new variance reduction bound, while
the latter algorithm uses the Gilmore–Lawler lower bound without reduction. This
differs from some other implementations [8, 47] of Gilmore–Lawler-based branch-and-
bound algorithms where reductions are carried out. The linear assignment problems
that need to be solved to compute both lower bounds are solved with the implementa-
tion of the auction algorithm [5]. Both algorithms use a GRASP heuristic to compute
the initial upper bound. The GRASP was run for 100 iterations on each problem
instance.

Two sets of test problems are used in the experiments. The first set is taken
from the collection of test problems QAPLIB [9]. The second is a new class of test
problems, called corner, designed to show effectiveness of the new lower bound on
problems with high data variance. The instances in this model have names of the
form rpm-n-m, where n indicated the dimension of the QAP, and m is the random
seed used to generate the instance. The distance and flow matrices are generated as
follows. Four squares of size 5× 5 are placed in each corner of a 100× 100 square and
n points are uniformly generated in the small squares such that the number of points
in the squares does not differ by more than one. The entries in the distance and flow
matrices are the (truncated) Euclidean distances between the points. The instances



BRANCH-AND-BOUND ALGORITHM FOR QAP 289

Table 5.1

Problem characteristics–corner model.

A B Optimal sol’n
Name n σ σ/µ σ σ/µ Value Perm

rpm-7.1 7 47.03 0.64 46.90 0.64 209472 1
rpm-7.2 7 47.07 0.64 46.83 0.64 208822 1
rpm-7.3 7 47.35 0.63 47.05 0.63 212120 1
rpm-7.4 7 46.90 0.64 46.95 0.64 210140 1
rpm-7.5 7 46.57 0.64 47.18 0.64 209382 1
rpm-7.6 7 48.11 0.64 47.25 0.64 211810 2
rpm-7.7 7 47.33 0.64 47.03 0.64 208334 1
rpm-7.8 7 47.70 0.63 46.78 0.63 211252 1
rpm-7.9 7 47.23 0.64 46.99 0.64 210708 1
rpm-7.10 7 47.09 0.64 47.28 0.64 211808 1
rpm-9.1 9 48.70 0.63 48.95 0.63 382018 1
rpm-9.2 9 48.89 0.64 48.82 0.64 379976 1
rpm-9.3 9 49.04 0.63 48.55 0.63 383808 1
rpm-9.4 9 49.37 0.64 48.48 0.64 375596 1
rpm-9.5 9 48.96 0.64 49.15 0.64 383854 1
rpm-9.6 9 48.96 0.64 49.22 0.64 384638 1
rpm-9.7 9 49.05 0.63 48.96 0.63 383324 2
rpm-9.8 9 49.59 0.63 48.13 0.63 379664 1
rpm-9.9 9 49.26 0.64 49.42 0.64 386990 1
rpm-9.10 9 49.54 0.64 49.35 0.64 385426 1
rpm-11.1 11 52.18 0.65 51.21 0.65 635046 1
rpm-11.2 11 52.06 0.66 51.91 0.66 639678 2
rpm-11.3 11 52.17 0.66 51.56 0.66 638560 2
rpm-11.4 11 52.23 0.65 51.67 0.65 638064 1
rpm-11.5 11 51.36 0.66 51.91 0.66 633000 1
rpm-11.6 11 51.60 0.66 51.47 0.66 628034 1
rpm-11.7 11 51.79 0.66 51.92 0.66 632496 1
rpm-11.8 11 52.24 0.66 52.03 0.66 635824 2
rpm-11.9 11 51.70 0.66 50.62 0.66 618010 1
rpm-11.10 11 51.32 0.66 51.96 0.66 629016 1
rpm-13.1 13 51.29 0.68 50.87 0.68 831154 1
rpm-13.2 13 51.11 0.68 50.64 0.68 821550 1
rpm-13.3 13 51.63 0.68 51.69 0.68 844858 2
rpm-13.4 13 51.51 0.68 50.54 0.68 826696 2
rpm-13.5 13 50.94 0.68 51.41 0.68 824084 2

are available from QAPLIB.

Tables 5.1 and 5.2 summarize the data characteristics of the problems considered.
In each of these tables, we list the problem name, dimension (n), standard deviation
(σ) and coefficient of variability (σ/µ) of input matrices A and B, the value of the
optimal solution (Value), and the number of optimal permutations (Perm).

The experiments were conducted on a Silicon Graphics (SGI) Challenge (150 MHz
MIPS R4400 processor, 1526 Mbytes of main memory, 16 Kbytes of data cache, and
16 Kbytes of instruction cache). The algorithms were implemented in Fortran and
compiled with the f77 compiler using compiler flags -O2 -Olimit 800 and times were
measured with the system routine times.

An upper limit of 2 billion nodes in the search tree was imposed; i.e., all runs
that reached 2 billion nodes were terminated. We limit our report to only instances
solved within that range. There were no instances for which the algorithm using the
Gilmore–Lawler lower bound solved the problem while the one using the new lower
bound did not. On the other hand, on several instances, the algorithm with the
new lower bound proved optimality of the solution, while the one with the Gilmore–
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Table 5.2

Problem characteristics–QAPLIB.

A B Optimal sol’n
Name n σ σ/µ σ σ/µ Value Perm
chr12a 12 19.702 3.091 28.577 0.634 9552 2
chr12b 12 19.702 3.091 28.577 0.634 9742 1
chr12c 12 19.702 3.091 28.577 0.634 11156 5
chr15a 15 18.437 3.277 31.634 0.699 9896 16
chr15b 15 18.437 3.277 31.634 0.699 7990 5
chr15c 15 18.437 3.277 31.634 0.699 9504 16
esc08a 8 0.294 3.134 0.701 1.122 2 17280
esc08b 8 0.710 1.623 0.701 1.122 8 960
esc08c 8 2.343 1.388 0.701 1.122 32 48
esc08d 8 0.797 1.594 0.701 1.122 6 48
esc08e 8 0.487 2.226 0.701 1.122 2 1344
esc08f 8 1.052 1.295 0.701 1.122 18 96
esc16a 16 0.652 1.704 0.901 0.848 68 13271040
esc16c 16 1.146 1.334 0.901 0.848 160 2064384
esc16e 16 0.526 2.495 0.901 0.848 28 30965760
esc16g 16 0.577 2.546 0.901 0.848 26 46448640
esc16i 16 0.557 2.969 0.901 0.848 14 710277120
lipa10a 10 0.522 0.580 2.753 0.525 473 1
lipa10b 10 3.153 0.713 2.753 0.525 2008 1
lipa20a 20 0.617 0.325 4.498 0.456 7366 22
lipa20b 20 11.788 0.688 4.498 0.456 54152 1
nug05 5 0.891 0.696 1.943 1.104 50 5
nug06 6 0.903 0.650 2.619 1.309 86 4
nug07 7 1.055 0.646 2.418 1.118 148 3
nug08 8 1.098 0.628 3.095 1.286 214 4
nug12 12 1.221 0.571 2.827 1.170 578 4
nug15 15 1.411 0.567 2.817 1.067 1150 6
rou10 10 32.806 0.693 30.696 0.714 174220 1
rou12 12 31.317 0.673 30.301 0.718 235528 3
rou15 15 30.613 0.689 30.263 0.692 354210 6
scr10 10 515.207 2.346 1.214 0.601 26992 1
scr12 12 455.316 2.574 1.221 0.571 31410 8
scr15 15 434.694 2.483 1.331 0.550 51140 2

Lawler lower bound scanned the maximum number of search nodes without verifying
optimality.

Tables 5.3 and 5.4 summarize the experimental results on the two sets of test
problems. All CPU times are given in seconds. For each instance, the tables list CPU
time required by the GRASP and the initial upper bound obtained, and for each of
the branch-and-bound algorithms (BB/NLB = branch-and-bound algorithms using
the new lower bound, BB/GLB = branch-and-bound algorithm using the Gilmore–
Lawler lower bound), the CPU time and number of search tree nodes processed.

We make the following remarks regarding the experiments.

• On all test problems having high data variance in the A and B matrices, the
algorithm with the new lower bound consistently dominated the one with the Gilmore–
Lawler lower bound. This becomes more evident with the increase in problem size.
In the class of largest problem dimension, the code with the Gilmore–Lawler lower
bound processed on average 1.8 times the number of nodes processed by the code with
the new lower bound, while taking on average 1.4 times the CPU time. See Table 5.3
for details.
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Table 5.3

Run statistics–Corner model.

GRASP BB/NLB BB/GLB
Name Time Up bnd Time Nodes Time Nodes

rpm-7.1 0.07 209472 0.2 885 0.2 1936
rpm-7.2 0.08 208822 0.2 1228 0.2 2031
rpm-7.3 0.08 212120 0.2 1221 0.2 2133
rpm-7.4 0.08 210140 0.2 1302 0.3 2067
rpm-7.5 0.08 209382 0.2 1372 0.2 2066
rpm-7.6 0.07 211810 0.2 1590 0.2 2010
rpm-7.7 0.07 208334 0.2 1279 0.2 2061
rpm-7.8 0.07 211252 0.2 1175 0.2 2136
rpm-7.9 0.08 210708 0.2 1237 0.2 2094
rpm-7.10 0.07 211808 0.2 1236 0.2 2067
rpm-9.1 0.19 382018 3.1 28288 5.0 54724
rpm-9.2 0.16 379976 3.8 35825 6.7 79991
rpm-9.3 0.18 383808 3.1 27705 6.2 68445
rpm-9.4 0.17 375596 2.8 23856 4.2 49064
rpm-9.5 0.20 383854 3.0 25958 5.0 54282
rpm-9.6 0.17 384638 2.9 28790 4.6 43366
rpm-9.7 0.18 383324 2.3 20965 3.7 41759
rpm-9.8 0.17 379664 3.3 31171 6.3 73613
rpm-9.9 0.17 386990 2.3 20218 3.5 39851
rpm-9.10 0.16 385426 2.5 23205 4.2 48824
rpm-11.1 0.37 635046 636.1 5207959 1206.6 7788836
rpm-11.2 0.36 639678 750.9 5488210 974.3 9895900
rpm-11.3 0.35 638560 471.0 3835941 841.6 8712916
rpm-11.4 0.40 638064 452.0 3649701 828.0 8412364
rpm-11.5 0.40 633000 622.8 5271786 781.7 8018040
rpm-11.6 0.34 628034 502.7 4165664 854.8 8779899
rpm-11.7 0.35 632496 682.6 5789411 941.3 10195879
rpm-11.8 0.37 635824 424.1 3367356 822.9 8327159
rpm-11.9 0.43 618010 400.4 3109865 774.9 7656470
rpm-11.10 0.36 629016 612.7 5070997 943.2 9814496
rpm-13.1 0.66 831154 104141.3 662260712 151791.3 1270116829
rpm-13.2 0.67 821550 100907.4 606049824 117561.9 902560201
rpm-13.3 0.67 844858 44756.9 261310480 83343.2 597555186
rpm-13.4 0.71 826696 94319.0 611865352 133840.2 1164849566
rpm-13.5 0.67 824084 94712.6 609694622 126023.5 1054197091

• For the QAPLIB problems, there was a single class having high data variance
in both the A and B matrices: rou. For that class, the code with the new lower
bound also dominated the one using the Gilmore–Lawler lower bound. See Table 5.4
for details.

• Several previously unsolved problems from the QAPLIB were solved to optimal-
ity. These were problems esc16a, esc16c, esc16e, esc16g and esc16i of dimension
n = 16 and problems lipa20a and lipa20b of dimension n = 20 [34]. Problems
esc16c, esc16i, lipa20a, and lipa20b were not solved with the code that uses the
Gilmore–Lawler lower bound within the limit of 2 billion search tree nodes.

• For the corner model of test problems, the GRASP heuristic found an optimal
permutation on all instances. On the QAPLIB suite of problems, the GRASP heuristic
found optimal permutation on 23 of the 33 instances solved. This indicates that
verification of optimality is the most expensive part of exact algorithms for the QAP.

6. Concluding remarks. In this paper, we presented implementation details
and computational results of a new branch-and-bound algorithm for solving the QAP.
The algorithm incorporates a new lower bound based on variance reduction techniques
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Table 5.4

Run statistics–QAPLIB.

grasp BB/NLB BB/GLB
Name Time Up bnd Time Nodes Time Nodes
chr12a 0.45 9916 12.2 36050 0.7 672
chr12b 0.47 9742 3.8 8586 0.6 318
chr12c 0.45 11894 14.7 55845 1.5 3214
chr15a 1.00 11090 594.0 1415685 235.5 413825
chr15b 1.01 9096 93.5 168900 217.8 396255
chr15c 0.98 11366 465.7 1146109 240.0 428722
esc08a 0.07 2 7.3 57464 7.0 57464
esc08b 0.08 8 1.1 6968 0.7 7352
esc08c 0.09 32 0.3 1580 0.3 2552
esc08d 0.08 6 0.3 1448 0.3 2216
esc08e 0.08 2 1.1 10376 1.0 10376
esc08f 0.08 18 0.3 1616 0.3 1520
esc16a 1.01 68 15786.8 58018200 15216.0 60244656
esc16c 1.01 160 133372.4 428754386 - -
esc16e 0.95 28 18013.8 97558848 14811.1 99030192
esc16g 1.05 26 17844.9 127106352 14542.3 132664368
esc16i 0.98 14 265900.8 1932419536 - -
lipa10a 0.22 473 0.3 90 0.3 181
lipa10b 0.23 2008 0.3 126 0.3 126
lipa20a 2.56 7506 3182.8 2772772 - -
lipa20b 2.73 74152 486.0 551 - -
nug05 0.02 52 0.0 44 0.0 44
nug06 0.04 86 0.1 86 0.1 82
nug07 0.06 148 0.1 127 0.1 115
nug08 0.10 214 0.3 980 0.2 895
nug12 0.40 578 15.7 52626 14.6 49063
nug15 0.97 1152 1012.3 2106172 912.4 1794507
rou10 0.22 174220 0.7 1529 0.8 2683
rou12 0.50 235852 6.5 16309 12.3 37982
rou15 0.96 362518 1276.8 2805138 2240.3 4846805
scr10 0.25 26992 2.9 16162 0.6 1494
scr12 0.46 31410 104.4 408048 4.8 12918
scr15 1.01 51140 2269.3 5609533 274.7 506360

and uses a GRASP heuristic to produce the initial upper bound. The algorithm
computes all optimal permutations of the QAP.

The algorithm was compared with an implementation using the Gilmore–Lawler
lower bound and was found to perform better in problems having high data variance
in the A and B input matrices. The new algorithm produced optimal solutions for
several previously unsolved instances from the QAPLIB.

The data structures incorporated in the branch-and-bound codes can be use-
ful in other branch-and-bound approaches for solving QAPs. The algorithm can be
implemented in parallel to reduce running time requirements [41, 42]. Finally, the
branch-and-bound scheme proposed in this paper can be implemented with other
lower bounds, such as the linear programming based lower bounds [1, 46] and lower
bounds based on eigenvalues [24, 44].

Acknowledgment. The authors would like to thank the anonymous referees for
extensive comments that substantially improved the readability of the paper.
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Abstract. Let K be a regular convex cone in Rn and let F (x) be its universal barrier function.
Let DkF (x)[h, . . . , h] be the kth order directional derivative at the point x ∈ K0 and direction
h ∈ Rn. We show that for every m ≥ 3 there exists a constant c(m) > 0 depending only on m such
that |DmF (x)[h, . . . , h]| ≤ c(m)D2F (x)[h, h]m/2. For m = 3, this is the self-concordance inequality
of Nesterov and Nemirovskii. Our proof uses a powerful recent result of Bourgain.
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1. Introduction. Interior point methods have occupied a prominent place in
continuous optimization ever since Karmarkar [7] introduced his polynomial-time
projective algorithm for linear programming in 1984. Although much of the early
activities were in linear programming and monotone linear complementarity prob-
lems, Nesterov and Nemirovskii [11] have successfully developed a theory of interior
point methods for general nonlinear convex programming problems and monotone
variational inequalities. One of the key ideas of this theory is the notion of a self-
concordant barrier function for a convex set.

We recall some relevant concepts from [11]. Let Q ⊆ Rn be an open convex set.
A function F : Q→ R is called a self-concordant barrier function if it is at least three
times differentiable, convex, and satisfies the properties

|D3F (x)[h, h, h]| ≤ 2(D2F (x)[h, h])3/2,(1)

|DF (x)[h]|2 ≤ ϑD2F (x)[h, h],(2)

and

F (x)→∞ as x→ ∂Q.

Here DkF (x)[h, . . . , h] is the kth directional of F at x along the direction h ∈ Rn,
and the constant ϑ is called the parameter of the barrier function. The parameter ϑ
determines, in theory, the speed of the underlying interior point method.

Let K ⊆ Rn be a regular cone, that is, a convex cone containing no lines and
having a nonempty interior. (There is no essential loss of generality in restricting
attention to regular cones.) A function F satisfying (1) is called a ϑ-logarithmically
homogeneous barrier for K if it is a barrier function for K (that is, F (x) → ∞ as
x→ ∂K) and satisfies the property

F (tx) = F (x)− ϑ log t.(3)
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That is, the function ϕ(x) = eF (x) is −ϑ homogeneous; ϕ(tx) = ϕ(x)/tϑ. The function
F is called a ϑ-normal barrier for K if it is ϑ-logarithmically homogeneous. It is well
known that (3) implies (2) Nesterov and Nemirovskii [11, Proposition 5.1.4] show that
any self-concordant barrier function on a convex set with nonempty interior can be
extended to a logarithmically homogeneous self-concordant barrier function on the
cone K(Q) fitted to Q (conic hull in the terminology of [11]). This is the cone

K(Q) := {(tx, t) : x ∈ Q, t ≥ 0}.

One of the most important theoretical results in Nesterov and Nemirovskii [11]
is the existence of a self-concordant barrier, called the universal barrier function, for
any open convex set Q ⊆ Rn. This function is logarithmically homogeneous if Q is a
regular cone. Nesterov and Nemirovskii define the universal barrier function for Q as

F (x) = log u(x); u(x) = voln(Q∗(x)) = |Q∗(x)|,

where voln stands for the n-dimensional Lebesgue measure and Q∗(x) is the polar set
of Q centered at x; that is,

Q∗(x) = ∩z∈Q{y ∈ Rn : 〈z − x, y〉 ≤ 1}.

We will use a somewhat different representation of the universal barrier function. It
is shown in [4] that the universal barrier can be written (up to an additive constant)
as the logarithm of the characteristic function ϕK(Q) of the cone K(Q) fitted to Q:

ϕK(Q)(x) =

∫
K(Q)∗

e−〈x,y〉dy,(4)

where

K(Q)∗ = ∩x∈K(Q){y : 〈x, y〉 ≥ 0}

is the dual cone of K(Q). The same formula (4) holds true if K ⊆ Rn is a regular
cone. Thus, for such a cone we have

F (x) = const + logϕ(x) = const + log

∫
K∗

e−〈x,y〉dy.

In this paper we will, without loss of any generality, restrict our attention to regular
cones and their universal barrier functions.

The existence of the universal barrier function is an important result since it
implies that one can, in theory, design an interior point method to solve any convex
programming problem in polynomial time. However, if one uses only the defining
properties of the self-concordant barrier functions (namely, the inequalities (1) and
(2)), then the resulting interior point methods are short-step methods that are not
likely to be efficient in practice. There have been recent efforts to obtain more efficient
long-step interior methods for special cones/barriers; see [13], [14], [12], and [5].

In this paper, we proceed towards the same goal but via a different direction.
We show that the universal barrier function for any regular cone enjoys properties
that may play a role towards designing long-step interior point methods. Our main
result, Theorem 4.1, states that for every m ≥ 3 there exists a constant c(m) > 0 that
depends only on m such that

|DmF (x)[h, h, . . . , h]| ≤ c(m)(D2F (x)[h, h])m/2.(5)
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If m = 3, this is just the self-concordance inequality (1). Our strategy to proving (5)
is similar to the one in Nesterov and Nemirovskii [11] in that we first try to express
the derivatives DmF (x)[h, . . . , h] in terms of the mean value and central moments
of a suitable random variable and then try to obtain inequalities between different
central moments. However, our method of obtaining these moment inequalities differs
from the one in [11]. Essentially, we replace the most difficult parts of the proof of
Theorem 2.5.1 in [11] (starting from 30 on p. 52) with, in our opinion, a more flexible
recent result of Bourgain [1]. In fact, once one has

|θ| ≤ O(1)σ

(see [11], p. 52), Bourgain’s theorem immediately implies (1).
For m = 4, the inequality (5) has been used in [6] in a line search procedure to

minimize a logarithmic barrier function along a given direction. Also, the inequality

|D4F (x)[h, h, . . . , h]| ≤ α(α+ 1)(D2F (x)[h, h]) ||h||2Q,x(6)

is used in [12] to devise some long-step interior point methods. We note that any
universal barrier satisfies (6), since

|D4F (x)[h, h, h, h]| ≤ c(4)D2F (x)[h, h]2 ≤ c(4)(1 + 3ϑ)2D2F (x)[h, h] · ||h||2K,x,(7)

where the first inequality follows from (5) and the second one follows from inequality
(2.3.9) in [11]. In general, we have c(4)(1 + 3ϑ)2 = O(n2) . However, in some cases
c(4) = O(n−2) so c(4)(1 + 3ϑ)2 = O(1); see the examples in [12]. It is then possible
to scale the universal barrier to obtain a barrier function with a smaller ϑ and still
satisfy the inequality (6) with a constant α = O(1) as (6) is scale invariant.

The paper is organized as follows. In section 2, we state and describe a powerful
recent result of Bourgain concerning the behavior of polynomials on convex bodies.
In section 3, we evaluate the directional derivatives of the universal barrier function
in a form suitable to prove (5). This section may be skipped at a first reading except
for the statement of Lemma 3.1. In section 4, we prove our main result (5).

2. Bourgain’s theorem. The following important result of Bourgain [1] in ge-
ometric functional analysis will be very useful for us.

Theorem 2.1. For every positive integer d and every p < ∞, there exists a
universal constant c(d, p) > 0 such that the following is true: if Q ⊆ Rn is a convex
body and f : Rn → R is a polynomial of degree d, then(∫

Q
|f(x)|pdx∫
Q
dx

)1/p

≤ c(d, p)
∫
Q
|f(x)|dx∫
Q
dx

.

Defining the uniform probability measure dP (x) = dx/|Q| on Q, Bourgain’s the-
orem becomes (∫

Q

|f(x)|pdP (x)

)1/p

≤ c(d, p)
∫
Q

|f(x)|dP (x).

Bourgain makes use of the so-called Knothe mapping that was first used by Knothe [8]
to prove the Brunn–Minkowski theorem. A special case of the theorem for d = 1 is
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proved earlier by Gromov and Milman [3] and is called a “concentration of measure”
phenomenon. The reason for the terminology can be explained as follows. Since

|f(x)|p =

∫ |f(x)|

0

ptp−1dt,

we have∫
Q

|f(x)|pdx = p

∫
Q

(∫ |f(x)|

0

tp−1dt

)
dx = p

∫
{(x,t):x∈Q,0≤t≤|f(x)|}

tp−1dxdt

= p

∫ ∞
0

tp−1voln({x ∈ Q : |f(x)| ≥ t})dt = p

∫ ∞
0

tp−1|Qt|dt,

where the second and third equalities follow from the Fubini theorem and

Qt := {x ∈ Q : |f(x)| ≥ t}.

Here |Qt| is the Lebesgue measure of Qt and is called the distribution function of f .
Assuming |Q| = 1 and

∫
Q
|f(x)| = 1, Bourgain proves his theorem by showing that

|Qt| decreases exponentially; that is,

|Qt| ≤ e−t
cd

for some absolute constant c > 0. Similar concentration of measure ideas are used by
Milman to prove the Dvoretzky theorem in geometric functional analysis; see [10].

3. Directional derivatives of the universal barrier function. Let K ⊆ Rn
be a regular cone. Fix a point x ∈ K0 and a direction h ∈ Rn. Define g(t) = ϕ(x+th),
and consider the function

h(t) := F (x+ th) = logϕ(x+ th) = log g(t) = f(g(t)),

where

f(s) = log s.

In this section, we will obtain expressions for the derivatives h(k)(t), k ≥ 1, that will
be useful for proving our main result (5). By definition,

h(m)(t) = DmF (x+ th)[h, . . . , h].

Since h is a composite function, its derivatives are given by the Faà di Bruno formula.
This has some combinatorial aspects and states that if f and g are any two functions
and h(t) = f(g(t)) their composition, then

h(m)(t)

m!
=
∑
λ

(
k

k1, k2, . . . , km

)
f (k)(g(t))

k!

(
g′(t)

1!

)k1 (g′′(t)
2!

)k2
. . .

(
g(m)(t)

m!

)km
;

(8)
see, for example, Comtet [2, p. 137], and Knuth [9, pp. 50 and 480–481]. Here k =
k1 + k2 + · · ·+ km, (

k

k1, k2, . . . , km

)
=

k!

k1! · · · km!
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is a multinomial coefficient, and λ = (1k1 , 2k2 , . . . ,mkm) is a partition of the number
m in which 1 occurs k1 times, 2 occurs k2 times, etc. Thus, ki ≥ 0 are integers
satisfying

m = k1 + 2k2 + · · ·+mkm,

and k is the number of parts in the partition λ.
We begin by evaluating the derivatives g(k)(t). We assume, without losing gen-

erality (because of logarithmic homogeneity), that ||x|| = 1. From equation (4), we
have

g(t) = ϕ(x+ th) =

∫
K∗

e−〈x,y〉e−t〈h,y〉dy =

∫ ∞
0

e−s
∫
{y∈K∗:〈x,y〉=s}

e−t〈h,y〉dy ds

= b1−n
∫ ∞

0

sn−1e−s
∫
{y∈K∗:〈x,y〉=b}

e−st〈h/b,y〉dy ds,

where the third equation follows from the coarea formula (see [4], Theorem 4.1), and
the last equation follows from the change of variables formula. Here, b > 0 is chosen
such that the set

Q := {y ∈ K∗ : 〈x, y〉 = b}

has volume 1; that is, voln−1(Q) = |Q| = 1.
Consider the uniform probability distribution on Q and let

α :=

∫
Q

〈h/b, y〉dy

be the mean value of the random variable 〈h/b, y〉 on Q. From the equation above for
g(t), we have

bn−1g(t) =

∫ ∞
0

sn−1e−s(1+tα)

(∫
Q

e−st(〈h/b,y〉−α)dy

)
ds,

and the inner integral can be expanded as∫
Q

e−st(〈h/b,y〉−α)dy =
∞∑
k=0

(−1)k

k!
sktk

∫
Q

(〈h/b, y〉 − α)kdy =
∞∑
k=0

(−1)k

k!
sktkµk,

where µk is the kth central moment of the random variable 〈h/b, y〉 on Q; that is,

µk :=

∫
Q

(〈h/b, y〉 − α)kdy.

Note that µ0 = 1 and µ1 = 0.
The above formulas give

bn−1g(t) =
∞∑
k=0

(−1)kµk
k!

tk
∫ ∞

0

sn+k−1e−s(1+tα)ds =
∞∑
k=0

(−1)kµk
k!

tk
(n+ k − 1)!

(1 + tα)n+k

=
(n− 1)!

(1 + tα)n

[
1 +

∞∑
k=1

(−1)k

(
n+ k − 1

k

)
µk

tk

(1 + tα)k

]
= (n− 1)!(1 + tα)−nv(t),
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where

v(t) := 1 +
∞∑
k=1

(−1)k

(
n+ k − 1

k

)
µkt

k(1 + tα)−k.

Applying (8) to the composite function f1(g1(t)) with f1(s) = s−k and g1(t) = 1+ tα,
we obtain

(1 + tα)−k =
∞∑
l=0

(−1)l

(
k + l − 1

l

)
αltl.

Therefore,

v(t) = 1 +

∞∑
k=1,l=0

(−1)k+l

(
k + l − 1

l

)(
n+ k − 1

k

)
µkα

ltk+l

= 1 +

∞∑
i=1

(−1)i

 i∑
j=1

(
i− 1

i− j

)(
n+ j − 1

j

)
µjα

i−j

 ti
:= 1 +

∞∑
i=1

(−1)icit
i = 1 +

∞∑
i=2

(−1)icit
i,

where ci is the expression within the square brackets, and the last equation follows
since µ1 = 0.

We are finally ready to calculate the derivatives h(m)(0). Since g(t) = b1−n(n −
1)!(1 + tα)−nv(t), defining

w(t) = log v(t)

results in

h(t) = const− n log(1 + αt) + w(t).

Since f(s) = log s, we have

f (k)(s)

k!
=

(−1)k−1

k

1

sk
.

Note that v(0) = 1, v(i)(0)/i! = (−1)ici, and m = k1 + 2k2 + · · ·+mkm. Using these
in (8) gives

w(m)(0)

m!
= (−1)m

∑
λ

(−1)k−1

k

(
k

k1, k2, . . . , km

)
ck11 ck22 · · · ckmm .

Since

d(m) log(1 + αt)

dtm
= (−1)m−1(m− 1)!αm(1 + αt)−m,

we obtain the following expression for the directional derivatives DmF (x)[h, . . . , h] =
h(m)(0).
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Lemma 3.1. Let K ⊆ Rn be a regular cone. Fix a point x ∈ K0 and a direction
h ∈ Rn. Let

Q = {y ∈ K∗ : 〈x, y〉 = b||x||}

be a cross section of the cone K∗ where b is chosen such that voln−1(Q) = 1. Consider
the uniform probability distribution and the random variable 〈h/(b||x||), y〉 on Q. Let
α and µj be the mean value and the jth central moment of this random variable.
Then, we have

(−1)m

m!
DmF (x)[h, . . . , h] =

1

m
nαm+

∑
λ

(−1)k−1

k

(
k

k2, k3, . . . , km

)
ck22 ck33 · · · ckmm ,

(9)
where the sum is over all partitions λ = (10, 2k2 , . . . ,mkm) of the number m,

ci =
i∑

j=2

(
i− 1

i− j

)(
n+ j − 1

j

)
µjα

i−j =
i∑

j=2

(
i− 1

i− j

)
1

j!
([n]jµj)α

i−j ,(10)

and

[n]j := n(n+ 1) · · · (n+ j − 1).

Proof. The preceding calculations prove the lemma for ||x|| = 1. The general case
follows since (3) implies that

DmF (tx)[th, . . . , th] = DmF (x)[h, . . . , h]

for any t > 0. Thus,

DmF (x)[h, . . . , h] = DmF (x/||x||)[h/||x||, . . . , h/||x||],

and the lemma is proved.

The first few directional derivatives easily can be calculated:

DF (x)[h] = −nα,
D2F (x)[h, h] = [n]2µ2 + nα2,(11)

D3F (x)[h, h, h] = −[n]3µ3 − 6[n]2µ2α− 2nα3,

D4F (x)[h, h, h, h] = [n]4µ4 − 3([n]2µ2)2 + 12[n]3µ3α+ 36[n]2µ2α
2 + 6nα4.

Remark. Our approach to calculating the directional derivativesDmF (x)[h, . . . , h]
is similar to the one in [11] in that we express them in terms of the mean value and
the central moments of a suitable random variable. Our first approach was to ex-
press DmF (x)[h, . . . , h] in terms of the mean value and usual moments of a random
variable and then to express these moments in terms of the central ones. This re-
sulted in a seemingly hard combinatorial problem, but our computer evaluations of
DmF (x)[h, . . . , h] up to m ≤ 8 led us to conjecture Lemma 3.1. The author thanks
his colleague Peter Matthews for suggesting that we first express gm(t) in terms of α
and µj .
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4. Self-concordance of the universal barrier function. In this section we
use Theorem 2.1 and Lemma 3.1 to prove our main result.

Theorem 4.1. Let K ⊆ Rn be a regular cone and F (x) its universal barrier.
Then for any m ≥ 3,

|DmF (x)[h, h, . . . , h]| ≤ c(m)(D2F (x)[h, h])m/2,

where c(m) is a constant that depends only on m.
Proof. The crucial ingredient of the proof is the fact that each term µk is cou-

pled with the term [n]k. Expanding the products of the terms ck in equation (9) of
Lemma 3.1 allows us to write

DmF (x)[h, . . . , h] =
∑
λ

dk1,k2,...,km([n]2µ2)k2 ([n]3µ3)k3 · · · ([n]mµm)kmαk1

+(−1)m(m− 1)!nαm,(12)

where the summation is taken over all partitions λ of the number m except the
partition λ = (1m, 20, . . . , 0) which corresponds to the term (−1)m(m− 1)!nαm, and
where the constants dk1,k2,...,km only depend on m.

We compare each term on the right-hand side of (12) with the terms of

D2F (x)[h, h]m = ([n]2µ2 + nα2)m;

see (11). First, comparing the last term in (12) with the term (nα2)m in ([n]2µ2 +
nα2)m shows that

|(m− 1)!nαm| ≤ O(1) (nα2)m/2 ≤ O(1)D2F (x)[h, h]m/2.

Theorem 2.1 applied with p = k/2 to the function

f(y) = (〈h/(b||x||), y〉 − α)2

on the set Q defined in Lemma 3.1 gives

|µk| =
∣∣∣∣∫
Q

(〈h/(b||x||), y〉 − α)kdy

∣∣∣∣ ≤ ∫
Q

|〈h/(b||x||), y〉 − α|kdy =

∫
Q

|f(y)|k/2dy

≤ c(k)

(∫
Q

|f(y)|dy
)k/2

= c(k)µ
k/2
2

for some constant c(k) depending only on k. Consequently, we have

|tk1,k2,...,km | :=
∣∣dk1,k2,...,km ([n]2µ2)k2 ([n]3µ3)k3 · · · ([n]mµm)kmαk1

∣∣
= O(nm−k1)µ

(m−k1)/2
2 |α|k1 .

Comparing tk1,k2,...,km with the term

D2F (x)[h, h]m ≥ ([n]2µ2)m−k1(nα2)k1 = O(n2m−k1)µm−k12 α2k1

in ([n]2µ2 + nα2)m shows that

(tk1,k2,...,km)2 = O(n2m−2k1)µm−k12 α2k1 ≤ O(n2m−k1)µm−k12 α2k1

≤ O(1)D2F (x)[h, h]m.

This proves the theorem.
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Abstract. A predictor–corrector algorithm is proposed for solving monotone linear complemen-
tarity problems (LCPs) from infeasible starting points. The algorithm terminates in O(nL) steps
either by finding a solution or by determining that the problem has no solution of norm less than a
given number. The complexity of the algorithm depends on the quality of the starting point. If the
problem is solvable and if a certain measure of feasibility at the starting point is small enough, then
the algorithm finds a solution in O(

√
nL) iterations. The algorithm requires two matrix factoriza-

tions and two backsolves per iteration. If the problem has a strictly complementary solution, then
the algorithm is quadratically convergent, and, therefore, its asymptotic efficiency index is

√
2.

Key words. linear complementarity problems, predictor–corrector, infeasible-interior-point al-
gorithm, polynomiality, superlinear convergence

AMS subject classifications. 90C05, 90C33, 49M35, 49M40, 65K05
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1. Introduction. The monotone linear complementarity problem (LCP) asks
for the determination of a vector pair (x, s) ∈ R2n which satisfies the conditions

s = Mx+ q, x ≥ 0, s ≥ 0, xT s = 0,(1.1)

where q ∈ Rn, and M ∈ Rn×n is positive semidefinite.

Most interior-point methods for linear programming have been successfully ex-
tended to this problem. They require that the starting points satisfy exactly the
equality constraints and are strictly positive; i.e., they lie in the interior of the re-
gion defined by the inequality constraints. All subsequent points generated by the
interior-point algorithm will have the same properties. However, it may be very dif-
ficult to obtain feasible starting points in practice. Moreover, there are problems for
which such points do not exist. In the latter category, we mention problems having
unbounded primal or dual optimal sets and, of course, problems that are infeasible to
start with. The existence of feasible interior starting points implies the existence of
a solution, and, therefore, interior-point algorithms cannot be used to detect whether
or not the problem is solvable.

Numerical experiments have shown that it is possible to obtain a good practical
performance by using starting points that lie in the interior of the region defined by the
inequality constraints but do not satisfy the equality constraints (cf. [3]). The points
generated by the algorithm will remain in the interior of the region defined by the
inequality constraints but will never exactly satisfy the equality constraints, although
the measure of “feasibility” as well as “optimality” will improve at each step. This
property is reflected in the name “infeasible-interior-point algorithm” which has been
suggested for such methods. For problems that have a solution, both optimality and

∗Received by the editors May 16, 1994; accepted for publication (in revised form) November 8,
1995. This work was supported in part by NSF grant DMS 9305760.

http://www.siam.org/journals/siopt/7-2/26782.html
†Department of Mathematics, The University of Iowa, Iowa City, IA 52242 (rsheng@math.uiowa.

edu, potra@math.uiowa.edu).
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feasibility can be achieved up to any desired accuracy. Moreover, infeasible-interior-
point methods can be used to detect whether the problem has solutions in a given
region (cf. [1]). For a recent survey of infeasible-interior-point algorithms for linear
programming (LP) and LCP, we refer the reader to [8].

In the above cited paper [8], the second author proposed a new extension of the
Mizuno–Todd–Ye algorithm [5] for solving monotone LCPs from infeasible starting
points. Its computational complexity depends on the quality of the starting point. If
the problem is solvable and if the starting points are large enough, then the algorithm
has O(nL)-iteration complexity. If a certain measure of feasibility at the starting
point is small enough, then the algorithm has O(

√
nL)-iteration complexity. At each

iteration, both “feasibility” and “optimality” are reduced exactly at the same rate.
The algorithm requires two matrix factorizations and, at most, three backsolves per
iteration. It is quadratically convergent for problems having a strictly complementary
solution. Therefore, its asymptotic index in the sense of Ostrowski [7] is

√
2. More-

over, the algorithm can be modified along the lines of the ideas of [1] so that it can
detect if the problem has solutions of norm less than a given constant. For problems
with integer data of length L we can theoretically take a constant of order O(2L),
and then the algorithm will detect in a finite number of steps whether or not the
problem is solvable. However, no polynomial complexity results have been obtained
for determining the solvability of the LCP by infeasible-interior-point methods. This
is in contrast with the situation in linear programming where Ye, Todd, and Mizuno
[13] used a homogeneous self-dual approach to show that solvability can be detected
in O(

√
nL) iterations, which improved the O(nL)-iteration complexity result from [4].

In the present paper, we propose a predictor–corrector algorithm having the same
convergence and complexity properties on solvable problems as the algorithm pro-
posed in [8], but our algorithm requires two factorizations and only two backsolves
per iteration. Moreover, the algorithm can detect nonexistence of a solution in O(nL)
iteration. More precisely, given a general monotone LCP, the algorithm terminates in
at most O(nL) steps either by finding a solution or by determining that the problem
is not solvable. If the problem is solvable and if a certain measure of feasibility at the
starting point is small enough, then the algorithm finds a solution in O(

√
nL) iter-

ations. If the problem has a strictly complementary solution, then the algorithm is
quadratically convergent. To our knowledge these are the best complexity results for
LCPs obtained so far in the literature. Mizuno, Kojima, and Todd [2] mentioned that
the O(nL) infeasible-interior-point algorithms for linear programming considered in
that paper can be generalized for LCPs, but the superlinear convergence of the result-
ing algorithms has not yet been established. The infeasible-interior-point algorithms
for LCP proposed by Zhang [14] and Wright [9, 10, 11] have only O(n2L)-iteration
complexity.

We note that the algorithm in [8] can also be modified so that it determines
whether or not the problem has a solution of norm less than a given number in at
most O(nL) iterations. The algorithm to be presented in this paper has the advantage
of using one backsolve less per iteration. However, while the algorithm in [8] improves
optimality and feasibility at exactly the same rate, the new algorithm improves them
“almost” at the same rate as shown in Theorem 2.4.

The notation used throughout the paper is rather standard: capital letters denote
matrices, lowercase letters denote vectors, script capital letters denote sets, and Greek
letters denote scalars. All vectors are considered column vectors. The components of
a vector u ∈ Rn will be denoted by [u]i (and when there is no danger of confusion
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by ui), i = 1, . . . , n. The relation u > 0 is equivalent to [u]i > 0, i = 1, . . . , n, while
u ≥ 0 means [u]i ≥ 0, i = 1, . . . , n. If u ∈ Rn, w ∈ Rm then (u,w) denotes the
column vector formed by the components of u and w, i.e., (u,w) ∈ Rn+m, [(u,w)]i =
[u]i for 1 ≤ i ≤ n, and [(u,w)]n+j = [w]j for 1 ≤ j ≤ m. We denote Rn+ =
{u ∈ Rn : u ≥ 0} , Rn++ = {u ∈ Rn : u > 0}. If u ∈ Rn then U := diag(u) denotes
the diagonal matrix having the components of u as diagonal entries. The most used
norm is the l2-norm, so we write ‖ · ‖ instead of ‖ · ‖2 both for vector norms and the
corresponding matrix norms ‖A‖ = max{‖Ax‖ : ‖x‖ = 1}. Whenever we need
other norms like ‖ · ‖1 or ‖ · ‖∞, we use the corresponding symbol. In particular, if
X = diag(x) then ‖X‖ = max{| xi | : i = 1, . . . , n} = ‖x‖∞ 6= ‖x‖ = (

∑n
i=1 x

2
i )

1/2.

2. The predictor–corrector algorithm. We denote the feasible set of the
problem (1.1) by

F = {(x, s) ∈ R2n
+ : s = Mx+ q}

and its solution set by

F∗ = {(x∗, s∗) ∈ F : x∗T s∗ = 0}.

It is easily seen that (x∗, s∗) ∈ F∗ if and only if (x∗, s∗) is the solution of the following
nonlinear system:

F (x, s) :=

(
Xs

Mx− s+ q

)
= 0.(2.1)

For any given ε > 0, we define the set of ε-approximate solutions of (1.1) as

Fε = {(x, s) ∈ R2n
+ : xT s ≤ ε, ‖Mx− s+ q‖ ≤ ε}.

In what follows, we will present an algorithm that finds a point in this set in a finite
number of steps, provided our problem has a solution (i.e., F∗ is not empty). The
algorithm depends on two parameters α, β satisfying the inequalities

β2

√
8(1− β)

≤ α < β < 1.(2.2)

For example, α = 0.25, β = 0.5 verify (2.2). The starting point of the algorithm can
be any pair of strictly positive vectors (x0, s0) ∈ R2n

++, that is, (α, τ)-centered in the
sense that it belongs to the following set:

Nα,τ = {(x, s) ∈ R2n
++ : ‖Xs− τe‖ ≤ ατ},

where τ > 0. Throughout this paper, we will denote µ = 1
nx

T s .
At a typical step of our algorithm, we are given a pair (x, s) ∈ Nα,τ and obtain a

predictor direction (u, v) by solving the linear system

Su+Xv = −Xs,(2.3a)

Mu− v = r,(2.3b)

where r is the residual r = s−Mx− q. Notice that this is just the Newton direction
for the nonlinear system (2.1), whose Jacobian

F ′(x, s) :=

(
S X
M −I

)
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is nonsingular whenever x > 0 and s > 0. If we take a steplength θ along this
direction, we obtain the points

x(θ) = x+ θu, s(θ) = s+ θv.

We define θ as the largest steplength for which

‖X(θ)s(θ)− (1− θ)τe‖ ≤ β(1− θ)τ for all 0 ≤ θ ≤ θ(2.4)

and consider the predicted pair

x = x+ θu, s = s+ θv.(2.5)

We will see later that these are strictly positive vectors. Therefore, the Jacobian
F ′(x, s) is nonsingular and we can define the corrector direction u, v as the solution
of the following linear system:

Su+Xv = (1− θ)τe−Xs,(2.6a)

Mu− v = 0.(2.6b)

By taking a unit steplength along the corrector direction, we obtain a new pair:

x+ = x+ u, s+ = s+ v.(2.7)

Clearly,

r+ = (1− θ)r.(2.8)

Correspondingly, we define

τ+ = (1− θ)τ.(2.9)

In order to have a well-defined algorithm, we will show that (x+, s+) ∈ Nα,τ+ so
that the above steps can be iterated with (x+, s+) and τ+ instead of (x, s) and τ .
In the proof we will use the following two technical lemmas. The first one is a slight
modification of Lemma 2.1 of [8], while the second one corresponds to Corollary 2.3
of [8].

Lemma 2.1. If (x, s) ∈ Nα,τ , then the largest number θ ∈ [0, 1] satisfying (2.4) is
given by

θ = 2/(1 +
√

1 + 4/ϕ1),(2.10)

ϕ1 = α0/(α1 +
√
α1

2 + α0δ2),(2.11)

δ = ‖g‖, α0 = β2 − ‖f‖2, α1 = fT g,

f =
1

τ
Xs− e, g =

1

τ
Uv,

where u, v is the solution of the linear system (2.3). Moreover, the pair (x, s) defined
by (2.5) satisfies

‖Xs− (1− θ)τe‖ = β(1− θ)τ, x > 0, s > 0.
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Lemma 2.2. Let x, s, a, b be four n-dimensional vectors with x > 0 and s > 0,
and let M ∈ Rn×n be a positive semidefinite matrix. Then the solution (u, v) of the
linear system

Su+Xv = a,

Mu− v = b

satisfies the following relations:

Du = (I + M̃)−1c̃, D−1v = ã−Du,
‖Du‖ ≤ ‖c̃‖,

‖Du‖2 + ‖D−1v‖2 ≤ ‖ã‖2 + 2‖b̃‖‖c̃‖,

‖Uv‖2 ≤ 1

8
‖ã‖4 +

1

2
‖b̃‖‖c̃‖(‖ã‖2 + 2‖b̃‖‖c̃‖),(2.12)

where

D = X−1/2S1/2, M̃ = D−1MD−1,(2.13a)

ã = (XS)−1/2a, b̃ = D−1b, c̃ = ã+ b̃.(2.13b)

Now we are ready to prove that the algorithm described in this section is well
defined. For ease of later reference, let us first formally define our algorithm.

Algorithm 2.3. Choose (x0, s0) ∈ Nα,τ0 with τ0 = (x0)T s0

n(1+α/
√
n)

= µ0

1+α/
√
n

and

set ψ0 = 1, ε > 0. For k = 0, 1, . . . , do A1 through A5:
A1 Set x = xk, s = sk, τ = τk and define µ = (xT s)/n, r = s −Mx − q,

ψ = ψk.
A2 If xT s ≤ ε, and ‖r‖ ≤ ε then report (x, s) ∈ Fε and terminate.
A3 Find the solution u, v of the linear system (2.3), define x, s as in (2.5), and

set ψ+ = (1− θ)ψ, where θ is given by (2.10).
A4 Find the solution u, v of the linear system (2.6) and define x+, s+, τ+ as in

(2.7) and (2.9).
A5 Set xk+1 = x+, sk+1 = s+, τk+1 = τ+, θk = θ, µk = µ, rk = r,

ψk+1 = ψ+.
Before stating our main result let us note that the standard choice of starting

points

x0 = ρpe, s0 = ρde, ρp, ρd ∈ R++

gives

τ0 =
µ0

1 + α/
√
n

=
ρpρd

1 + α/
√
n

and

‖X0s0 − τ0e‖ =
ρpρdα

1 + α/
√
n

= ατ0,(2.14)

which shows that (x0, s0) ∈ Nα,τ0 , as required in the algorithm.
Theorem 2.4. For any integer k ≥ 0, Algorithm 2.3 defines a pair

(xk, sk) ∈ Nα,τk ,(2.15)
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and the corresponding residuals satisfy

rk = ψkr
0, τk = ψkτ0,(2.16)

τk ≤ µk ≤ ψkµ0 = (1 + α/
√
n)τk,(2.17)

where

ψ0 = 1, ψk =
k−1∏
i=0

(1− θi).(2.18)

Proof. The proof is by induction. For k = 0, (2.15), (2.16), and (2.17) are clearly
satisfied. Suppose they are satisfied for some k ≥ 0. As in Algorithm 2.3 we will omit
the index k. Therefore, we can write

(x, s) ∈ Nα,τ , r = ψr0, τ = ψτ0, τ ≤ µ ≤ ψµ0.

The fact that (2.16) holds for k + 1 follows immediately from (2.8) and (2.9). From
(2.6) and (2.7) we have

X+s+ = (1− θ)τe+ Uv, µ+ =
1

n
(x+)T s+ = (1− θ)τ +

1

n
uT v.(2.19)

By using (2.6), (2.10), (2.19), and Lemma 2.2 with b = 0 and x, s instead of x, s, we
deduce that

‖Uv‖ ≤ 1√
8
‖(X S)−1‖‖Xs− (1− θ)τe‖2 ≤ β2(1− θ)τ√

8(1− β)
.(2.20)

On the other hand, by using (2.2), (2.19), and (2.20) we can write

‖X+s+ − τ+e‖ = ‖Uv‖ ≤ (1− θ)β2τ√
8(1− β)

≤ ατ+.(2.21)

The positivity of x+ and s+ is proved by contradiction. Suppose, for example, that
[x+]i ≤ 0 for some i. Since (2.21) implies [x+]i[s

+]i > 0, we must have [x+]i < 0 and
[s+]i < 0. It follows that [u]i < −[x]i and [v]i < −[s]i. By virtue of (2.7), we get

−[x]i[s]i < (1− θ)τ − [x]i[s]i = [s]i[u]i + [x]i[v]i < −2[x]i[s]i,

which is a contradiction. Hence, (2.15) is satisfied for k+1. Using (2.6b), the positive
semidefiniteness of M , and (2.21) it follows that

0 ≤ uT v ≤
√
n‖Uv‖ ≤

√
nατ+.

By substituting the above inequalities in (2.19) we obtain

τ+ ≤ µ+ ≤ (1− θ)τ(1 + α/
√
n) = τ+(1 + α/

√
n) = ψ+τ0(1 + α/

√
n) = ψ+µ0.

Hence, (2.17) is also satisfied and the proof of our theorem is complete.
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3. Global convergence and polynomial complexity. In what follows, we
assume that F∗ is nonempty. Under this assumption we will prove that Algorithm
2.3, with ε = 0, is globally convergent in the sense that if (2.15) is satisfied, then

lim
k→∞

µk = 0, lim
k→∞

rk = 0.

Lemma 3.1. If F∗ is nonempty, then the sequence (xk, sk) generated by Algorithm
2.3 satisfies

ψk((x0)T sk + (s0)Txk) ≤ (1 + α/
√
n)(2 + ζ)nτk, k = 0, 1, 2, . . . ,(3.1)

where

ζ = inf
{

((x0)T s∗ + (s0)Tx∗)/((x0)T s0) : (x∗, s∗) ∈ F∗
}
.(3.2)

Proof. Let (x∗, s∗) ∈ F∗ . By writing x, s, ψ for xk, sk, ψk, respectively, and by
using the fact that r = ψr0, we have

ψs0 + (1− ψ)s∗ − s = ψ(s0 − s∗)− (s− s∗)
= ψ(r0 +M(x0 − x∗))− (r +M(x− x∗)) = M(ψx0 + (1− ψ)x∗ − x).

Since M is positive semidefinite, we obtain

0 ≤ [ψx0 + (1− ψ)x∗ − x]T [ψs0 + (1− ψ)s∗ − s]
= ψ2nµ0 + ψ(1− ψ)((x0)T s∗ + (s0)Tx∗)

− ψ((x0)T s+ (s0)Tx) + xT s− (1− ψ)(sTx∗ + xT s∗) + (1− ψ)2(x∗)T s∗,(3.3)

and the desired inequality (3.1) follows by using the relations τ ≤ µ ≤ (1 + α/
√
n)τ ,

(x∗)T s∗ = 0, sTx∗ + xT s∗ ≥ 0.
From the above lemma and Lemma 2.2 we will derive a useful bound for the

quantities

δk = ‖Ukvk‖/τk, k ≥ 0,(3.4)

where (uk, vk) is obtained at step A3 of Algorithm 2.3. This bound is going to play
an important role in our analysis.

Lemma 3.2. Let (uk, vk) be obtained in the kth iteration at step A3 of Algorithm
2.3 and let δk be defined by (3.4). Then

δk ≤ δ∗ = n(1 + α/
√
n)
√
.125 + η(1 + η)(.5 + η(1 + η)),

where

η =
√
n(2 + ζ)‖(S0)−1r0‖∞

√
1 + α/

√
n

1− α ,

with ζ given by (3.2).
Proof. We omit the index k and apply Lemma 2.2 with a = −Xs and b = r. We

have immediately that

‖ã‖ = ‖(XS)1/2e‖ =
√
nµ ≤

√
(1 + α/

√
n)nτ.(3.5)
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In order to obtain a bound for ‖b̃‖, we write

‖b̃‖ = ‖D−1r‖ = ‖(XS)−1/2Xr‖ ≤ (1− α)−1/2τ−1/2‖Xr‖
≤ (1− α)−1/2τ−1/2‖Xr‖1 = ψ(1− α)−1/2τ−1/2‖Xr0‖1

= ψ(1− α)−1/2τ−1/2
n∑
i=1

[x]i[s
0]i|[r0]i|/[s0]i

≤ (1− α)−1/2τ−1/2‖(S0)−1r0‖∞ψ((s0)Tx).

Using Lemma 3.1 and the notation introduced in the statement of Lemma 3.2, we
obtain

‖b̃‖ ≤ η
√

(1 + α/
√
n)nτ,(3.6)

and by using the triangle inequality we get

‖c̃‖ ≤ (1 + η)

√
(1 + α/

√
n)nτ.(3.7)

Finally, the required inequality follows by substituting (3.5), (3.6), and (3.7) in equa-
tion (2.12).

By using the above lemma we can easily prove the following result.
Lemma 3.3. Let F∗ be nonempty and consider the notation introduced in

Lemma 3.2. Then the steplength θk of Algorithm 2.3 satisfies

θk ≥ θ∗ =
2

1 +
√

1 + 4δ∗/(β − α)
, k ≥ 0.(3.8)

Proof. According to (2.11), we have

1

ϕ1
≤
(
|α1|+

√
|α1|2 + α0δ2

)
/α0.

The right-hand side of the above inequality is increasing in |α1| and decreasing in α0,
so by using the obvious inequalities α0 ≥ β2 − α2 and |α1| ≤ ‖f‖‖g‖ ≤ αδ we obtain

1

ϕ1
≤ (αδ +

√
(αδ)2 + (β2 − α2)δ2)/(β2 − α2) = δ/(β − α).(3.9)

Then, (3.8) follows from Lemma 3.2 and (2.10).
With the help of the above lemma and Theorem 2.4 we can easily prove the main

result of this section, which basically states that Algorithm 2.3 is globally convergent
at a linear rate.

Theorem 3.4. Suppose that the solution set F∗ is nonempty.
(i) If ε = 0 then Algorithm 2.3 either finds an optimal solution z∗ ∈ F∗ in a finite

number of steps or produces an infinite sequence zk = (xk, sk) such that

lim
k→∞

(xk)T sk = 0, lim
k→∞

rk = 0.

(ii) If ε > 0 then Algorithm 2.3 terminates with a z ∈ Fε in at most

Kε =

⌈
| ln( εε0 )|
| ln(1− θ∗)|

⌉
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iterations, where ε0 = max{(x0)T s0, ‖r0‖} and dχe denotes the smallest integer greater
than or equal to χ.

From the above theorem we can obtain polynomial complexity under certain
assumptions on the starting point. First, we show that if the starting point is feasible,
or close to being feasible, then the algorithm has O(

√
n ln(ε/ε0))-iteration complexity.

Corollary 3.5. Assume that F∗ is nonempty and that the starting point is
chosen such that there is a constant κ independent of n satisfying the inequality

(2 + ζ)‖(S0)−1r0‖∞ ≤ n−1/2κ,

where ζ is defined by (3.2). Then Algorithm 2.3 terminates in at most

K̃ε = O(
√
n ln(ε0/ε))

iterations.
Most of the complexity results on infeasible-interior-point methods are obtained

for starting points of the form

x0 = ρpe, s0 = ρde,(3.10)

where ρp and ρd are sufficiently large positive constants (big M initialization). For
such starting points, as shown by (2.14), we have (x0, s0) ∈ Nα,τ0 , and

ζ = inf {‖x∗‖1/(nρp) + ‖s∗‖1/(nρd) : (x∗, s∗) ∈ F∗} ,

‖(S0)−1r0‖∞ ≤ 1 + (ρp/ρd)‖Me‖∞ + (1/ρd)‖q‖∞.

Therefore, if ρp and ρd satisfy the inequalities

ρp ≥ n−1‖x∗‖1,(3.11)

ρd ≥ max{ρp‖Me‖∞, ‖q‖∞, n−1‖s∗‖1}(3.12)

for some (x∗, s∗) ∈ F∗, then η < 36
√
n, and we obtain the following complexity result.

Corollary 3.6. Assume that F∗ is nonempty and that the starting point
is chosen from the form (3.10) such that (3.11) and (3.12) are satisfied for some
(x∗, s∗) ∈ F∗. Then, Algorithm 2.3 terminates in at most

K̃ε = O(n ln(ε0/ε))

iterations.
All the above results have been proved under the assumption that F∗ is nonempty.

It turns out that Algorithm 2.3 can be modified in such a way that it can detect within
polynomial time whether F∗ contains points of norm less than a quantity chosen in
advance. Let ρp and ρd be such quantities and define

ζ = (‖x0‖ρd + ‖s0‖ρp)/((x0)T s0),

η =
√
n(2 + ζ)‖(S0)−1r0‖∞

√
1 + α/

√
n

1− α ,(3.13)
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δ∗ = n(1 + α/
√
n)
√
.125 + η(1 + η)(.5 + η(1 + η)),

θ∗ = 2/

(
1 +

√
1 + 4δ∗/(β − α)

)
.

Now we can prove the following theorem.
Theorem 3.7. Suppose that the instruction “A2.5 If

(x0)T sk + (s0)Txk > (x0)T s0τk/τ0 + (xk)T skτ0/τk + (1− τk/τ0)(ρd‖x0‖+ ρp‖s0‖)

then terminate” is inserted in between instructions A2 and A3 of Algorithm 2.3. Then,
the new algorithm terminates either at A2 with z ∈ Fε or at A2.5, both in at most

Kε =

⌈
| ln(ε/ε0)|
| ln(1− θ∗)|

⌉
iterations, and in the latter case there is no z∗ = (x∗, s∗) ∈ F∗ such that ‖x∗‖ ≤ ρp,
‖s∗‖ ≤ ρd.

Proof. Suppose that the inequality

(x0)T sk + (s0)Txk(3.14)

≤ (x0)T s0τk/τ0 + (xk)T skτ0/τk + (1− τk/τ0)(ρd‖x0‖+ ρp‖s0‖)

holds for all 0 ≤ k ≤ Kε. Then we have

ψk((x0)T sk + (s0)Txk) ≤ (1 + α/
√
n)(2 + ζ)nτk, 0 ≤ k ≤ Kε.(3.15)

With the help of (3.15), we can prove, as in Lemma 3.2, that δk ≤ δ∗. Hence,

θk ≥ θ∗ for all 0 ≤ k ≤ Kε, which implies (xKε , sKε) ∈ Fε.
On the other hand, if there exists (x∗, s∗) ∈ F∗ such that ‖x∗‖ ≤ ρp, ‖s∗‖ ≤ ρd,

then by (3.3), (3.14) must hold for all k ≥ 0. Hence, if (3.14) is violated for some
k ≤ Kε, then there is no (x∗, s∗) ∈ F∗ such that ‖x∗‖ ≤ ρp, ‖s∗‖ ≤ ρd. This
completes the proof of our theorem.

From the above theorem we can obtain polynomial complexity for our new algo-
rithm under certain assumptions on the starting point. Let us choose

x0 = ρ̂pe, s0 = ρ̂de,(3.16)

where

ρ̂p ≥ ρp/
√
n,(3.17)

ρ̂d ≥ max{ρ̂p‖Me‖∞, ‖q‖∞, ρd/
√
n}.(3.18)

Then we obtain

ζ ≤ 2,(3.19)

‖(S0)−1r0‖∞ ≤ 1 + (ρ̂p/ρ̂d)‖Me‖∞ + (1/ρ̂d)‖q‖∞ ≤ 3.(3.20)
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From (3.13), (3.19), and (3.20), it follows that η < 36
√
n. Hence, we have the following

complexity result.
Corollary 3.8. Suppose that the instruction “A2.5 If

(x0)T sk + (s0)Txk > (x0)T s0τk/τ0 + (xk)T skτ0/τk + (1− τk/τ0)(ρd‖x0‖+ ρp‖s0‖)

then terminate” is inserted in between instructions A2 and A3 of Algorithm 2.3 and
that the starting point is chosen from the form (3.16) such that (3.17) and (3.18) are
satisfied. Then, the new algorithm terminates either at A2 with z ∈ Fε or at A2.5,
both in at most

K̂ε = O(n ln(ε0/ε))

iterations, and in the latter case there is no z∗ = (x∗, s∗) ∈ F∗ such that ‖x∗‖ ≤ ρp,
‖s∗‖ ≤ ρd.

4. Quadratic convergence. In the previous section, we proved that Algorithm
2.3 is globally Q-linearly convergent under very general assumptions. Polynomial
complexity was obtained under some additional assumptions on the starting points. In
the present section, we will study the asymptotic convergence properties of Algorithm
2.3 in case (1.1) has a strictly complementary solution. Let us denote by Fc the set
of all such solutions, i.e.,

Fc = {(x, s) ∈ F∗ : [x]i + [s]i > 0, i = 1, 2, . . . , n} .

It is well known that there is a unique partition

B ∪ N = {1, 2, . . . , n}, B ∩ N = ∅

such that for any (x, s) ∈ Fc, we have [x]i > 0, [s]i = 0 for all i ∈ B and [x]i =
0, [s]i > 0 for all i ∈ N . This means that the “basic” and “nonbasic” variables
are invariant for any strictly complementary solution. We denote the corresponding
partition of M by

M =

(
MBB MBN

MNB MNN

)
.

Also, for any vector y ∈ Rn, we denote by yB the vector of components [y]i, i ∈ B and
by yN the vector of components [y]i, i ∈ N . In the next lemma we show that all of
the components of the vectors xB and sN are bounded from below.

Lemma 4.1. Let (x∗, s∗) ∈ Fc and denote

ξ∗p = min {[x∗]i : i ∈ B} , ξ∗d = min {[s∗]i : i ∈ N} , ξ∗ = min
{
ξ∗p , ξ

∗
d

}
,

ξ̂ =
(1− α)ξ∗

n(1 + α)2((2− θ0)/θ0 + ζ∗)
,

where

ζ∗ = ((x0)T s∗ + (s0)Tx∗)/((x0)T s0).

Then the points xk, sk generated by Algorithm 2.3 satisfy the inequality

xkB ≥ ξ̂e, skN ≥ ξ̂e, k ≥ 1.(4.1)
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Proof. We drop the index k and use the notation from the proof of Lemma 3.1.
According to (3.3), (2.16), and (2.18), we have

sTx∗ + xT s∗ ≤ ψ2

1− ψnµ0 + ψ((x0)T s∗ + (s0)Tx∗) +
xT s

1− ψ

≤ (1 + α)ψ

(
1 + ψ

1− ψ + ζ∗
)
nτ0

≤ (1 + α)

(
1 + ψ1

1− ψ1
+ ζ∗

)
xT s ≤ (1 + α)((2− θ0)/θ0 + ζ∗)xT s

≡ ω̂xT s,

but then ∑
i∈B

[x∗]i[s]i +
∑
i∈N

[s∗]i[x]i ≤ ω̂xT s.

Because (x, s) ∈ Nα,τ , it follows that

[x∗]i
[x]i

(1− α)τ <
[x∗]i
[x]i

[x]i[s]i = [x∗]i[s]i ≤ ω̂xT s ≤ ω̂(1 + α)nτ for all i ∈ B.

Hence,

[x]i ≥
(1− α)[x∗]i
(1 + α)nω̂

≥
(1− α)ξ∗p
(1 + α)nω̂

≥ ξ̂ for all i ∈ B,

which proves the first inequality in (4.1). The second inequality can be proved in a
similar manner.

In order to prove quadratic convergence, we will show that the predictor direction
of Algorithm 2.3 satisfies uk = O(τk), vk = O(τk). In the proof we will use the
following two technical lemmas. The first one is a particular case of Lemma 5.2 of
Wright [10] and was first given in the feasible case by Ye and Anstreicher [12]. The
second one is a particular case of Lemma 2.2 of Monteiro and Wright [6].

Lemma 4.2. If u, v is the solution of the linear system (2.3), then the vector pair
(uB , vN ) solves the convex quadratic program

min
(w,z)

1

2
‖DBw‖2 +

1

2
‖D−1

N z‖2

subject to

MBBw = rB −MBNuN + vB ,

MNBw − z = rN −MNNuN .

Lemma 4.3. For any matrix H ∈ Rp×q, there exists a nonnegative constant
λ = λ(H) with the property that for any diagonal matrix T > 0 and any vector
h ∈ Range(H), the (unique) optimal solution w = w(H,T, h) of

min
w

1

2
‖Tw‖2 , subject to Hw = h,

satisfies

‖w‖∞ ≤ λ ‖h‖∞.
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The proof of the main result of this section is based on the following lemma.
Lemma 4.4. There is a constant σ independent of k such that if uk, vk are the

vectors produced in substep A3 of Algorithm 2.3, then

‖uk‖ ≤ στk, ‖vk‖ ≤ στk, k ≥ 0.(4.2)

Proof. For simplicity, we again drop the index k and use the notation of Algo-
rithm 2.3 as well as (2.13). From Theorem 2.4 we have (x, s) ∈ Nα,τ , so by using
(4.1) we can write

‖DB‖ ≤ ‖X−1
B ‖‖(XS)

1
2 ‖ ≤ (1 + α)τ

1
2

ξ̂
.

A similar inequality can be obtained for ‖D−1
N ‖. Therefore, we have

‖DB‖ ≤ σ1τ
1
2 , ‖D−1

N ‖ ≤ σ1τ
1
2 ,(4.3)

where σ1 = (1 + α)/ξ̂. From (2.12), (3.5), (3.6), and (3.7) it follows that there is a
constant σ2 independent of k such that

‖Du‖ ≤ σ2τ
1
2 , ‖D−1v‖ ≤ σ2τ

1
2 .(4.4)

Inequalities (4.3) and (4.4) imply

‖uN‖ ≤ σ1σ2τ ≡ σ3τ, ‖vB‖ ≤ σ3τ.(4.5)

In order to complete the proof of our lemma, we have to show that there is a constant
σ4 > 0, independent of k, such that

‖uB‖ ≤ σ4τ, ‖vN‖ ≤ σ4τ.

From Lemmas 4.2 and 4.3 it follows that

‖(uB , vN )‖ ≤
√
n‖(uB , vN )‖∞ ≤

√
nλ‖(rB −MBNuN + vB , rN −MNNuN )‖

≤
√
nλ(‖(−MBNuN + vB ,−MNNuN )‖+ ‖r‖).

Consequently, (4.2) follows from the above inequality, (4.5), and the fact that
‖r‖ = ‖ψr0‖ = (‖r0‖/τ0)τ .

We end the paper by stating and proving our quadratic convergence result.
Theorem 4.5. If the LCP (1.1) has a strictly complementarity solution, then

there are two constants γ and γ independent of k such that the points produced by
Algorithm 2.3 satisfy

µk+1 ≤ γµk2, ‖rk+1‖ ≤ γ‖rk‖2, k ≥ 1.(4.6)

Proof. From (2.10), (3.9), and (4.2), it follows that

θk ≥ 1− δ/(β − α) ≥ 1− γ̂τ,

with γ̂ = σ2/(β − α). Hence, τk+1 ≤ γ̂τ2
k . Then, from Theorem 2.4, we deduce that

(4.6) holds with γ = (1 + α)γ̂ and γ = γ̂τ0/‖r0‖.
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Abstract. A large-step infeasible-interior-point method is proposed for solving P∗(κ)-matrix
linear complementarity problems. It is new even for monotone LCP. The algorithm generates points
in a large neighborhood of an infeasible central path. Each iteration requires only one matrix fac-
torization. If the problem is solvable, then the algorithm converges from arbitrary positive starting
points. The computational complexity of the algorithm depends on the quality of the starting point.
If a well-centered starting point is feasible or close to being feasible, then it has O((1+κ)

√
n ln(ε0/ε))-

iteration complexity. With appropriate initialization, a modified version of the algorithm terminates
in O((1 + κ)2n ln(ε0/ε)) steps either by finding a solution or by determining that the problem is
not solvable. High-order local convergence is proved for problems having a strictly complementary
solution. We note that while the properties of the algorithm (e.g., computational complexity) depend
on κ, the algorithm itself does not.

Key words. linear complementarity problems, P∗-matrices, infeasible-interior-point algorithm,
polynomiality, superlinear convergence
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1. Introduction. The linear complementarity problem (LCP) consists of deter-
mining a vector pair (x, s) ∈ R2n which satisfies the conditions

s = Mx+ q, x ≥ 0, s ≥ 0, xT s = 0,(1.1)

where q ∈ Rn and M ∈ Rn×n. In this paper, we consider problem (1.1) with M
a P∗-matrix. The class of P∗-matrices was introduced by Kojima, Megiddo, Noma,
and Yoshise [5], and it contains many types of matrices encountered in practical
applications. Let κ be a nonnegative number. A matrix M is called a P∗(κ)-matrix if

(1 + 4κ)
∑

i∈I+(x)

xi[Mx]i +
∑

i∈I−(x)

xi[Mx]i ≥ 0 ∀x ∈ Rn(1.2)

where

I+(x) = {i : xi[Mx]i > 0} , I−(x) = {i : xi[Mx]i < 0}

or, equivalently, if

xTMx ≥ −4κ
∑

i∈I+(x)

xi[Mx]i ∀x ∈ Rn .(1.3)

The class of all P∗(κ)-matrices is denoted by P∗(κ), and the class P∗ is defined by

P∗ =
⋃
κ≥0

P∗(κ);
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i.e., M is a P∗-matrix if M ∈ P∗(κ) for some κ ≥ 0.
Obviously, P∗(0) = PSD (the class of positive semidefinite matrices) and P∗(κ1)

⊂ P∗(κ2) for 0 ≤ κ1 ≤ κ2. Also, we have P∗ ⊃ P , where P is the class of all matrices
with positive principal minors. This follows from the fact that a P -matrix M is a

P∗(κ)-matrix for κ = max{−λmin(M)
4γ(M) , 0}, where λmin(M) is the least eigenvalue of

(M + MT )/2 and γ(M) > 0 is the so-called P -matrix number of M (see [5, Lemma
3.3]).

Most interior-point methods for linear programming problems have been extended
for monotone linear complementarity problems, i.e., for the P∗(0)-matrix LCP. Some
of them have also been extended to the P∗-matrix LCP (cf. [3, 4, 5, 7]).

In [5] and [7] it is assumed that the starting point (x0, s0) is strictly feasible in
the sense that it belongs to the relative interior of the feasible set

F = {(x, s) ∈ R2n
+ : s = Mx+ q}.

Such a starting point may be very difficult to find in practical applications. Moreover,
the existence of a strictly feasible starting point implies that the solution set

F∗ = {(x∗, s∗) ∈ F : x∗T s∗ = 0}

is nonempty and bounded, which restricts the class of problems to which the methods
apply.

We note that all known infeasible-interior-point algorithms for the P∗-matrix LCP
depend on the classification number κ for their implementation. However, sometimes
it is extremely difficult to estimate κ. In this paper, we propose a large-step infeasible-
path-following algorithm independent of κ. If the problem is solvable, the algorithm
is globally convergent when starting from an arbitrary positive starting point (x0, s0).
The algorithm is defined in a large neighborhood of the central path and requires
one matrix factorization per iteration. If a well-centered starting point is feasible
or close to being feasible, then the algorithm has O((1 + κ)

√
n ln(ε0/ε))-iteration

complexity. If the starting point is large enough, then the iteration complexity is
O((1 + κ)2n ln(ε0/ε)). With appropriate initialization, a slightly modified version of
the algorithm terminates in O((1 + κ)2n ln(ε0/ε)) steps either by finding a solution
or by determining that the problem is not solvable. High-order local convergence is
proved for problems having a strictly complementary solution.

We mention that our algorithm is new even for monotone LCP, where it attains
O(n ln(ε0/ε))-iteration complexity for infeasible starting points, as compared with
O(n2 ln(ε0/ε))-iteration complexity of the algorithms, with similar work per iteration,
proposed by Wright [19, 17, 18], Wright and Zhang [20], and Zhang [22]. In this
paper, we have adapted the algorithm structure of “fast-safe-improve” of Wright and
Zhang [20] by using new search directions and new neighborhoods.

2. A generic large-step infeasible-interior-point algorithm. Our conver-
gence results are proved under the assumption that F∗ is not empty. It is easily seen
that (x∗, s∗) ∈ F∗ if and only if (x∗, s∗) is a nonnegative solution of the following
nonlinear system:

F (x, s) :=

(
Xs

Mx− s+ q

)
= 0.(2.1)

For any given ε > 0, we define the set of ε-approximate solutions of (1.1) as

Fε = {(x, s) ∈ R2n
++, xT s ≤ ε, ‖Mx− s+ q‖ ≤ ε}.
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In what follows, we present an algorithm that finds a point in this set in a finite
number of steps. The starting point of the algorithm can be any pair of strictly
positive vectors (x0, s0) > 0. First, let us define

p =
n

(x0)T s0
X0s0, ρ0 = min {[p]i : 1 ≤ i ≤ n} , τ0 = (x0)T s0/n.

Obviously, we have

ρ0 ≤ 1,
n∑
i=1

[p]i = n.

The algorithm depends on seven positive parameters:

0 < αmin < αmax ≤ 1,(2.2a)

0 < βmin < βmax,(2.2b)

0 < ρ < γ < 1, ρ < ρ,(2.2c)

and a nonnegative integer I. The complexity of the algorithm will not depend on ρ
and I. However, the asymptotic order of convergence depends on I.

Note that these parameters are independent of κ and n. We define a neighborhood

N = {(x, s, τ, α, β) ∈ R2n+3
++ : Xs ≥ ατp, ‖Xs− τ p‖ ≤ βτ, r = s−Mx− q,

r = (τ/τ0)r0, τ ≤ τ0, αmin ≤ α ≤ αmax, βmin ≤ β ≤ βmax}

and denote

µ =
1

n
xT s.

We note that β ∈ (0, 1) is a typical requirement of short-step algorithms. In our
algorithm, β no longer has such a restriction. Therefore, N is a large neighborhood
of the infeasible central path defined by

Xs = τp,(2.3a)

s = Mx+ q + (τ/τ0)r0.(2.3b)

Also, α, β may change at each step. A neighborhood similar to N has been used by
Xu [21] in the case of a homogeneous self-dual reformulation of a linear programming
problem.

In our algorithm, τ is driven to zero in a specified manner. Since all the points
(x, s, τ, α, β) are in N , we have

αminτ ≤ µ ≤ (1 + βmax)τ,(2.4)

so that µ will be driven to zero at about the same rate as τ . On the other hand, ‖r‖
is driven to zero at exactly the same rate as τ .

At the beginning of the kth iteration of our algorithm, a point (xk, sk, τk, αk, βk)
∈ N is given. The kth iteration consists of several steps. Each step has input
(x, s, τ, α, β) ∈ N and output (x+, s+, τ+, α+, β+) ∈ N . Such a step is defined as
follows:

(a) Choose λ ∈ [0, 1) (λ = 0 for fast step, λ ∈ (0, 1) for safe step).
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(b) Solve the linear system

Sku+Xkv = λτp−Xs,(2.5a)

Mu− v = (1− λ)r.(2.5b)

(c) Denote

x(θ) = x+ θu, s(θ) = s+ θv.

(d) Choose α+, β+ such that αmin ≤ α+ ≤ α, β ≤ β+ ≤ βmax.
(e) Compute

θ = max{θ̃ ∈ [0, 1] : X(θ)s(θ) ≥ α+(1− (1− λ)θ)τp,(2.6)

‖X(θ)s(θ)− (1− (1− λ)θ)τ p‖ ≤ β+(1− (1− λ)θ)τ∀θ ∈ [0, θ̃]}.

(f)Set x+ = x+ θu, s+ = s+ θv, τ+ = (1− (1− λ)θ)τ.
Let us note that the computation of θ above involves the solutions of n quadratic

equations and a quartic equation. In the following analysis, we assume that these
equations are solved exactly. The results are true for appropriate approximate solu-
tions of these equations by use of the bisection method (see also [2]).

Algorithm 2.1.

Given αmax, αmin, βmax, βmin, γ, ρ satisfying (2.2a) and (x0, s0) > 0;
t0 ← 0, α0 ← αmax, β0 ← βmin, τ0 ← µ0;
while max{µk, ‖rk‖} > ε

* fast branch *
solve (b)–(e) with (x, s) = (xk, sk), λ = 0,
α+ = αmin + γtk+1(αmax − αmin), β+ = βmax − γtk+1(βmax − βmin);
if 1− θ ≤ ρ

t+ ← tk + 1, λk ← 0;
else

* safe branch *
solve (b)–(e) with (x, s) = (xk, sk), λ ∈ (0, 1),
α+ = αmin + γtk(αmax−αmin), β+ = βmax− γtk(βmax−βmin);
t+ ← tk, λk ← λ;

end if
* main points *
τ+ ← τk(1− (1− λk)θ),
(x+, s+)← (xk, sk) + θ(u, v);
improve (xk, yk, (x+, s+, τ+, α+, β+, t+));
* final points *
(xk+1, sk+1, τk+1, αk+1, βk+1)← (x+, s+, τ+, α+, β+),
tk+1 ← t+, k ← k + 1;

end while
The improve procedure is defined as follows:

Given ρ ∈ (ρ, 1), I ≥ 0,
for i = 1, 2, . . . , I

(x, s, τ, α, β, t)← (x+, s+, τ+, α+, β+, t+);
if max{µ, ‖r‖} ≤ ε, then return;
solve (b)–(e) with λ = 0,
α+ = αmin + γt+1(αmax − αmin), β+ = βmax − γt+1(βmax − βmin);
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if 1− θ ≤ ρ
t← t+ 1;

else
t+ ← t,

solve (b)–(e) with λ ∈ (0, 1),
α+ = αmin + γt(αmax − αmin), β+ = βmax − γt(βmax − βmin);
if 1− (1− λ)θ > ρ then return;

end if
* intermediate points *
τ+ ← τ(1− (1− λ)θ),
(x+, s+)← (x, s) + θ(u, v);

end for
The algorithm begins each iteration by trying a fast step, which uses an affine

scaling search direction. The fast steps are accepted only if they produce a reduction
in τk or ‖rk‖ of at least a factor of ρ. Otherwise, the algorithm reverts to taking a safe
step. Then it goes to improve by reusing the coefficient matrix in (2.5) and taking
a combination of safe and fast steps, just like in the main algorithm. However, the
improve procedure terminates if τ and ‖r‖ are not improved by at least a factor of
ρ ∈ (ρ, 1). The parameter ρ and the nonnegative integer I are supplied by the user,
where I is the maximum number of steps that can be taken in improve.

In the next lemma, we show that if the main points defined by Algorithm 2.1
are generated in the safe branch then the improvement rate τ+/τ is bounded by a
quantity that increases with δ = ‖Uv‖/τ . Later on, we will prove global convergence
by showing that δ is bounded.

Lemma 2.2. Assume that (xk, sk, τk, αk, βk) ∈ N and suppose that the main
points in Algorithm 2.1 are generated by the safe branch. Then θ ∈ [0, 1] defined by
(2.6) satisfies

θ ≥ θ̂ := min

{
1,

λ min((1− α)ρ0 , β)

δ

}
,

where δ = ‖Uv‖/τ . Moreover,

τ+/τ ≤ 1−min

{
1,

λ min((1− α)ρ0 , β)

δ

}
(1− λ).(2.7)

Proof. As the main points are generated by the safe branch, we have α+ = α,
β+ = β. Since (x, s, τ, α, β) ∈ N , we obtain

Xs ≥ ατp, ‖Xs− τp‖ ≤ βτ.
By definition, we get

X(θ)s(θ) = Xs+ θ(Su+Xv) + θ2Uv

= (1− θ)Xs+ θλτp+ θ2Uv.

Hence, we deduce

X(θ)s(θ)− α(1− (1− λ)θ)τp

= (1− θ)(Xs− ατp) + θ[(1− α)λτp+ θUv]

≥ θ[(1− α)λτp+ θUv]

≥ θτ [(1− α)λp− θδe]
≥ 0 for all θ ∈ [0, θ̂].
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On the other hand, we have

‖X(θ)s(θ)− (1− (1− λ)θ)τp‖ − β(1− (1− λ)θ)τ

= ‖(1− θ)(Xs− τp) + θ2Uv‖ − β(1− (1− λ)θ)τ

≤ (1− θ)‖Xs− τp‖+ θ2‖Uv‖ − β(1− (1− λ)θ)τ

≤ θτ(θδ − λβ)

≤ 0 for all θ ∈ [0, θ̂].

Consequently, θ ≥ θ̂, and (2.7) follows immediately.
We will see that if the problem has a solution then for any ε > 0, Algorithm 2.1

terminates in a finite number (say Kε) of iterations. If ε = 0 then the algorithm is
likely to generate an infinite sequence. However, it may happen that at a certain
iteration (K0, say) we have (1 − λ)θ = 1 which implies that an exact solution is
obtained and therefore the algorithm terminates at iteration K0. If this (unlikely)
phenomenon does not happen, we set K0 =∞.

Theorem 2.3. For any integer 0 ≤ k < K0, Algorithm 2.1 defines xk, sk, τk, αk,
and βk such that

(xk, sk, τk, αk, βk) ∈ N ,(2.8)

rk = ψkr
0,(2.9)

where

ψk = τk/τ0 ≤
k∏
j=1

(1− (1− λj)θj),(2.10)

and θj is defined by (2.6). Moreover, all the intermediate points produced in the
improve procedure also satisfy

(x, s, τ, α, β) ∈ N .(2.11)

Proof. The proof is by induction. First, we note that

‖X0s0 − τ0p‖ = ‖X0s0 − µ0p‖ = 0 < β0τ0

and

X0s0 ≥ αmaxX
0s0 = α0µ0p = α0τ0p,

which show that (x0, s0, τ0, α0, β0) ∈ N . Hence, (2.8) and (2.9) are satisfied for k = 0.
Suppose they are satisfied for k = 0, 1, . . . , l for some l ≥ 0 and denote (x, s) = (xl, sl).
Then by Lemma 2.2, θ exists and we have

X(θ)s(θ) ≥ α(1− (1− λ)θ)τp > 0 for all 0 ≤ θ ≤ θ.(2.12)

The positivity of x+ and s+ is proved by contradiction. Suppose, for example, that
[x+]i ≤ 0 for some i. Then there must exist θ′, 0 ≤ θ′ ≤ θ, such that [x(θ′)]i = 0.
This implies

[x(θ′)]i[s(θ
′)]i = 0,

which contradicts (2.12). Hence, (2.8) is satisfied for k = l + 1. The fact that (2.9)
is verified for k = l + 1 follows from the definition of Algorithm 2.1. Analogously, we
can prove (2.11).

In next section, we will show that with the appropriate choice of λ and (x0, s0),
Algorithm 2.1 achieves O((κ+ 1)2n ln(ε0/ε))-iteration complexity.
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3. Global convergence. In this section we assume that F∗ is nonempty. Under
this assumption, we will prove that Algorithm 2.1, with ε = 0, is globally convergent
in the sense that

lim
k→∞

µk = 0, lim
k→∞

rk = 0

for any starting point (x0, s0) > 0. We start with the following three technical lemmas.
Lemma 3.1. Assume that F∗ is nonempty. Then for any (x∗, s∗) ∈ F∗ and

(x, s, τ, α, β) ∈ N , we have

ψ((x)T s0 + (s)Tx0) ≤ (1 + βmax)(1 + 4κ)(2 + ζ)nτ ,(3.1a)

(1− ψ)((x)T s∗ + (s)Tx∗) ≤ (1 + βmax)(1 + 4κ)((1 + ψ) + (1− ψ)ζ)nτ ,(3.1b)

where

ψ = τ/τ0, ζ =
(x0)T s∗ + (s0)Tx∗

(x0)T s0
.(3.2)

Proof. According to (2.9), we have

ψs0 + (1− ψ)s∗ − s = ψ(r0 +M(x0 − x∗))− (r +M(x− x∗)),
= M(ψx0 + (1− ψ)x∗ − x) .

Using the inequalities (x∗, s∗) ≥ 0, (x, s) > 0, and the defining property (1.3) of a
P∗(κ)-matrix, we can write

[ψx0 + (1− ψ)x∗ − x]T [ψs0 + (1− ψ)s∗ − s](3.3)

≥ −4κ
∑
i∈I+

[ψx0 + (1− ψ)x∗ − x]i[ψs
0 + (1− ψ)s∗ − s]i

≥ −4κ
∑
i∈I+

(
ψ2[x0]i[s

0]i + (1− ψ)ψ([x∗]i[s
0]i + [x0]i[s

∗]i) + [x]i[s]i
)

≥ −4κ(ψ2(x0)T s0 + (1− ψ)ψ((x∗)T s0 + (x0)T s∗) + xT s) ,

where

I+ = {i : [ψx0 + (1− ψ)x∗ − x]i[ψs
0 + (1− ψ)s∗ − s]i > 0} .

By expanding (3.3), we obtain

[ψx0 + (1− ψ)x∗ − x]T [ψs0 + (1− ψ)s∗ − s](3.4)

= ψ2nµ0 + (1− ψ)ψ((x0)T s∗ + (s0)Tx∗)

−ψ((x0)T s+ (s0)Tx) + xT s− (1− ψ)(sTx∗ + xT s∗) + (1− ψ)2(x∗)T s∗.

The desired inequalities (3.1) follow from (3.3) and (3.4) by applying Theorem 2.3 and
the relations (x∗)T s∗ = 0, sTx∗ + xT s∗ ≥ 0, sTx0 + xT s0 > 0, and µ ≤ (1 + βmax)τ
(see (2.4)) .

In order to prove global convergence, we have to show that ((1− λ)θ) is bounded
away from zero. An essential tool is the following technical result of [3].

Lemma 3.2. Let x, s, a, r be four n-dimensional vectors with x > 0 and s > 0,
and let M ∈ Rn×n be a P∗(κ)-matrix. Then the solution (u, v) of the linear system

Su+Xv = a ,

Mu− v = b
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satisfies the following relations:

‖Du‖ ≤ ‖b̃‖+

√
‖ã‖2 + ‖b̃‖

2
+ 2κ‖c̃‖2 ,

‖D−1v‖ ≤
√
‖ã‖2 + ‖b̃‖

2
+ 2κ‖c̃‖2 ,

‖Du‖2 + ‖D−1v‖2 ≤ ‖ã‖2 + 2κ‖c̃‖2 + 2‖b̃‖
2

+ 2‖b̃‖
√
‖ã‖2 + ‖b̃‖

2
+ 2κ‖c̃‖2

≡ χ2
1 ,

‖Uv‖2 ≤ 1

8
‖ã‖4 +

1

4
χ2

1(χ2
1 − ‖ã‖

2
) ,

where

D = X−1/2S1/2 , ã = (XS)−1/2a , b̃ = D−1b , c̃ = ã+ b̃ .

We use the above result to find bounds for the quantity δ arising in the estimate
given by Lemma 2.2 when the algorithm chooses the safe step.

Lemma 3.3. During the safe branch, δ = ‖Uv‖/τ satisfies

δ ≤ φ(κ)
{

(1− λ)[‖p‖/√αρ0 + ‖X1/2S−1/2r‖/
√
τ ] + β/

√
αρ0

}2
,(3.5)

where

φ(κ) := [.25(
√

1 + 2κ+ 1)4 + .125]1/2.

Moreover,

‖X1/2S−1/2r‖/
√
τ ≤ η

√
n(1 + β),

where

η :=
√
n(1 + 4κ)(2 + ζ)‖(S0)−1r0‖∞

√
1 + βmax

ρ0αmin
,

with ζ given by (3.2).
Proof. By applying Lemma 3.2 to the linear system (2.5) with a = λτp−Xs and

b = (1− λ)r, we have

‖ã‖ = ‖(XS)−1/2(λτp−Xs)‖
≤ (1− λ)τ‖(XS)−1/2p‖+ ‖(XS)−1/2(Xs− τp)‖
≤ (1− λ)

√
τ‖p‖/√αρ0 +

√
τβ/
√
αρ0,

‖b̃‖ = (1− λ)‖D−1r‖ = (1− λ)‖X1/2S−1/2r‖,
‖c̃‖ = ‖ã+ b̃‖ ≤ ‖ã‖+ ‖b̃‖,
δ = ‖Uv‖/τ ≤ φ(κ)(‖ã‖+ ‖b̃‖)2/τ,

and (3.5) follows from the above relations. From Lemma 3.1 we deduce that

‖(XS)−1/2Xr‖/
√
τ ≤ (ρ0α)−1/2τ−1‖Xr‖

≤ (ρ0α)−1/2τ−1‖Xr‖1 = ψ(ρ0α)−1/2τ−1‖Xr0‖1

= ψ(ρ0α)−1/2τ−1
n∑
i=1

∣∣[x]i[s
0]i[r

0]i/[s
0]i
∣∣

≤ (ρ0α)−1/2τ−1‖(S0)−1r0‖∞ψ(s0)Tx

≤ η
√
n(1 + βmax).
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Now let us take

λ = λ :=
‖p‖/√αρ0 + ‖X1/2S−1/2r‖/

√
τ + β/

√
αρ0

‖p‖/√αρ0 + ‖X1/2S−1/2r‖/
√
τ + ω β/

√
αρ0

,(3.6)

where ω > 1 is a fixed number. Clearly,

λ ∈ (1/ω, 1).(3.7)

From (3.5) and (3.6) we have

δ ≤ φ(κ)
{

(1− λ)[‖p‖/√αρ0 + ‖X1/2S−1/2r‖/
√
τ ] + β/

√
αρ0

}2
(3.8)

≤ φ(κ)

{
[(ω − 1)β/

√
αρ0 ] [‖p‖/√αρ0 + ‖X1/2S−1/2r‖/

√
τ ]

‖p‖/√αρ0 + ‖X1/2S−1/2r‖/
√
τ + ω β/

√
αρ0

+ β/
√
αρ0

}2

≤ φ(κ) (ωβ/
√
αρ0)

2
= φ(κ)ω2β2/(αρ0).

Then by virtue of (2.7), (3.6), (3.7), and (3.8), we deduce that

τ+/τ ≤ 1−min

{
1, λ

min((1− α)ρ0 , β)

δ

}
(1− λ)(3.9)

≤ 1−min

{
1,

min((1− α)ρ0 , β)

ω3φ(κ)β2/(αρ0)

}
(1− λ)

≤ 1−min

{
1,

min{(1− α)ρ0 , β}
ω3φ(κ)β2/(αρ0)

}
(ω − 1)β

‖p‖+ η
√
nαρ0(1 + β) + ωβ

≤ 1− θ∗,

where

(3.10)

θ∗ := min

{
1,

min{(1− αmax)ρ0 , βmin}
ω3φ(κ)β2

max/(αminρ0)

}
(ω − 1)βmin

‖p‖+ η
√
nαmaxρ0(1 + βmax) + ωβmax

.

Suppose the algorithm takes the fast branch at iteration k. Since the improve
procedure never increases the value of ψ, we must have ψk+1/ψk ≤ ρ; if a safe branch
is taken we must have ψk+1/ψk ≤ 1− θ∗. Therefore, we obtain

ψk+1/ψk ≤ max{1− θ∗, ρ}.(3.11)

This observation shows that our algorithm converges at a global linear rate.
Theorem 3.4. Suppose that the optimal set F∗ is nonempty and, in the safe

branch, λk is defined by (3.6).
(i) If ε = 0 then Algorithm 2.1 either finds an optimal solution z∗ ∈ F∗ in a

finite number of steps or produces an infinite sequence zk = (xk, sk) such that

lim
k→∞

(xk)T sk = 0, lim
k→∞

(rk) = 0.

(ii) If ε > 0 then Algorithm 2.1 terminates with a z ∈ Fε in at most

Kε = d
| ln( εε0 )|

| ln(max{1− θ∗, ρ})| e

iterations, where ε0 = max{(1+β)(x0)T s0, ‖r0‖} and dχe denotes the smallest integer
greater than or equal to χ.
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For starting points that are feasible or close to being feasible, we obtain the
following complexity result.

Corollary 3.5. Under the hypothesis of Theorem 3.4, suppose that ρ0 = Ω(1)
and the starting point is chosen such that there is a constant C independent of n and
κ satisfying the inequality

(2 + ζ)‖(S0)−1r0‖∞ ≤
C

(1 + κ)
√
n
.

Then Algorithm 2.1 terminates in at most

K̃ε = O((1 + κ)
√
n ln(ε0/ε))

iterations.
Most of the complexity results on infeasible-interior-point methods are obtained

for starting points of the form

x0 = ρpe, s0 = ρde ,(3.12)

where ρp and ρd are sufficiently large positive constants (big M initialization). For
such starting points, we have clearly ρ0 = 1 and

ζ = ‖x∗‖1/(nρp) + ‖s∗‖1/(nρd) for some (x∗, s∗) ∈ F∗ ,

‖(S0)−1r0‖∞ ≤ 1 + (ρp/ρd)‖Me‖∞ + (1/ρd)‖q‖∞.

Therefore, if ρp and ρd satisfy the inequalities

ρp ≥ n−1‖x∗‖1 , ρd ≥ max{ρp‖Me‖∞ , ‖q‖∞, n−1‖s∗‖1}(3.13)

for some (x∗, s∗) ∈ F∗, then η ≤ O((1 + κ)
√
n). Hence, from (3.10) and Theorem 3.4

we deduce the following computational complexity bound.
Corollary 3.6. Under the hypothesis of Theorem 3.4, suppose that the starting

point satisfies (3.13) for some (x∗, s∗) ∈ F∗. Then Algorithm 2.1 terminates in at
most

K̃ε = O((1 + κ)2n ln(ε0/ε))(3.14)

iterations.
Let us end this section by noting that while our algorithm does not use any

information on the classification number κ, its computational complexity depends
on κ.

4. Infeasibility detection. All of the above results have been proved under the
assumption that F∗ is nonempty. It turns out that Algorithm 2.1 can be modified
in such a way that it can detect whether F∗ contains points of norm less than a
quantity chosen in advance provided that the parameter κ is known. Let ρp, ρd be
such quantities. Also, let us define

ζ = (‖x0‖ρd + ‖s0‖ρp)/((x0)T s0),

η =
√
n(1 + 4κ)(2 + ζ)‖(S0)−1r0‖∞

√
1 + βmax

αminρ0
,(4.1)
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θ
∗

:= min

{
1,

min{(1− αmax)ρ0 , βmin}
ω3φ(κ)β2

max/(αminρ0)

}
(ω − 1)βmin

‖p‖+ η
√
nαmaxρ0(1 + βmax) + ωβmax

.

In what follows, we always assume that λ is defined by (3.6). Then we can prove
the following theorem.

Theorem 4.1. Suppose that the following instruction “ If

(x0)T sk + (s0)Txk

> (1 + 4κ)[(τk/τ0)(x0)T s0 + (τ0/τk)(xk)T sk + (1− τk/τ0)(ρd‖x0‖+ ρp‖s0‖)]

then terminate” is inserted just before the while loop of Algorithm 2.1. Then the
new algorithm terminates in at most

Kε = d
| ln( εε0 )|

| ln(max{1− θ∗, ρ})|
e

iterations either by finding an ε-approximate solution or by determining that either
there is no z∗ = (x∗, s∗) ∈ F∗ with ‖x∗‖ ≤ ρp, ‖s∗‖ ≤ ρd or M is not a P∗(κ)-matrix.

Proof. Suppose that M is a P∗(κ)-matrix and that the inequality

(x0)T sk + (s0)Txk(4.2)

≤ (1 + 4κ)[(τk/τ0)(x0)T s0 + (τ0/τk)(xk)T sk + (1− τk/τ0)(ρd‖x0‖+ ρp‖s0‖)]

holds for all 0 ≤ k ≤ Kε. Then we have

ψk((x0)T sk + (s0)Txk)(4.3)

≤ ψk(1 + 4κ)[ψknµ0 + (1/ψk)nµk + (1− ψk)(ρd‖x0‖+ ρp‖s0‖)]
= (1 + 4κ)[ψ2

knµ0 + nµk + ψk(1− ψk)ζnµ0]

≤ (1 + 4κ)(1 + βmax)[ψ2
knτ0 + nτk + ψk(1− ψk)ζnτ0] (see (2.4))

= (1 + 4κ)(1 + βmax)[ψknτk + nτk + (1− ψk)ζnτk] (from (2.10))

≤ (1 + 4κ)(1 + βmax)(2 + ζ)nτk, 0 ≤ k ≤ Kε,

where the last inequality follows from the fact that ψk ∈ [0, 1] for all k. With the
help of (4.3) we can show that τk+1/τk ≤ max{1− θ∗, ρ} for all 0 ≤ k ≤ Kε, which

implies (xKε , sKε) ∈ Fε.
With the help of (4.3), we can show that τk+1/τk ≤ max{1 − θ∗, ρ} for all

0 ≤ k ≤ Kε, which implies (xKε , sKε) ∈ Fε.
On the other hand, if there exists (x∗, s∗) ∈ F∗ such that ‖x∗‖ ≤ ρp, ‖s∗‖ ≤ ρd,

then (3.3) and (3.4) imply that (4.2) must hold for all k ≥ 0. Therefore, if (4.2) is
violated for some k ≤ Kε, then there is no (x∗, s∗) ∈ F∗ such that ‖x∗‖ ≤ ρp, ‖s∗‖ ≤
ρd. This completes the proof of our theorem.

From the above theorem we can obtain the following iteration complexity for our
new algorithm under certain assumptions on the starting point.

Corollary 4.2. Under the hypothesis of Theorem 4.1, suppose that ρ0 = Ω(1)
and that the starting point satisfies

(2 + ζ)‖(S0)−1r0‖∞ ≤
C

(1 + κ)
√
n

for some constant C independent of n and κ. Then the new algorithm terminates in
at most

K̃ε = O((1 + κ)
√
n ln(ε0/ε))
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iterations either by finding an ε-approximate solution or by determining that either
there is no z∗ = (x∗, s∗) ∈ F∗ with ‖x∗‖ ≤ ρp, ‖s∗‖ ≤ ρd or M is not a P∗(κ)-matrix.

Suppose now that the starting point satisfies

x0 = ρ̂pe, s0 = ρ̂de,(4.4)

where

ρ̂p ≥ ρp/
√
n,(4.5)

ρ̂d ≥ max{ρ̂p‖Me‖∞, ‖q‖∞, ρd/
√
n}.(4.6)

Then we obtain

ζ ≤ 2,(4.7)

‖(S0)−1r0‖∞ ≤ 1 + (ρ̂p/ρ̂d)‖Me‖∞ + (1/ρ̂d)‖q‖∞ ≤ 3.(4.8)

From (4.1), (4.7), and (4.8), it follows that η < O((1 + κ)
√
n). Hence, we have the

following complexity result.
Corollary 4.3. Under the assumption of Theorem 4.1, suppose that the starting

point satisfies (4.4)–(4.6). Then the new algorithm terminates in at most

K̂ε = O((1 + κ)2n ln(ε0/ε))

iterations either by finding an ε-approximate solution or by determining either there
is no z∗ = (x∗, s∗) ∈ F∗ with ‖x∗‖ ≤ ρp, ‖s∗‖ ≤ ρd or M is not a P∗(κ)-matrix.

5. Local convergence. In what follows, we study the asymptotic convergence
properties of Algorithm 2.1 under the further assumption that (1.1) has a strictly
complementary solution andK0 =∞ (i.e., the algorithm produces an infinite sequence
so that an asymptotic analysis makes sense). Namely, we prove that, asymptotically,
our algorithm requires one matrix factorization and I+1 backsolves per iteration and
has the Q-order of convergence at least I + 2. It turns out that, asymptotically, each
iteration of the algorithm reduces to I + 1 simplified Newton steps with linesearch
applied to the nonlinear system defining the LCP. The fact that such a procedure has
Q-order I + 2 has already been proved in 1964 by Traub [16] for the case of scalar
nonlinear equations and in 1967 by Shamanskii [14] for nonlinear systems. For sharp
error estimates and other generalizations, see Potra and Ptak [12]. We note that the
above mentioned results for nonlinear systems are proved under the assumption that
the Jacobian is nonsingular at the solution which, in general, is not the case with the
system (2.1). Also, it is assumed that full simplified Newton steps are taken, which is
not the case with interior point methods since linesearch is always necessary in order to
guarantee the positivity of the iterates. The first high-order local convergence results
for interior-point methods based on the idea of reusing the Jacobian matrix were
proved by Mehrotra [6]. No global convergence results were given for the proposed
algorithm. A very elegant algorithm with both global (polynomial) convergence and
high-order local convergence was proposed by Wright and Zhang [20]. In the present
paper, we closely follow their analysis.

Let us denote by Fc the set of all strictly complementary solutions, i.e.,

Fc = {(x, s) ∈ F∗ : [x]i + [s]i > 0, i = 1, 2, . . . , n} .
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It is well known that there is a unique partition

B ∪N = {1, 2, . . . , n} , B ∩N = ∅

such that for any (x, s) ∈ Fc, we have ([x]i > 0, [s]i = 0 for all i ∈ B) and ([x]i =
0, [s]i > 0 for all i ∈ N). Let us denote the corresponding partition of M by

M =

(
MBB MBN

MNB MNN

)
.

Also, for any vector y ∈ Rn, we denote by yB the vector of components [y]i, i ∈ B
and by yN the vector of components [y]i, i ∈ N .

From the next lemma it follows that the points generated by Algorithm 2.1 are
bounded.

Lemma 5.1. There is a constant C1 > 0 such that

‖(x, s)‖ ≤ C1(5.1)

for all (x, s, τ, α, β) ∈ N .
Proof. The proof is straightforward by observing that (3.1a) implies xT s0 +

sTx0 ≤ (1 + β)(1 + 4κ)(2 + ζ)nτ0.
According to Lemmas 4.3 and 4.5 of [4], we have the following two technical

lemmas.
Lemma 5.2. If Fc is nonempty, then there is a constant C2 > 0 such that for

any (x, s, τ, α, β) ∈ N with τ ≤ τ1,

‖xN‖ ≤ C2 τ, ‖sB‖ ≤ C2τ

for all k ≥ 1.
Lemma 5.3. There exists a constant C3 such that for any (x, s, τ, α, β) ∈ N we

have

‖(ua, va)‖ ≤ C3τ,(5.2)

where (ua, va) satisfies

Sua +Xva = −Xs,(5.3a)

Mua − va = r.(5.3b)

We now turn to the approximate fast steps computed by (2.5)–(2.6), where (x, s)
is either the current iterate (xk, sk) or some intermediate point generated in the call
to improve at the kth iteration. By the definition of the algorithm, we have

τ ≤ τk.

Let us assume that the point (x, s) is not too far from (xk, sk) in the sense that there
is a constant χ ≥ 1 independent of k such that

‖(xk − x, sk − s)‖ ≤ χτk.(5.4)

We will show later on that such a χ exists (see Lemma 5.7).
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The following lemma describes some properties of the actual search direction (u, v)
calculated from (2.6) in terms of the exact search direction (ua, va) that satisfies (5.3).
Similar to Lemma 4.4 of Wright and Zhang [20], we have the following result.

Lemma 5.4. Suppose that Fc is nonempty and consider the notation of Algo-
rithm 2.1. Under the assumption (5.4), suppose that (u, v) is the solution of (2.5)
with λ = 0; then there exists a constant C4 independent of k and χ such that the
following bounds are satisfied:

‖u− ua‖ ≤ C4χτ, ‖v − va‖ ≤ C4χτ,(5.5a)

‖(u, v)‖ ≤ C4χτ,(5.5b)

‖uN − uaN‖ ≤ C4χττk, ‖vB − vaB‖ ≤ C4χττk.(5.5c)

Proof. From (2.5), we have that(
Sk Xk

M −I

)(
u
v

)
=

(
−Xs
r

)
,(5.6)

while from (5.3), we get (
S X
M −I

)(
ua

va

)
=

(
−Xs
r

)
,(5.7)

and therefore(
Sk Xk

M −I

)(
ua

va

)
=

(
−Xs+ (Sk − S)ua + (Xk −X)va

r

)
.(5.8)

By (5.6) and (5.8) we obtain(
Sk Xk

M −I

)(
ua − u
va − v

)
=

(
(Sk − S)ua + (Xk −X)va

0

)
.(5.9)

Then, from (5.4) and Lemma 5.3, there is a constant C ′4 independent of k and χ such
that

‖(Sk − S)ua + (Xk −X)va‖ ≤ C ′4χττk.(5.10)

Applying Lemma 3.2 to the linear system (5.9) with a = (Sk − S)ua + (Xk −X)va,
b = 0, we deduce that

‖Dk(ua − u)‖ ≤
√

1 + 2κ‖(XkSk)−1/2((Sk − S)ua + (Xk −X)va)‖

≤
√

1 + 2κC ′4√
αminρ0

χτ
√
τk,(5.11)

where Dk = (Xk)−1/2(Sk)1/2. Therefore,

‖ua − u‖ ≤ ‖(Dk)−1‖‖Dk(ua − u)‖ ≤
√

1 + 2κC1C
′
4

αminρ0
χτ.(5.12)

Then, from (5.11) and Lemma 5.2, we deduce that

‖uaN − uN‖ ≤ ‖(Dk
N )−1‖‖Dk(ua − u)‖

= ‖(Xk
N )(Xk

NS
k
N )−1/2‖‖Dk(ua − u)‖

≤
√

1 + 2κC2C
′
4

αminρ0
χττk.



332 F. A. POTRA AND R. SHENG

The bounds for (va − v) and (vaB − vB) are obtained similarly. Since

‖(u, v)‖ ≤ ‖(ua, va)‖+ ‖(u− ua, v − va)‖,

relation (5.5) follows from Lemma 5.3 with an appropriate C4 > 0.
The next lemma, which is similar to Lemma 4.5 of Wright and Zhang [20], gives

an estimate for the step length θ along a (possibly approximate) fast step direction
(u, v). The point (x, s) considered in the lemma represents either the main iterate
(xk, yk) itself or one of the intermediate points generated by the improve procedure
during the kth iteration. In what follows we use the following notations:

C ′5 = ρ0(1− γ) min{αmax − αmin, βmax − βmin},

C ′′5 = max{2C2
4 , 4C4(C1 + C2)},

C5 = C ′′5 /C
′
5.

Lemma 5.5. During the kth iteration of Algorithm 2.1, suppose (x, s, τ, α, β) ∈ N ,
where

α = αmin + γt(αmax − αmin), β = βmax − γt(βmax − βmin)

and the quantity t satisfies

C5χ
2 τk
γt
≤ ρ.(5.13)

If θ is computed from (b)–(e) with λ = 0 and

α+ = αmin + γt+1(αmax − αmin), β+ = βmax − γt+1(βmax − βmin),

then

1− θ ≤ C5χ
2 τk
γt
≤ ρ.(5.14)

Proof. By definition, we have

X(θ)s(θ) = Xs+ θ(Su+Xv) + θ2Uv(5.15)

= Xs+ θ(Sua +Xva) + θ[S(u− ua) +X(v − va)] + θ2Uv

= (1− θ)Xs+ θ[S(u− ua) +X(v − va)] + θ2Uv.

Then from Lemmas 5.1, 5.2, and 5.4, we deduce that

‖S(u− ua) +X(v − va)‖(5.16)

≤ ‖sB‖‖uB − uaB‖+ ‖xB‖‖vB − vaB‖+ ‖sN‖‖uN − uaN‖+ ‖xN‖‖vN − vaN‖

≤ 2C4(C1 + C2)χττk ≤
C ′′5
2
χ2ττk.

Let θ′′ be the unique positive root of the quadratic equation

C ′5γ
t(1− θ)− C ′′5

2
χ2τkθ −

C ′′5
2
χ2τkθ

2 = 0.
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Then, it is easily seen that θ′′ ∈ (0, 1) and

C ′5γ
t(1− θ)− C ′′5

2
χ2τkθ −

C ′′5
2
χ2τkθ

2 ≥ 0 for all θ ∈ [0, θ′′].

Hence, if θ ∈ [0, θ′′], then from (5.15), (5.16), and Lemma 5.4, we deduce that

X(θ)s(θ)− α+(1− θ)τp
= (1− θ)(Xs− α+τp) + θ[S(u− ua) +X(v − va)] + θ2Uv

= (1− θ)(Xs− ατp) + (1− θ)(α− α+)τp+ θ[S(u− ua) +X(v − va)] + θ2Uv

≥ (1− γ)γt(αmax − αmin)(1− θ)τp− θ‖S(u− uk) +X(v − vk)‖e− θ2‖Uv‖e

≥ C ′5γt(1− θ)τe−
C ′′5
2
χττkθe−

C ′′5
2
χ2τ2θ2e

≥ τ [C ′5γ
t(1− θ)− C ′′5

2
χ2τkθ −

C ′′5
2
χ2τkθ

2]e ≥ 0

and

‖X(θ)s(θ)− (1− θ)τp‖ − β+(1− θ)τ
≤ (1− θ)‖Xs− τp‖+ θ‖S(u− ua) +X(v − va)‖+ θ2‖Uv‖ − β+(1− θ)τ
≤ −(1− γ)γt(βmax − βmin)(1− θ)τ + θ‖S(u− ua) +X(v − va)‖+ θ2‖Uv‖

≤ −C ′5γt(1− θ)τ +
C ′′5
2
χ2ττkθ +

C ′′5
2
χ2τ2θ2

≤ τ
[
−C ′5γt(1− θ) +

C ′′5
2
χ2τkθ +

C ′′5
2
χ2τkθ

2

]
≤ 0.

Therefore, θ ≥ θ′′, which implies

1− θ ≤ 1− θ′′ =
1

C ′5γ
t

(
C ′′5
2
χ2τkθ

′′ +
C ′′5
2
χ2τk(θ′′)2

)
≤ C5(χ2τk/γ

t) ≤ ρ.

Lemma 5.6. There exists a constant C6 ∈ (0, 1) such that

τk+1

γtk+1
≤ C6

τk
γtk

for all k ≥ 0.(5.17)

Proof. See Lemma 4.6 of Wright and Zhang [20].
We are ready to show that there exists a threshold value of τk/γ

tk below which
both the main algorithm and the procedure improve take only fast steps. By follow-
ing the elegant proof technique of Theorem 5.1 of Wright and Zhang [20] and using
Lemmas 5.3–5.6, we can prove the following lemma.

Lemma 5.7. Define

χ = max

{
1, C3 exp

(
C4ρ

1− ρ

)}
,

and let K be the smallest index such that

C5χ
2 τK
γtK+I

≤ ρ.
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Then, at the kth iteration with k ≥ K, the fast branch is taken in the main algorithm
and I fast steps are taken in the call to improve.

We end this section by showing that the sequence {µk} converges to zero with
Q-order at least I+ 2. Since γminρ0τ ≤ µ ≤ (1 +βmax)τ , this is equivalent to showing
that for any ε > 0,

lim supk→∞
τk+1

τkI+2−ε = 0.

An equivalent characterization of the Q-order I + 2 convergence is

lim infk→∞
ln τk+1

ln τk
≥ I + 2(5.18)

(see Ortega and Rheinboldt [9] or Potra [10]). By using the proof technique from
Theorem 5.2 of Wright and Zhang [20], we obtain the following theorem.

Theorem 5.8. Suppose that Fc is not empty and that during the safe branch
λ is defined by (3.6). Then the sequence {µk}, k = 0, 1, . . . , converges to zero with
Q-order at least I + 2.

6. Concluding remarks.
• Our algorithm can solve all feasible P∗-matrix linear complementarity prob-

lems, without knowing the classification number κ in advance. The computational
complexity of the algorithm depends on κ.
• The algorithm is new even for monotone LCP where it attains O(n ln(ε0/ε))-

iteration complexity, which improves the O(n2 ln(ε0/ε))-iteration complexity of the
algorithm of [20].
• The algorithm requires only one matrix factorization at each iteration, compared

to two matrix factorizations of predictor-corrector algorithms (cf. [8, 11, 15, 13]).
• Asymptotically, the algorithm requires I + 1 backsolves at each iteration to

get fast local convergence of Q-order at least I + 2 for problems having a strictly
complementary solution.
• The algorithm easily can be extended to horizontal LCP and mixed LCP (see,

i.e., [1]).

Acknowledgment. The authors would like to thank Mihai Anitescu for carefully
reading the manuscript.
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Abstract. We consider the analytic center cutting plane method of Sonnevend and of Goffin
et al. for minimizing a convex (possibly nondifferentiable) function subject to box constraints. At
each iteration, accumulated subgradient cuts define a polytope that localizes the minimum. The
objective and its subgradient are evaluated at the analytic center of this polytope to produce a cut
that improves the localizing set. While complexity results have been recently established for several
related methods, the question of whether the original method converges has remained open. We
show that the method converges and establish its efficiency.

Key words. nondifferentiable optimization, cutting plane methods, analytic center, potential
function
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1. Introduction. In this paper we consider the analytic center cutting plane
method of [GHV92, Son88] for minimizing a convex (possibly nondifferentiable) func-
tion subject to box constraints. At each iteration, the method localizes the minimum
via a polytope defined by accumulated subgradient cuts. The objective and its sub-
gradient are evaluated at the analytic center of this polytope to produce a new cut.
This method performs well in practice [BdMGV95, BGVdM93, GGSV94, GHV92],
but so far its convergence has remained an open problem.

Recently, complexity results have been established for several related methods.
The methods of [AtV95, Gof94, GLY94, GLY96, Luo94, Ye94] are restricted to convex
feasibility problems. An extension of [AtV95] to optimization problems is given in
[MiR93]. The method of [Nes95] for unconstrained minimization employs another
potential function, whereas volumetric rather than analytic centers are used in [Vai96]
for optimization and in [Ans94] for feasibility problems. The modifications of [Alt94,
AlK96, Kiw96] have exploited the feasibility framework of [GLY94] in the context of
optimization.

In this paper, we show that the original analytic center cutting plane method
has the same efficiency as its modifications of [Kiw96]. There are, however, technical
differences in their analyses (so that neither one subsumes the other).

Following [GLY96], our results can be extended to implementable methods that
use approximate analytic centers. To save space, we omit such extensions (also be-
cause the accuracy of a close approximate center can be improved quadratically by
Newton steps [AtV92, AtV95, Gof94, GLY96, GoV93, NeN94, Nes95, RaM94, Ren88,
Vai90]).

The paper is organized as follows. In section 2 we recall basic properties of analytic
centers. To ease notation, a slightly modified method is introduced in section 3, and
its efficiency is analyzed in sections 4–5. Implications for the original method are
discussed in section 6.
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8S50502206.
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We use the following notation. The l2, l1, and l∞ norms of z ∈ Rn are denoted
by |z| = (

∑n
i=1 z

2
i )1/2, ‖z‖1 =

∑n
i=1 |zi|, and ‖z‖∞ = maxi=1:n |zi|, respectively; ei is

column i of the identity matrix I and e is the vector of ones (of varying dimensions).

2. Analytic centers of polytopes. Let ya denote the analytic center of a full-
dimensional polytope

Ω = {y ∈ Rn̄ : AT y ≤ c} = {y ∈ Rn̄ : s = c−AT y ≥ 0},(2.1)

where c ∈ Rm and A ∈ Rn̄×m; i.e.,

ya = arg max


m∏
j=1

(cj − aTj y) : y ∈ Ω

 = arg min{ΨΩ(y) : y ∈ Ω},(2.2)

where aj denotes column j of A and ΨΩ(y) = −
∑m
j=1 ln(cj − aTj y) is the logarithmic

barrier of Ω. Let sa = c − AT ya, so 0 = ∇ΨΩ(ya) =
∑
j aj/s

a
j . Define the potential

of Ω as

P (Ω) =
m∑
j=1

ln(cj − aTj ya) =
m∑
j=1

ln(saj ) = −ΨΩ(ya).(2.3)

Changing the right-hand side of the last inequality, consider the new polytope

Ω+
β = {y ∈ Rn̄ : aTj y ≤ cj , j = 1:m− 1, aTmy ≤ aTmya + βsam},(2.4)

where β is a parameter. The following lemma of [Kiw96] extends a result of [Ye92,
Thm. 1] obtained for β ≥ 0, whereas β < 0 will allow us to analyze deeper cuts.

Lemma 2.1. Let Ω and Ω+
β be full-dimensional polytopes of the forms (2.1) and

(2.4), respectively. Then

P (Ω+
β ) ≤ P (Ω)− 1 + β.(2.5)

Proof. The proof given in [Ye92, p. 9] for β ≥ 0 holds also for β < 0.
Adding a new inequality (say the (m+ 1)th), consider the polytope

Ω+
β = {y ∈ Rn̄ : aTj y ≤ cj , j = 1:m, aTm+1y ≤ aTm+1y

a + βr̄},(2.6)

where β is a parameter and

r̄ =
√
aTm+1(A(Sa)−2AT )−1am+1,(2.7)

where Sa = diag(sa). Our next lemma generalizes [Ye92, Thm. 2] to the case β < 0.
Lemma 2.2. Let Ω and Ω+

β be full-dimensional polytopes of the forms (2.1) and
(2.6), respectively, and let ᾱ = 1.5− ln 4 > 0 (≈ 0.1137). Then

P (Ω+
β ) ≤ P (Ω) + ln r̄ − ᾱ+ max{β, 0}.(2.8)

Proof. For β ≥ 0, see the proof of [Ye92, Thm. 2]. When β < 0, we have
P (Ω+

β ) ≤ P (Ω+
0 ) from the definition of max-potential; cf. (2.1)–(2.3) and below.

We shall also exploit strict monotonicity of the potential with respect to the
right-hand sides.
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Lemma 2.3. Let y(c) be the analytic center of a full-dimensional polytope Ωc =
{y : AT y ≤ c} with potential Π(c) := P (Ωc) and barrier ψ(y; c) = −

∑m
j=1 ln(cj −

aTj y), i.e., y(c) = arg miny ψ(y; c) and Π(c) = −ψ(y(c); c) (cf. (2.1)–(2.3)). Let

s(c) = c − AT y(c) and S(c) = diag(s(c)). Then ∇Π(c) = S−1(c)e > 0, i.e., P (Ωc)
strictly increases with c.

Proof. Use −∇Π(c) = ∇yψ(y(c); c)T∇y(c) +∇cψ(y(c); c) with ∇yψ(y(c); c) = 0.
One may also use the original idea of [FiM68]: if c̄ > c then y(c) ∈ Ωc̄, and hence

Π(c̄) =

m∑
j=1

ln(c̄j − aTj y(c̄)) ≥
m∑
j=1

ln(c̄j − aTj y(c)) >

m∑
j=1

ln(cj − aTj y(c)) = Π(c).

We may add that several related results on the effect of adding and shifting
constraints are given in [dHRT94]; these results generalize some of those in [Ye92].

3. An analytic center cutting plane method. To simplify notation as in
[Alt94, Kiw96], we consider first the canonical convex problem

f∗ = min{f(z) : 0 ≤ z ≤ e},(3.1)

where f : Rn → R is convex,

f∗ ≥ 0, and f( 1
2e) = 1.(3.2)

We assume that we can evaluate f and its subgradient g(z) ∈ ∂f(z) at each z ∈ (0, 1)n.
(We denote the vector of variables by z because, in order to work in the space of the
epigraph of f , we shall need to augment z with a “vertical” coordinate to form the
vector y employed in the preceding section.)

Constraints of the form zlow ≤ z ≤ zup can be transformed into 0 ≤ z ≤ e by
shifting and scaling. Also the (seemingly more general) problem

f̃∗ = min{f̃(z) : 0 ≤ z ≤ e}(3.3)

with a convex objective f̃ : Rn → R and subgradient mapping g̃(·) ∈ ∂f̃(·) can be put
into the canonical form (cf. (3.2)) with

f(·) =
2

‖g̃( 1
2e)‖1

[f̃(·)− f̃( 1
2e)] + 1 and g(·) =

2

‖g̃( 1
2e)‖1

g̃(·).(3.4)

Indeed, for z0 = 1
2e and g̃0 ∈ ∂f̃(z0), the subgradient inequality yields

f̃∗ ≥ min{f̃(z0) + (z − z0)T g̃0 : 0 ≤ z ≤ e} = f̃(z0)− ‖g̃0‖1/2.(3.5)

Conditions (3.2) will simplify our analysis only, and it will be seen that the transfor-
mation (3.4) need not be applied in practice.

Let Z = [0, 1]n denote the feasible set of (3.1) and fZ its essential objective, i.e.,
fZ(z) = f(z) if z ∈ Z; fZ(z) =∞ if z /∈ Z. For any tolerance ε̄ > 0, an ε̄-solution of
(3.1) (i.e., z such that fZ(z) ≤ f∗ + ε̄) can be found in the set

Yε̄ = {y ∈ [0, 1]n̄ : y = (z, ζ), f(z) ≤ ζ, ζ ≤ f∗ + ε̄},

where n̄ = n + 1; a point y ∈ Rn̄ is denoted by (z, ζ), i.e., ζ = yn̄. Thus, using the
original bounds 0 ≤ z ≤ e and the vertical bounds 0 ≤ ζ ≤ 1 due to (3.2), the method
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may start its search from the initial polytope Ω0 = [0, 1]n̄ that localizes points in
epi fZ = {(z, ζ) : fZ(z) ≤ ζ} (the epigraph of fZ) with the lowest vertical coordinate
ζ. At iteration k ≥ 1, the localizing polytope Ωk is obtained from Ω0 by appending
accumulated subgradient cuts and by replacing the horizontal cut ζ ≤ 1 with the
objective cut ζ ≤ fkrec, where fkrec is the best f -value obtained so far.

Algorithm 3.1 (for the canonical problem).
Step 0 (Initiation). Set A0 = (I,−I) ∈ Rn̄×2n̄, c0 =

(
e
0

)
∈ R2n̄, f0

rec = 1 and
k = 0.

Step 1 (Center computation). Find the analytic center yk = (zk, ζk) of the
polytope Ωk = {y ∈ Rn̄ : (Ak)T y ≤ ck}, given by mk = 2n̄ + k inequalities. Set
sk = ck − (Ak)T yk.

Step 2 (Stopping criterion). If zk is a satisfactory approximate solution, then
stop.

Step 3 (Cut generation). Find f(zk) and gk ∈ ∂f(zk). Generate a subgradient
cut : set

amk+1 =

(
gk

−1

)
and cmk+1 = (gk)T zk − f(zk),(3.6)

Ak+1 = (Ak, amk+1) and ck+1 =
(

ck

cmk+1

)
. Set fk+1

rec = min{f(zk), fkrec}. If f(zk) < ckn̄,

then lower the horizontal cut : set ck+1
n̄ = fk+1

rec .

Step 4. Increase k by 1 and go to Step 1.
Remark 3.2. Due to Step 0 and (3.2), y0 = 1

2e and c0n̄ = 1 = f0
rec = f(z0). By

induction, ckn̄ = fkrec = minj=0:k f(zj) (cf. Step 3) and yk ∈ Ωk ⊂ Ω0 = [0, 1]n̄ for all
k, since Ωk+1 ⊂ Ωk. Note that constraint n̄ of Ωk is ζ ≤ fkrec (the horizontal cut),
and fkrec ≤ 1. As in [GHV92], if Step 1 finds an underestimate fklow ≤ f∗, then Step 2
may terminate if fkrec − fklow ≤ ε̄, in which case zkrec ∈ Arg min{f(z) : z ∈ {zj}k−1

j=0} is

an ε̄-solution; we let z0
rec = z0.

4. Potential reduction. In this section we establish bounds on changes in the
potential P (Ωk). Such bounds are crucial for the complexity analysis presented in
section 5.

Due to Step 3, we distinguish two cases in bounding the potential of

Ωk+1 = {y : aTj y ≤ cj , j ∈ {1:mk} \ {n̄}, aTn̄y ≤ ck+1
n̄ , aTmk+1y ≤ cmk+1},(4.1)

where

ck+1
n̄ = fk+1

rec and cmk+1 = aTmk+1y
k + ζk − f(zk).(4.2)

Recall that Ωk+1 is obtained from Ωk by appending the subgradient cut aTmk+1y ≤
cmk+1 and possibly lowering the horizontal cut ζ ≤ fkrec to ζ ≤ fk+1

rec . Let (cf. (2.7))

rk =
√
aTmk+1(Ak(Sk)−2(Ak)T )−1amk+1.(4.3)

Lemma 4.1. If f(zk) ≥ ζk then

P (Ωk+1) ≤ P (Ωk) + ln rk − ᾱ.(4.4)
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Proof. By (4.2), cmk+1 = aTmk+1y
k + βkrk with βk = [ζk − f(zk)]/rk ≤ 0, so for

Ω̃k+1 = {y : (Ak)T y ≤ ck, aTmk+1y ≤ aTmk+1y
k + βkrk},

since Ωk = {y : (Ak)T y ≤ ck}, (2.8) yields P (Ω̃k+1) ≤ P (Ωk) + ln rk − ᾱ. Since Ωk+1

is obtained from Ω̃k+1 by replacing ckn̄ = fkrec with ck+1
n̄ = fk+1

rec ≤ ckn̄ (cf. Step 3), we
have P (Ωk+1) ≤ P (Ω̃k+1) (Lem. 2.3) and, hence, (4.4).

Lemma 4.2. If f(zk) < ζk then (4.4) holds.
Proof. If f(zk) < ζk, then (cf. Step 3) ck+1

n̄ = fk+1
rec = f(zk) < ζk < ckn̄ = fkrec

(since ζ ≤ fkrec is constraint n̄ of Ωk). Let δ = ζk − f(zk) (note that δ > 0). By (4.2),

ck+1
n̄ = ckn̄ − δ − (ckn̄ − ζk) and cmk+1 = aTmk+1y

k + δ.(4.5)

We now define a parametric family of polytopes whose potentials may be compared to
those of Ωk and Ωk+1. For each t ∈ [0, 1], let ȳ(t) be the analytic center of Ω̄(t) = {y :
(Ak+1)T y ≤ c(t)} with potential P (Ω̄(t)) =: Π̄(t) and slack s̄(t) = c(t)− (Ak+1)T ȳ(t),
where c(t) ∈ Rmk+1 has components cj(t) = cj for j ∈ {1:mk} \ {n̄}, cn̄(t) = ckn̄ − tδ,
cmk+1(t) = aTmk+1y

k + tδ. Then Ω̄(0) = {y : (Ak)T y ≤ ck, aTmk+1y ≤ aTmk+1y
k},

so P (Ω̄(0)) ≤ P (Ωk) + ln rk − ᾱ (cf. (2.8)). Next, P (Ω̄(1)) = P (Ω̄(0)) +
∫ 1

0
Π̄′(t) dt

with Π̄′(t) = [S̄−1(t)e]T c′(t) = −δ/s̄n̄(t) + δ/s̄mk+1(t) from Lemma 2.3, since c′(t) =
−δen̄ + δemk+1. But, since ȳ is the analytic center of Ω̄(t), we have ∇ΨΩ̄(t)(ȳ(t)) =∑
j s̄
−1
j (t)aj = 0, where ajs are columns of Ak+1 =

[
I,−I,

(
g0

−1

)
, . . . ,

(
gk

−1

)]
, so from the

last row s̄−1
n̄ (t)−s̄−1

2n̄ (t)−
∑mk

j=2n̄+1 s̄
−1
j (t) = 0. Therefore, Π̄′(t) = −

∑mk

j=2n̄ δ/s̄j(t) < 0

and hence P (Ω̄(1)) < P (Ω̄(0)). Finally, Ωk+1 is obtained from Ω̄(1) by replacing ckn̄−δ
with ckn̄−δ−(ckn̄−ζk) < ckn̄−δ (cf. (4.5)), so P (Ωk+1) < P (Ω̄(1)) (Lem. 2.3). Collecting
these estimates yields the result.

5. Convergence and complexity. In this section, using results of [Nes95] as
in [GLY94], we derive an efficiency estimate for Algorithm 3.1 by showing that P (Ωk)
grows more slowly than 2n̄+ k. In view of Lemmas 4.1–4.2, this means finding upper
bounds on rk. This is achieved by using a construction due to [Nes95] which bounds
Ak(Sk)−2(Ak)T from below by a certain matrix Bk which is simple enough to handle.

We assume that the algorithm does not terminate. Recall that at Step 3, the
matrix

Ak = [I,−I, a2n̄+1, . . . , a2n̄+k] =

[
I,−I,

(
g0

−1

)
, . . . ,

(
gk−1

−1

)]
(5.1)

has mk = 2n̄+ k columns (A0 = (I,−I)). Let

Bk = 8I +

k∑
j=1

a2n̄+ja
T
2n̄+j/‖a2n̄+j‖21.(5.2)

We now modify a series of technical results from [GLY94, Kiw96]. First, we bound
the slacks sk.

Lemma 5.1. We have skj ∈ (0, 1) for j = 1: 2n̄ and skj ∈ (0, ‖aj‖1) for j =
2n̄+ 1: 2n̄+ k.

Proof. Since yk is the analytic center of Ωk ⊂ Ω0, sk = ck − (Ak)T yk > 0 and
yk ∈ (0, 1)n̄. For j = 1: n̄ − 1, skj = 1 − ykj < 1 and skn̄ = ckn̄ − ykn̄ < 1, since
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ckn̄ = fkrec ≤ f(z0) = 1 (cf. Remark 3.2). For j = n̄ + 1: 2n̄, skj = ykj−n̄ < 1. For

j = 2n̄ + 1: 2n̄ + k and l = j − 2n̄ − 1, ζk < ckn̄ = fkrec ≤ f(zl) by Remark 3.2 (since
fkrec = mini≤k f(zi) and l ≤ k) and (cf. (3.6))

skj = cj − aTj yk = (gl)T zl − f(zl)− (gl)T zk + ζk = ζk − f(zl) + (gl)T (zl − zk),

so

skj < (gl)T (zl − zk) ≤ ‖gl‖1‖zl − zk‖∞ < ‖gl‖1 < ‖aj‖1,

where the first inequality follows ζk < f(zl), the second one is from Hölder’s in-

equality, the third one is from zl, zk ∈ (0, 1)n, and the fourth one is from aj =
(
gl

−1

)
(cf. (5.1)).

We now relate Ak(Sk)−2(Ak)T to Bk (cf. (5.2)) as in [Nes95] and [GLY94].
Lemma 5.2. Ak(Sk)−2(Ak)T � Bk, i.e., Ak(Sk)−2(Ak)T−Bk is positive semidef-

inite.
Proof. Let Y k = diag(yk). Then

Ak(Sk)−2(Ak)T = diag(1− yk1 , . . . , 1− ykn̄−1, c
k
n̄ − ykn̄)−2 + (Y k)−2 +

k∑
j=1

a2n̄+ja
T
2n̄+j

(sk2n̄+j)
2

� (I − Y k)−2 + (Y k)−2 +
k∑
j=1

a2n̄+ja
T
2n̄+j/‖a2n̄+j‖21

� 8I +
k∑
j=1

a2n̄+ja
T
2n̄+j/‖a2n̄+j‖21 = Bk,

where the first relation follows from the forms of sk = ck − (Ak)T yk, ck and Ak (cf.
(5.1), c0 =

(
e
0

)
at Step 0, and Remark 3.2), the second one from 0 < ckn̄− ykn̄ ≤ 1− ykn̄

(since ckn̄ ≤ f(z0) = 1; cf. Remark 3.2) and Lemma 5.1, and the third one from
yk ∈ (0, 1)n̄ and min0<t<1 t

−2 + (1− t)−2 = 8.
For each k ≥ 0, let

ωk =
√
aTmk+1(Bk)−1amk+1(5.3)

and

νk = ‖amk+1‖1 = 1 + ‖gk‖1(5.4)

(cf. (3.6)). By (4.3) and Lemma 5.2,

rk ≤ ωk for all k.(5.5)

Thus, upper bounds on the sequence {ωk} will lead to upper bounds on the sequence
{rk}. The proof of our next lemma is patterned after that of [GLY94, Lem. 3.4],
which in turn adapted a result of [Nes95].

Lemma 5.3.

k∑
j=0

ω2
j /ν

2
j ≤

n̄

8 ln 9
8

ln

(
1 +

k + 1

8n̄

)
.(5.6)
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Proof. By (5.2), (5.3), and (5.4),

detBk+1 = det(Bk + amk+1a
T
mk+1/ν

2
k) = (1 + ω2

k/ν
2
k) detBk,

so

ln detBk+1 = ln detBk + ln(1 + ω2
k/ν

2
k).(5.7)

Since Bk � 8I (cf. (5.2)) and | · | ≤ ‖ · ‖1, by (5.3)

ω2
k = aTmk+1(Bk)−1amk+1 ≤ |amk+1|2/8 ≤ ‖amk+1‖21/8,

so ω2
k/ν

2
k ≥ 1

8 (cf. (5.4)). Using Nesterov’s [Nes95] inequality ln(1 +αβ) ≥ α ln(1 +β)
for all α ∈ [0, 1], β ≥ 0 with α = 8ω2

k/ν
2
k and β = 1

8 , we get ln(1 + ω2
k/ν

2
k) ≥

8 ln( 9
8 )ω2

k/ν
2
k . Combining this with (5.7) yields

ln detBk+1 ≥ ln detBk + 8 ln( 9
8 )ω2

k/ν
2
k .

Hence, by summing,

ln detBk+1 ≥ ln detB0 + 8 ln( 9
8 )

k∑
j=0

ω2
j /ν

2
j = n̄ ln 8 + 8 ln(9

8 )
k∑
j=0

ω2
j /ν

2
j(5.8)

(using B0 = 8I and detB0 = 8n̄). But (detBk+1)1/n̄ ≤ trBk+1/n̄, where (cf. (5.2))

trBk+1 = 8n̄+

k∑
j=0

|amj+1|2/‖amj+1‖21 ≤ 8n̄+ k + 1,

so

1

n̄
ln detBk+1 ≤ ln

trBk+1

n̄
≤ ln

(
8 +

k + 1

n̄

)
.

Combining this with (5.8) yields

8 ln( 9
8 )

k∑
j=0

ω2
j /ν

2
j ≤ n̄ ln

(
8 +

k + 1

n̄

)
− n̄ ln 8,

which implies (5.6).
We now bound P (Ωk) from below as in [GLY94, Lem. 3.1], but we scale the

polytope, since we work with ‖ · ‖1 instead of | · | without assuming that ‖aj‖1 = 1.

Lemma 5.4. Consider the scaled polytope Ω̃k = {y : ãTj y ≤ c̃kj , j = 1:mk}, where

ãj = aj/‖aj‖1 and c̃kj = ckj /‖aj‖1. Let ε satisfy 0 < ε ≤ c̃kj − ãTj ȳ, j = 1:mk for some

ȳ. Then P (Ωk)−
∑mk

j=2n̄+1 ln ‖aj‖1 = P (Ω̃k) ≥ mk ln ε.

Proof. Since yk is the analytic center of both Ωk and Ω̃k (cf. (2.1)–(2.3)),

P (Ω̃k) =

mk∑
j=1

ln(c̃kj − ãTj yk) ≥
mk∑
j=1

ln(c̃kj − ãTj ȳ) ≥
mk∑
j=1

ln ε

and P (Ω̃k) = P (Ωk)−
∑mk

j=1 ln ‖aj‖1, where ‖aj‖1 = 1 for j = 1: 2n̄ (cf. (5.1)).
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The following lemma (whose proof is modelled after that of [GLY94, Thm. 3.1])
shows that for large k, Ωk cannot contain a point with “large” slacks; this will be
translated into bounds on fkrec − f∗ in the proof of the subsequent theorem.

Lemma 5.5. Let ε satisfy the assumption of Lemma 5.4. Then

ε2

n̄
≤

1
2 + ln

(
1 + k

8n̄

)
/8 ln 9

8

2n̄+ k
exp

(
−2ᾱ

k

2n̄+ k

)
.(5.9)

Proof. Using (4.4), we get

P (Ωk+1) ≤ P (Ω0) +
k∑
j=0

(ln rj − ᾱ) = P (Ω0) +
k∑
j=0

ln rj − ᾱ(k + 1).

However, P (Ω0) = 2n̄ ln 1
2 at Step 0 and mk+1 ln ε ≤ P (Ωk+1)−

∑k
j=0 ln νj (cf. (5.4))

from Lemma 5.4 with k increased by 1 (temporarily for ease of notation), so

mk+1 ln ε+ ᾱ(k + 1) ≤ 2n̄ ln
1

2
+

1

2

k∑
j=0

ln(r2
j/ν

2
j ).

Hence,

ln ε+
ᾱ(k + 1)

2n̄+ k + 1
≤ 1

2(2n̄+ k + 1)

2n̄ ln
1

4
+

k∑
j=0

ln(r2
j/ν

2
j )


≤ 1

2
ln

2n̄ 1
4 +

∑k
j=0 r

2
j/ν

2
j

2n̄+ k + 1

≤ 1

2
ln
n̄/2 +

∑k
j=0 ω

2
j /ν

2
j

2n̄+ k + 1

≤ 1

2
ln
n̄/2 + n̄ ln

(
1 + k+1

8n̄

)
/8 ln 9

8

2n̄+ k + 1
,

where the second inequality follows from the concavity of ln(·), the third one from
(5.5), and the fourth one from Lemma 5.3. Thus,

ε2

n̄
≤

1
2 + ln

(
1 + k+1

8n̄

)
/8 ln 9

8

2n̄+ k + 1
exp

(
−2

ᾱ(k + 1)

2n̄+ k + 1

)
,

and the assertion follows by replacing k + 1 by k.
Following [Kiw96], we now present an efficiency estimate for Algorithm 3.1.
Theorem 5.6. Let L∞ = sup{‖g‖1 : g ∈ ∂f(z), z ∈ (0, 1)n}. Then

fkrec − f∗ ≤ 2(1 + L∞)

√
n̄
2 + n̄ ln

(
1 + k

8n̄

)
/8 ln 9

8

2n̄+ k
exp

(
−ᾱ k

2n̄+ k

)
.(5.10)

Proof. Suppose fkrec > f∗. In view of Lemma 5.5, it suffices to show that ε =
(fkrec − f∗)/2(1 + L∞) satisfies the assumption of Lemma 5.4. Note that ε < 1

4 , since
L∞ ≥ ‖g0‖1 ≥ 2[f(z0)− f∗] as in (3.5). Let z∗ ∈ Arg min fZ , ζ̄ = fkrec − ε, ȳ = (z̄, ζ̄),
and s̄ = ck − (Ak)T ȳ, where z̄i = z∗i + ε if z∗i ≤ 1

2 , z̄i = z∗i − ε if z∗i > 1
2 , and
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i = 1:n. Since z∗ ∈ [0, 1]n and ε < 1
4 , εe ≤ z̄ ≤ (1 − ε)e. Hence, s̄j = 1 − ȳj ≥ ε

for j = 1: n̄ − 1, s̄n̄ = ckn̄ − ζ̄ ≥ ε since ckn̄ = fkrec (cf. Remark 3.2), s̄j = ȳj−n̄ ≥ ε for
j = n̄+1: 2n̄−1, and s̄2n̄ = ζ̄ ≥ ε since constraint 2n̄ of Ωk is −ζ ≤ 0, ζ̄ = fkrec−ε, and
2ε̄ ≤ fkrec − f∗ ≤ fkrec from f∗ ≥ 0 (cf. (3.2)). Also, ‖aj‖1 = 1 for j = 1: 2n̄ (cf. (5.1)).
Next, for j ∈ {2n̄+ 1: 2n̄+k} and l = j−2n̄−1, we have ‖aj‖1 = 1 +‖gl‖1 ≤ 1 +L∞
since gl ∈ ∂f(zl), and

s̄j = ζ̄ − f(zl)− (gl)T (z̄ − zl) ≥ ζ̄ − f(z∗)− (gl)T (z̄ − z∗),

using (3.6) and the subgradient inequality f(z∗) ≥ f(zl) + (gl)T (z∗ − zl). Hence,

s̄j ≥ ζ̄ − f∗ − ‖gl‖1‖z̄ − z∗‖∞ ≥ fkrec − f∗ − ε− L∞ε = (1 + L∞)ε,

since ζ̄ = fkrec − ε, f(z∗) = f∗, ‖z̄ − z∗‖∞ = ε, and fkrec − f∗ = 2(1 + L∞)ε. Thus,
s̄j ≥ ‖aj‖1ε for j = 1:mk, as required for invoking Lemma 5.4.

Corollary 5.7. fkrec ↓ f∗ and every cluster point of {zkrec} solves (3.1).

Proof. The right side of (5.10) tends to zero as k → ∞, since the square root
term tends to zero and the exponential term is bounded. Thus, f(zkrec) ↓ f∗.

Remark 5.8. If problem (3.3) is put into the canonical form (3.1)–(3.2) via the
transformation (3.4), then (5.10) yields the efficiency estimate

f̃krec − f̃∗ ≤ 3L̃∞

√
n̄
2 + n̄ ln

(
1 + k

8n̄

)
/8 ln 9

8

2n̄+ k
exp

(
−ᾱ k

2n̄+ k

)
,(5.11)

where f̃krec = minj<k f̃(zj) and L̃∞ = sup{‖g̃‖1 : g̃ ∈ ∂f̃(z), z ∈ (0, 1)n}. Indeed, for

L∞ = 2L̃∞/‖g̃0‖1, f̃krec − f̃∗ = (fkrec − f∗)‖g̃0‖1/2 and ‖g̃0‖1(1 + 2L̃∞/‖g̃0‖1) ≤ 3L̃∞.
In fact (cf. [NeY79, Ex. II.1.15]),

L̃∞ = sup{|f̃(z)− f̃(z′)|/‖z − z′‖∞ : z, z′ ∈ [0, 1]n, z 6= z′}(5.12)

is the l∞ Lipschitz constant of f̃ on [0, 1]n. We could use the l2 constant L̃2, obtained
by replacing ‖ · ‖∞ with | · | in (5.12), since L̃∞ ≤

√
nL̃2, but this would worsen our

estimate.

6. Application to the original method. Compared with the original analytic
center cutting plane method of [GHV92, Son88], Algorithm 3.1 employs the additional
constraint ζ ≥ 0 related to the canonical conditions (3.2), which in turn might seem to
require the transformation (3.4). Hence, we now address these issues in more detail.

Remark 6.1. If ‖g0‖1 ≤ 2 (cf. (3.4)), then the constraint ζ ≥ 0 can be omitted

at Step 0 by setting a2n̄ =
(
g0

−1

)
, c2n̄ = (g0)T z0 − f(z0), A1 = A0, c1 = c0, and

k = 1. Then for y ∈ Ω0, ζ ≥ f(z0) − ‖g0‖1/2 ≥ 0 from aT2n̄y ≤ c2n̄ (cf. (3.5)), so
P (Ω0) ≤ 2n̄ ln 1

2 and the proof of Theorem 5.6 goes through (with mk = 2n̄+k−1). In
fact, omitting the constraint ζ ≥ 0 and setting c0n̄ = f(z0) ensures that the algorithm is

insensitive to the objective scaling. Indeed, if f(·) and g(·) are replaced by f̆(·) = αf(·)
and ğ(·) = αg(·), respectively, where α > 0, then it generates z̆k = zk, ζ̆k = αζk,
c̆kn̄ = αckn̄, ğk = αgk, and c̆2n̄+j = αc2n̄+j for j ≤ k, whereas replacing f(·) by f(·) +β
only increases ζk by β. Hence, the estimate (5.11) holds also if the algorithm is applied
to f̃ directly, in which case the transformation (3.4) may be used implicitly only in
the preceding proofs.
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Corollary 6.2. Consider the following method for problem (3.3): for k ≥ 1, set

yk = (zk, ζk) = arg min
z,ζ

−
k−1∑
j=0

ln[ζ − f̃j(z)]− ln(f̃krec − ζ)−
n∑
i=1

[ln zi + ln(1− zi)],

f̃k+1
rec = min{f̃(zk), f̃krec}, f̃k(·) = f̃(zk) + (g̃k)T (· − zk) with g̃k ∈ ∂f̃(zk), starting

from z0 = 1
2e, f̃

1
rec = f̃(z0), f̃0(·) = f̃(z0) + (g̃0)T (· − z0), and g̃0 ∈ ∂f̃(z0). Then this

method enjoys the efficiency estimate (5.11)–(5.12).

Proof. This follows from Remark 6.1.

Remark 6.3. Corollary 6.2 describes the method of [Son88] and that of [GHV92]
(with unit weights).

Acknowledgments. I would like to thank the associate editor and the two
anonymous referees for their valuable comments.
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Abstract. We study a class of methods for solving convex programs, which are based on non-
quadratic augmented Lagrangians for which the penalty parameters are functions of the multipliers.
This gives rise to Lagrangians which are nonlinear in the multipliers. Each augmented Lagrangian is
specified by a choice of a penalty function ϕ and a penalty-updating function π. The requirements on
ϕ are mild and allow for the inclusion of most of the previously suggested augmented Lagrangians.
More importantly, a new type of penalty/barrier function (having a logarithmic branch glued to a
quadratic branch) is introduced and used to construct an efficient algorithm. Convergence of the al-
gorithms is proved for the case of π being a sublinear function of the dual multipliers. The algorithms
are tested on large-scale quadratically constrained problems arising in structural optimization.

Key words. convex programming, augmented Lagrangian
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1. Introduction. Methods of multipliers for constrained convex programs, in-
volving nonquadratic augmented Lagrangians, are getting renewed attention. New
theoretical results are given for a shifted logarithmic multiplier method in [13] and
[14]. A more general scheme is studied in [10]. Implementations reporting good nu-
merical results are given in [4] and [8]. For the exponential method of multipliers, new
convergence results, including rate of convergence (for the linear programming case),
are obtained in [19].

Here we introduce a class of methods called penalty/barrier multiplier (PBM)
methods, which are based on nonquadratic augmented Lagrangians. A member in
the PBM class is specified by a penalty/barrier function ϕ and a penalty updating
function π, responsible for updating the penalty parameters in each iteration. The
requirements on ϕ are rather mild and allow for the inclusion as special cases, the
exponential and the shifted logarithmic functions. More importantly, in section 4
we suggest a new type of penalty/barrier function made of a logarithmic branch
glued smoothly to a quadratic branch. A PBM algorithm based on this log-quadratic
augmented Lagrangian proved to be very efficient and capable of solving large-scale
problems to a high degree of accuracy (see sections 7 and 8). The requirement on
the penalty updating function π is that it is a sublinear function of the multipliers.
This requirement was inspired by a suggestion in the paper by Tseng and Bertsekas
[19]. We point out that an augmented Lagrangian resulting from such a choice of
π is a nonlinear function of the multipliers. In section 4 we show that the PBM
method is associated with a “proximal point” algorithm, which simultaneously solves
the dual convex programming problem. The distance-like function appearing in the
proximal term is related to the conjugate function of ϕ. Convergence properties
of the proximal point algorithm are studied in section 5, and the results obtained
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there are instrumental in proving that the PBM algorithm produces a sequence of
points which are asymptotically primal feasible. Full convergence analysis of the PBM
method is contained in section 6. It is shown (see Theorem 1) that the primal–dual
sequences generated by the algorithm are bounded, and each of their limit points
is a pair of solutions for the primal and dual problems. In section 7 we discuss
implementation issues of the PBM method and in section 8 we apply the algorithm
to large-scale quadratically constrained convex problems which arise in two types of
structural optimization—(1) truss topology design and (2) shape design. For the
first application, the largest problem solved has 462 variables and 16290 quadratic
constraints. For the second application, the largest problem solved has 6498 variables
and 3136 quadratic constraints. The computational results1 demonstrate that the
PBM method solves such problems in almost a fixed number of Newton steps (typically
30) independent of the problems’ dimensions.

2. Problem formulation and assumptions. We study the ordinary convex
programming problem (in the sense of Rockafellar [15, p. 277])

(P ) f∗ = inf{f(x) : gi(x) ≤ 0 , i = 1, . . . ,m},

where the functions f , gi . . . , gm : Rn → R are closed proper convex functions. We
let S denote the feasible set of P and S∗ the set of optimal solutions. It is assumed
throughout the paper that

(A1) S∗ is nonempty and compact.

Associated with problem (P ) is its Lagrangian

L(x, u) := f(x) +

m∑
i=1

uigi(x) ,

its dual function

G(u) := inf{L(x, u) : x ∈ Rn},

and the dual concave problem

(D) G∗ = sup{G(u) : u ≥ 0}.

Our second working assumption is Slater’s condition:

(A2) there exists x̂ ∈ dom f such that gi(x̂) < 0, i = 1, . . . ,m.

Following this assumption, it is well known that the optimal solution set of the
dual problem (D) is nonempty and compact and that f∗ = G∗. Moreover, for each
β′ < G∗, the level set

{u ∈ Rm : u ≥ 0, G(u) ≥ β′}

1 Additional computational results for the truss topology design problem were reported in an
earlier version of this paper; see [4].
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is compact.
Note that we do not assume differentiability of the functions f, g1, . . . , gm.

3. The penalty/barrier multiplier (PBM) method. We transform the con-
straints of problem (P ) using a real-valued function ϕ having the following properties:

(ϕ0) ϕ is a strictly increasing twice differentiable strictly convex function with

dom ϕ = (−∞, b), 0 < b ≤ ∞,

(ϕ1) ϕ(0) = 0,
(ϕ2) ϕ′(0) = 1,
(ϕ3) lim

t→b
ϕ′(t) =∞,

(ϕ4) lim
t→−∞

ϕ′(t) = 0,

(ϕ5) ϕ′′(t) ≥ 1
M for all t ∈ [0, b] for some M > 0.

We next show that properties (ϕ1)–(ϕ4) imply an important property of the
recession function ϕ∞ of ϕ. Recall [15, section 8] that

ϕ∞(s) := lim
λ→∞

ϕ(t+ λs)− ϕ(t)

λ
∀ t ∈ dom ϕ .

We further bring forth a result of Auslender, Cominetti, and Haddou [1] on the re-
cession functions of a composite function.

Lemma 1. If ϕ possesses properties ϕ(0)–ϕ(4) then
(ϕ6)a ϕ∞(−1) = 0,
(ϕ6)b ϕ∞(1) =∞.

Moreover, let h be a closed convex function with dom ϕ∩ h(Rn) 6= ∅ and consider the
composite function

g(x) = ϕ(h(x)) , (x ∈ dom f).

Then g is a closed convex function and its recession function is given by

g∞(d) =

{
ϕ∞(h∞(d)) if d ∈ dom h∞,

+∞ otherwise .
(3.1)

Proof. For all t ∈ dom ϕ,

ϕ∞(s) = lim
λ→∞

ϕ(t+ λs)− ϕ′(t)
λ

≥ lim
λ→∞

λsϕ′(t)

λ

(3.2)

by the gradient inequality (valid since ϕ is convex); i.e.,

ϕ∞(s) ≥ sϕ′(t) ∀ t ∈ dom ϕ = (−∞, b).(3.3)

Letting t→ b, it follows from (3.3) that

ϕ∞(1) ≥ lim
t→b

ϕ′(t) =∞ by (ϕ3).

Letting t→ −∞, it follows from (3.2) that

ϕ∞(−1) ≥ − lim
t→−∞

ϕ′(t) = 0 by (ϕ4).
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Also, by (3.2) and since ϕ is increasing,

ϕ∞(−1) ≤ 0,

hence

ϕ∞(−1) = 0 .

The formula for the recession function g∞ of the composite function g(x) = ϕ(h(x))
now follows from Proposition 2.1 in [1].

Let p be a positive number. Then the function t → ϕ(t/p) is convex increasing
and, in particular,

pϕ(t/p) ≤ 0 iff t ≤ 0 .

Consequently, the constraints in problem (P) can be equivalently written as

piϕ(gi(x)/pi) ≤ 0 , i = 1, . . . ,m,(3.4)

where pi > 0 is a penalty parameter for the ith constraint. The Lagrangian corre-
sponding to minimizing f subject to (3.4) is

F (x, u, p) := f(x) +

m∑
i=1

uipiϕ(gi(x)/pi) .(3.5)

We say that F is the augmented Lagrangian for problem (P).
The family of PBM methods for solving (P ) is iterative. At the (k+1)-iteration,

the augmented Lagrangian F is minimized with respect to x:

xk+1 = arg min
x
F (x, uk, pk),(3.6)

and then the multipliers uki , p
k
i (i = 1, . . . ,m) are updated:

uk+1
i = uki ϕ

′(gi(x
k+1)/pki ),(3.7)

pk+1
i = πk(uk+1

i ).(3.8)

Initially, a positive multiplier vector is chosen; u0 > 0. Here πk is a penalty updating
function πk : R++ → R++ (here and throughout the paper R++ denotes the positive
real line). A specific algorithm in the PBM family is determined by the particular
choice of the functions ϕ and πk.

The multiplier’s updating formula (3.7) is motivated by the optimality condition
on xk+1:

0 ∈ ck+1 +
∑

uki ϕ
′(gi(x

k+1)/pki )ck+1
i ,

where ck ∈ ∂f(xk+1), cki ∈ ∂gi(xk+1). Thus, for uk+1 being chosen as in (3.7), xk+1

satisfies

0 ∈ ∂xL(xk+1, uk+1),

hence xk+1 ∈ arg minx L(x, uk+1). Moreover, a lower bound for the optimal value of
(P ) is given by the dual objective function

inf(P ) ≥ G(uk+1) := min
x
L(x, uk+1) = L(xk+1, uk+1).(3.9)
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The updating formula (3.7) can be explained intuitively as follows: if xk+1 is not
feasible for the ith constraint, gi(x

k+1) > 0, then the influence of this constraint grows
since its multiplier uki is increased (recall that by property (ϕ2), ϕ′(gi(x

k+1)/pki ) > 1
for positive gi).

The updating formula (3.8) for the penalty parameter pki generalizes the idea of
Tseng and Bertsekas [19] for the exponential method of multipliers, where the following
two choices of the function πk(·) are discussed: πk(t) = ck and πk(t) = ckt (ck > 0).
Global convergence is proved in [19] only for the first choice. In this paper, we prove
convergence for a class of PBM methods with πk nondecreasing and sublinear, i.e.,

∀ t > 0 : πk(t) ≤ ct for some c > 0 .

It might be noted that the exponential method of multipliers belongs to a class
of multiplier methods described in Bertsekas’ 1982 book [7], which was introduced as
early as 1973 in two papers [11, 12] by Kort and Bertsekas. In these publications,
the properties of the function ϕ are slightly different and πk is a chosen constant.
Algorithms of the type (3.6)–(3.8) with πk = constant and with specific choices of ϕ
were also studied by Polyak [14] and Iusem et al. [10].

We give now a few examples of PBM-type methods.
1. The classical augmented Lagrangian [16, 17]. This PBM-type method is ob-

tained by choosing

ϕ(t) =

{
t+ 1

2 t
2 if t ≥ −1,

− 1
2 if t < −1.

This function does not in fact satisfy all our basic assumptions. Indeed (ϕ0) is violated
since ϕ here is neither twice differentiable, strictly increasing, nor strictly convex.

In all other examples below, ϕ satisfies all the properties (ϕ0)–(ϕ5).
2. The exponential method of multipliers [7, 19]. Here

ϕ(t) = et − 1 .

3. The modified barrier method [14]. Here ϕ is a shifted logarithmic function:

ϕ(t) = − log(1− t), −∞ < t < 1 .

For examples 2 and 3, ϕ is a c2-function, but the second derivative is not bounded
throughout the domain of ϕ; this is a source of difficulty for applying the Newton
method to the unconstrained minimization. The next two examples are new and give
rise to our preferred (and implemented) multiplier method.

4. A quadratic-logarithmic penalty function.

ϕ(t) =

{
t+ 1

2 t
2 if t ≥ − 1

2 ,

− 1
4 log(−2t)− 3

8 if t < − 1
2 .

5. A quadratic-reciprocal penalty function.

ϕ(t) =


t+ 1

2 t
2 if t ≥ − 1

3 ,

32
27

(
1

1−t

)
− 7

6 if t < − 1
3 .
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The functions in examples 4 and 5 are twice continuously differentiable, and the
second derivative ϕ′′(t) is bounded above for all t ∈ R. Both are made from a “barrier
branch” (logarithmic or reciprocal) and a “penalty branch” (quadratic).

Remark. If πk(t) = ckt, then the term uki p
k
i ϕ(gi(x)/pki ) in the augmented La-

grangian F is, for the quadratic branch in both examples 4 and 5,

(cku
k
i )uki

[
gi(x)

ckuki
+

1

2

(
gi(x)

ckuki

)2
]

= uki gi(x) +
1

2ck
(gi(x))2,

which is precisely the corresponding term of Rockafellar’s quadratic augmented La-
grangian.

For a PBM method to be well defined, the unconstrained minimization of F in
step (3.6) must have a solution. In the next proposition we demonstrate that under
our assumptions, this is indeed the case. The proof is essentially similar to a result
in [1].

Proposition 1. Assume that Assumption A1 holds and that ϕ satisfies properties
(ϕ0)–(ϕ4). Then for every p > 0, u > 0, the solution set of the unconstrained problem

min
x
F (x, u, p)

is nonempty and compact.
Proof. Let p > 0, u > 0 be fixed and denote

F (x) := F (x, u, p) = f(x) +

m∑
i=1

uipiϕ(gi(x)/pi) .

We derive next a formula for the recession function F∞ of F . By formula (3.1) in
Lemma 1, the recession function of

piϕ(gi(x)/pi)

is {
piϕ∞((gi)∞(d)/pi) if d ∈ dom (gi)∞,

∞ otherwise,

which further reduces to{
ϕ∞((gi)∞(d)) if d ∈ dom (gi)∞,

∞ otherwise,

since a recession function is positively homogeneous. Therefore,

F∞(d) =

{
f∞(d) +

∑m
i=1 uiϕ∞((gi)∞(d)) if d ∈ ∩ dom (gi)∞,

∞ otherwise.

Using the positive homogeneity of ϕ∞ for d ∈ ∩ dom (gi)∞, we further get

F∞(d) = f∞(d) +
∑

{i:(gi)∞d>0}
ui(gi)∞(d)ϕ∞(1)

+
∑

{i:(gi)∞d≤0}
ui|(gi)∞(d)|ϕ∞(−1) .
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Using properties (ϕ6)a and (ϕ6)b in Lemma 1, we finally get

F∞(d) =

{
f∞(d) if (gi)∞(d) ≤ 0 ∀ i = 1, . . . ,m,

∞ otherwise.
(3.10)

It is well known that assumption (A1) on the compactness and nonemptiness of
S∗ means the following:

6 ∃d 6= 0 such that f∞(d) ≤ 0, (gi)∞(d) ≤ 0 ∀ i = 1, . . . ,m.

Hence by (3.10),

6 ∃d 6= 0 such that F∞(d) ≤ 0,

which implies that the solution set of minx F (x) is nonempty and compact.

4. Dual interpretation of the PBM method. We show in this section that
the PBM algorithm (3.6)–(3.8) generates the same sequence {uk} as an appropriate
(nonquadratic) “proximal point” algorithm applied to the maximization of the dual
objective function G. Such a dual interpretation is well known for the quadratic
augmented Lagrangian method (see [16]) and for the entropic augmented Lagrangians
introduced recently by Teboulle [18].

For the dual problem

max
u∈Rm

+

G(u) ,(4.1)

the prox-algorithm is given in terms of a distance-like function Dk : Rm+ ×Rm+ → R+

by the iterative formula

uk+1 = arg max
u
{G(u)−Dk(u, uk)} .(4.2)

We consider here separable functions Dk,

Dk(u, uk) =

m∑
i=1

ρki (ui, u
k
i ), ρki : R+ ×R+ → R+.(4.3)

Next, we show how the choice of the function ϕ, in the PBM method, dictates the
specific form of the function ρki in (4.3) and, hence, the specific form of the distance
function Dk. In the sequel, we occasionally omit the indices i and k in ρki and use
simply ρ.

From the fact that xk+1 = arg minL(x, uk+1), it follows that

G(uk+1) = L(xk+1, uk+1) = f(xk+1) +
∑

uk+1
i gi(x

k+1) .

Now,

G(u) = min
x

{
f(x) +

∑
uigi(x)

}
≤ f(xk+1) +

∑
uigi(x

k+1)

= f(xk+1) +
∑

uk+1
i gi(x

k+1) +
∑

(ui − uk+1
i )gi(x

k+1)

= G(uk+1) +
∑

(ui − uk+1
i )gi(x

k+1),
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showing that

g(xk+1) ∈ ∂G(uk+1) ;(4.4)

here g(·) = (gi(·), . . . , gm(·))T , and ∂G(u) is the subgradient set of the concave function
G at u. The updating formula (3.7) can be rewritten as follows:

gi(x
k+1) = pki ϕ

′−1

(uk+1
i /uki ).(4.5)

By choosing ρ such that its derivate with respect to the first argument ρ′1(·, ·) is given
by

ρ′1(uk+1
i , uki ) = gi(x

k+1),(4.6)

we will have by (4.4) that ρ′1(uk+1
1 , uk1)

...
ρ′1(uk+1

m , ukm)

 ∈ ∂G(uk+1),

which is precisely the necessary and sufficient condition for uk+1 to satisfy (4.2). Now
(4.5) and (4.6) give the following relation between ϕ and ρ:

ρ′1(uk+1
i , uki ) = pki (ϕ′)−1(uk+1

i /uki ).(4.7)

Using the relation

(ϕ′)−1 = (ϕ∗)′,

when ϕ∗ is the conjugate function of ϕ (see, e.g., [15]), then by integrating (4.7) and
denoting ψ = ϕ∗ we get

ρ(uk+1
i , uki ) = pki u

k
i ψ(uk+1

i /uki ) ,(4.8)

which is the promised relation between ϕ and ρ.
Recalling the relation (3.8), the final generic expression for ρ is

ρ(α, β) = βπ(β)ψ(α/β), α ≥ 0, β > 0, π(β) ≥ 0.(4.9)

Property (ϕ0) implies that ψ = ϕ∗ is an essentially smooth (hence differentiable)
function on R++ (see [15, section 26]). Also,

ψ′ = (ϕ′)−1.

These facts, together with properties (ϕ0)–(ϕ5) imply that ψ inherits from ϕ the
following properties:

(ψ0) ψ is a strictly convex differentiable function in (0,∞),
(ψ1) ψ(1) = 0,
(ψ2) ψ′(1) = 0,
(ψ3) [barrier property] limt→0+ψ′(t) = −∞; ψ(t) =∞ for t ≤ 0 and limt→∞ψ(t) =

∞,
(ψ4) ψ′′(t) ≤M for t ≥ 1.

The properties of ϕ,ψ and the derivatives ϕ′, ψ′ are illustrated in Figure 1. As a
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Fig. 1. The functions ϕ, ψ = ϕ∗ and their derivatives.

specific example, we take the logarithmic-quadratic function ϕ in example 4:

ϕ(t) =

{
t+ 1

2 t
2 if t ≥ − 1

2 ,

− 1
4 log(−2t)− 3

8 if t < − 1
2 .

Computing its conjugate function, we get

ψ(s) = ϕ∗(s) =

{ 1
2 (s− 1)2 if s ≥ 1

2 ,

1
8 −

1
4 log(2s) if 0 < s < 1

2 .

All the properties (ψ0)–(ψ4) can be easily verified for this example.
From (ψ0) and the fact that π(β) > 0 for β > 0, it follows that (ρ0) ρ(·, β) is a

strictly convex and differentiable function in (0,∞) for β > 0.
Since 0 = ψ(1) = min

t>0
ψ(t), it also follows that ρ is a distance-like function. For

example,
(ρ1) ρ(α, β) ≥ 0, ρ(α, α) = 0, α > 0, β > 0.
Also, by (ψ2),
(ρ2) ρ′1(α, α) = 0.

From the barrier property (ψ3), a corresponding property follows for ρ.
(ρ3) ∀β > 0 : ρ(α, β) =∞ if α ≤ 0 : limα→∞ρ(α, β) =∞.
To sum up, we have shown that the sequence of multipliers {uk} generated by a

PBM method (3.6)–(3.8), with certain penalty function ϕ, is the same as the sequence
uk generated by the prox-algorithm (4.2) applied to the dual problem (D), with certain
distance-like functions Dk =

∑
ρki where each of the functions ρki is of the form (4.9)

and with the function ψ in (4.9) being the conjugate of ϕ.
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We give now a general basic result concerning convergence of the iterative prox-
algorithm for solving concave maximization problems:

H∗ := max{H(u) : u ∈ Rm+} .(4.10)

Proposition 2. Let H be a concave function which is bounded above on Rm+ .
Consider a distance-like function D : Rm+ ×Rm+ → R and assume it has the following
properties:

(D0) D(·, v) is a strictly convex function on Rm+ with respect to its first argument,
∀ v > 0.

(D1) D(·, v) has bounded level sets ∀ v > 0.
(D2) D(u, v) ≥ 0, D(u, u) = 0 (“distance” property).
(D3) ∀v > 0, D(u, v) =∞ if u 6> 0, and lim‖u‖→∞D(u, v) =∞ (barrier property).

For the next property, let d be a vector in the subgradient set of D taken with respect
to the first argument

d ∈ ∂1D(u, v).

(D4) For every ε > 0, there exists δ > 0 such that if for some i ∈ {1, . . . ,m} di > ε,
D(u, v) > δ.

Then
(a) the sequence uk generated by the iterative process

uk+1 = arg max{H(u)−D(u, uk)} , u0 > 0,(4.11)

is well defined, positive, and the sequence of function values H(uk) is nondecreasing ;
(b) there exists a sequence of vectors dk such that

dk ∈ ∂1D(uk, uk−1),(4.12)

dk ∈ ∂H(uk),(4.13)

and for every such sequence,

lim
k→∞

(dki )+ = 0 i = 1, . . . ,m.(4.14)

Here, and henceforth, α+ denotes the positive part of a number α ∈ R:

α+ = max(0, α).(4.15)

Proof. (a): Since H is bounded above and, by (D1), D(·, uk) has bounded level
sets, the max in (4.11) is attained. Moreover, if uk > 0, then by the barrier property
(D3), uk+1 > 0, also by (D0), uk+1 is uniquely determined. Now

H(uk+1)−D(uk+1, uk) ≥ H(uk)−D(uk, uk) = H(uk) by (D2).

Hence, using (D2) again,

H(uk+1)−H(uk) ≥ D(uk+1, uk) ≥ 0.(4.16)

(b): The existence of dk satisfying (4.12)–(4.13) follows from the necessary and
sufficient optimality condition for uk:

0 ∈ ∂H(uk)− ∂1D(uk, uk−1).
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Arguing by contradiction, suppose that (4.14) is not satisfied. Then there is an infinite
set of indices {kj} such that for some i ∈ {1, . . . ,m},

∂1D(ukj , ukj−1)

∂u
kj
i

> ε.

Then by property (D4) and (4.16), for some δ > 0,

H(ukj )−H(ukj−1) ≥ δ > 0.

Thus, the infinite sequence H(ukj ) increases each step at least by a positive constant;
hence, it cannot be bounded above, contrary to our assumption.

Remark. With obvious changes, Proposition 2 remains valid if the distance func-
tion is Dk(u, v); i.e., it depends on the iteration number k.

5. Properties of the distance function D(u, v). Consider the expression for
the distance function obtained in section 3 (4.3):

D(u, v) =

m∑
i=1

ρ(ui, vi) , u ≥ 0, v > 0,(5.1)

with

ρ(α, β) = βπ(β)ψ(α/β), α ≥ 0, β > 0,(5.2)

π(β) > 0 for β > 0, π increasing in R+,(5.3)

and where

ψ = ϕ∗ and ϕ satisfies (ϕ0)–(ϕ5).(5.4)

From the properties (ψ0)–(ψ3), which follow from (5.4), and the corresponding
properties (ρ0)–(ρ3) of ρ, we get the following proposition.

Proposition 3. The distance function D described in (5.1)–(5.4) satisfies con-
ditions (D0)–(D3) in Proposition 2.

It is a much more difficult task to show that D also satisfies the crucial property
(D4) in Proposition 3. To this end we assume that the penalty updating function π
is sublinear; i.e.,

∀ t > 0 : π(t) is increasing positive and π(t) ≤ ct for some c > 0 .(5.5)

We first prove an important property of ρ.
Lemma 2. If
(i) α > β > 0,

(ii) 0 < π(β)/β < c,
then ρ given in (5.2) satisfies the inequality

ρ(α, β) ≥ 1

2

[ρ′1(α, β)]2

cM
,(5.6)

where

M = max
t≥1

ψ”(t) <∞ .
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Proof. Consider the quadratic function

q(t) = q(α) + (t− α)ρ′1(α, β) +
1

2
(t− α)2cM.

Its minimizer is

t∗ = −ρ
′
1(α, β)

cM
+ α,(5.7)

and

q(t∗) = q(α)− 1

2

[ρ′1(α, β)]2

cM
.(5.8)

Clearly (i) implies ρ′1(α, β) > 0, and so by (5.7),

t∗ < α .(5.9)

We next show

t∗ ≥ β .(5.10)

Indeed,

ρ′1(α, β) = ρ′1(α, β)− ρ′1(β, β) = (α− β)ρ′′1(µ, β)

for some β ≤ µ ≤ α; by the mean-value theorem,

= (α− β)
π(β)

β
ψ′′
(
µ

β

)
≤ (α− β)cM by (ψ4) and (ii).

The latter inequality is rewritten as

β ≤ −ρ
′(α, β)

cM
+ α = t∗,

so (5.10) holds.
Again by the mean-value theorem, for every β ≤ t < α,

ρ′1(α, β)− ρ′1(t, β) = (α− t)ρ′′1(t̄, β) for some t ≤ t̄ ≤ α.

Since

ρ′′1(t, β) =
π(β)

β
ψ′′
(
t

β

)
≤ cM, ∀ β ≤ t,(5.11)

it follows that

ρ′1(α, β) ≤ ρ′1(t, β) + (α− t)cM ∀ β ≤ t < α.

For example,

ρ′1(t, β) ≥ ρ′1(α, β) + (t− α)cM ∀ β ≤ t ≤ α.

On the other hand,

q′(t) = ρ′1(α, β) + (t− α)cM ;
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hence,

ρ′1(t, β) ≥ q′(t) ∀ β ≤ t ≤ α.(5.12)

Since β ≤ t∗ < α by (5.9) and (5.10), we get, by integrating (5.12) from t∗ to α,

ρ(α, β)− ρ(t∗, β) ≥ q(α)− q(t∗).

Since ρ(t∗, β) ≥ 0, the latter inequality implies (using (5.8))

ρ(α, β) ≥ q(α)− q(t∗) =
1

2

[ρ′1(α, β)]2

cM
.

We now establish the fact that D satisfies property (D4) previously mentioned in
Proposition 3.

Proposition 4. The distance function D described in (5.1)–(5.5) satisfies con-
dition (D4) in Proposition 2.

Proof. Suppose β > 0. Then

ε > 0 and ρ′1(α, β) ≥ ε.(5.13)

Since ρ′1(α, β) > 0 by (ρ2) and the strict convexity of ρ(·, β), α > β, and since we are
in the situation covered by Lemma 2, we thus conclude that

ρ(α, β) ≥ δ :=
ε2

2cM
.(5.14)

Now, by (D0), which was established in Proposition 2, the subgradient ∂1D(u, v) is
the single vector whose ith component is di = ρ′1(ui, vi). Hence, the fact we just
proved, that (5.13) implies (5.14), proves that (D4) holds.

6. Convergence of the PBM method. The main theoretical result of our
paper follows.

Theorem 1. Let the convex program (P) satisfy assumptions A1 and A2. Let ϕ
satisfy properties (ϕ0–ϕ5) and let πk satisfy the sublinearity condition (5.5) for each
k. Then the sequences {xk}{uk} generated by the PBM method (3.6)–(3.8) satisfy the
following as k →∞:

gi(x
k)+ → 0, i = 1, . . . ,m,(6.1)

f(xk)→ f∗,(6.2)

and

uki g
k
i (xk)→ 0, i = 1, . . . ,m .(6.3)

Moreover, {xk} and {uk} are bounded sequences and each of their limit points is a
pair of optimal solutions to (P) and (D), respectively.

Proof. We first prove the asymptotic primal feasibility result (6.1) by using Propo-
sition 2, with H(u) = G(u). Recall that by (4.4),

g(xk) ∈ ∂G(uk).(6.4)
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Also,

gi(x
k) = pk−1

i ϕ′(uki /u
k−1
i ) by (4.5),

= ρ′1(uki , u
k−1
i ) by (4.7),

= ∂1D(uk,uk−1)

∂uk
i

by (4.3).

Therefore, the vector dk = g(xk) satisfies (4.12) and (4.13) of Proposition 2. Further-
more, the distance function D has properties (D0)–(D4) (this was proved in Proposi-
tions 3 and 4) and so, from conclusion (b) of Proposition 2,

lim
k→∞

gi(x
k)+ = 0,

proving (6.1).
We next prove the complementarity relation (6.3). We use the notation gki =

gi(x
k). Recall that by the Slater condition (assumption A2), the level sets of the dual

objective function G are compact. Also, from conclusion (a) of Proposition 2, G(uk)
is a nondecreasing sequence, so for all k, uk belong to the compact set

{u|G(uk) ≥ G(u0)},

and hence {uk} is a bounded sequence, say uki ≤ ū, for all i. If gki → 0, uki g
k
i → 0 also

and (6.3) holds. If gi(x
k) remains bounded away from zero, then by (6.1) for some

ρ < 0,

gki ≤ ρ < 0 .(6.5)

From the updating formula (3.7),

gki (uk−1
i − uki ) = gki u

k−1
i [1− ϕ′(gki /pk−1

i )](6.6)

= gki u
k−1
i − uk−1

i pk−1
i (gki /p

k−1
i )ϕ′(gki /p

k−1
i )

≤ gki uk−1
i − uk−1

i pk−1
i (gki /p

k−1
i ) = 0,

since tϕ′(t) ≥ t,

hence

gki (uk−1
i − uki ) ≤ 0.(6.7)

From (6.4) and (6.7),

0 ≥
∑

gki (uk−1
i − uki ) ≥ G(uk−1)−G(uk),(6.8)

but G(uk) is increasing and bounded by G∗, so G(uk−1) − G(uk) → 0. From (6.8),
then ∑

gki (uk−1
i − uki )→ 0.(6.9)

Moreover, by (6.7) each term in the summation is nonpositive. Thus (6.9) implies

gki (uk−1
i − uki )→ 0 ∀ i = 1, . . . ,m,(6.10)
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and by (6.6)

gki u
k−1
i [1− ϕ′(gki /pk−1

i )]→ 0, ∀ i = 1, . . . ,m.(6.11)

The sequence pki is bounded, since uki is bounded and pki ≤ cuki by the sublinearity of
πk, so in particular

pk−1
i ≤ cū.

And so, by (6.5),

gki /p
k−1
i ≤ ρ

cū
< 0.(6.12)

The function ϕ′ is strictly increasing and ϕ′(0) = 1; hence, by (6.12),

0 < ϕ′(gki /p
k−1
i ) < 1.

And so, by (6.11),

gki u
k−1
i → 0,

and thus, by (6.10),

gki u
k
i → 0,

proving (6.3).
Next, we prove (6.2). From (6.1) xk is asymptotically feasible, so for all ε > 0,

f(xk) ≥ f∗ − ε for k large enough.
From (3.9),

f∗ ≥ G(uk) = f(xk) +

m∑
i=1

uki gi(x
k).(6.13)

Combining the last two inequalities,

∀ ε > 0, f∗ − ε ≤ f(xk) ≤ f∗ −
∑

uki g
k
i for k large enough;

using (6.3), we get f(xk)→ f∗.
Now, by (6.1) and (6.3), there exist ε > 0 such that for k sufficiently large,

gi(x
k) ≤ ε , f(xk) ≤ f∗ + ε .(6.14)

Due to assumption A1 (compactness of the primal optimal set), for any α, β the set

{x ∈ Rn : gi(x) ≤ α, f(x) ≤ β}

is compact [9, Cor. 20]. Hence, by (6.14) the sequence {xk} is bounded. We already
mentioned that {uk} is bounded, so let (x̄, ū) be a limit point of {xk}, {uk}. It follows
from (6.1) and (6.2) that x̄ is a primal optimal solution. By this and by using (6.13)
and (6.3),

G(ū) = f∗.

But f∗ = G∗ by strong duality (which holds due to assumption (A2). Hence, ū is a
dual optimal solution.
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7. Implementation. The overall efficiency of a PBM method depends mainly
on the efficiency of solving the unconstrained minimization

xk+1 = arg min
x
F (x, uk, pk).(7.1)

In our implementation, (7.1) is solved by a Newton method with linesearch. It
stops as soon as either the decrease of F per Newton step is less than α · mini{pki }
or ‖∇xF (x, uk, pk)‖ < α (typically α = 0.1). The starting point for the Newton
method to solve (7.1) is the last iterate xk. Clearly, this is a reasonable starting point,
provided F (·, uk, pk) is not too different from F (·, uk−1, pk−1), which may occur if for
some i ∈ {1, . . . ,m} the ratio uk+1

i /uki is too large or too small. To prevent this, we
impose the safeguard rule

µ ≤ uki /uk−1
i ≤ 1/µ,(7.2)

where 0 < µ < 1 is a user-prescribed parameter (we found µ = 0.3 to give consistently
good results). Thus, the modified multipliers’ updating rule is

uk+1
i =


µuki if ūk+1

i /uki < µ,

ūk+1
i := uki ϕ

′(gi(x
k+1/pki )) if µ ≤ ūk+1

i /uki ≤ 1/µ,

(1/µ)uki if ūk+1
i /uki > 1/µ.

The safeguard (7.2) also restricts the influence of inaccuracy in the minimization (7.1)
on the values of the new multipliers and, moreover, prevents them from approaching
zero too early. In our numerical experiments, after very few iterations (rarely more
than three), the upper bound in (7.2) was not activated. Towards convergence, only
nonbinding constraints (u∗i = 0) were activating the lower bound.

Two choices of the penalty-updating functions π were implemented:
(i) πk(t) = π0(µ)kt.
(ii) πk(t) = π0(µ)k.
The parameter 0 < µ < 1 is the same used for (7.2), and π0 > 0 is a parameter

with typical values between 10–1000. Also, the initial choice of the multiplier vector
is u0

i = 0.01 for all i. The first choice (i) of πk agrees with the sublinear assumption

πk(t)

t
≤ c ∀ t > 0(7.3)

with c = π0µ. Recall that condition (7.3) was crucial for the convergence analysis,
but, in fact, it is needed only for values t = uki ; i.e.,

πk(uki )

uki
≤ c .(7.4)

It is easy to see that the choice (ii) of πk, together with the safeguard rule (7.2),
implies

πk(uki )

uki
=
π0µ

k

uki
≤ π0µ

k

u0
iµ
k
≤ π0

min{u0
i }
≡ c ,

so (7.4) holds for both choices of πk.
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The most efficient and stable implementation of the PBM algorithm was achieved
with the logarithmic-quadratic penalty function ϕ (see example 4 in section 3); the
reciprocal-quadratic ϕ (example 5 in section 3) was also successful and only slightly
inferior. Compared with a pure (shifted) logarithmic penalty, the number of Newton
steps for a logarithmic-quadratic penalty was usually reduced 2–3 times, particularly
for large-scale problems.

By “stable,” we mean that the algorithm’s performance was not affected too
much by the choice of the parameters (u0, µ, π0, etc.). By “efficient,” we mean that
the number of Newton steps grows very slowly with the dimension of the problem.
This is demonstrated clearly in Tables 1 and 2 in the next section.

Empirically, we observed that after achieving an accuracy of 4–5 digits in the
objective function value f(xk), every additional iteration required only one Newton
step, adding typically a digit of accuracy. (An analogous fact was demonstrated in
[14] for the modified barrier function (MBF) (shifted log) method in the case of linear
programming.) Due to this property, the method is particularly efficient when high
accuracy is required.

8. Numerical results for large-scale structural optimization problems.
The PBM algorithm with a log-quadratic penalty was applied to solve two types of
problems in structural optimization: (1) truss topology design and (2) shape design.

Truss topology design (TTD). The original formulation of the problem is the
following (see [3, 5] for details):

(TTD) minx,t f
Tx

subject to
A(t)x = f,∑m
i=1 ti = v,

ti ≥ 0 , i = 1, . . . ,m,

(8.1)

where
N = number of nodes in the truss,
m = maximum number of potential bars in the truss (m = 1

2N(N − 1)),
t = (ti) = m-dimensional vector of the bar volumes (design variables),
n = number of analysis variables n = 2N (2D-trusses) or

n = 3N (3D-trusses),
x = (xj) = n-dimensional vector of the displacements of the nodes

(analysis variables),
f = n-dimensional vector of external loads,
v = total volume of the truss,
A(t) = symmetric positive semidefinite n× n matrix, the stiffness matrix.

The matrixA(t) is given in terms of matricesAi, which are also symmetric positive
semidefinite (PSD) n× n matrices:

A(t) =

m∑
i=1

tiAi.

Each Ai contains information on the geometry of the connection of node i to the other
nodes.

In [3], it was proved that problem (TTD) is equivalent to the following minimax
problem:

min
x

{
F (x) = max

1≤i≤m

{v
2
xTAix− fTx

}}
.
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Table 1

Numerical results for the truss topology design problem (8.2).

# of # of # of Newton steps CPU time
variables constraints πk(t) = π0µkt πk(t) = π0µk per Newton

(i) (ii) step
88 603 26 28 0.017
98 150 16 12 0.024

126 1234 31 28 0.051
162 2040 32 25 0.11
192 2852 27 25 0.18
242 4492 34 27 0.36
338 8744 42 38 1.00
342 8958 42 31 1.03
450 15556 90 54 2.35
462 16290 48 39 2.54

This minimax we can rewrite as the following quadratically constrained minimiza-
tion problem:

min z

s.t. z − v

2
xTAix+ fTx ≥ 0, i = 1, 2, . . . ,m,(8.2)

and we applied the PBM method to this latter formulation. The Newton steps were
performed by using the routine EO4LBF from the NAG library. The results are given
in Table 1. All tests were performed on an IBM RS 6000 workstation. Accuracy is
six digits.

The results in Table 1 show a slightly better performance for choice (ii) of the
penalty updating function πk. The problem with 450 variables and 15556 (quadratic)
constraints is particularly difficult due to a large number of “almost” active constraints
in the optimal solution (many thin bars in the optimal truss). It could not be solved
without the safeguard rule (7.2), due to ill-conditioning of the Newton system. The
linear πk could solve all but two of the large-scale problems without using (7.2), but
the number of Newton steps could increase 1.5–2.5 times.

Shape design. In [6], a mathematical model is constructed which describes the
problem of minimizing the compliance of a mechanical structure made of a given
material, in which the material properties themselves appear in the role of design
variables.

The final finite element discretization of the continuous problem leads to a for-
mulation similar to (TTD) which further reduces to a quadratic minimax problem of
the type

min
x∈RN

max
i=1,...,M

{xTAix− fTx},

where M is the number of finite elements approximating the elastic continuum in
question and N ≈ 2M is the dimension of the “displacement field” vector x. In our
tests, the finite element mesh was in the range 14× 14 to 56× 56. All Ai’s are small
rank positive semidefinite matrices. The minimax problem can be reformulated as
(see [5]) 

min
z∈RN

fT z

subject to
zTAiz ≤ 1, 1 = 1, . . . ,M.

(8.3)
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Table 2

Numerical results for the shape design problem (8.3).

# of # of # of Newton steps CPU time
variables constraints πk(t) = π0µkt πk(t) = π0µk per Newton

step
450 195 20 20 0.003
800 361 25 25 0.02

1682 784 28 25 0.017
2800 1311 41 31 0.81
3000 1421 38 29 1.00
3200 1521 33 27 1.20
3600 1711 40 28 1.72
5000 2401 48 28 4.62
6000 2871 44 29 8.00
6498 3136 32 28 10.01

The Hessian matrix of augmented Lagrangian F (·, u, p) for the problem (8.2)
is sparse and, moreover, has the same pattern of nonzero elements as the matrix
A(t) in the equilibrium equation (8.1). Therefore, to solve the Newton system, we
used a standard solver for finite elements equilibrium equations (see Chap. 6 in [2]).
Compared to a Cholesky decomposition scheme (used in the TTD problem), this
solver improves computing time by a factor of 100 for very large problems.

Results for running the PBM method on problem (8.3) for different sizes are given
in Table 2.

Acknowledgments. The authors are indebted to helpful discussions with Alfred
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paper.
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Abstract. When computing the infimal convolution of a convex function f with the squared
norm, the so-called Moreau–Yosida regularization of f is obtained. Among other things, this function
has a Lipschitzian gradient. We investigate some more of its properties, relevant for optimization.
The most important part of our study concerns second-order differentiability: existence of a second-
order development of f implies that its regularization has a Hessian. For the converse, we disclose
the importance of the decomposition of RN along U (the subspace where f is “smooth”) and V (the
subspace parallel to the subdifferential of f).
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differentiability

AMS subject classifications. Primary, 26B05; Secondary, 65K10

PII. S1052623494267127

1. Introduction. The motivation for this paper is to explore the possibility of
introducing efficient preconditioners into the proximal-point algorithm to minimize
a convex function f . This algorithm (see [2], [13], [23]) is essentially an implicit
(sub)gradient method. However, it is much more fruitful to see it as the ordinary
gradient method applied to a certain perturbation of f : the Moreau–Yosida regular-
ization (see [15], [27]), whose minima coincide with those of f . The introduction of a
preconditioner into this gradient method is thus natural; first steps in this direction
were already made in [21], [3]. Naturally, such a preconditioner has to exploit the
second-order properties of the perturbed objective function; a study of these proper-
ties is therefore a prerequisite to the development of any reasonable algorithm. We
address this last, purely theoretical, question here; we also study some other prop-
erties relevant for optimization. Specifically, we relate the smoothness, behavior at
infinity, and strong convexity of an objective function to the corresponding properties
of its Moreau–Yosida regularization; for this, we use extensively the technical results
of [11]. The companion paper [28] exploits the results obtained here to develop some
related algorithms, emphasizing the implementable aspect; along these lines, we also
mention the computational considerations contained in [5], [1], [9], [25], [14], [10].

Our notation follows closely that of [22] and [7]. In the space RN , the Euclidean
product is denoted by 〈·, ·〉, and ‖ · ‖ is the associated norm; B(x, ρ) is the ball
centered at x with radius ρ. The conjugate of a closed (i.e., lower semicontinuous)
convex function ϕ is

ϕ∗(g) := sup
x∈RN

{〈g, x〉 − ϕ(x)} .(1)

Recall that the conjugacy operation is an involution; i.e., the conjugate of ϕ∗ is ϕ itself.
The indicator function of a closed convex set S (0 on S, +∞ outside) is denoted by
IS . Given a symmetric positive definite linear operator M , we set 〈·, ·〉M := 〈M ·, ·〉;

∗ Received by the editors May 4, 1994; accepted for publication (in revised form) October 31,
1995.
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accordingly, we will shorten 1
2‖x‖2M := 1

2 〈x, x〉M , whose conjugate is 1
2‖g‖2M−1 . The

smallest and largest eigenvalues of M will be denoted by λ and Λ, respectively.
We denote by F the Moreau–Yosida regularization of a given closed convex func-

tion f associated to the metric defined by M :

F (x) := min
y∈Rn

{
f(y) + 1

2‖y − x‖2M
}

=:
(
f ∨+ 1

2‖ · ‖2M
)

(x) ,(2)

where ∨+ stands for the infimal convolution. The dual relation

F ∗(·) = f∗(·) +
1

2
‖ · ‖2M−1

will be used continually in this paper. First-order regularity of F is well known;
without any further assumption, F has a Lipschitzian gradient. More precisely, for
all x1, x2 ∈ RN ,

‖∇F (x1)−∇F (x2)‖2 ≤ Λ 〈∇F (x1)−∇F (x2), x1 − x2〉 .(3)

(Note that the Lipschitz property comes with Cauchy–Schwarz.) If we denote by p(x)
the unique minimizer in (2), called the proximal point of x, ∇F (x) has the following
expression:

G := ∇F (x) = M(x− p(x)) ∈ ∂f(p(x)) .(4)

Note in particular that f has a nonempty subdifferential at any point p of the form
p(x).

Our paper is organized as follows. First, we review a few elementary results
on the Moreau–Yosida regularizationF of (2), which are relevant when developing
optimization algorithms. Some of them are easy and/or already known, at least for
M = I, the identity operator. Then in section 3 comes the main content of this paper:
a study of second-order differentiability. We give a detailed answer to the question
“when does F have a Hessian?” We also touch on second-order differentiability in the
epigraphical sense, [24], which yields related but complementary results. This question
is also addressed in [12] and [17]. In this last reference, the fairly general class of prox-
regular functions, which contains lower-C2, primal-lower-nice, and strongly amenable
functions, is considered. Our present work is limited to a convex f ; moreover, we
will often consider the finite-valued case, f : RN → R. This avoids some technical
difficulties and makes the reading lighter.

2. Properties of the Moreau–Yosida regularization. We study here some
properties which F of (2) inherits from f .

We first show that f and F have the same behavior at infinity. Recall that the
recession (or asymptotic) function of a closed convex function ϕ is defined by

ϕ′∞(d) := lim
t→+∞

[ϕ(x+ td)− ϕ(x)]/t

(a limit which does not depend on x ∈ domϕ). This function is useful because ϕ has
a nonempty bounded set of minima if and only if ϕ′∞(d) > 0 for all d 6= 0.

Theorem 2.1. The recession functions of f and F are identical.
Proof. Apply Corollary 9.2.1 in [22]: the recession function of an infimal con-

volution is the infimal convolution of the recession functions. Because the recession
function of a squared norm is clearly I{0}, we obtain

F ′∞(d) =
(
f ′∞ ∨+ I{0}

)
(d) = inf

y=0
f ′∞(d− y) = f ′∞(d).
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Recall that a function ϕ is said to be strongly convex with modulus c > 0
if and only if ϕ(·) − 1

2c‖ · ‖2 is a convex function. This property plays the role
of nondegenerate Hessians in smooth optimization; as such, it is fairly relevant for
optimization algorithms. We show that strong convexity is transmitted between f
and F . Dually, smoothness is likewise transmitted between f∗ and F ∗.

Theorem 2.2. For a finite-valued convex function f , the following statements
are equivalent:

(i) f is strongly convex with modulus 1/`;
(ii) f∗ has a Lipschitzian gradient with Lipschitz constant `;
(iii) F ∗ has a Lipschitzian gradient with Lipschitz constant L;
(iv) F is strongly convex with modulus 1/L.

Furthermore, we have the inequalities `− 1/λ ≤ L ≤ `+ 1/λ.
Proof. Because f and F are finite valued, Theorems X.4.2.1 and X.4.2.2 in [7]

can be applied to yield the equivalences (i) ⇐⇒ (ii) and (iii) ⇐⇒ (iv).
Let us prove (ii) ⇐⇒ (iii). Since F is the infimal convolution of f and 1

2‖·‖2M , its
conjugate is the sum of the respective conjugates: F ∗(·) = f∗(·)+ 1

2‖·‖2M−1 . Actually,

∇F ∗(·) = ∇f∗(·) +M−1(·)

whenever one of the gradients exists. The equivalence between the Lipschitz properties
is then clear; as for the relations between the constants, apply appropriate triangular
inequalities.

We now turn our attention to properties involving the proximal operator more
directly. They will be useful for the study of second-order smoothness.

Proposition 2.3. For any x1 and x2 in RN ,

‖p(x1)− p(x2)‖2M ≤ 〈x1 − x2, p(x1)− p(x2)〉M .(5)

It follows that the mapping x 7→ p(x) is Lipschitzian with constant Λ/λ.
Proof. For arbitrary p1, p2 ∈ RN and Gi ∈ ∂f(pi), the convexity of f gives the

monotonicity of the subgradients; 〈G1 −G2, p1 − p2〉 ≥ 0. Now take x1 and x2 in RN ,
and write the inequality for pi := p(xi), Gi from (4):

〈M(x1 − p(x1))−M(x2 − p(x2)), p(x1)− p(x2)〉 ≥ 0 ,

which is (5). From this we can obtain

λ‖p(x1)− p(x2)‖2 ≤ Λ‖x1 − x2‖ ‖p(x1)− p(x2)‖,

and the Lipschitz property follows immediately.
Proposition 2.4. Assume f is a closed convex function. Then ∇F (·) has

directional derivatives if and only if p(·) has directional derivatives. The Hessian
∇2F (x) exists if and only if the Jacobian ∇p(x) exists:

∇2F (x) = M(I −∇p(x)) for all x ∈ RN .

Proof. The proof is straightforward from (4).
As observed in [14], a space decomposition may be important when combining

quasi-Newton updates with proximal-point algorithms. Along these lines, we show
that when x → x0, p(x) is asymptotically close to the normal cone to ∂f(p(x0)) at
G. First we recall a well-known property of convex functions.
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Lemma 2.5. Let f be a closed convex function and let z0 ∈ ri dom f . Suppose
t ↓ 0 and (z−z0)/t has a cluster point `; let g ∈ ∂f(z) have a cluster point g0 ∈ ∂f(z0).
Then ` ∈ N := N∂f(z0)(g0), the normal cone to ∂f(z0) at g0.

Proof. Take any γ ∈ ∂f(z0); from convexity, 〈g − γ, z − z0〉 ≥ 0. Dividing by
t > 0 and passing to the limit, we obtain 〈g0 − γ, `〉 ≥ 0.

Corollary 2.6. When x → x0, all the cluster points of p(x)−p(x0)
‖x−x0‖ lie in N ∩

B(0,Λ/λ). As a result, if p(·) has a Jacobian ∇p(x), then Im∇p(x) ⊂ N .
Proof. Set g0 = G = ∇F (x0) ∈ ∂f(p(x0)), z0 = p(x0), z = p(x), g = ∇F (x) ∈

∂f(p(x)), and t = ‖x − x0‖. Because F is continuously differentiable, g → G. Then
apply Lemma 2.5 and Proposition 2.3.

A direct consequence is that ∇F enjoys automatically some directional differen-
tiability.

Corollary 2.7. For the closed convex function f, let G be defined by (4), and
denote by T the tangent cone to ∂f(p(x)) at G. Then, for any d such that Md ∈ T ,

∇F (x+ td)−∇F (x)

t
−→Md when t ↓ 0.

Proof. From (4), ∇F (x + td) − ∇F (x) = tMd −M(p(x + td) − p(x)); we only
need to show that [p(x+ td)− p(x)]/t tends to 0 when t ↓ 0. For this, use (5):

〈M(p(x+ td)− p(x)), p(x+ td)− p(x)〉 ≤ t 〈p(x+ td)− p(x),Md〉 .

Observing that the left-hand side is minorized by λ‖p(x + td) − p(x)‖2, divide by t2

to obtain

0 ≤ λ‖p(x+ td)− p(x)‖2
t2

≤
〈
p(x+ td)− p(x)

t
,Md

〉
.

In view of Corollary 2.6, the (bounded) right-hand side cannot have any positive
cluster point; it must tend to 0 and the proof is complete.

Of course, owing to the Lipschitz property of ∇F , a classical argument enables
the following improvement of this directional result: if x → x0 in such a way that
(x− x0)/‖x− x0‖ → d with Md ∈ T , then

∇F (x)−∇F (x0)

‖x− x0‖
−→Md.

To illustrate Corollary 2.7, take the bivariate function f(ξ, η) = |ξ| + 1
2η

2 and
M = I. The optimality condition for the proximal point (π, ρ) of (ξ, η) close to 0
results in

π = 0 if |ξ| ≤ 1 and ρ = η/2.

Thus, at x = 0, ∂f(x) = [−1, 1] × {0}, p(x) = 0, G = 0, and p(·) has the Jacobian
( 0
0

0
1/2 ). We see that the nondifferentiability of f at 0 in the subspace T = R × {0}

does not affect the second-order differentiability of F .
We conclude this section with a trivial but often forgotten observation: the prox-

imal mapping has an explicit inverse. This may be very useful when designing algo-
rithms; see [10].

Theorem 2.8. Let p be such that ∂f(p) 6= ∅ and take G ∈ ∂f(p). Then p is the
proximal point of x := p+M−1G.

Proof. We have M(x− p) ∈ ∂f(p) and this characterizes the proximal point in a
unique way; see (4).
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3. Second-order analysis. The aim of this section is to relate second-order
derivatives of F and f . For the continuously differentiable F , there is no need of
generalizing the classical notion of Hessian. For f , however, the multivalued ∂f calls
for a special concept. We will say that the finite-valued convex function f admits at
z0 a generalized Hessian Hf(z0) when

(i) the gradient ∇f(z0) exists,
(ii) there exists a symmetric positive semidefinite operator Hf(z0) such that

f(z0 + h) = f(z0) + 〈∇f(z0), h〉+
1

2
〈Hf(z0)h, h〉+ o(‖h‖2) .(6)

An important result of [6] is that (6) is equivalent to

∂f(z0 + h) ⊂ ∇f(z0) + Hf(z0)h+ o(‖h‖)B ,(7)

where B is the unit ball. Note also that when ∂f is single valued in a neighborhood
of z0, Hf(z0) is the classical Hessian ∇2f(z0).

We present our study in several steps. First, we consider f strongly convex and
differentiable; next, we eliminate the differentiability assumption. Finally, we take
a general convex finite-valued function. We are interested in relating the existence
of ∇2F (x0) and Hf(p0), with p0 = p(x0). The following growth condition plays a
central role for most of our results:

f(p0 + h) ≤ f(p0) + f ′(p0;h) +
1

2
C‖h‖2 for some C > 0 and all h ∈ B(0, ε).(8)

3.1. Differentiable case. The following result has been proved independently
by J.-B. Hiriart-Urruty and L. Q. Qi.

Theorem 3.1. Let the finite-valued convex function f have a generalized Hessian
at p(x0). Then the Hessian of F exists at x0; more precisely,

∇2F (x0) = M −M [Hf(p(x0)) +M ]−1M .

Proof. In view of Proposition 2.4, we only need to exhibit ∇p(x0). Write (7) with
z0 and z0 + h replaced by p(x0) and p(x0 + h), respectively:

∂f(p(x0 +h)) ⊂ ∇f(p(x0))+Hf(p(x0))(p(x0 +h)−p(x0))+o(‖p(x0 +h)−p(x0)‖)B .

Because p(·) is Lipschitzian (Proposition 2.3), o(‖p(x0 + h)− p(x0)‖) = o(‖h‖). Mul-
tiply by M−1 and add p(x0 + h) to both sides to obtain the following:

M−1∂f(p(x0 + h)) + p(x0 + h) ⊂ M−1∇f(p(x0)) + p(x0 + h)
+M−1Hf(p(x0))(p(x0 + h)− p(x0)) + o(‖h‖)B

= M−1∇f(p(x0)) + p(x0)
+ [I +M−1Hf(p(x0))](p(x0 + h)− p(x0))

+ o(‖h‖)B .

Now recall Theorem 2.8: the left-hand side contains x0+h; likewise, M−1∇f(p(x0))+
p(x0) is the singleton x0. Thus, we have proved

h ∈ [I +M−1Hf(p(x0))](p(x0 + h)− p(x0)) + o(‖h‖)B .
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Knowing that I +M−1Hf(p(x0)) is invertible, this can also be written

p(x0 + h)− p(x0) ∈ [I +M−1Hf(p(x0))]−1h+ o(‖h‖)B ,

which means that [I+M−1Hf(p(x0))]−1 is exactly the gradient of p at x0. Therefore,
∇2F (x0) = M(I −∇p(x0)) = M −M [I +M−1Hf(p(x0))]−1.

Corollary 3.2. Let the finite-valued convex function f have a generalized Hes-
sian at p(x0). Then ∇2F (x0) exists and

ker∇2F (x0) = ker Hf(p(x0)).

Proof. Use the notation H := Hf(p(x0)) and H ′ := ∇2F (x0). From Theorem 3.1,
M−1H ′ = I − [H +M ]−1M = I − [M−1H + I]−1; hence,

I −M−1H ′ = (I +M−1H)−1 .

If H ′v = 0, then (I +M−1H)v = v and Hv = 0. Taking inverses, (I −M−1H ′)−1 =
I +M−1H and we show, likewise, that Hv = 0 implies H ′v = 0.

The converse part of Theorem 3.1 is not so simple; it will be stated in Theo-
rems 3.14 and 3.15 below. First, the next geometrical result is crucial.

Proposition 3.3. Let f be a finite-valued strongly convex function satisfying (8)
at a given p0 = p(x0). If ∇2F (x0) exists, then G of (4) lies in the relative interior of
∂f(p0).

Proof. Let F have a Hessian at x0; hence, by Proposition 2.4, ∇p(x0) exists.
Assume for contradiction G ∈ rbd ∂f(p0); by Proposition 2.2 in [11], the normal

cone N = N∂f(p0)(G) is not a subspace. Now use Proposition 2.1 in [11] and the

notation therein. We can take a unitary ν0 ∈ N ∩M⊥ (with M := N ∩ −N ) such
that

ν ∈ N and 〈ν0, ν〉 6= 0 =⇒ −ν /∈ N .(9)

Take Gt := G + tν0 with t > 0; calling c the modulus of strong convexity of f ,
Theorem 2.2 guarantees that pt := ∇f∗(Gt) satisfies the Lipschitz condition

‖pt − p0‖ ≤
1

c
‖Gt −G‖ =

1

c
t .

By Theorem 2.8, this pt is the proximal point of xt := pt +M−1Gt which, therefore,
satisfies

‖xt − x0‖ ≤ ‖pt − p0‖+
1

λ
‖Gt −G‖ ≤

(
1

c
+

1

λ

)
t.(10)

Furthermore, since (8) holds, we can apply Corollary 3.3 in [11], with ϕ = f ,
r = 1

2C‖ · ‖2, z0 = p0, x = pt, g0 = G, and s = tν0 ∈ N : whenever t ∈ [0, εC/2],

〈Gt −G, pt − p0〉 ≥
1

2C
‖Gt −G‖2 =

1

2C
t2 .

Combine this equation with (10):

λc

2C(c+ λ)
≤
〈
ν0,

pt − p0

‖xt − x0‖

〉
.
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Let t ↓ 0. By (10), xt → x0; extracting a subsequence if necessary, [pt−p0]/‖xt−x0‖ →
ν ∈ N (Corollary 2.6). Clearly, 〈ν0, ν〉 > 0; hence, by (9), −ν /∈ N . This shows that
Im∇p(x0) is not a symmetric set; ∇p(x0) cannot be a linear operator, which is the
required contradiction.

We can now establish two second-order results, a local and a global one, valid for
strongly convex functions.

Proposition 3.4. Let f be a finite-valued strongly convex function satisfying (8)
at a given p0 = p(x0). If ∇2F (x0) and ∇f(p0) exist, then Hf(p0) exists.

Proof. We have from (4) p0 = x0−M−1G with G = ∇f(p0). Apply Corollary 3.3
in [11] with ϕ = f , r = 1

2C‖ · ‖2, z0 = p0, and g0 = G; since ∂f(p0) = {G}, G + s is
projected onto G for all s:

f∗(G+ s) ≥ f∗(G) + 〈s, p0〉+
1

2C
‖s‖2 for ‖s‖ ≤ εC/2 .(11)

By Corollary X.4.2.9 in [7], the existence of ∇2F (x0) (positive definite, recall Theo-
rem 2.2) implies the existence of ∇2F ∗(G) = ∇2f∗(G) + M−1. Therefore, ∇2f∗(G)
exists and, by (11), is positive definite. Again, by Corollary X.4.2.9 in [7], f has a
generalized Hessian at p0.

Proposition 3.5. Let f be a finite-valued strongly convex function satisfying (8)
at p0 = p(x0) for all x0 ∈ RN . If ∇2F exists on the whole of RN , then f has a
classical Hessian ∇2f on the whole of RN .

Proof. We claim that f is differentiable at every p ∈ RN . Indeed, if ∂f(p0) is not
a singleton, take a subgradient G in the relative boundary of ∂f(p0) (Proposition 2.3
in [11]). Because of Theorem 2.8, p0 is the proximal point of x0 := p0+M−1G and, by
assumption, ∇2F (x0) exists. From Proposition 3.3 we get the desired contradiction:
G lies in the relative interior of ∂f(p0).

Then ∇2F and ∇f exist on the whole of RN and Proposition 3.4 applies.

3.2. Nondifferentiable case: The partial proximal operator. In this sec-
tion, we consider a fixed x0 such that f has no gradient at p(x0). In such a situation,
can we relate the existence of ∇2F (x0) with some smoothness of f at p(x0)? To get
an idea of what can happen, perturb the bivariate example f(ξ, η) = |ξ|+ 1

2η
2 at the

end of section 2. Add to f an arbitrary convex univariate function n(ξ), as nasty as
desired, the extreme cases being n ≡ 0 and n = I{0}. It is easy to see that F remains
the same near 0. In other words, F is totally blind to the behavior of f in the tangent
cone T .

We already know that the existence of ∇2F (x0) implies G ∈ ri ∂f(p(x0)) (Propo-
sition 3.3). As a result, the normal and tangent cones to ∂f(p(x0)) at G are two com-
plementary subspaces (Proposition 2.2 in [11]). Things are easier to visualize if the
following notation is used: we set U = N = N∂f(p(x0))(G) and V = T = T∂f(p(x0))(G).
The reason is that f is smooth or “U-shaped” in p(x0) + U and kinky in p(x0) + V.
Accordingly, we use the matrix-like decomposition H = (HUUHVU

HUV
HVV

) for linear opera-
tors. We denote indifferently by ProjU (s) or sU the projection of s onto U , similarly
for V. Note, incidentally, that the important subspace is really U , which is completely
defined by f alone; by contrast, V depends on the scalar product. Furthermore, these
two subspaces do not depend on the particular G ∈ ri ∂f(p(x0)): V is the subspace
parallel to aff ∂f(p(x0)).

Lemma 3.6. Let f be a finite-valued strongly convex function with modulus c,
satisfying (8) at a given p0. If ∇2f∗(G) exists, then it has the form (H

∗

0
0
0 ), with
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H∗ : U → U positive definite:

f∗(G+ s) = f∗(G) + 〈s, p0〉+
1

2

〈
s,

(
H∗ 0
0 0

)
s
〉

+ o(‖s‖2) .(12)

Proof. The existence of ∇f∗(G) follows from Theorem 2.2. Then write the devel-
opment (6) for f∗ and apply Corollary 3.7 in [11] with ϕ = f , r = 1

2c‖ · ‖2, z0 = p0,
and g0 = G. We obtain

〈
s,∇2f∗(G)s

〉
≤ 1

2c‖sU‖2, which implies Im∇2f∗(G) ⊂ U .
The symmetric operator ∇2f∗(G) therefore has the stated form.

This establishes (12); let us now prove that H∗ is positive definite. Because (8)
holds, Corollary 3.4 in [11] applies with ϕ = f , r = 1

2C‖ · ‖2, z0 = p0, and g0 = G:

f∗(G+ s) ≥ f∗(G) + 〈s, p0〉+
1

2C
‖sU‖2

for all s ∈ B(0, εC/2). In particular, if s ∈ U ∩ B(0, εC/2), then sU = s and we
obtain, with (12),

f∗(G) + 〈s, p0〉+
1

2

〈
s,

(
H∗ 0
0 0

)
s
〉

+ o(‖s‖2) ≥ f∗(G) + 〈s, p0〉+
1

2C
‖s‖2 .

This clearly implies
〈
s, (H

∗

0
0
0 )s
〉
≥ 1

C ‖s‖2 for all s ∈ U .
While (12) describes the structure of ∇2f∗, it also kills the proof technique used

in Proposition 3.4: ∇2f∗ is no longer invertible. At this stage we use the cure of
section 4 in [11]: we consider the perturbation

φV(x) = min
y∈x+V

{f(y)− 〈G, y〉+ 1
2‖x− y‖

2} , φ∗V(s) := f∗(G+ s) +
1

2
‖sV‖2 .(13)

Lemma 3.7. Let f be a finite-valued convex function. Take the Moreau–Yosida
regularization of φV , defined in (13): ΦV(x) := miny∈RN {φV(y) + 1

2‖y − x‖2M}, and
denote by π(x) the associated proximal point. Then the following holds:

(i) π(p0) = p0.
(ii) φV is strongly convex if and only f is strongly convex.

(iii) If f is strongly convex and satisfies (8) at a given p0, then HφV(p0) exists

if and only if ∇2ΦV(p0) exists. In this case, HφV(p0) = (H
∗−1

0
0
IV ).

Proof. (i): Use Theorem 2.8 at p = p0, with f replaced by φV : p0 = π(p0+M−1γ)
for any γ ∈ ∂φV(p0). But Proposition 4.1 of [11] used with z0 = p0 gives ∂φV(p0) =
∇φV (p0) = 0. Thus, π(p0) = p0.

(ii): Theorem 2.2 yields the following chain of equivalences: f strongly convex
⇐⇒ ∇f∗ Lipschitzian ⇐⇒ ∇(f∗(G + ·) + 1/2‖ProjV(·)‖2) Lipschitzian ⇐⇒
(f∗(G+ ·) + 1/2‖ProjV(·)‖2)∗ strongly convex. The result follows from (13).

(iii): Because f is strongly convex, f∗ is finite valued. Furthermore, due to
Corollary 3.3 in [11], the assumptions of Proposition 4.2 in [11] hold and we have, for
h small enough, φV(p0 + h) ≤ φV(p0) + 1/2C ′‖h‖2. This is the growth condition (8)
for φV (recall ∇φV(p0) = 0). Write Theorem 3.1 and Proposition 3.4, with f, F, x0, p0

replaced by φV ,ΦV , p0, p0, to obtain the stated equivalence.
Finally, when HφV(p0) exists, it is positive definite and its inverse is ∇2φ∗V(0)

(Corollary X.4.2.9 of [7]). Because of (13), ∇2φ∗V(0) = ∇2f∗(G)+ProjV , and because
of Lemma 3.6, the diagonal form follows.

This enables us to state the key relation for the present nondifferentiable case.
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Proposition 3.8. Let f be a finite-valued strongly convex function satisfying (8)
at a given p0 = p(x0). Then ∇2F (x0) exists if and only if HφV(p0) exists.

Proof. In view of Lemma 3.7(iii), we have to prove the equivalence “∇2F (x0)
exists ⇐⇒ ∇2ΦV(p0) exists.” From Theorem 2.2, F is strongly convex; hence, by
using Corollary X.4.2.9 in [7],

∃∇2F (x0) ⇐⇒ ∃∇2F ∗(G) ⇐⇒ ∃∇2f∗(G) = ∇2F ∗(G)−M−1 .

Because of (13), this is further equivalent to (recall ∇φV(p0) = ∇ΦV(p0) = 0)

∃∇2φ∗V(0) = ∇2f∗(G) + ProjV ⇐⇒ ∃∇2Φ∗V(0) = ∇2φ∗V(0) +M−1 .

Finally, ∇2Φ∗V(0) is positive definite; by Corollary X.4.2.9 in [7], this last existence is
equivalent to the existence of ∇2ΦV(p0).

We devote the end of the section to interpretations of the above result in terms of
the original function f . They crucially rely on the partial proximal operator associated
to (13):

pV(x) := argmin
y∈x+V

{f(y)− 〈G, y〉+ 1
2‖x− y‖

2}.

Remember from Proposition 4.1 of [11] the useful characterization

∃g ∈ ∂f(pV(x)) such that pV(x)− x = ProjV(G− g),(14)

as well as

∂φV(x) = −G+ {g ∈ ∂f(pV(x)) : ProjV(G− g) = pV(x)− x} .(15)

First of all, the definition (7) of HφV(p0) can be translated as follows.
Corollary 3.9. Let f be a finite-valued strongly convex function satisfying (8)

at a given p0 = p(x0). Existence of ∇2F (x0) is equivalent to the following property.
Let x → p0 and let g ∈ ∂f(pV(x)) be such that ProjV(g − G) = x − pV(x). Then
g = G+ HφV(p0)(x− p0) + o(‖x− p0‖).

Proof. At each x, apply (15): with g as stated, g − G describes ∂φV(x). The
result follows from Proposition 3.8, remembering that ∇φV(p0) = 0.

This result concerns approximations of particular subgradients of f near p0. Func-
tion values can also be approximated along the surface described by pV(·). In what
follows, we study second-order developments of f with respect to the variable pV(x)
rather than x itself.

Theorem 3.10. Let f be a finite-valued strongly convex function satisfying (8)
at a given p0 such that H := HφV(p0) exists. Taking x = p0 + hU + hV with hU → 0
and hV = O(‖hU‖), set d(x) := pV(x)− p0. Then we have

f(p0 + d(x)) =
f(p0) + 〈G, d(x)〉+ 1

2 〈d(x), Hd(x)〉 − 〈pV(x)− x, d(x)〉+ o(‖d(x)‖2) .
(16)

Proof. By definition (13) and remembering that φV(p0) = f(p0)−〈G, p0〉 (Propo-
sition 4.1 of [11]), the second-order development of φV gives

f(pV(x))−〈G, pV(x)〉+ 1

2
‖pV(x)−x‖2 = f(p0)−〈G, p0〉+

1

2
〈h,Hh〉+o(‖h‖2).(17)
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Now, H has the special form given in Lemma 3.7(iii), so the property x− pV(x) ∈ V
implies H(x−pV(x)) = x−pV(x); hence, by writing h = (x−pV(x))+(pV(x)−p0) =
(x−pV(x))+d(x), we obtain 〈h,Hh〉 = 〈d(x), Hd(x)〉−2 〈pV(x)− x, d(x)〉+‖pV(x)−
x‖2. Plugging this equality into (17), we get

f(p0 + d(x)) = f(p0) + 〈G, d(x)〉+
1

2
〈d(x), Hd(x)〉 − 〈pV(x)− x, d(x)〉+ o(‖h‖2) .

Finally, ‖h‖2 = ‖hU‖2 + ‖hV‖2 = O(‖hU‖2), but hU is just the component on U of
d(x); altogether, ‖h‖2 = O(‖d(x)‖2).

Beware that (16) is not a regular development of f near p0. First, it is valid
only for special increments d(·) and, at this point, we have not even proved that they
tend to 0. Second, what happens to the “extra” term pV(x)− x ∈ V? To clarify this
situation, we need to bound the difference pV(x)− x.

Theorem 3.11. Let f be a finite-valued strongly convex function, satisfying (8)
at a given p0 and such that H := HφV(p0) exists. For d = dU + dV tending to 0 in
such a way that

(i) ‖dV‖ = o(‖dU‖),
(ii) ∃g ∈ ∂f(p0 + d) such that ProjV(g −G) = O(‖d‖),

we have the second-order development

f(p0 + d) = f(p0) + 〈G, d〉+
1

2
〈d,Hd〉+ o(‖d‖2) .(18)

Proof. With g as in (ii), define x := p0 + d+ ProjV(g−G); then, (14) shows that
pV(x) = p0 + d and h := x − p0 satisfies hU = dU and hV = dV + ProjV(g − G) =
O(‖hU‖). Write (16) and observe that 〈pV(x)− x, d〉 = 〈ProjV(g −G), dV〉. The
assumptions (i), (ii) clearly imply that this is o(‖d‖2).

This result describes points at which f behaves like a quadratic function. We now
show a way of constructing such points.

Corollary 3.12. Let f be a finite-valued strongly convex function satisfying (8)
at a given p0 such that H := HφV(p0) exists. Let h→ 0 with ‖hV‖ = O(‖hU‖) and set
x := p0+h. Then pV(x) from (14) tends to p0 and (18) holds for d := pV(x)−p0 → 0.

Proof. Proceeding as in the proof of Lemma 3.7(iii), we get the assumptions
of Corollary 4.3 in [11] (with z0 = p0): pV(·) is radially Lipschitzian at p0, hence
d := pV(x) − p0 → 0. On the other hand, for some constant θ > 0, ‖h‖ ≤ θ‖hU‖ =
θ‖dU‖ ≤ θ‖d‖. Because of (14), there is some g ∈ ∂f(pV(x)) such that ‖ProjV(g −
G)‖ = ‖pV(x) − x‖ = O(‖h‖) = O(‖d‖). We are in the framework of Theorem 3.11:
d → 0, assumption (ii) holds; let us prove that assumption (i) is also satisfied. Any
limit point of g lies in ∂f(p0) (graph closedness of ∂f). Since V = aff ∂f(p0) − G,
the property ‖ProjV(g − G)‖ = O(‖d‖) actually implies ‖g − G‖ = O(‖d‖). Using
Lemma 2.5 with g0 = G, z0 = p0, z = pV(x), and t = ‖pV(x) − p0‖, we deduce that

any limit point of pV(x)−p0
‖pV(x)−p0‖ lies in U : assumption (i) of Theorem 3.11 holds.

Let us summarize our results: appropriate assumptions (strong convexity, growth
condition, existence of ∇2F (x0)) provide the following second-order information:

(i) ∇2F (x0) is positive definite (Theorem 2.2); ∇2f∗(G) = ∇−2F (x0) −M−1

exists and is completely characterized by its UU -block (Lemma 3.6).
(ii) ∇p(x0) exists and, in view of Corollary 2.6, has the form ∇p(x0) = (PT

0
0 ).

From Proposition 2.4 we have ∇−2F (x0) = ∇2F ∗(G) = [I −∇p(x0)]−1M−1.
(iii) A “partial” generalized Hessian of f at p0, as described by (18), exists in U .

It is the UU -block of the (diagonal) operator [∇−2F (x0) −M−1 + ProjV ]−1 and we
denote it by HUf(p0).
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This last block turns out to have the simple expression

HUf(p0) = MUU (P−1 − IU ) .(19)

To see this, we need two results from linear algebra, stated without proof.
• For M = (MUU

MT
UV

MUV
MVV

) and M−1 = (WUU
WT
UV

WUV
WVV

), it holds that

M−1
UU = WUU −WUVW−1

VVW
T
UV .

• Let P be such that I − P and (I − P )−1 − I are both invertible. Then P is
invertible and

[(I − P )−1 − I]−1 = P−1 − I .(20)

Let us now compute H∗ of (12): (H
∗

0
0
0 ) is equal to

∇2f∗(G) = ∇2F ∗(G)−M−1 = ∇−2F (x0)−M−1 = [(I −∇p(x0))−1 − I]M−1.

A straightforward computation gives

(I −∇p(x0))−1 =

(
(IU − P )−1 (IU − P )−1T

0 IV

)
;

the UV-block of ∇2f∗(G) is therefore [(IU −P )−1−IU ]WUV +(IU −P )−1TWVV = 0.
This serves to compute T and we obtain the UU -block

H∗ = [(IU − P )−1 − IU ](WUU −WUVW−1
VVW

T
UV) = [(IU − P )−1 − IU ]M−1

UU .

This is precisely the inverse of HUf(p0); then, (19) follows using (20).

3.3. Getting rid of strong convexity. Our final goal will be to eliminate the
strong convexity assumption in the preceding second-order results. For this we perturb
f to a strongly convex function fτ , and we study the effect of this perturbation on
the proximal point.

Proposition 3.13. Let f be a finite-valued convex function satisfying (8) at a
given p0. Take z0 ∈ RN , τ ∈]0, 1[ and define fτ := f + 1

2τ‖ · −z0‖2M . Consider the
Moreau–Yosida regularization of fτ associated to the metric defined by (1− τ)M :

Fτ (x) := min
y∈Rn

{
fτ (y) + 1

2 (1− τ)‖y − x‖2M
}
.(21)

Denote by qτ (x) the unique minimizer of (21); then, the following statements hold:
(i) the function fτ is strongly convex and satisfies (8) at p0 with C replaced by

C + τΛ;
(ii) for all x, qτ (x) = p(τz0 + (1− τ)x).

Proof. The strong convexity of fτ is clear. To prove that (8) holds for fτ , add
1
2τ‖p0 + h − z0‖2M to both sides of (8) written for f at p0. Then use the properties
f ′τ (p0;h) = f ′(p0;h) + 1

2τ 〈M(p0 − z0), h〉 and 1
2τ‖ · ‖2M ≤

1
2τΛ‖ · ‖2.

For proving (ii), write the optimality conditions for p(τz0 + 1− τx) and qτ (x):

p(τz0 + (1− τ)x) solves M(τz0 + (1− τ)x− p) ∈ ∂f(p) and
qτ (x) solves (1− τ)M(x− p) ∈ ∂fτ (p) .

Since ∂fτ (p) = ∂f(p) + {τM(p− z0)}, they have the same solutions.
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Thus, passing from f to fτ can be absorbed by a perturbation of M in the
Moreau–Yosida regularization of (2) and a (smooth) change of variables. Then the
wording “strongly convex” can be removed in our second-order results. Note that our
proof technique below will use fτ and Fτ with arbitrary τ ∈]0, 1[.

Theorem 3.14. Let f be a finite-valued convex function such that for a given
x0 ∈ Rn, (8) holds at p0 = p(x0). Assume ∇f(p0) exists. Then ∇2F (x0) exists if and
only if Hf(p0) exists.

Proof. The “only if” part is Theorem 3.1. As for the “if” part, suppose ∇2F (x0)
exists; hence, from Proposition 2.4, ∇p(x0) exists. Then, consider fτ as in Propo-
sition 3.13, with z0 = x0: we have qτ (x) = p(τx0 + (1 − τ)x) for all x, therefore
∇qτ (x0) = (1 − τ)∇p(x0) exists. Again, using Proposition 2.4, Fτ has a Hessian at
x0. Since fτ is strongly convex and satisfies (8) at p0, Proposition 3.4 applies: Hfτ (p0)
exists. Thus Hf(p0) = Hfτ (p0)− τM exists as well.

Theorem 3.15. Let f be a finite-valued convex function such that for all x0 ∈ RN ,
(8) holds at p0 = p(x0). Then ∇2F exists on the whole of RN if and only if ∇2f exists
on the whole of RN .

Proof. Recall that the existence of Hf on the whole space implies the existence
of ∇2f on the whole space. Then the “only if” part is Theorem 3.1. As for the
“if” part, suppose ∇2F exists everywhere; hence, from Proposition 2.4, p(·) has a
Jacobian everywhere. Then consider fτ as in Proposition 3.13 with z0 = 0; we have
∇qτ (x) = (1− τ)∇p((1− τ)x) for all x. Proceeding as in the proof of Theorem 3.14
but applying, this time, Proposition 3.5, we conclude that ∇2fτ (and hence ∇2f)
exists everywhere.

For the nondifferentiable case, we again will use fτ as in Proposition 3.13 with
z0 = x0 and Fτ of (21). Then, because Gτ := ∇Fτ (x0) = (1− τ)G, it follows that

∂fτ (·)−Gτ = ∂f(·)−G+ τM(· − p0) .(22)

We will also consider φV,τ , obtained by replacing f and G in (13) by fτ and Gτ . The
associated partial proximal operator qV,τ is characterized by

∃g ∈ ∂f(qV,τ (x)) such that
qV,τ (x)− x = ProjV(G− g) + τ ProjV(M(qV,τ (x)− p0)) .

(23)

Theorem 3.16. Let f be a finite-valued convex function satisfying (8) at a given
p0 = p(x0). Assume ∇2F (x0) exists. For d = dU +dV tending to 0 in such a way that

(i) ‖dV‖ = o(‖dU‖),
(ii) ∃g ∈ ∂f(p0 + d) such that ProjV(g −G) = O(‖d‖),

we have the second-order development

f(p0 + d) = f(p0) + 〈G, d〉+
1

2
〈d,H ′d〉+ o(‖d‖2) ,(24)

where H ′ = (MUU (P−1−IU )

−τMT
UV

−τMUV
IV−τMVV ).

Proof. Consider again fτ as in Proposition 3.13 with z0 = x0; Fτ of (21) has at
x0 a Hessian ∇2Fτ (x0) = (1− τ)2∇2F (x0) + τ(1− τ)M . By Proposition 3.8, this is
equivalent to the existence of HφV,τ (p0). Take d satisfying (i) and apply (ii) together
with (22): there is gτ ∈ ∂fτ (p0 + d) such that ProjV(gτ − Gτ ) = O(‖d‖) + τMd =
O(‖d‖). Then Theorem 3.11 holds for the perturbed functions: mutatis mutandis, we
write

f(p0 +d)+
1

2
τ‖p0 +d−x0‖2M = f(p0)+

1

2
τ‖p0−x0‖2M +〈Gτ , d〉+

1

2
〈d,Hτd〉+o(‖d‖2),
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where Hτ is the corresponding generalized Hessian. By rearranging terms we obtain

f(p0 + d) = f(p0) + 〈G, d〉+
1

2
〈d, (Hτ − τM)d〉+ o(‖d‖2) .

To finish the proof we give the expression ofH ′ := Hτ−τM . Indeed, by Lemma 3.7(iii),

Hτ has the diagonal form (H
∗
τ
−1

0
0
IV ). This, together with (19) and Proposition 3.13(ii),

gives

Hτ =

(
HUfτ (p0) 0

0 IV

)
=

(
(1− τ)MUU ( 1

1−τ P
−1 − IU ) 0

0 IV

)
.

Finally,

H ′ = Hτ − τM =

(
MUU (P−1 − IU ) −τMUV
−τMT

UV IV − τMVV

)
Of course, the UU -block of H ′ does not depend on τ : it has to be HUf(p0) of

(19).
Corollary 3.17. Let f be a finite-valued convex function satisfying (8) at a

given p0 = p(x0). Assume ∇2F (x0) exists. Let h → 0 with ‖hV‖ = O(‖hU‖) and set
x := p0 + h. For arbitrary τ ∈]0, 1[, qV,τ (x) from (23) tends to p0 and (24) holds for
d := qV,τ (x)− p0 → 0.

Proof. Proceed as before; qV,τ (·) of (23) enjoys the same properties as pV(·).
Also, the existence of ∇2F (x0) implies the existence of ∇2Fτ (x0), which in turn is
equivalent to the existence of HφV,τ (p0). Thus Corollary 3.12 applies.

3.4. The epi-convergence approach. So far, our study has been dealing with
rather classical derivatives: the Hessian for F and its (slight) generalization (6) for
f . Another object appears as fairly handy when used in conjunction with Moreau–
Yosida regularizations: the so-called epi-derivative. We proceed to explain in a few
informal words what it is, referring to [26], [4], [24] for more detailed explanations.
• Let {Et} be a family of sets indexed by t. Form the set E of all possible

clusterpoints of all possible sequences of elements et ∈ Et when t ↓ 0. Under certain
conditions which we do not specify here, we say that E is the limit of Et and we write
Et → E.
• Recall that the epigraph of a (convex) function ϕ is the set epiϕ := {(x, r) ∈

Rn × R : r ≥ ϕ(x)} ⊂ Rn × R. The graph of its subdifferential is the set gr ∂ϕ :=
{(z, g) : g ∈ ∂ϕ(z)} ⊂ Rn × Rn.
• Several classical meanings can be given to a statement like “the function ϕt

converges to the function ϕ” (pointwise convergence, uniform convergence,. . . ). Here,
we use the following concept: ϕt epi-converges to ϕ when epiϕt → epiϕ in the sense
of the above set-convergence. We will then use the notation ϕ = epi limϕt.
• For closed convex functions, a fundamental property of epi-convergence is its

stability under conjugacy and differentiation. More precisely, the statements ϕ =
epi limϕt and ϕ∗ = epi limϕ∗t are equivalent. They are further equivalent to the
statement gr ∂ϕ = lim gr ∂ϕt, provided that pointwise convergence holds at least at
one point (to fix the constant of integration).
• A (classical) second-order derivative can be viewed as a quadratic form. In

the present theory, it is convenient to accept the value +∞ for such an object.
Accordingly, given a positive semidefinite operator H and a subspace S, we call
generalized quadratic form characterized by H and S the closed convex function
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q(x) := 1/2 〈x,Hx〉 + IS . Note that ∂q(x) = Hx + S⊥ for x ∈ S. This class of
functions is invariant under conjugacy: the conjugate of a generalized quadratic form
is another generalized quadratic form, characterized by K and T , say.
• Let ϕ be a closed convex function. For given z0 and g0 ∈ ∂ϕ(z0), we form the

second-order difference quotient

∆t(d) :=
ϕ(z0 + td)− ϕ(z0)− t 〈g0, d〉

t2
.

This is a closed convex function of d, indexed by t ↓ 0. Direct calculations give its
subdifferential

∂∆t(d) =
∂ϕ(z0 + td)− g0

t

and its conjugate

∆∗t (s) =
ϕ∗(g0 + ts)− ϕ∗(g0)− t 〈s, x0〉

t2
.

Observe that ∆t(0) = ∆∗t (0) = 0 and ∂∆t(0) 3 0.
• Then we say that ϕ has a second epi-derivative q at z0, relative to g0, when

the function ∆t epi-converges to q (a generalized quadratic form). Equivalently, ϕ∗

has at g0, relative to z0, a second epi-derivative q∗. A further equivalence, probably
the most useful, is gr ∂∆t → gr ∂q. In plain words, the clusterpoints of the difference
quotients [∂ϕ(z0 + tdt) − g0]/t, when t ↓ 0 and dt → d, form some affine manifold
Hd+ S.

Now the stage is set and we can use these concepts in our Moreau–Yosida frame-
work. Here again, we will not go into details, referring to [17] and also [12] for a more
accurate analysis. Our aim here is to somehow “explain” our second-order results by
heuristic observations rather than rigorous statements.

(a): We start with the following observation. Let the growth condition (8) hold
at some p0, and let f have a gradient at p0. Then ∂f has at p0 the radially Lipschitz
behavior (see Corollary 3.5 in [11]); the two concepts of second epi-derivative and of
generalized Hessian (7) coincide. Likewise, since ∇F is Lipschitzian, the two concepts
of second epi-derivative and of classical Hessian coincide for F .

(b): Now suppose that f has at p0 a second epi-derivative (H,S), relative to some
subgradient G ∈ ∂f(p0). Equivalently, f∗ has at G a second epi-derivative (K,T )
relative to p0. Clearly enough, F ∗ = f∗+ 1/2‖ · ‖2M−1 also has a second epi-derivative
(K + M−1, T ) at G, which is relative to p0 + M−1G ∈ ∂F ∗(G). Dualizing again,
F has (at p0 + M−1G =: x0 and relative to G = ∇F (x0)) a second epi-derivative
(H ′, S′). Naturally, since K + M−1 is positive definite, this last epi-derivative is an
ordinary quadratic function: S′ = Rn. Indeed, as already mentioned, the difference
quotients [∇F (x0 + td) − G]/t (which are bounded) converge uniformly to a linear
function H ′d. This explains and actually completes Theorem 3.1.

(c): Conversely, suppose that F has a second epi-derivative at some x0 (relative
to G = M(x0 − p(x0)) = ∇F (x0); of course, it is actually a Hessian). Then F ∗ has a
second epi-derivative (K ′, T ′) at G, relative to x0. Here again, f∗ = F ∗− 1/2‖ · ‖2M−1

has a second epi-derivative (K,T ) at G, relative to x0 −M−1G = p(x0) ∈ ∂f∗(G).
Finally, because f∗ is convex, f itself has a second epi-derivative (H,S) at p(x0),
relative to G ∈ ∂f(p(x0)).

We conclude that as far as epi-derivatives are concerned, second differentiability
of f and of F are always equivalent properties.
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(c′): When F has a Hessian at x0, suppose that the growth condition (8) holds
and that ∇f(p(x0)) exists. As seen in (a) above, the second epi-derivative of f at
p(x0) (which exists) is actually a generalized Hessian; this explains Proposition 3.4.

(d): Suppose f has a second epi-derivative at p0, relative to G ∈ ∂f(p0) (for
example, ∇2F (p0 +M−1G) exists), and consider curves (gt−G)/t with gt ∈ ∂f(p0 +
tdt) and dt → d. Their clusterpoints form the set Hd+ S⊥, where H is a symmetric
positive semidefinite operator and S is a subspace.

• Such clusterpoints can exist only for d ∈ N∂f(p0)(G) (otherwise, gt−G does not
even tend to 0).

• To obtain these clusterpoints, one can in particular take dt ≡ 0 and gt arbitrary
in ∂f(p0); this generates T∂f(p0)(G), which is therefore contained in S⊥.

• On the other hand, let the growth condition (8) hold. Then it takes some work
(based on Corollary 3.3 in [11]) to realize that S⊥ exactly reduces to T∂f(p0)(G). As

a result, S⊥ = T∂f(p0)(G) = V. This explains Proposition 3.3; it also explains the

extra term pV(x)− x ∈ V = S⊥ in (16).

• Finally, since these clusterpoints cover the whole of Hd + S = Hd + U , some
of them are exactly Hd; among the latter, we have those described by Theorem 3.11
and Corollary 3.12.

Let us summarize this section. Epi-derivatives are an elegant and powerful tool
to relate second-order behaviors of f and F . They yield the essence of our results in
sections 3.1–3.3 at practically no cost. This, however, is paid by the high degree of
abstraction imposed by the concept. By contrast, our approach requires the heavy
material developed in [11], but we deal with natural objects such as Taylor develop-
ments and ordinary (point-) convergence. We believe that the two approaches are
in fact complementary and beneficial to each other: epi-derivatives give insightful
guesses of the kind of result to be expected; standard convex analysis gives a more
intuitive meaning to these “epi-results” and makes a closer description of f(p0 + h)
for actual values of h. This last point becomes particularly useful when coming to
numerical algorithms.

4. Concluding remarks. The very first motivation for the Moreau–Yosida reg-
ularization was to solve ill-conditioned systems of linear equations ([2], Chap.V). In
fact, suppose f is quadratic, its Hessian H having extreme eigenvalues c and C.
From Theorem 3.1, F is also quadratic with Hessian M + M(H + M)−1M . Taking
M = λI, a quick calculation shows that the condition number C/c of H is divided by
(λ+C)/(λ+ c). This is a clear beneficial effect of the Moreau–Yosida regularization.

Consider now a general objective function. Barring all implementation consider-
ations, assume that the proximal point p(x) can be computed for each x (perhaps ap-
proximately, but for a negligible computation cost). Then the question arises whether
such a computation is any good to minimize F (i.e., f). More specifically, what can
be said about a superlinear algorithm minimizing F as compared to the ordinary
proximal algorithm minimizing f?

When f is differentiable on the whole space, Theorem 3.15 and Corollary 3.2
tell us that such an approach brings exactly nothing. Either F still does not enjoy
the necessary properties of smoothness and nondegeneracy or a superlinear algorithm
could have been applied to f at the first place (ordinary Newton, quasi-Newton, or
nonsmooth Newton as in [20]). For example, take an augmented Lagrangian

f(x) := f0(x) +
π

2

[
max

(
0, f1(x) +

µ

π

)]2
,
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which is associated to the nonlinear program: minimize f0 subject to f1 ≤ 0. The
minimization of the corresponding F (for given µ, π, and M) is not easier than the
minimization of f : ∇2F exists and is positive definite only when ∇2f enjoys the same
properties.

When f is differentiable just at an optimum point x̄, the situation is less clear.
On the one hand, existence of a positive definite ∇2F (x̄) gives hope for an efficient
nonsmooth Newton algorithm; the pending question is semismoothness of ∇F , a
question which is investigated in [19]. On the other hand, the existence alone of a
(positive definite) generalized Hessian Hf(x̄) is probably not quite enough to obtain
superlinearly convergent algorithms applied directly to f . Here we mention a technical
question. As far as quasi-Newton methods are concerned, an important property is the
strict differentiability of ∇F at an optimum point (see [3], [8]). It would be interesting
to examine the consequences of such a property on the behavior of f ; following [24],
some useful insight might be provided by the epi-derivative approach.

The real issue is when f is not differentiable at x̄, a situation which does not pre-
clude the existence of a positive definite ∇2F (x̄). In this case, any kind of Newtonian
method will minimize F rapidly but will not even be locally convergent when applied
to f . Existence of ∇2F at an optimum point x̄ implies some interesting properties
for f . First of all, 0 ∈ ri ∂f(x̄), a property which can be compared to the strict com-
plementarity slackness in constrained optimization. Furthermore, f enjoys a partial
second-order behavior, via the existence of HUf(x̄); see (19). In our analogy with
constrained optimization, U is the subspace tangent to the active constraints. The
UV-decomposition appears as an important tool from the theoretical point of view;
this observation assesses the algorithmic approach of [14].

Take for illustration the bivariate function f(x) := max{ 1
2‖x‖2 − α 〈e, x〉 , 〈e, x〉};

here, e := (0, 1)T and α is a nonnegative parameter.

1+α

x

x

−αx

C1

1

C

C2

Fig. 1. Moreau–Yosida regularization without Hessian.

The kinks of f form a circle, denoted by C in Fig. 1. The subdifferential of f at 0
is the segment [−αe, e]; hence, f is minimized at 0 = p(0) for all α ≥ 0. For M = I,
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let us compute the proximal point of x 6= 0:

x− p =

 p− αe if 1
2‖p‖2 − α 〈e, p〉 > 〈e, p〉 ,

µ(p− αe) + (1− µ)e for some µ ∈ [0, 1] if 1
2‖p‖2 − α 〈e, p〉 = 〈e, p〉 ,

e if 1
2‖p‖2 − α 〈e, p〉 < 〈e, p〉 .

Working out the calculations, we find that

p(x) =


x+ αe

2
if ‖x− (α+ 2)e‖ > 2(α+ 1),

x+ (αµ+ µ− 1)e

1 + µ
if α+ 1 ≤ ‖x− (α+ 2)e‖ ≤ 2(α+ 1),

x− e if ‖x− (α+ 2)e‖ < α+ 1 ,

where

µ = µ(x) :=
‖x− (α+ 2)e‖

α+ 1
− 1 .(25)

In a condensed form,

p(x) =
x− e+ (α+ 1)ν(x)e

1 + ν(x)
,(26)

where ν(x) is the projection of µ(x) in (25) onto [0, 1].
In Fig. 1, C1 (respectively, C2) is the boundary of the region where the first

(respectively, second) function prevails at p(x). The dashed crown is the locus of
those x such that p(x) is a kink. The point is that C2 is always far from 0, while C1

does contain 0 when α = 0. As a result, ∇2F (0) exists if α > 0 but not if α = 0. To
show this, we consider two cases.

(i): When α = 0, the origin is on C1. Analytically, ν(x) = 1 in (26) whenever
‖x− 2e‖ > 2. From this observation, the directional derivatives are easy to compute:

p′(0; d) =

{
1
2 (d1, 0)T for d2 > 0,
1
2 (d1, d2)T for d2 ≤ 0 .

Here, the nonexistence of ∇p(0) illustrates Proposition 3.3: G = 0 is on the relative
boundary of ∂f(0) = [0, 1].

(ii): When α > 0, we have µ ∈ [0, 1] in (25) for small ‖x‖. This comes from
µ(0) = 1/(α+ 1), together with the continuity of µ(·). In this region, which includes
the origin in its interior,

p(x) = (α+ 1)
x− (α+ 2)e

‖x− (α+ 2)e‖ + (α+ 1)e .

A mere differentiation gives

∇p(0) =
α+ 1

α+ 2

(
I − eeT

)
=
α+ 1

α+ 2

(
1 0
0 0

)
.

Let us turn now to the UV-analysis developed in section 3.2. Here V = 0 × R is
the vertical axis. The partial (generalized) Hessian (19) is HUf(0) = (α+2

α+1 − 1)IU =
1

α+1IU .
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We claim that for small ‖x‖, the partial proximal operator is

pV(x) = (x1, α+ 1−
√
D)T ,

where we have set D := (α+1)2−x2
1. Note:

√
D = α+1− x2

1

2(α+1) +o(x2
1) and [pV(x)]2 =

x2
1

2(α+1) + o(x2
1). Geometrically, pV(x) is obtained by intersecting x + V with C. To

prove the formula analytically, plug ∂f(pV(x)) = {λpV(x)+(1−(α+1)λ)e : λ ∈ [0, 1]}
and G = 0 in the characterization (14) to obtain

[pV(x) =]p(λ) :=

(
x1,

x2 − 1 + λ(α+ 1)

1 + λ

)T
(27)

for some λ ∈ [0, 1]. With this change of variables, pV(x) can be rewritten as

pV(x) = argmin
λ
{f(p(λ)) + 1

2‖x− p(λ)‖2} .

It takes some calculations to see that this minimum is attained at

λ :=
α+ 2−

√
D − x2√

D
=

1− x2

α+ 1
+ o(x2

1)→ 1

α+ 1
∈]0, 1[ .

With this value of λ in (27), the claim follows.
This confirms that pV(x) is a kink, as explained at the end of [11]. Then the

function φV of (13) has the expression

φV(x) = [pV(x)]2 +
1

2
‖[pV(x)]2 − x2‖2 =

x2
1

2(α+ 1)
+

1

2
x2

2 + o(‖x‖2) .

It can be differentiated directly, or (15) can be used: ∂φV(x) is made up of those
g ∈ ∂f(pV(x)) whose second coordinate is the same as x− pV(x). We obtain just one
vector: λpV(x) + (1− (α+ 1)λ)e, where λ takes the above value. Thus,

∇φV(x) =

(
α+2−

√
Dx2√

D
x1

x2 − [pV(x)]2

)
=

(
x1

α+1

x2

)
+ o(‖x‖) .

From there, (generalized) Hessians follow easily. Alternatively, the above expression of
∇p(0) can be plugged into the calculations made at the end of section 3.2: P = α+1

α+2IU ,
T = 0, and we obtain

H∗ = (IU − P )−1 − IU = (α+ 1)IU , ∇2φV(0) =

(
1

α+1 0

0 1

)
and

HUf(0) = P−1 − IU =

(
α+ 2

α+ 1
− 1

)
IU =

1

α+ 1
IU .

We have a final comment. In this paper we focused our attention on the Fréchet
point of view; as far as algorithms are concerned, this is well suited to the quasi-
Newton pattern. For the Newton pattern (possibly approximate, see [18]), the di-
rectional point of view may be more relevant; see [20]. Likewise, the Moreau–Yosida
regularization could be generalized to the resolvent of a maximal monotone operator
in the framework of variational inequalities; for this, see [16].

We are indebted to J.-B. Hiriart-Urruty, L.Q. Qi, and R.T. Rockafellar, as well as
three anonymous referees, for careful reading and many helpful suggestions.
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Abstract. We propose an infeasible path-following method for solving the monotone comple-
mentarity problem. This method maintains positivity of the iterates and uses two Newton steps per
iteration—one with a centering term for global convergence and one without the centering term for
local superlinear convergence. We show that every cluster point of the iterates is a solution, and if the
underlying function is affine or is sufficiently smooth and a uniform nondegenerate function on <n++,
then the convergence is globally Q-linear. Moreover, if every solution is strongly nondegenerate, the
method has local quadratic convergence. The iterates are guaranteed to be bounded when either a
Slater-type feasible solution exists or when the underlying function is an R0-function.
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1. Introduction. The complementarity problem (CP) is the problem of finding
an (x∗, y∗) ∈ <2n satisfying

x∗ ≥ 0, y∗ ≥ 0, (x∗)T y∗ = 0, F (x∗)− y∗ = 0,(1)

where F = (F1, ..., Fn) is a given continuous function from <n+ to <n. This problem
is well known in optimization, as is surveyed in [1, 21], and in the case where F is
affine, it reduces to the linear complementarity problem [2].

Many solution approaches for CP have been proposed. One approach is based on
modifying the projection method [12, 23]. A second approach is based on reformu-
lating the CP as a differentiable minimization problem with simple constraints and
then applying a descent method to the latter [4, 16, 19]. A third approach is based
on reformulating the CP as a system of smooth nonlinear equations and applying a
Newton-type method to solve the system [3, 7, 15, 24, 28]. An alternative to this
approach is to reformulate the CP as a system of nonsmooth nonlinear equations
and then use solution techniques from nonsmooth analysis (see [6, 20] and references
therein). A fourth approach is based on approximating the CP by a parameterized
system of smooth nonlinear equations and, after solving the system inexactly using a
few Newton steps, adjusting the parameter to refine the approximation. The path-
following interior-point methods (see [8, 9, 11, 25, 29]) are essentially based on this
approach, whereby the approximating system, parameterized by an ω ∈ [0,∞), is of
the form H(x, y) = (ωe, 0) with H : <2n → <2n, the function given by (see [13])

H(x, y) = (Xy, F (x)− y).(2)

Here e denotes the vector of 1’s and ωe is a centering term that keeps (x, y) away from
the boundary of <n+. Related approaches using potential reduction are presented in
[18, 22, 27].
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Motivated by the recent interests in infeasible interior-point methods, in this
paper we study a new infeasible interior-point method for solving CPs when F is
monotone and continuously differentiable on <n++. (Our results appear also to extend
to the case where F ′(x) is a P ∗(κ)-matrix in the sense of [10] for all x ∈ <n++, with
κ a nonnegative constant, but for simplicity we will not consider this more general
case.) The method maintains at each iteration an (x, y, ω) in a neighborhood around
the central path given by

Nρ,β = { (x, y, ω) ∈ <2n+1
++ | ‖H(x, y)− (ωe, 0)‖ρ ≤ ωβ }

for some β ∈ (0, 1), where for a fixed ρ ∈ (0,∞), we define the weighted norm
‖(u, v)‖ρ =

√
‖u‖2 + ρ2‖v‖2. (The parameter ρ determines the magnitude of the

infeasibility term ‖F (x)− y‖ relative to the centering term ‖ωe−Xy‖.) The method
updates (x, y, ω) by computing simultaneously the Newton direction (u, v) satisfying

H ′(x, y)

[
u
v

]
+H(x, y) =

[
ωe

(1− γ)(F (x)− y)

]
(3)

with γ ∈ (0, 1] suitably chosen and the Newton direction (û, v̂) satisfying

H ′(x, y)

[
û
v̂

]
+H(x, y) = 0(4)

and then moving (x, y) along either (u, v) or a convex combination of (u, v) and (û, v̂),
with the aim of decreasing ω while maintaining (x, y, ω) ∈ Nρ,β .

The proposed method is an infeasible path-following method in the spirit of [11,
29] in that it maintains (x, y) as positive and as an inexact solution of H(x, y) =
(ωe, 0), while it decreases ω towards 0. However, this method differs from the methods
of [11, 29] in at least two significant ways: (i) it, like the method of [5], uses the two
Newton directions in combination rather than in alternation; (ii) it moves y along a
straight line, rather than along an arc (so it does not maintain F (x)−y to be a scalar
multiple of its initial value). The method is relatively simple and has nice global
and local convergence properties (see Theorem 4.2 and Lemma 4.3). In particular,
every cluster point of the iterates generated by this method is a solution of the CP
and, if in addition F is affine or is sufficiently smooth and a uniform nondegenerate
function on <n++, the convergence is globally Q-linear. (To our knowledge, this is the
first global linear convergence result for an infeasible interior-point method when F
is not affine.) If every solution of CP is strongly nondegenerate, then the convergence
is locally quadratic. (This result is analogous to one in [29].) Finally, the iterates
are guaranteed to be bounded if either there exists an x̄ ∈ <n+ with F (x̄) sufficiently
positive or F is an R0-function.

We assume throughout that F is monotone and continuously differentiable on
<n++. This implies that the Jacobian F ′(x) = [F ′1(x) · · · F ′n(x)]T is positive semidefi-
nite (not necessarily symmetric) for all x ∈ <n++. For parts of the global convergence
rate analysis, we will further assume that F is a uniform nondegenerate function on
<n++ in the sense that there exists a continuous function η : <n+ 7→ (0,∞) such that

‖F ′(x)−1
II ‖ ≤ η(x) ∀I ⊂ {1, ..., n} ∀x ∈ <n++.(5)

(This assumption is satisfied when F is a uniform P -function [6, 19, 27] on <n++, as
shown in Lemma 4.6, and, in particular, when F (x) = Mx+ q for all x with M being
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an n× n positive semidefinite nondegenerate matrix [2].) We denote by S the set of
solutions (possibly empty) of the CP, i.e.,

S = {(x∗, y∗) ∈ <2n | (x∗, y∗) satisfies (1)}.

We say that an (x∗, y∗) ∈ S is strongly nondegenerate if (x∗I , y
∗
J) > 0 and F ′(x∗)II is

nonsingular for some partition I, J of {1, . . . , n} (i.e., I∪J ∈ {1, . . . , n} and I∩J = ∅)
(cf. [9, Condition 7.1], [29, Assumption 2]). We also denote the remainder term

r(x, z) = ‖F (x+ z)− F (x)− F ′(x)z‖ ∀(x, z) ∈ <n+ ×<n with F (x+ z) defined.

(Notice that r(x, z)/‖z‖ → 0 as ‖z‖ → 0.) For the global convergence rate analysis,
we will assume that there is a continuous function L : <n++ 7→ [0,∞) such that

r(x, z) ≤ L(x)‖z‖2 ∀(x, z) ∈ <n++ ×<n with ‖X−1z‖ ≤ 1.(6)

For the local convergence rate analysis, we will assume that for a given x∗ ∈ <n+, there
exist scalars µ > 0 and ε > 0 such that

r(x, z) ≤ µ‖z‖2 ∀(x, z) ∈ <n+ ×<n with max{‖z‖, ‖x− x∗‖} ≤ ε.(7)

Both assumptions are quite mild and hold whenever F is defined and twice continu-
ously differentiable on an open set containing <n+. (This can be seen by letting L(x) :=∑n
i=1 maxz{‖F ′′i (x + z)‖ | ‖X−1z‖ ≤ 1} and by letting µ :=

∑n
i=1 maxz{‖F ′′i (x +

z)‖ | max{‖z‖, ‖x − x∗‖} ≤ ε/2} and ε be any positive scalar such that the closed
Euclidean ball of radius ε around x∗ is contained in the aforementioned open set.)
The first assumption also holds when F ′ is Lipschitz continuous on <n++ (in which
case L can be chosen to be a constant function).

In our notation, all vectors are column vectors and superscript T denotes trans-
pose. We denote by <m the m-dimensional real vector space and by <m+ and <m++,
respectively, the nonnegative orthant and the strictly positive orthant in <m. We
denote by e the vector whose components are all 1 (with its dimension inferred from
the context). For any x ∈ <m, we denote by xi the ith component of x, by X the
m×m diagonal matrix whose ith diagonal entry is xi for all i, and by ‖x‖1, ‖x‖, ‖x‖∞
the 1-norm, the 2-norm, and the∞-norm, respectively, of x. For any I ⊂ {1, . . . ,m},
we denote by xI the vector with components xi, i ∈ I. For any m ×m real matrix
M , we denote ‖M‖ = max‖x‖=1 ‖Mx‖. For any I, J ⊂ {1, . . . ,m}, we denote by MI

the submatrix of M obtained by removing all rows not indexed by I and by MIJ the
submatrix of MI obtained by removing all columns not indexed by J . Finally, we will
frequently use in our analysis the following observation:

‖ωe−Xy‖ ≤ ωβ1, ρ‖F (x)− y‖ ≤ ωβ1(8)

for any (x, y, ω) ∈ Nρ,β1
and any β1 ∈ (0, 1).

2. Centering Newton step and its properties. We describe below the New-
ton step based on (3). Fix any scalars β1, β2 satisfying 0 < β1/(1− β1) < β2 < 1 and
any ρ ∈ (0,∞) and ψ ∈ (0, 1). For any (x, y) ∈ <2n

++, let Ω(x, y) denote the smallest
ω ∈ [0,∞) satisfying (x, y, ω) ∈ Nρ,β1

, with Ω(x, y) :=∞ if no such ω exists.
Centering Newton step. For a given (x, y, ω) ∈ Nρ,β1

, we choose the largest
γ ∈ [0, 1] satisfying

‖ωe−Xy − γX(F (x)− y)‖ ≤ β2(ω − ‖ωe−Xy‖)(9)
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and let (u, v) be the vector in <2n satisfying (3); that is,[
Y X

F ′(x) −I

] [
u
v

]
=

[
ωe−Xy

γ(y − F (x))

]
;(10)

then we choose the largest λ ∈ {1, ψ, ψ2, . . .} satisfying

(x+ λu, y + λv) > 0, Ω(x+ λu, y + λv) ≤ ω(β1

√
1− λγ +

√
n)/(β1 +

√
n),(11)

and let

(x+, y+) := (x+ λu, y + λv), ω+ := Ω(x+, y+).(12)

Roughly speaking, γ is chosen to ensure a balanced decrease in the centering
term ‖ωe − Xy‖ and the infeasibility term ‖F (x) − y‖; λ is chosen to minimize
(approximately) the minimum ω for which (x + λu, y + λv, ω) ∈ Nρ,β1

. Note that
both γ and, for each λ, Ω(x + λu, y + λv) can be computed very easily by solving
a quadratic equation in one variable. Also, we can more generally choose λ from
{τ, τψ, τψ2, . . .} for some τ ∈ (0,∞), but, for simplicity, we will not consider this
more general stepsize rule.

The following key lemma shows that γ is bounded away from 0 and that λ is
well defined and not too small. (γ is well defined since, by (x, y, ω) ∈ Nρ,β1

(so the
first inequality in (8) holds) and β1/(1− β1) < β2, (9) is satisfied by γ = 0, so there
is a largest γ ∈ [0, 1] satisfying (9).) Moreover, in cases where F is affine or F is
sufficiently smooth and a uniform nondegenerate function on <n++, a certain quantity
σ(λ) is bounded above by a positive continuous function of x. Alternatively, if (x, y) is
near a strongly nondegenerate solution and ω is near 0, the quantity σ(λ) is bounded
above by a constant and (cf. [29, Lemma 5.2]) (u, v) is in the order of ω.

Lemma 2.1. Fix any scalars β1, β2 with 0 < β1/(1 − β1) < β2 < 1 and any
ρ ∈ (0,∞). For any (x, y, ω) ∈ Nρ,β1 , if γ denotes the largest scalar in [0, 1] satisfying
(9) and (u, v) denotes the vector satisfying (10), then the following hold:

(a) ‖X−1u‖ < 1 and

γ ≥ min {1, (β2(1− β1)− β1)ρ/(‖x‖∞β1)} .(13)

(b) Any λ ∈ [0, λ̄] satisfies (11), where λ̄ denotes the smallest λ ∈ [0, 1] satisfying
λσ(λ) = γ, with

σ(λ) := (1 + β3/β1)2 + 2ρr(x, λu)/(λ2β1ω) + ρ2r(x, λu)2/(λβ1ω)2(14)

and β3 = (β1 + β2(1 − β1))β2. For any λ ∈ [0, 1] satisfying (11), (x+, y+, ω+) given
by (12) is in Nρ,β1

.
(c) If there exist continuous functions η : <n+ 7→ (0,∞) and L : <n++ 7→ [0,∞)

such that (5) and (6) hold, respectively, then for all λ ∈ [0, 1], σ(λ) given by (14) is
bounded above by a continuous function of x depending on β1, β2, ρ, F ′, η, L only.

(d) If F is affine, then for all λ ∈ [0, 1], σ(λ) given by (14) is bounded above by a
constant depending on β1 and β2 only.

(e) If there exists an (x∗, y∗) ∈ S that is strongly nondegenerate and for which
there exist scalars µ > 0 and ε > 0 satisfying (7), then there exist positive constants
δ and C (depending on β1, β2, ρ, F ′, (x∗, y∗), µ, ε) such that ‖(x, y) − (x∗, y∗)‖ ≤ δ
implies that ‖(u, v)‖ ≤ Cω and if, in addition, ω ≤ ε/C, implies that for all λ ∈ [0, 1],
σ(λ) given by (14) is bounded above by C.
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Proof. Let M = F ′(x), r = ωe −Xy, s = F (x) − y, d = X−1u, and β = ‖r‖/ω.
Then (10) may be rewritten as

Y Xd+Xv = r, MXd− v = −γs.

Since XMX + Y X is positive definite and hence invertible, we can solve for d to
obtain

d = (XMX + Y X)−1(r − γXs).

This together with the positive semidefinite property of M yields

dTY Xd ≤ dT (XMX + Y X)d = dT (r − γXs) ≤ ‖d‖‖r − γXs‖,(15)

and it readily follows that

‖d‖ ≤ ‖r − γXs‖/min
i
xiyi ≤ ‖r − γXs‖/ω(1− β),(16)

where the second inequality follows from ‖r‖ = βω so Xy ≥ (1− β)ωe.
(a) By (9), the right-hand side of (16) is below β2, so

‖X−1u‖ = ‖d‖ ≤ β2 < 1.(17)

We have either γ = 1 or (9) is satisfied with equality. In the latter case, we have

β2(1− β) = ‖ωe−Xy − γXs‖/ω
≤ ‖ωe−Xy‖/ω + γ‖x‖∞‖s‖/ω
= β + γ‖x‖∞‖F (x)− y‖/ω
≤ β + γ‖x‖∞β1/ρ,

where the last inequality uses the second equation in (8). This together with β ≤ β1

yields

γ ≥ (β2(1− β1)− β1)ρ/(‖x‖∞β1).

Thus, (13) holds.
(b) Fix any λ ∈ [0, λ̄], and we show below that (11) holds. (Note that λ̄ is well

defined and positive. This is because r(x, λu)/λ → 0 as λ → 0, so λσ(λ) → 0 as
λ → 0 while, by (14), λσ(λ) exceeds 1 when λ ≥ 1.) Let (x′, y′) := (x+ λu, y + λv).
Now, u = Xd implies X ′ = X + λDX, which together with y′ = y + λv yields

ωe−X ′y′ = ωe− (I + λD)X(y + λv)

= (1− λ)(ωe−Xy)− λ2D(ωe−Xy) + λ2D(ωe−Xy −Xv)

= (1− λ)(ωe−Xy)− λ2D(ωe−Xy) + λ2DYXd,

where both the second and the third equality follow from the first equation in (10).
Thus

‖ωe−X ′y′‖ ≤ (1− λ)‖ωe−Xy‖+ λ2‖D(ωe−Xy)‖+ λ2‖DYXd‖
≤ (1− λ)‖ωe−Xy‖+ λ2‖d‖‖ωe−Xy‖+ λ2‖DYXd‖1
= (1− λ)‖r‖+ λ2‖d‖‖r‖+ λ2dTY Xd

≤ (1− λ)‖r‖+ λ2(‖r‖+ ‖r − γXs‖)‖r − γXs‖/ω(1− β)

≤ (1− λ)‖r‖+ λ2(‖r‖+ β2(1− β)ω)β2

=
[
1− λ+ λ2(1 + β2(1− β)/β)β2

]
‖r‖

≤
(
1− λ+ λ2τ1

)
‖r‖,(18)
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where the second inequality follows from properties of the 1-norm and the 2-norm;
the third inequality follows from (15), and (16), the fourth inequality follows from
(9), and the last equality follows from βω = ‖r‖, and the last inequality follows from
using β ≤ β1 and letting τ1 := β3/β. Also, from the second equation in (10) we have
that

‖F (x′)− y′‖ = ‖F (x′)− F (x)− λF ′(x)u+ F (x) + λF ′(x)u− y′‖
≤ ‖F (x′)− F (x)− λF ′(x)u‖+ ‖F (x) + λF ′(x)u− y′‖
= r(x, λu) + (1− λγ)‖F (x)− y‖
= (1− λγ + λτ2)‖F (x)− y‖,(19)

where we let τ2 := r(x, λu)/(λ‖F (x)− y‖). Combining (18) and (19), we have

‖H(x′, y′)− (ωe, 0)‖2ρ
= ‖ωe−X ′y′‖2 + ρ2‖F (x′)− y′‖2

≤ (1− λ+ λ2τ1)2‖r‖2 + (1− λγ + λτ2)2ρ2‖F (x)− y‖2

=
[
‖r‖2 + ρ2‖F (x)− y‖2

]
− 2λ

[
‖r‖2 + γρ2‖F (x)− y‖2

]
+ λ2

(
1 + 2(1− λ)τ1 + λ2τ2

1

)
‖r‖2

+ λ2ρ2
(
γ2 + 2(1− λγ)τ2/λ+ τ2

2

)
‖F (x)− y‖2

≤
[
‖r‖2 + ρ2‖F (x)− y‖2

]
− 2λγ

[
‖r‖2 + ρ2‖F (x)− y‖2

]
+ λ2(1 + τ2

1 )‖r‖2

+ 2λ2τ1ωβ1‖r‖+ λ2ρ2(1 + τ2
2 )‖F (x)− y‖2 + 2λρτ2ωβ1‖F (x)− y‖

= (1− 2λγ + λ2)‖H(x, y)− (ωe, 0)‖2ρ + λ2(σ(λ)− 1)(ωβ1)2

≤ (1− λγ)(ωβ1)2,(20)

where the second inequality follows from 0 ≤ γ, λ ≤ 1, r = ωe − Xy, and (8); the
third equality follows from τ1‖r‖ = β3ω, τ2‖F (x) − y‖ = r(x, λu)/λ, (2), and (14);
the last inequality follows from ‖H(x, y) − (ωe, 0)‖ρ ≤ ωβ1 (since (x, y, ω) ∈ Nρ,β1

)
and λσ(λ) ≤ γ (since λ ≤ λ̄). Thus, for any ω′ ∈ [0, ω], we have from (20) that

‖H(x′, y′)− (ω′e, 0)‖ρ = ‖H(x′, y′)− (ωe, 0) + (ω − ω′)(e, 0)‖ρ
≤ ‖H(x′, y′)− (ωe, 0)‖ρ + (ω − ω′)

√
n

≤
√

1− λγ(ωβ1) + (ω − ω′)
√
n.

Since Ω(x′, y′) is the smallest ω′ ∈ [0,∞) such that the left-hand side is below ω′β1,
Ω(x′, y′) is below the smallest ω′ ∈ [0, ω] such that the right-hand side is below ω′β1.
This yields the second inequality in (11). By (2) and (20), we have

‖ωe−X ′y′‖ ≤ ‖H(x′, y′)− (ωe, 0)‖ρ ≤ ωβ1 < ω

and, by (17) and 0 ≤ λ ≤ 1 and x > 0, we have x′ = x+ λu > 0. This implies y′ > 0
and the first inequality in (11) follows. Finally, it follows from the definition of Ω(·, ·)
that for any λ ∈ [0, 1] satisfying (11), (x+, y+, ω+) given by (12) is in Nρ,β1

.
(c) Assume there exist continuous functions η : <n+ 7→ (0,∞) and L : <n++ 7→

[0,∞) such that (5) and (6) hold, respectively. Let I = { i ∈ {1, . . . , n} | xi ≥
√
ω }

and J = {1, . . . , n}\I. We have from (17) that

‖uJ‖ ≤ ‖XJ‖‖(XJ)−1uJ‖ ≤
√
ωβ2.(21)
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Also, it is easily seen that u satisfies (M + Y X−1)u = X−1(r − γXs), so

(MII + YIX
−1
I )uI = X−1

I (r − γXs)I −MIJuJ .

By assumption, MII is nonsingular, so multiplying both sides by M−1
II and using (5)

yields

‖uI‖ = ‖M−1
II

[
X−1
I (r − γXs)I −MIJuJ − YIX−1

I uI
]
‖

≤ ‖M−1
II ‖

[
‖X−1

I ‖‖(r − γXs)I‖+ ‖MIJ‖‖uJ‖+ ‖yI‖∞‖X−1
I uI‖

]
≤ η(x)

[
‖X−1

I ‖‖(r − γXs)I‖+ ‖MIJ‖‖uJ‖+ ‖yI‖∞β2

]
≤ η(x)

[
‖(r − γXs)I‖/

√
ω + ‖MIJ‖

√
ωβ2 + ‖yI‖∞β2

]
≤ η(x)

[√
ωβ2 + ‖MIJ‖

√
ωβ2 + ‖yI‖∞β2

]
≤ η(x)

[√
ω + ‖MIJ‖

√
ω +
√
ω(1 + β1)

]
β2,(22)

where the second inequality also uses (17), the third inequality uses (21), the fourth
inequality follows from (9), and the last inequality uses the fact that Xy ≤ ω(1+β1)e
(see (8)), so yI ≤ ω(1 + β1)X−1

I e ≤
√
ω(1 + β1)e. Also, for any λ ∈ [0, 1], we have

from (17) that (6) holds with z = λu. This implies σ(λ) given by (14) can be bounded
above as

σ(λ) ≤ (1 + β3/β1)2 + 2ρL(x)‖u‖2/(β1ω) + ρ2L(x)2‖u‖4/(β1ω)2.(23)

Combining (21) with (22), we see that the right-hand side of (23) is bounded above
by a continuous function of x depending on β1, β2, ρ, F ′, η, L only.

(d) If F is affine, then r(x, λu) = 0 for all λ ∈ [0, 1], so σ(λ) given by (14) is
bounded above by a constant depending on β1 and β2 only.

(e) Assume there exists an (x∗, y∗) ∈ S that is strongly nondegenerate and for
which there exist scalars µ > 0 and ε > 0 satisfying (7). The former implies (x∗I , y

∗
J) >

0 and F ′(x∗)II is nonsingular for some partition I, J of {1, . . . , n}, so the Jacobian[
Y ∗ X∗

F ′(x∗) −I

]
is nonsingular, implying that there exists constant κ > 0 (depending on F ′ and
(x∗, y∗)) such that ∥∥∥∥∥

[
Y X

F ′(x) −I

]−1
∥∥∥∥∥ ≤ κ(24)

whenever ‖(x, y) − (x∗, y∗)‖ ≤ 1/κ. Assume (x, y) satisfies ‖(x, y) − (x∗, y∗)‖ ≤ 1/κ
and let C := κ(1 + 1/ρ)β1. Then, (10) and (24) yield

‖(u, v)‖ =

∥∥∥∥∥
[

Y X
F ′(x) −I

]−1 [
ωe−Xy

γ(y − F (x))

]∥∥∥∥∥
≤ κ ‖(ωe−Xy, γ(y − F (x)))‖
≤ κ(‖ωe−Xy‖+ γ‖y − F (x)‖)
≤ κ(1 + 1/ρ)ωβ1 = Cω,

where the last inequality follows from (8) and γ ≤ 1. (The above argument is based
on the proof of Lemma 5.2 in [29].) If, in addition, ‖x − x∗‖ ≤ ε and ω ≤ ε/C, we
have by a similar argument as in the proof of (c) (but with (6) replaced by (7)) that
for any λ ∈ [0, 1], the relation (23) holds (with L(x) replaced by µ) so that σ(λ) is
bounded above by a constant (depending on β1, β2, ρ, F ′, (x∗, y∗), µ).
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3. Pure Newton step and its properties. We describe below the Newton
step based on (4). Fix any scalar β1 ∈ (0, 1) and any ρ ∈ (0,∞).

Pure Newton step. For a given (x, y, ω) ∈ Nρ,β1
, we let (û, v̂) be the vector in

<2n satisfying (4), that is,[
Y X

F ′(x) −I

] [
û
v̂

]
=

[
−Xy

y − F (x)

]
,(25)

and let

(x̂+, ŷ+) := (x+ û, y + v̂).(26)

The following lemma roughly says that whenever (x, y) is near a strongly non-
degenerate solution, (û, v̂) is in the order of ω. The proof of this lemma is nearly
identical to that of Lemma 2.1(e) (which in turn is based on the proof of Lemma 5.2
in [29]) and, for simplicity, is omitted.

Lemma 3.1. Fix any β1 ∈ (0, 1) and ρ ∈ (0,∞). Assume there exists an (x∗, y∗) ∈
S that is strongly nondegenerate and for which there exist scalars µ > 0 and ε > 0
satisfying (7). Then there exist positive constants δ and C (depending on β1, ρ,
F ′, (x∗, y∗), µ, ε) such that for any (x, y, ω) ∈ Nρ,β1 satisfying ‖(x, y)− (x∗, y∗)‖ ≤ δ,
the vector (û, v̂) satisfying (25) also satisfies ‖(û, v̂)‖ ≤ Cω.

4. Algorithm and convergence analysis. In this section we describe our al-
gorithm for solving CP and use the results from previous sections to analyze its
convergence. The algorithm uses either the centering Newton direction alone or a
convex combination of the centering Newton direction and the pure Newton direction
(also called the affine-scaling direction), whichever yields the greater decrease in ω.

Algorithm 4.1. Choose any β1, β2 with 0 < β1/(1 − β1) < β2 < 1 and any
ρ ∈ (0,∞) and ψ ∈ (0, 1). Also choose any (x0, y0, ω0) ∈ Nρ,β1 . For any (x, y, ω) ∈
<2n+1

+ and any (x̂, ŷ) ∈ <2n, let

Θω(x, y, x̂, ŷ) := sup
θ∈[0,1]

{θ|(θx̂+ (1− θ)x, θŷ + (1− θ)y, (1− θ)ω) ∈ Nρ,β1
} ,(27)

with Θω(x, y, x̂, ŷ) := −∞ if no θ satisfies the constraints of (27). For t = 0, 1, . . ., if
ωt = 0, we let

(xt+1, yt+1, ωt+1) := (xt, yt, ωt);(28)

otherwise, we generate (xt+1, yt+1, ωt+1) from (xt, yt, ωt) as follows:
(1a) Apply centering Newton step (see (9)–(12)) with (x, y, ω) = (xt, yt, ωt) and

denote the resulting (γ, u, v, λ) and (x+, y+, ω+) by, respectively, (γt, ut, vt, λt) and
(xt+, y

t
+, ω

t
+).

(1b) Apply pure Newton step (see (25)–(26)) with (x, y) = (xt, yt) and denote the
resulting (û, v̂) and (x̂+, ŷ+) by, respectively, (ût, v̂t) and (x̂t+, ŷ

t
+).

(2) Let θt := Θωt(x
t
+, y

t
+, x̂

t
+, ŷ

t
+), and let

(xt+1, yt+1, ωt+1) :=


(xt+, y

t
+, ω

t
+) if ωt+ ≤ (1− θt)ωt,

(θtx̂t+ + (1− θt)xt+,
θtŷt+ + (1− θt)yt+, (1− θt)ωt)

otherwise
.(29)

Note 1. One choice of (x0, y0, ω0) that satisfies (x0, y0, ω0) ∈ Nρ,β1 is

x0 = αxe, y0 = αye, ω0 = αxαy,
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with αx chosen large enough so ρ
√
n/αx < β1 and then with αy chosen large enough

so ρ‖F (αxe)/αy − e‖/αx ≤ β1. Alternatively, we can start with any (x0, y0) ∈ <2n
++

provided we modify Algorithm 4.1 as follows: let z0 = X0y0 and choose ω0 = mini z
0
i

and ρ = ω0β1/‖F (x0) − y0‖; replace the vector e everywhere by z0/ω0 and replace√
n in (11) by ‖z0‖/ω0. Our convergence results (Theorem 4.2) also extend to this

modified algorithm.
Note 2. If F is affine, then θt can be computed exactly by solving a quartic

equation in one variable; otherwise, we must solve an optimization problem in one
variable. Alternatively, we can estimate θt. One such estimate, suggested by Lemma
4.1 to follow, is

1− Ctωt/[1− (1− λtγt)2],

where Ct := max{‖(ut, vt)‖/ωt, ‖(ût, v̂t)‖/ωt}2(1+ρµt)(1+
√

2)/β1 and µt is an upper
estimate of lim supz→0 r(x

t, z)/‖z‖2. In practice, we use the maximum of 1− ωt+/ωt
and this estimate as the lower endpoint in a binary search procedure.

Note 3. The pure Newton step is needed only for local quadratic convergence and
may be removed (by setting (xt+1, yt+1, ωt+1) := (xt+, y

t
+, ω

t
+) for all t) without affect-

ing the global convergence behavior of the algorithm as stated in Theorem 4.2(a)–(c).
Also, the idea of taking a convex combination of the centering Newton direction and
the pure Newton direction to achieve superlinear convergence is not new and, as noted
in [5], traces back to a work of McShane [14]. However, our mechanism for switching
from the centering Newton direction to the convex combination, as given in (29),
appears to be new. Also, we consider an infeasible interior-point method for solving
monotone CP rather than a feasible interior-point method for solving monotone linear
CP as considered in [5, 14].

To analyze the local convergence rate of Algorithm 4.1, we further need the fol-
lowing technical lemma.

Lemma 4.1. Assume there exists an x∗ ∈ <n+ and scalars µ > 0 and ε > 0 such
that (7) holds. Fix any β1 ∈ (0, 1) and ρ ∈ (0,∞). For any positive scalar C, any
(x, y, ω) ∈ Nρ,β1 , and any γ ∈ [0, 1] and λ ∈ [0, 1] satisfying

‖x− x∗‖ ≤ ε, ‖(u, v)‖ ≤ Cω, ‖(û, v̂)‖ ≤ Cω, ω ≤ ε/C, C ′ω ≤ 1− (1− λγ)2,(30)

where C ′ := C2(1 + ρµ)(1 +
√

2)/β1 and (u, v) and (û, v̂) satisfy (10) and (25), re-
spectively, we have

Θω(x+ λu, y + λv, x+ û, y + v̂) ≥ 1− C ′ω/[1− (1− λγ)2].

Proof. Consider any C, (x, y, ω), γ, λ, and C ′, (u, v), (û, v̂) satisfying the hypoth-
esis of the lemma. For any θ ∈ [0, 1], we have upon letting

(x′, y′) := θ(x+ û, y + v̂) + (1− θ)(x+ λu, y + λv)

that

‖(1− θ)ωe−X ′y′‖
= ‖(1− θ)(1− λ)(ωe−Xy) + θ(1− θ)λ(V û+ Uv̂) + θ2Û v̂ + (1− θ)2λ2Uv‖
≤ (1− θ)(1− λ)‖ωe−Xy‖+ θ(1− θ)λ[‖v‖‖û‖+ ‖u‖‖v̂‖]
+ θ2‖û‖‖v̂‖+ (1− θ)2λ2‖u‖‖v‖
≤ (1− θ)(1− λγ)‖ωe−Xy‖+ 2θ(1− θ)λ(Cω)2 + θ2(Cω)2 + (1− θ)2λ2(Cω)2

= (1− θ)(1− λγ)‖ωe−Xy‖+ (θ + (1− θ)λ)2(Cω)2,
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where the first equality uses the first equation in (10) and in (25) and the last in-
equality uses (30). Also, we have from the second equation in (10) and in (25) that

‖F (x′)− y′‖ = ‖F (x) + F ′(x)(x′ − x)− y′ + F (x′)− F (x)− F ′(x)(x′ − x)‖
≤ ‖F (x) + F ′(x)(x′ − x)− y′‖+ ‖F (x′)− F (x)− F ′(x)(x′ − x)‖
= (1− θ)(1− λγ)‖F (x)− y‖+ r(x, θû+ (1− θ)λu)

≤ (1− θ)(1− λγ)‖F (x)− y‖+ µ‖θû+ (1− θ)λu‖2

≤ (1− θ)(1− λγ)‖F (x)− y‖+ µ(θ + (1− θ)λ)2(Cω)2,

where the second inequality follows from using (30) (so ‖x − x∗‖ ≤ ε and ‖θû +
(1 − θ)λu‖ ≤ θ‖û‖ + (1 − θ)λ‖u‖ ≤ Cω ≤ ε) and (7); the last inequality uses (30).
Combining the above two relations and using θ + (1− θ)λ ≤ 1, we obtain

‖H(x′, y′)− ((1− θ)ωe, 0)‖2ρ
= ‖(1− θ)ωe−X ′y′‖2 + ρ2‖F (x′)− y′‖2

≤
[
(1− θ)(1− λγ)‖ωe−Xy‖+ (Cω)2

]2
+ ρ2

[
(1− θ)(1− λγ)‖F (x)− y‖+ µ(Cω)2

]2
= (1− θ)2(1− λγ)2‖H(x, y)− (ωe, 0)‖2ρ + (Cω)4(1 + ρ2µ2)

+ 2(1− θ)(1− λγ)(Cω)2
[
‖ωe−Xy‖+ ρ2µ‖F (x)− y‖

]
≤ (1− θ)2(1− λγ)2β2

1ω
2 + C4(1 + ρ2µ2)ω4

+ 2(1− θ)(1− λγ)C2(1 + ρµ)β1ω
3,(31)

where the last inequality follows from (8). The right-hand side of (31) is below [(1−
θ)ωβ1]2 for all θ ∈ [0, 1−ξ], where ξ solves the quadratic equation aξ2−2bωξ−cω2 = 0
with

a = [1− (1− λγ)2]β2
1 , b = (1− λγ)C2(1 + ρµ)β1, c = C4(1 + ρ2µ2).

(Note that ξ = (b+
√
b2 + ac)ω/a ≤ C ′ω/[1− (1− λγ)2], so (30) yields ξ ≤ 1.) Thus,

the left-hand side of (31) is below [(1 − θ)ωβ1]2 for all θ ∈ [0, 1 − ξ]. Moreover, we
have (x′, y′) ≥ 0 for all such θ (since if any component of (x′, y′) is below 0, then
‖(1 − θ)ωe −X ′y′‖ > (1 − θ)ω and the left-hand side of (31) would be greater than
[(1− θ)ω]2). Since Θω(x + λu, y + λv, x + û, y + v̂) is the largest θ ∈ [0, 1] such that
the left-hand side of (31) is below [(1− θ)ωβ1]2 and (x′, y′) ≥ 0, this yields

Θω(x+ λu, y + λv, x+ û, y + v̂) ≥ 1− ξ ≥ 1− C ′ω/[1− (1− λγ)2].

By using properties of the two Newton steps (see Lemmas 2.1 and 3.1) and the
preceding lemma, we have the following main result, giving sufficient conditions for
global (Q-linear) convergence and local quadratic convergence of Algorithm 4.1.

Theorem 4.2. Let β1, β2, ρ, ψ and {(xt, yt, ωt, γt, ut, vt, λt, xt+, yt+, ût, v̂t, x̂t+, ŷt+,
θt)}t=0,1,... be generated by Algorithm 4.1. Then either ωt = 0 for some t or the
following hold:

(a) For all t, we have (xt, yt, ωt) ∈ Nρ,β1
and ‖(Xt)−1ut‖ < 1 and ωt+1 ≤ ωt+ ≤

ωt.
(b) If {xt} has a convergent subsequence, then {ωt} → 0 and every cluster point

of {(xt, yt)} is in S.
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(c) Assume {xt} is bounded. If there also exist continuous functions η : <n+ 7→
(0,∞) and L : <n++ 7→ [0,∞) such that (5) and (6) hold, respectively, then there exists
a c ∈ (0, 1) (depending on β1, β2, ρ, F ′, η, L, supt ‖xt‖) such that ωt+1 ≤ cωt for all
t. Alternatively, if every (x∗, y∗) ∈ S is strongly nondegenerate and for which there
exist scalars µ > 0 and ε > 0 satisfying (7), then lim supt→∞ ωt+1/(ωt)2 <∞.

(d) Assume F is affine and {xt} is bounded. Then there exists a c ∈ (0, 1)
(depending on β1, β2, ρ, supt ‖xt‖) such that ωt+1 ≤ cωt for all t. If every element of
S is strongly nondegenerate, then lim supt→∞ ωt+1/(ωt)2 <∞.

Proof. (a): We argue by induction on t that (xt, yt, ωt) ∈ Nρ,β1
for all t. This

clearly holds for t = 0. Suppose it holds for some t ≥ 0. Then, we have from Lemma
2.1(b) that (xt+, y

t
+, ω

t
+) ∈ Nρ,β1

and from the definition of θt that (θtx̂t+ + (1 −
θt)xt+, θ

tŷt+ + (1 − θt)yt+, (1 − θt)ωt) ∈ Nρ,β1 whenever θt ∈ [0, 1). Since ωt+1 6= 0
by assumption so that θt 6= 1, (29) yields (xt+1, yt+1, ωt+1) ∈ Nρ,β1 . The remaining
results readily follow from Lemma 2.1(a) and (11)–(12).

(b): Assume {xt} has a convergent subsequence {xt}t∈T . We argue that {ωt} → 0
by contradiction. If {ωt} 6→ 0, then since {ωt} is nonincreasing (see (a)), we have
ωt ≥ C for all t for some scalar C > 0. Then ωt ≥ ωt+ ≥ ωt+1 for all t (see (a))
implies {ωt+/ωt} → 1, which together with

ωt+/ω
t = Ω(xt + λtut, yt + λtvt)/ωt ≤ (β1

√
1− λtγt +

√
n)/(β1 +

√
n) ∀t

(see (11) and (12)) implies {λtγt} → 0. Since {xt}t∈T converges so {γt}t∈T 6→ 0 (see
(13)), this implies {λt}t∈T → 0. Thus, for all t ∈ T sufficiently large, we have λt 6= 1,
implying λ = λt/ψ does not satisfy (11) (with (x, y, u, v, γ) = (xt, yt, ut, vt, γt)).
Then, by Lemma 2.1(b), it must be that λt/ψ > λ̄t, where λ̄t is the smallest λ ∈ [0, 1]
satisfying λσt(λ) = γt with (see (14))

σt(λ) := (1 + β3/β1)2 + 2ρr(xt, λut)/(λ2β1ω
t) + ρ2r(xt, λut)2/(λβ1ω

t)2.

Since {λt}t∈T → 0, this implies {λ̄t}t∈T → 0 and, since {xt}t∈T converges and
‖(Xt)−1ut‖ < 1 for all t (see (a)), we also have that {ut}t∈T is bounded. Moreover,
the limit point of {xt}t∈T is in <n++. (This is because (xt, yt, ωt) ∈ Nρ,β1 for all t so,
by using (8), we have Xtyt ≥ ωt(1−β1)e and ρ‖F (xt)−yt‖ ≤ ωtβ1. The latter implies
{yt}t∈T is bounded (since {F (xt)}t∈T converges and {ωt} ↓), so the former together
with ωt ≥ C for all t implies {xt}t∈T is componentwise bounded away from zero.)
Then the continuous differentiability of F on <n++ implies {r(xt, λ̄tut)/λ̄t}t∈T → 0,
which together with ωt ≥ C for all t yields {λ̄tσt(λ̄t)}t∈T → 0. Since {γt}t∈T 6→ 0,
this contradicts λ̄tσt(λ̄t) = γt for all t. Thus, {ωt} → 0. Since (xt, yt, ωt) ∈ Nρ,β1

for
all t (see (a)), it readily follows that every cluster point of {(xt, yt)} is in S.

(c): Assume {xt} is bounded. By (13), there is a constant C1 > 0 such that
γt ≥ C1 for all t.

Suppose there also exist continuous functions η : <n+ 7→ (0,∞) and L : <n++ 7→
[0,∞) such that (5) and (6) hold, respectively. Then, by Lemma 2.1(c) and bound-
edness of {xt}, there is a constant C2 > 0 such that σt(λ̄t) ≤ C2 for all t, where
σt(·) and λ̄t are as defined in the proof of (b). Then, by λ̄tσt(λ̄t) = γt, we have
λ̄t ≥ γt/C2 ≥ C1/C2. Also, we argued in the proof of (b) that if λt 6= 1, then
λt/ψ > λ̄t, and hence λt ≥ C3 := min{1, ψC1/C2} for all t. This implies (see (11)
and (12)) that

ωt+/ω
t = Ω(xt + λtut, yt + λtvt)/ωt ≤ (β1

√
1− C1C3 +

√
n)/(β1 +

√
n),
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so ωt+1 ≤ ωt+ ≤ cωt for some constant c ∈ (0, 1).
Alternatively, suppose every element (x∗, y∗) of S is strongly nondegenerate and

for which there exist scalars µ > 0 and ε > 0 satisfying (7). First, we claim that
{(xt, yt)} converges. To see this, let (x∗, y∗) be any cluster point of {(xt, yt)}. By (b),
(x∗, y∗) is in S so (x∗, y∗) is strongly nondegenerate, i.e., (x∗I , y

∗
J) > 0 and F ′(x∗)II is

nonsingular for some partition I, J of {1, . . . , n}. By {ωt} → 0 (see (b)) and by using
an argument similar to the one above (but with Lemma 2.1(c) replaced by Lemma
2.1(e)), we have the existence of constants δ1 > 0, C2 > 0, and c ∈ (0, 1) such that

‖(ut, vt)‖ ≤ C2ω
t and ωt+1 ≤ ωt+ ≤ cωt and λt ≥ 1/C2(32)

for all t with ‖(xt, yt)−(x∗, y∗)‖ ≤ δ1 and ωt ≤ δ1. By taking C2 larger and δ1 smaller
if necessary, we also have that C2 ≥ 1/2 and from Lemma 3.1 that

‖(ût, v̂t)‖ ≤ C2ω
t(33)

for all t with ‖(xt, yt)− (x∗, y∗)‖ ≤ δ1 and ωt ≤ δ1. Let

δ2 := δ1(1− c)/(2C2)(34)

(so, by C2 ≥ 1/2, we have δ2 ≤ δ1) and consider any t̄ such that ‖(xt̄, yt̄)−(x∗, y∗)‖ ≤
δ1/2 and ωt̄ ≤ δ2. We claim that

‖(xt, yt)− (x∗, y∗)‖ ≤ C2

(
t−t̄−1∑
k=0

ck

)
δ2 + δ1/2, ωt ≤ ct−t̄δ2(35)

for all t ≥ t̄. Clearly, (35) holds for t = t̄. Suppose (35) holds for some t ≥ t̄. Then
(34) and c ∈ (0, 1) yield ‖(xt, yt)− (x∗, y∗)‖ ≤ δ2 ≤ δ1 and ωt ≤ δ1, so (32) and (33)
hold. Hence, (29) together with (12) and (26) yield that either

‖(xt+1, yt+1)− (xt, yt)‖ = ‖(xt+, yt+)− (xt, yt)‖ = λt‖(ut, vt)‖ ≤ C2ω
t

or

‖(xt+1, yt+1)− (xt, yt)‖ = ‖θt(x̂t+, ŷt+) + (1− θt)(xt+, yt+)− (xt, yt)‖
= ‖θt(ût, v̂t) + (1− θt)λt(ut, vt)‖
≤ θt‖(ût, v̂t)‖+ (1− θt)λt‖(ut, vt)‖ ≤ C2ω

t,

where the inequalities also use λt ≤ 1. Then (35) yields

‖(xt+1, yt+1)− (x∗, y∗)‖ ≤ ‖(xt+1, yt+1)− (xt, yt)‖+ ‖(xt, yt)− (x∗, y∗)‖

≤ C2c
t−t̄δ2 + C2

(
t−t̄−1∑
k=0

ck

)
δ2 + δ1/2

= C2

(
t−t̄∑
k=0

ck

)
δ2 + δ1/2.

We also have from (32) and (35) that

ωt+1 ≤ cωt ≤ ct+1−t̄δ2.



398 PAUL TSENG

Thus, (35) holds when t is replaced by t + 1. Then, by induction, (35) holds for all
t ≥ t̄ and hence, by (34),

‖(xt, yt)− (x∗, y∗)‖ ≤ C2δ2/(1− c) + δ1/2 < δ1

for all t ≥ t̄. This holds for any δ1 sufficiently small, so, since (x∗, y∗) is a cluster
point of {(xt, yt)} and {ωt} → 0 (see (b)), we have {(xt, yt)} → (x∗, y∗). Moreover,
we have that (32) and (33) hold for all t sufficiently large, so Lemma 4.1 and γt ≥ C1

for all t yield

θt ≥ 1− C3ω
t/[1− (1− λtγt)2] ≥ 1− C3ω

t/[1− (1− C1/C2)2]

for all t sufficiently large, with C3 := (C2)2(1 + ρµ)(1 +
√

2)/β1. This, together with
ωt+1 ≤ (1− θt)ωt (see (29)), implies that

ωt+1 ≤ C3(ωt)2/[1− (1− C1/C2)2]

for all t sufficiently large, and hence {ωt} has local quadratic convergence.
(d): Since F is affine and {xt} is bounded, we have, by an argument analogous to

that for (c) (with Lemma 2.1(c) replaced by Lemma 2.1(d)), that {λtγt} is bounded
below by some positive constant (depending on β1, β2, ρ, supt ‖xt‖), implying {ωt} ↓ 0
globally Q-linearly. If every element of S is strongly nondegenerate, the result follows
from (c).

It was pointed out to the author by S. J. Wright that the assumption that every
element of S be nondegenerate implies that the elements of S are isolated; hence,
by a result of Minty [6, Proposition 3.1] (which says that for the monotone CP, the
projection of S onto the x-space is convex), S has at most one element. This fact
may be used to shorten the proof of Theorem 4.2(c) somewhat.

A careful analysis shows that the constant c in Theorem 4.2(c) satisfies

c ≥ 1− Cρ2

√
n

[
sup
t

{
‖xt‖∞

(
1 + ρL(xt)η(xt)(1 + ‖F ′(xt)‖)2

)}]−2

,

where C is a constant depending on β1 and β2. Also, the convergence result in
Theorem 4.2 depends on {xt} being bounded (at least when F is not affine). The
following lemma gives conditions on F under which {xt} is guaranteed to be bounded.

Lemma 4.3. Fix any β1 ∈ (0, 1), any ρ ∈ (0,∞), and any ω0 ∈ [0,∞). The
set { (x, y) ∈ <2n | (x, y, ω) ∈ Nρ,β1

for some ω ∈ [0, ω0] } is bounded if any of the
following two conditions holds:

(a) There exists x̄ ∈ <n+ satisfying F (x̄) > (β1ω
0/ρ)e.

(b) F is an R0-function in the sense that for any sequence x1, x2, . . . in <n++

satisfying

{‖xt‖} → ∞ and lim inf
t→∞

(min
i
Fi(x

t))/‖xt‖ ≥ 0,(36)

we have {(xt)TF (xt)/‖xt‖} → ∞.
Proof. Assume condition (a) holds and consider any (x, y, ω) ∈ Nρ,β1

with ω ∈
[0, ω0]. Since F is monotone, we have

0 ≤ (x− x̄)T (F (x)− F (x̄)),

which can be rewritten as

x̄T y + xTF (x̄) ≤ xT y + xT (F (x)− y) + x̄T (y − F (x)) + x̄TF (x̄).
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Also, we have from (x, y, ω) ∈ Nρ,β1
that (8) holds, so that

xT y ≤ (1 + β1)nω and ρ‖F (x)− y‖ ≤ β1ω.(37)

The above two relations together with x̄T y ≥ 0, xTF (x̄) ≥ ‖x‖1(mini Fi(x̄)), and
ω ≤ ω0 yield

‖x‖1(min
i
Fi(x̄)) ≤ xT y + ‖x‖‖F (x)− y‖+ ‖x̄‖‖y − F (x)‖+ x̄TF (x̄)

≤ (1 + β1)nω0 + ‖x‖1β1ω
0/ρ+ ‖x̄‖β1ω

0/ρ+ x̄TF (x̄),

and hence

‖x‖1 ≤
[
(1 + β1)nω0 + ‖x̄‖β1ω

0/ρ+ x̄TF (x̄)
]
/
[
min
i
Fi(x̄)− β1ω

0/ρ
]
.

Assume condition (b) holds. We argue by contradiction. Suppose there exists a
sequence {(xt, yt, ωt)} in <2n+1 such that (xt, yt, ωt) ∈ Nρ,β1

and ωt ∈ [0, ω0] for all
t and yet {‖xt‖} → ∞. The first two relations yield (see (37))

(xt)T yt ≤ (1 + β1)nω0 and ρ‖F (xt)− yt‖ ≤ β1ω
0,

which together with yt ≥ 0 for all t yields

lim inf
t→∞

(xt)TF (xt)/‖xt‖ <∞, {‖F (xt)−yt‖/‖xt‖} → 0, lim inf
t→∞

(min
i
yt)/‖xt‖ ≥ 0,

contradicting the assumption of F being an R0-function.
Corollary 4.4. If there exists a constant function η : <n+ 7→ (0,∞) such that

(5) holds and F is twice continuously differentiable on an open set containing <n+,
then {(xt, yt)} is bounded and {ωt} converges to zero globally Q-linearly and, if every
(x∗, y∗) ∈ S satisfies x∗ + y∗ > 0, locally quadratically.

Proof. The assumptions imply F is an R0-function and there exists a continuous
function L : <n++ 7→ [0,∞) such that (6) holds. Moreover, every (x∗, y∗) ∈ S satisfy-
ing x∗ + y∗ > 0 is strongly nondegenerate and for which there exist scalars µ > 0
and ε > 0 satisfying (7). The result then follows from Lemma 4.3(b) and Theorem
4.2(c).

The notion of an R0-function may be viewed as a generalization of the notion of a
uniform P -function (see [6, 19, 27]) and, more generally, of a function that is coercive
in the Hadamard sense [18]. When F is affine of the form F (x) = Mx+q, F being an
R0-function reduces to M being an R0-matrix [2]. This is shown in the lemma below.

Lemma 4.5. If F is a uniform P -function on <n++ or if F (x) = Mx + q for all
x ∈ <n++, where M is an n × n R0-matrix and q ∈ <n, then F is an R0-function in
the sense of Lemma 4.3(b).

Proof. Suppose F is a uniform P -function on <n++; then there exists a scalar
ν > 0 such that

max
i=1,...,n

(yi − xi)(Fi(y)− Fi(x)) ≥ ν‖y − x‖2 ∀x, y ∈ <n++.(38)

Consider any sequence x1, x2, . . . in <n++ satisfying (36). Fix any x̄ ∈ <n++. Then, for
each t, by letting x = xt and y = x̄ in (38) and dividing both sides by ‖xt‖2, we have

max
i=1,...,n

{(
x̄iFi(x̄)− xtiFi(x̄)− x̄iFi(xt) + xtiFi(x

t)
)
/‖xt‖2

}
≥ ν‖x̄− xt‖2/‖xt‖2.
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Upon letting t→∞ and using x̄ ≥ 0 and (36), the above relation yields

lim inf
t→∞

max
i=1,...,n

{
xtiFi(x

t)/‖xt‖2
}
≥ ν.

We also have from (36) that

lim inf
t→∞

{
xtiFi(x

t)/‖xt‖2
}
≥ 0, i = 1, . . . ,m.

The above two relations imply that lim inft→∞{(xt)TF (xt)/‖xt‖2} ≥ ν and, hence,
{(xt)TF (xt)/‖xt‖} → ∞.

Suppose F (x) = Mx + q for all x ∈ <n++, where M is an n × n R0-matrix and
q ∈ <n. We argue by contradiction. Suppose there exists a sequence x1, x2, . . . in <n++

satisfying (36) and yet {(xt)T (Mxt + q)/‖xt‖} 6→ ∞. By passing to a subsequence if
necessary, we can assume that

lim sup
t→∞
{(xt)T (Mxt + q)/‖xt‖} <∞.

Let y denote any cluster point of {xt/‖xt‖} (so that y 6= 0). Then, (36) and the
above relation imply y ≥ 0, My ≥ 0, and yTMy = 0, contradicting M being an
R0-matrix.

The next lemma shows that the assumptions of Corollary 4.4 hold if F is twice
continuously differentiable on an open set containing <n+ and is a uniform P -function
on <n++.

Lemma 4.6. If F is continuously differentiable and a uniform P -function on
<n++, then there exists a constant function η : <n+ 7→ (0,∞) such that (5) holds.

Proof. Since F is a uniform P -function on <n++, there exists a scalar ν > 0 such
that (38) holds. Consider any x ∈ <n++ and any I ⊂ {1, . . . , n}. For every nonzero
d ∈ <n, we have x+ λd > 0 for all λ > 0 sufficiently small so that (38) yields

max
i=1,...,n

{λdi(Fi(x+ λd)− Fi(x))} ≥ νλ2‖d‖2.

Dividing both sides by λ2 and letting λ→ 0, we obtain

max
i=1,...,n

diMid ≥ ν‖d‖2,

where we let M = F ′(x). This holds for all nonzero d and, in the case where di = 0
for all i 6∈ I, we obtain

max
i∈I

diMiIdI ≥ ν‖dI‖2.

Since the left-hand side is bounded above by ‖dI‖‖MIIdI‖, this yields ‖MIIdI‖ ≥
ν‖dI‖. Thus, MII is invertible and, for every y ∈ <n, we have upon letting dI =
(MII)

−1yI that

‖(MII)
−1yI‖ = ‖dI‖ ≤ ‖MIIdI‖/ν = ‖yI‖/ν,

implying ‖(MII)
−1‖ ≤ 1/ν. Since the preceding choice of x ∈ <n++ and I ⊂ {1, . . . , n}

was arbitrary, this shows that (5) holds with η ≡ 1/ν.
An important case in which F , in addition to being monotone, satisfies the as-

sumption of Lemma 4.6 is when F (x) = Mx + q for all x ∈ <n++, with M an n × n
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positive semidefinite P -matrix and q ∈ <n. It is well known that any positive definite
matrix is a positive semidefinite P -matrix [2, p. 153], but the converse is not true, as
is shown by the following 2× 2 example suggested to the author by J.-S. Pang:

M =

[
1 2
0 1

]
.

In general, the class of monotone uniform P -functions is significantly broader than
the class of strongly monotone functions.

Finally, it follows from Theorem 4.2(c) and Lemmas 4.5 and 4.6 that if F , in
addition to being monotone, is a uniform P -function on <n++ with Lipschitz continuous
Jacobian on <n++, then {(xt, yt, ωt)} generated by Algorithm 4.1 is bounded and {ωt}
converges to zero globally Q-linearly. While these assumptions on F may seem to
be somewhat restrictive, it is worth noting that existing global Q-linear convergence
results for the monotone CP all require either similar assumptions (see [26, Theorem
2.2] and [6, Proposition 4.4(b)]; in the latter, the assumption of F being Lipschitz
continuous is missing but is actually needed) or a scaled Lipschitzian assumption (see
[22, 25]).

Acknowledgment. Thanks are due to an anonymous reviewer whose questions
and comments led to several improvements in the paper.
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Abstract. It is well known that a nonlinear complementarity problem (NCP) can be formulated
as a system of nonsmooth equations. Chen and Mangasarian [Comput. Optim. Appl., 5 (1996),
pp. 97–138] proposed a class of parametric smooth functions by twice integrating a probability
density function. As a result, the nonsmooth equations can be approximated by smooth equations.
This paper refines the smooth functions proposed by Chen and Mangasarian and investigates their
structural properties. The refinement allows us to establish the existence, uniqueness, and limiting
properties of the trajectory defined by the solutions of these smooth equation approximations. In
addition, global error bounds for the NCP with a uniform P -function are obtained.

Key words. nonlinear complementarity problem, smooth approximation, error bound, contin-
uation method
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1. Introduction. The nonlinear complementarity problem (NCP) is one of the
fundamental problems of mathematical programming. In particular, the Karush–
Kuhn–Tucker optimality conditions of any continuous optimization problem can be
formulated as an NCP; see [4, 13] for a review of the literature in this area. Given a
mapping f : Rn → Rn, the NCP with respect to f , NCP [f ], finds an x ∈ Rn such that

x ≥ 0, f(x) ≥ 0, and xT f(x) = 0.

It is well known that an x ∈ Rn solves NCP [f ] if and only if it solves the following
nonsmooth equations:

x− (x− f(x))+ = 0,

where the plus function (·) is defined by

(z)+ = max{0, z}.

In a recent paper, Chen and Mangasarian [3] proposed a class of parametric
smooth functions that approximate the plus function by the double integration of a
probability distribution function d that is defined by a smoothing parameter. This
formulation leads to a class of smooth parametric nonlinear equation approximations
to NCP [f ] and other complementarity problems. Using these approximations, a con-
tinuation method can be constructed to solve NCP [f ] that systematically solves the
smooth equations and reduces the smoothing parameter to zero. Using this frame-
work, many continuation methods that have been developed to date for NCP [f ] can
be regarded as special cases of Chen and Mangasarian’s smooth approximations; they
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vary in the choice of the particular form of the function d. Indeed, various interior
point path-following algorithms for NCPs and other problems fit within this frame-
work.

An important issue of using such a smooth approximation method to solveNCP [f ]
is the error that results from the approximation to the plus function as well as the
computational efficiency of the proposed method. Chen and Mangasarian present an
error bound for the strongly monotone NCP and report encouraging computational
results based on their smooth approximations.

To ensure the success of continuation methods based on smooth approximations to
NCP [f ], one needs to investigate the trajectory consisting of solutions to the approx-
imation subproblems as the smoothing parameter approaches zero. The trajectory
of the interior point algorithm (using a particular smooth approximation) has been
thoroughly studied in the literature. In particular, the paper by Kojima, Mizuno, and
Noma [7] unified various interior point algorithms for NCPs and linear complemen-
tarity problems (LCPs); they provide a complete characterization of the trajectory
that leads to a solution and show global and local convergence of the continuation
method.

This paper refines the smooth functions introduced by Chen and Mangasarian [3]
based on a set of structural properties that are necessary to establish various results
on the trajectory of solutions. Using the techniques developed in Kojima, Mizuno,
and Noma [7], this paper establishes the existence, uniqueness, and continuity of the
trajectory that leads to a solution of NCP [f ] under the assumption that the function
f in NCP [f ] satisfies both P0- and R0-properties. Finally, a global error bound for the
NCP with a uniform P -function is obtained.

The following notation will be used throughout the paper. All vectors (vector
functions) are column vectors (vector functions) and are denoted by boldface letters;
0 and 1 represent vectors of appropriate dimension with all components equal to
0 and 1, respectively. Rn, Rn

+, Rn
++ denote, respectively, n-dimensional Euclidean

space, the nonnegative orthant of Rn, and the strictly positive orthant of Rn. Given
an NCP [f ], S+[f ] represents the set of all feasible solutions, and S++[f ] represents the
set of all strictly positive feasible solutions:

S+[f ] = {x ∈ Rn
+ : f(x) ≥ 0},

S++[f ] = {x ∈ Rn
++ : f(x) > 0}.

In addition, the following definitions related to function f will be used in the paper.
Definition 1.1. Let S be a nonempty subset of Rn. The mapping f : Rn → Rn

is said to be a
1. P0-function over the set S if there is an index i such that

xi − yi 6= 0 and [fi(x)− fi(y)](xi − yi) ≥ 0 for all x,y ∈ S and x 6= y,

2. uniform P -function over the set S if, for some γ > 0,

max
1≤i≤n

[fi(x)− fi(y)](xi − yi) ≥ γ‖x− y‖2 for all x,y ∈ S,

3. monotone function over the set S if

[f(x)− f(y)]T (x− y) ≥ 0 for all x,y ∈ S,

4. strongly monotone function over the set S if, for some γ > 0,

[f(x)− f(y)]T (x− y) ≥ γ‖x− y‖2 for all x,y ∈ S.
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It is well known that strong monotonicity implies both the uniform P -property
and monotonicity, which in turn imply the P0-property.

Definition 1.2. Let S be a nonempty subset of Rn and f be a differentiable
function. The Jacobian matrix ∇f(x) of f is Lipschitz continuous over S if, for some
L > 0,

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖ for all x,y ∈ S,

where ‖A‖ denotes the matrix norm max{‖Aw‖ : w ∈ Rn, ‖w‖ = 1} for every n×n
matrix A.

2. Smooth approximation of (z)+. This section refines the class of smooth
functions proposed in [3] to approximate the fundamental plus function (z)+ based
on the structural properties that are needed to establish the theoretical properties on
the trajectory of solutions in section 3.

Define the approximation function p to be a continuous mapping from R×R+ to
R that satisfies the following assumption:

(A1’): |p(z, u)− (z)+| ≤ b(u) for all z and u ≥ 0, where the function b : R+ → R+

is continuous, strictly increasing, and satisfies b(0) = 0 and limu→∞ b(u) =∞.
The function p(z, u) is a reasonable approximation of (z)+ since, by assumption (A1’),

lim
u→+0

p(z, u) = (z)+ for all z ∈ R.

The variable u is called the parameter of the approximation function p, or the smooth-
ing parameter. This approximation will now be refined using the following additional
assumptions:

(A2’): p(z, u) is convex with respect to z.
(A2): p(z, u) is strictly convex with respect to z.

With these additional assumptions, the function p has the following properties.
Proposition 2.1. Let p(z, u) be a differentiable function with respect to z for all

u > 0.
1. Assumptions (A1’) and (A2’) imply that 0 ≤ p′(z, u) ≤ 1 for all z and ∞ >

u > 0.
2. Assumptions (A1’) and (A2) imply that 0 < p′(z, u) < 1 for all z and ∞ >

u > 0.
Proof. Since the function b is continuous on R+ given any ∞ > u > 0, there

exists a B > 0 such that b(u) < B. To show part 1, suppose on the contrary that
p′(z, u) = α > 1 for some z. By assumption (A2’), p(z, u) is convex in x. Thus,

p(y, u) ≥ p(z, u) + α(y − z) for all y ≥ z.

It follows that

lim
y→∞

|p(y, u)− (y)+| ≥ lim
y→∞

p(y, u)− (y)+

≥ lim
y→∞

αy − (y)+ + p(z, u)− αz

= lim
y→∞

αy − y + p(z, u)− αz

=∞ > B.

However, this contradicts assumption (A1’) since b(u) < B. Therefore, p′(z, u) ≤ 1.
That p′(z, u) ≥ 0 can be shown in a similar manner.
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To show part (2), suppose on the contrary that p′(z, u) ≥ 1 for some z. By
assumption (A2), there exists a y > z such that p′(y, u) > 1. However, this contradicts
part 1 of the proposition. Therefore, p′(z, u) < 1. Similarly, one can show that
0 < p′(z, u).

The above class of approximation functions p(z, u) includes those proposed in [3]
as special cases. Indeed, the approximation function in [3] is given by

q(z, u) =

∫ z

−∞

∫ t

−∞
d(x, u)dxdt,(1)

where d(x, u) = 1
ud(xu ) and d(x) is a probability distribution function satisfying cer-

tain technical assumptions. It has been shown [3] that the function q is continuously
differentiable with respect to z, continuous with respect to u, and satisfies both as-
sumptions (A1’) and (A2’) with b(u) = Bu for some B > 0. In addition, if the
function d has an infinite support R, then q also satisfies assumption (A2).

In order to continue to refine the approximation function p, one must modify the
existing assumptions and add several new conditions:

(A1): 0 ≤ p(z, u)− (z)+ ≤ b(u) for all z and u ≥ 0, where function b is defined in
assumption (A1’).

(A3): limz→∞(p(z, u) + p(−z, u)− z)z <∞ for all ∞ > u > 0.
(A4): For any fixed z ∈ R, p(z, u) is strictly increasing in u and limu→∞ p(z, u) =

∞.
The above refinements will enable the development of results on the trajectory

of the continuation method based on the smooth approximation p; these results will
be presented in the next section. In particular, assumption (A3) will play a pivotal
role. Essentially, this assumption states that as z → ∞, the approximation function
p approaches the plus function faster than z approaches infinity.

Using the above assumptions, the following structural results on the function p
can be obtained.

Proposition 2.2. Assumptions (A1) and (A2) imply that p(z, u) > (z)+ ≥ 0 for
all z ∈ R and u ∈ R++.

Proof. From assumption (A1), p(z, u) ≥ (z)+. It suffices to show that p(z, u) 6=
(z)+ for u > 0. Suppose, on the contrary, that p(z, u) = (z)+ for some z. From part
2 of Proposition 2.1, 0 < p′(z, u) < 1. Therefore, if z ≤ 0 then p(y, u) < (y)+ for
all y < z. Similarly, if z > 0 then p(y, u) < (y)+ for all y > z. In either case, there
exists a y such that p(y, u) − (y)+ < 0. However, this contradicts assumption (A1).
Therefore, p(z, u) 6= (z)+.

The next result will be used in the sequel to show boundedness of the solution
trajectory.

Proposition 2.3. Suppose that the function p satisfies assumptions (A1)–(A3)
and that x = p(x− y, u) for some ∞ > u > (≥) 0. Then

x > (≥) 0, y > (≥) 0, xy ≤ B

for some 0 < (≤) B <∞.
Proof. If u = 0 then

0 = x− p(x− y, u) = x− (x− y)+ = min{x, y}.

Thus, the result is obviously true. Suppose now that u > 0. From Proposition 2.2,
one has p(x− y, u) > (x− y)+. By assumption, x = p(x− y, u). Therefore,

x > (x− y)+ ≥ 0 and y ≥ x− (x− y)+ > 0.
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It remains to show that xy ≤ B <∞. From Proposition 2.2, one has p(z, u)− z > 0
and p(−z, u) > 0 for all z. Therefore, assumption (A3) is equivalent to

lim
z→∞

(p(z, u)− z)z <∞ and lim
z→∞

p(−z, u)z <∞,

which in turn implies

lim
z→∞

p(z, u)− z = 0 and lim
z→∞

p(−z, u) = 0.

To show that xy is bounded, consider the following three cases:
1. |x− y| is bounded: since x = p(x− y, u), both x and y must be bounded and,

thus, so must xy.
2. x− y →∞: this implies x→∞ and y = p(x− y, u)− (x− y)→ 0. It follows

that

lim
x→∞

xy = lim
x→∞

y(x−y) = lim
x→∞

[p(x−y, u)− (x−y)](x−y) = lim
z→∞

(p(z, u)−z)z <∞.

3. x− y → −∞: then y →∞ and x = p(x− y, u)→ 0. It follows that

lim
y→−∞

xy = lim
y→−∞

x(y − x) = lim
y→−∞

p(x− y, u)(y − x) = lim
z→∞

p(−z, u)z <∞.

The next result will be used in section 3 to show the uniqueness of the solution
trajectory.

Proposition 2.4. If the function p satisfies assumptions (A1) and (A4), then
given any x ≥ (>) 0 and y ≥ (>) 0, there exists a unique u ≥ (>) 0 such that
x = p(x− y, u).

Proof. By assumption (A1), one has

lim
u→+0

p(x− y, u) = (x− y)+ ≤ (<) x

since x ≥ (>) 0 and y ≥ (>) 0. By assumption (A4), one has

lim
u→∞

p(x− y, u) =∞ > x.

Since p is continuous in u, there exists a 0 ≤ (<) u < ∞ such that x = p(x − y, u).
In addition, u is unique, since p is strictly increasing in u by assumption (A4).

Below are two examples of approximation functions that satisfy assumptions
(A1)–(A4).

Example 1. Neural network smoothing function [2].

p(z, u) = z + u log(1 + e−
z
u ),

where b(u) = (log 2)u.
Example 2. Interior point smoothing function.

p(z, u) =
z +
√
z2 + 4u

2
,

where b(u) =
√
u. To see how this approximation is related to interior point algo-

rithms, consider the equation x = p(x− y, u); i.e.,

x =
x− y +

√
(x− y)2 + 4u

2
.
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It has been shown [1, 5] that x and y solve the above equation if and only if they
solve the following system:

x > 0, y > 0, xy = u,

which is the fundamental approximation to complementarity conditions used in inte-
rior point algorithms.

The obvious question is whether there exists a class of functions p(z, u) that
are not equivalent to the functions q(z, u) defined in (1) that still satisfy assumptions
(A1)–(A4) and, hence, possess the desirable structural properties given in Propositions
2.1–2.4. As the next result shows, such a broad class of functions does not exist.
Thus, the class of functions introduced by Chen and Mangasarian [3] are quite central
in proving the convergence of algorithms for the NCP [f ] based upon these smooth
approximations.

Proposition 2.5. If the function p(z, u) satisfies assumptions (A1)–(A3) and is
differentiable with respect to z, then

p(z, u) =

∫ z

−∞

∫ t

−∞
d(x, u)dxdt

for some probability distribution function d.
Proof. By part 2 of Proposition 2.1, 0 < p′(z, u) < 1 for all z and u > 0. It

follows that

lim
z→−∞

p′(z, u) = 0, lim
z→+∞

p′(z, u) = 1;

otherwise, one would have p(z, u) < (z)+ for some z, which contradicts Proposition
2.2. Therefore, p′(z, u) is a cumulative distribution function defined by

p′(t, u) =

∫ t

−∞
d(x, u)dx

for some probability distribution function d.
Thus,

p(z, u) =

∫ z

−∞

∫ t

−∞
d(x, u)dxdt+ α

for some α ∈ R. It suffices to show that α = 0. Assumptions (A1) and (A3) imply
(see, for example, the proof of Proposition 2.3) that

lim
z→−∞

p(z, u) = 0

or

lim
z→−∞

∫ z

−∞

∫ t

−∞
d(x, u)dxdt+ α = 0.

Since the first term must equal zero, one has α = 0.
Thus, there exist many valid approximations to (z)+. However, an approximation

that will possess desirable algorithmic properties will most likely need to be a subset
of functions defined as the double integration of the probability density function d.
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Indeed, we can characterize a subset of density functions whose double integrations
satisfy assumptions (A1)–(A4); to do this, we need the following results from [3].

Proposition 2.6. Let d(x) be a probability density function that satisfies the
following conditions:

(C1): d(x) is piecewise continuous with a finite number of pieces.

(C4’):
∫ +∞
−∞ |x|d(x)dx < +∞.

Then the function q(x, u), defined by (1), has the following properties:
1. q(x, u) =

∫ z
−∞(z − x)d(x, u)dx;

2. −D2u ≤ q(z, u)− (z)+ ≤ D1u, where

D1 =

∫ 0

−∞
|x|d(x)dx and D2 = max

{∫ +∞

−∞
xd(x)dx, 0

}
;

3. q(z, u) is strictly increasing and strictly convex with respect to z if the following
condition also holds:

(C2): d(x) has infinite support ; i.e., supp{d(x)} = R.
The next result characterizes a subset of density functions whose double integra-

tions satisfy assumptions (A1)–(A4).
Proposition 2.7. Let d(x) be a probability density function that satisfies condi-

tions (C1), (C2), and

(C3):
∫ +∞
−∞ xd(x)dx = 0;

(C4): limx→+∞ x3d(x) < +∞ and limx→+∞ x3d(−x) < +∞.
Then q(x, u) satisfies assumptions (A1)–(A4).

Proof. Clearly, condition (C4) implies (C4’). Then condition (C3) and part 2 of
Proposition 2.6 imply that q(z, u) satisfies assumption (A1) with b(u) = D1u. That
q(z, u) satisfies assumption (A2) follows directly from part (3) of Proposition 2.6. To
show that q(z, u) satisfies assumption (A3), we start by proving that limz→+∞ q(z, u)−
z = 0. Indeed,

lim
z→+∞

q(z, u)− z = lim
z→+∞

∫ z

−∞
(z − x)d(x, u)dx− z

= lim
z→+∞

z

(∫ z

−∞
d(x, u)dx− 1

)
− lim

z→+∞

∫ z

−∞

x

u
d
(x
u

)
dx

= − lim
z→+∞

z2d(z, u)− u lim
y→+∞

∫ y

−∞
xd(x)dx

= −u lim
x→+∞

x2d(x)

= 0,

where the first equality follows part 1 of Proposition 2.6, the fourth equality follows
condition (C3), and the fifth equality follows condition (C4). Therefore, the limit of
z(q(z, u)− z) can be evaluated by applying l’Hôpital’s rule:

lim
z→+∞

z(q(z, u)− z) = lim
z→+∞

z

(∫ z

−∞

∫ t

−∞
d(x, u)dxdt− z

)
= lim

z→+∞
z2

(
1−

∫ z

−∞
d(x, u)dx

)
= lim

z→+∞

1

2
z3d(z, u)



410 BINTONG CHEN AND PATRICK T. HARKER

=
u2

2
lim

x→+∞
x3d(x)

< +∞.
Similarly, one can also show that

lim
z→+∞

zq(−z, u) < +∞.

Therefore, q(z, u) satisfies assumption (A3). To show that q(z, u) satisfies assumption
(A4), we evaluate the derivative of q(z, u) with respect to u:

dq(z, u)

du
= −

∫ z
u

−∞
xd(x)dx > −

∫ +∞

−∞
xd(x)dx = 0,

where the first equality is by direct evaluation, the inequality follows condition (C2),
and the second equality follows condition (C3). It follows that q(z, u) is strictly
increasing with respect to u. In addition, notice that

lim
u→+∞

q(z, u) = lim
u→+∞

∫ z

−∞
(z − x)d(x, u)dx

= lim
u→+∞

(
z

∫ z
u

−∞
d(x)dx− u

∫ z
u

−∞
xd(x)dx

)

= z

∫ 0

−∞
d(x)dx+ u

(
−
∫ z

u

−∞
xd(x)dx

)
= +∞,

where the last equality follows from conditions (C2) and (C3). Therefore, q(z, u)
satisfies assumption (A4).

3. Smooth approximation algorithms for the NCP. In this section, the
smooth approximation functions developed in the previous section will be applied to
NCPs. In particular, this section will investigate the existence, uniqueness, and conti-
nuity of the trajectory consisting of solutions of the smooth equation approximations
for different parameters and establish the error bounds under the assumption that f
is a uniform P -function.

As mentioned in the introduction, x solves NCP [f ] if and only if it solves the
following nonsmooth equations:

R(x,0) = x− (x− f(x))+ = 0.

Using the smooth approximation functions developed in the previous section, one can
approximate the nonsmooth equations as follows:

R(x,u) = x− p(x− f(x),u) = 0,

where p(x−f(x),u) is a column vector with components p(xi−fi(x), ui), i = 1, . . . , n.
Under assumption (A1’),

lim
u→0

R(x,u) = R(x,0)

for all x ∈ Rn. Therefore, the smooth approximation becomes more accurate as
the parameter u approaches 0. It will be assumed throughout this section that the
approximation function p satisfies assumptions (A1)–(A4) and, thus, satisfies (1) for
some probability distribution function d (although some results are true based on only
a portion of these assumptions).
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3.1. Solution of R(x,u) = a. This subsection investigates the properties of
the solution to equation R(x,u) = a as the parameters u and a vary. The existence,
uniqueness, and continuity properties of the solution will be established. To begin,
consider the solution to equation R(x,u) = 0.

Proposition 3.1. The following statements are true:
1. Let x be a solution of R(x,u) = 0 for some u ∈ Rn

++ (Rn
+) . Then x ∈

S++[f ] (S+[f ]) and xT f(x) ≤ B for some 0 < (≤) B <∞.
2. For any x ∈ S++[f ] (S+[f ]) , there exists a unique u ∈ Rn

++ (Rn
+) such that

R(x,u) = 0.
Proof. Since x is a solution of R(x,u) = 0, it follows that xi = p(xi − fi(x), ui)

for all i = 1, . . . , n. Part 1 then follows from Proposition 2.3. For part 2, since
x ∈ S++[f ] (S+[f ]), it follows that xi > (≥) 0 and fi(x) > (≥) 0 for all i = 1, . . . , n.
By Proposition 2.4, there exists a unique ui > (≥) 0 such that xi = p(xi − fi(x), ui)
for each i.

Now consider the uniqueness of the solution to equation R(x,u) = a under the
following assumption:

(B1): f is a P0-function on Rn.
Proposition 3.2. For any u ∈ Rn

++ and a ∈ Rn, the solution of R(x,u) = a is
unique if f satisfies assumption (B1).

Proof. Suppose, on the contrary, that R(x1,u) = R(x2,u) and x1 6= x2 for some
u ∈ Rn

++. Since f is a P0-function, there exists an index i such that

x1
i 6= x2

i and (fi(x
1)− fi(x2))(x1

i − x2
i ) ≥ 0.(2)

Assume without loss of generality that x1
i > x2

i . Then the inequality in (2) implies
that fi(x

1) ≥ fi(x2). By assumption, R(x1,u) = R(x2,u). It follows that

x1
i − x2

i = p(x1
i − fi(x1), ui)− p(x2

i − fi(x2), ui)

≤ p(x1
i − fi(x2), ui)− p(x2

i − fi(x2), ui)

≤ p′(x1
i − fi(x2), ui)(x

1
i − x2

i )

< x1
i − x2

i ,

where the first inequality is true because p(z, u) is an increasing function in z, the
second inequality is true because p(z, u) is strictly convex in z, and the third inequality
is true because 0 < p′(z, u) < 1 for all z and u > 0 and x1

i > x2
i by assumption.

However, this leads to a contradiction and hence, x is unique.
For ease of exposition, define two mappings; mapping G : S+[f ]→ Rn

+ relates the
solution of R(x,u) = 0 and the parameter u as follows:

G(x) = {u ∈ Rn
+ : R(x,u) = 0,x ∈ S+[f ]}.

Mapping G is well defined by part 2 of Proposition 3.1 and is continuous because R
is continuous. Mapping Ru : Rn → Rn relates the solution of R(x,u) = a and the
right-hand side a for a given u ∈ Rn

++ as follows:

Ru(x) = {a ∈ Rn : R(x,u) = a,x ∈ Rn}.

Clearly, for each x ∈ Rn, a = R(x,u) is uniquely determined. Based on Proposi-
tion 3.1 and Proposition 3.2, the following result is obtained.

Corollary 3.3. Under assumption (B1),
1. the mapping G is one-to-one between S++[f ] and Rn

++;
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2. for any given u ∈ Rn
++, the mapping Ru is one-to-one between Rn and Rn.

To ensure that the equation R(x,u) = 0 has a solution, two additional conditions
on the function f must be assumed. Similar assumptions have been used in [7].

(B2): S++[f ] 6= ∅; i.e., there exists an x > 0 such that f(x) > 0.
(B3): The set G−1(U) = {x ∈ Rn

+ : R(x,u) = 0,u ∈ U} is bounded for every
compact subset U of Rn

+.
To ensure that the equation R(x,u) = a has a solution for any u ∈ Rn

+ and
a ∈ Rn, a stronger assumption than (B3) is required:

(B4): The set R−1
u (L) = {x ∈ Rn : R(x,u) = a,a ∈ L} is bounded for every

compact subset L of Rn and u ∈ Rn
+.

Clearly, assumption (B4) implies assumption (B3) by setting L = {a} = {0}.
The conditions under which assumptions (B1)–(B4) are satisfied will be discussed at
the end of the subsection.

Applying the basic methodology of Kojima, Mizumo, and Noma [7], one can
establish the existence of solutions to these systems of equations.

Proposition 3.4. The following statements are true:
1. Under assumptions (B1)–(B3), the system of equations R(x,u) = 0 has a

solution for every u ∈ Rn
+.

2. Under assumptions (B1)–(B4), the systems of equations R(x,u) = a have a
solution for every u ∈ Rn

+ and a ∈ Rn.
Proof. From assumption (B2), there exists an x̂ > 0 such that f(x̂) > 0. By

Proposition 3.1, there exists a û > 0 such that R(x̂, û) = 0. Now consider the family
of equations with parameter t ∈ [0, 1]:

R(x, (1− t)û + tu) = 0.(3)

Let t̄ ≤ 1 be the supremum of t’s such that equation (3) has a solution for every
t ∈ [0, t̄]. Then there exists a sequence {(xk, tk)} of solutions of equation (3) such
that limk→∞ tk = t̄. Since the parameter (1 − t)û + tu lies in the compact convex
subset U = {(1− t)û + tu : t ∈ [0, 1]} of Rn

+ for all t ∈ [0, 1], assumption (B3) ensures
that the sequence {xk} is bounded. Hence, one may assume that it converges to some
x̄. Since the function R is continuous in both x and u, it must be the case that

R(x̄, (1− t̄)û + t̄u) = 0 or G(x̄) = (1− t̄)û + t̄u.

Hence, if t̄ = 1, the desired result follows. Assume, on the contrary, that t̄ < 1. By
Corollary 3.3, the mapping G between the solution of equation (3) and the parameter
u is a local homeomorphism at x̄ (see, for example, the domain invariance theorem in
Schwartz [15]). Hence, G(x) = (1− t)û + tu or equation (3) has a solution for every
t sufficiently close to t̄. This contradicts the definition of t̄.

The proof of part 2 consists of two steps. First, it is shown that for any given
u ∈ Rn

++, equation R(x,u) = a has a solution for every a ∈ Rn. It is then shown
that for any given a ∈ Rn, equation R(x,u) = a has a solution for every u ∈ Rn

+.
Let u be any given parameter in Rn

++ and x̂ be the solution of equation R(x,u) =
0, which exists following part 1 of this result. Consider the family of equations with
parameter t ∈ [0, 1]:

R(x,u) = ta.(4)

Let t̄ ≤ 1 be the supremum of t’s such that equation (4) has a solution for every
t ∈ [0, t̄]. Then there exists a sequence {(xk, tk)} of solutions of equation (4) such
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that limk→∞ tk = t̄. Following essentially the same proof as in part 1, together with
assumption (B4) and Proposition 3.2, one has limxk = x̄ and t̄ = 1. Therefore,
equation R(x,u) = a has a solution for every a ∈ Rn and u ∈ Rn

++.
Now let a ∈ Rn be any given right-hand side. Using the above result, there exist

a û ∈ Rn
++ and x̂ ∈ Rn such that R(x̂, û) = a. Then follow the same proof as for

part 1 of this result, together with assumption (B4); it can be shown that equation
R(x,u) = a has a solution for every u ∈ Rn

+. Since a ∈ Rn is chosen arbitrarily, part
2 is proven.

Corollary 3.5. The following statements are true:
1. under assumptions (B1)–(B3), G maps S++[f ] onto Rn

++ homeomorphically ;
2. under assumptions (B1)–(B4), Ru maps Rn onto Rn homeomorphically for

any u ∈ Rn
++.

Proof. Since the proofs for both statements are essentially the same, the proof
of only part 1 will be stated herein. By Proposition 3.1, G(S++[f ]) ⊂ Rn

++. By
Proposition 3.4, Rn

++ ⊂ G(S++[f ]). Hence, G maps S++[f ] onto Rn
++. By Corol-

lary 3.3, the continuous map G is one-to-one between two open subsets S++[f ] and
Rn

++. The homeomorphism follows from the domain invariance theorem (see Schwartz
[15]).

Let u ∈ Rn
++ and t > 0. Denote x(t) to be the solution of a family of equations

R(x, tu) = ta. The next result states that the solution x(t) forms a trajectory with
respect to parameter t and that it leads to a solution of NCP [f ] as t approaches 0.

Theorem 3.6. Let u ∈ Rn
++ and U = {tu : t > 0}. The following statements

are true under assumptions (B1)–(B4) (assumptions (B1)–(B3) if a = 0):
1. For every t > 0, equation R(x, tu) = ta has a unique solution x(t) which is

continuous in t; hence, the set {x(t) : t > 0} forms a trajectory.
2. For every t0 > 0, the subtrajectory {x(t) : 0 < t < t0} is bounded ; hence, there

is at least one limit point of x(t) as t→ 0.
3. Every limit point of x(t) as t→ 0 is a complementarity solution of NCP [f ].
Proof. Since tu ∈ Rn++ for every t > 0, part 1 follows from Corollary 3.5. Notice

that the parameter set

U = {tu : 0 < t < t0} ⊂ {tu : 0 ≤ t ≤ t0}

is a compact subset of Rn
+. Similarly, the right-hand set

L = {ta : 0 < t < t0} ⊂ {ta : 0 ≤ t ≤ t0}

is a compact subset of Rn. By assumption (B4), the set of solutions {x ∈ Rn :
R(x, tu) = ta,u ∈ U,a ∈ L} is bounded. Thus, part (2) is established. By the
continuity of R, if x is a limiting point of x(t) as t → 0, one has R(x,0) = 0 or
x− (x− f(x))+ = 0; hence, x is a complementarity solution of the NCP [f ].

To complete the section, a set of conditions are provided under which assumptions
(B1)–(B4) are satisfied.

Proposition 3.7. Assumptions (B1)–(B3) are satisfied if f is a monotone func-
tion and the set S++[f ] is nonempty.

Proof. Assumptions (B1) and (B2) are satisfied since monotonicity implies the
P0-property. Given any u ∈ Rn

++, let x be the solution of R(x,u) = 0 and x̂ ∈ S++[f ]
be any strictly feasible solution of NCP [f ]. Since f is a monotone function,

(x− x̂)T (f(x)− f(x̂)) ≥ 0.
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It follows that

xT f(x̂) + x̂T f(x) ≤ xT f(x) + x̂T f(x̂).

Since x ≥ 0, f ≥ 0, xT f(x) is bounded by Proposition 3.1, and x̂ and f(x̂) are strictly
positive by assumption, x must be bounded. Since u is chosen arbitrarily, assumption
(B3) is satisfied.

To ensure that assumption (B4) is satisfied, one must introduce the class of R0-
function.

Definition 3.8. Let S be a nonempty subset of Rn. The mapping f : Rn →
Rn is said to be an R0-function over set S if for any sequence {xk} ∈ S satisfying
{‖xk‖} → ∞ and

lim inf
k→∞

mini x
k
i

‖xk‖ ≥ 0, lim inf
k→∞

mini fi(x
k)

‖xk‖ ≥ 0,

there exists an index j such that {xkj } → ∞ and {fj(xk)} → ∞.
Notice that the above definition of an R0-function is slightly different from that

used in [11]. R0-functions may be viewed as a generalization of the concept of an
R0-matrix when f is affine.

Definition 3.9. A matrix M ∈ Rn×n is said to be an R0-matrix if the following
system has no nonzero solution:

x ≥ 0,

Mi·x = 0 if xi > 0,

Mi·x ≥ 0 if xi = 0.

Proposition 3.10. Let f(x) = Mx + q be an affine function. Then f is an
R0-function if and only if M is an R0-matrix.

Proof. Necessity: Let {xk} be the sequence as given in Definition 3.8. Let
{yk} be any convergent subsequence of {xk} such that limk→∞ yk/‖yk‖ = w. The
assumptions on the sequence {xk} imply that w 6= 0, w ≥ 0, and Mw ≥ 0. If M is
an R0-matrix, then wTMw > 0. Thus, there exists an index j such that wj > 0 and
(Mw)j > 0, which implies that {ykj } → ∞ and {fj(yk)} → ∞. Since this is true for
any convergent subsequence, f is an R0-function by definition.

Sufficiency: Let w be a vector such that w 6= 0, w ≥ 0, and Mw ≥ 0. Define
a sequence {xk} = {tkw}, where {tk} → ∞ is a sequence of scalars. Clearly, the
sequence {xk} satisfies all the conditions in Definition 3.8. If f is an R0-function,
then, by definition, there exists a j such that {xkj } → ∞ and {fj(xk)} → ∞.

This implies wj > 0 and (Mw)j > 0. Therefore, wTMw > 0 and M is an
R0-matrix.

An R0-function can also be viewed as a generalization of a uniform P -function
when f is nonlinear, as demonstrated by the following results.

Proposition 3.11. If f is a uniform P -function, then it is an R0-function.
Proof. The proof uses a similar proof technique by Kanzow for a related result

(Theorem 3.9 of [6]). Let {xk} be an unbounded sequence as given in Definition 3.8.
Then the index set I = {i : |xki | → ∞} is nonempty. Define another bounded sequence
{yk} ∈ Rn by

yki =

{
0 if i ∈ I,
xki if i 6∈ I.
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Since f is a uniform P -function, one has

γ
∑
i∈I

(xki )2 = γ‖xk − yk‖2

≤ max
1≤i≤n

(xki − yki )(fi(x
k)− fi(yk))

= max
i∈I

xki (fi(x
k)− fi(yk)).

Since the sequence {yk} is bounded, the sequence {fi(yk)} is also bounded by the
assumption of continuity on f . Let j be the index that achieves the maximum in the
right-hand side. If xkj → −∞, one of the following relations is true:

lim inf
k→∞

xkj
‖xk‖ < 0, lim inf

k→∞

fj(x
k)

‖xk‖ < 0.

However, this contradicts the assumption of sequence {xk}. Therefore, the inequality
implies xkj →∞ and fj(x

k)→∞. By definition, f is an R0-function.
Assumption (B4) is closely related to the growth behavior of ‖R(x,u)‖, which

in turn depends on growth of the natural residual r(x) = min{f(x),x} of NCP [f ].
Indeed, many other merit functions are also related to r(x) (cf. [10]). Therefore, the
following limit property of r(x) is established first.

Proposition 3.12. If f is an R0-function over Rn, then for any unbounded
sequence {xk},

lim
k→∞

‖r(xk)‖ =∞.

Proof. Let {xk} be any unbounded sequence. The result is clearly true if
there exists a j such that xkj → −∞ or fj(x

k) → −∞. Therefore, one may as-

sume that the sequence {xk} satisfies all the conditions in Definition 3.8. Since f is
an R0-function, there exists a j such that xkj →∞ and fj(x

k)→∞. Thus, ‖r(x)‖ is
unbounded.

Proposition 3.13. If f is an R0-function over Rn, then assumption (B4) is
satisfied.

Proof. For any given u ∈ Rn
+, suppose there exists an unbounded sequence

{xk} ∈ R−1
u (L) for some compact subset L ∈ Rn. Since f is an R0-function, ‖r(xk)‖

is unbounded by Proposition 3.12. From assumption (A1),

r(x)− b(u) ≤ R(x,u) ≤ r(x).

Thus, ‖R(xk,u)‖ is unbounded. However, this contradicts the assumptions that
either {xk} ∈ R−1

u (L) or R(xk,u) = ak, where ak belongs to a compact set L.
Based on Proposition 3.13, assumptions (B1)–(B4) are satisfied if f is both a P0-

and an R0-function and S++[f ] 6= ∅. In particular, these conditions will hold if f is a
uniform P -function.

3.2. A continuation method for NCP. Let x(u) be the solution of R(x,u) =
0. From the discussion of the previous section, x(u) converges to a solution of NCP [f ]
as u approaches zero. Based on this, a continuation method is constructed for NCP [f ]
in this section. At each iteration, the continuation method first solves equation
R(x,u) = 0 for a fixed u by the damped Newton’s method to certain accuracy
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(to be specified below) and then reduces parameter u systematically (to be specified
below). A solution of NCP [f ] is obtained when parameter u is reduced to zero. Let
H(x,u) = 1

2R(x,u)TR(x,u) be the merit function of equation R(x,u) = 0. The
continuation method is defined in detail below.

Algorithm 1.

Let σ ∈ (0, 1/2), δ, η ∈ (0, 1), and β, ε be fixed positive constants. Choose u0 ∈
Rn

++ and x0 ∈ Rn and set k = 0.
Step 1 If ‖r(xk)‖ ≤ ε, stop; xk is an approximate solution of NCP [f ].
Step 2 Solve for the direction ∆xk as

∆xk = −∇R(xk,uk)−1R(xk,uk).

Step 3 Compute the new point xk+1 by performing an Armijo line search:

xk+1 = xk + λk∆xk

where λk = max{1, δ, δ2, . . .} subject to

H(xk + λk∆xk,uk) ≤ (1− σλk)H(xk,uk)

Step 4 If ‖R(xk+1,uk)‖ ≤ β‖uk‖, then uk+1 = ηuk, else uk = uk+1. Set
k = k + 1 and go to Step 1.

The use of ‖r(x)‖ as a termination criterion is justified in section 3.3. The next
result assures that the algorithm is well defined under assumption (B1).

Proposition 3.14. Under assumption (B1),
1. ∇R(x,u) is nonsingular for all x ∈ Rn and all u ∈ Rn

++.
2. x is a stationary point of H(x,u) if and only if it is a solution of R(x,u) = 0.
3. H(x,u) has no more than one stationary point.
Proof. By definition,

∇R(x,u) = diag{p′(xi − fi(x), ui)}[diag{p′−1(xi − fi(x), ui)− 1}+∇f(x)].

From part 2 of Proposition 2.1, 0 < p′(z, ui) < 1 for all z. By assumption (B1),
f(x) is a P0-function and, thus, ∇f(x) is a P0-matrix. It follows that ∇R(x,u) is a
P -matrix and, therefore, is nonsingular for all x. The proof of the if statement in part
2 is trivial. Suppose x is a stationary point of H(x,u); then

∇H(x,u) = ∇R(x,u)TR(x,u) = 0.

Since ∇R(x,u) is nonsingular, one has R(x,u) = 0 and x solves the equation. Part 3
follows immediately from part 2 and the fact that the solution of equation R(x,u) = 0
is unique.

The next result shows that the algorithm is globally convergent under assumptions
(B1)–(B4).

Theorem 3.15. Let {xk} be any infinite sequence generated by Algorithm 1 with
ε = 0. Then, under assumptions (B1)–(B4):

1. The sequence {xk} has at least one accumulation point.
2. Any accumulation point of {xk} is a solution of NCP [f ].
Proof. By Proposition 3.14, the sequence {xk} generated by Algorithm 1 is

well defined. By assumption (B4), the level set Lu(x0) = {x ∈ Rn : ‖R(x,u)‖ ≤
‖R(x0,u)‖} is bounded for any u ∈ Rn

++ and initial point x0 ∈ Rn. Since Algorithm
1 is a descent method, the entire sequence {xk} remains bounded and, therefore, has
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at least one accumulation point. For part 2, in view of Theorem 3.6, it suffices to
show that uk converges to 0. Suppose on the contrary that uk = uk+1 for all k ≥ K.
Then Algorithm 1 reduces to the damped Newton’s method for a fixed parameter uK .
However, for a fixed uK , it is well known that the condition in Step 4 will be satisfied
in finite steps since ∇R is nonsingular by part 1 of Proposition 3.14. Thus, uk will
be reduced and this leads to a contradiction.

3.3. Error bounds of NCP with uniform P -function. In the previous sec-
tion, an algorithm to find an approximate solution of NCP [f ] was stated for a given
value of u. In this section, two error bounds on the distance between the approximate
solution and the exact solution of the NCP with a uniform P -function are defined.
These bounds can be used to ascertain the quality of the solution obtained from the
approximation algorithm for a given value of u.

First, consider the related error bounds (measured by r(x)) that have appeared
in the literature. Mathias and Pang [8] obtained both absolute and relative error
bounds for the LCP with P -matrix. Pang [12] obtained both absolute and relative
error bounds for the strongly monotone variational inequality with a linear constraint
set. Ren [14] obtained absolute error bounds for the strongly monotone NCP for using
the 1, 2, and ∞ norms. The error bounds stated below extend the error bounds in
[8].

Assume throughout this section that f(x) is a uniform P -function and is Lipschitz
continuous for all x ∈ Rn.

Lemma 3.16. For all x,y ∈ Rn,

‖x− y‖ ≤ L+ 1

γ
‖r(x)− r(y)‖.

Proof. Assume x 6= y, since the result is clearly true if x = y. Define two
mappings v,w : Rn → Rn by

v(z) = z− r(z), w(z) = f(z)− r(z).

Then

v(z) ≥ 0, w(z) ≥ 0, and v(z)Tw(z) = 0 for all z ∈ Rn.

Thus, for each i = 1, . . . , n, one has

0 ≥ (vi(x)− vi(y))(wi(x)− wi(y))

= (xi − yi − ri(x) + ri(y))(fi(x)− fi(y)− ri(x) + ri(y))

≥ (xi − yi)(fi(x)− fi(y))− (ri(x)− ri(y))(xi − yi + fi(x)− fi(y))

≥ (xi − yi)(fi(x)− fi(y))− (L+ 1)‖r(x)− r(y)‖‖x− y‖.

Therefore,

(L+ 1)‖r(x)− r(y)‖‖x− y‖ ≥ max
i

(xi − yi)(fi(x)− fi(y)) ≥ γ‖x− y‖2.

The desired result follows by the assumption that x 6= y.
Lemma 3.17. Let a, b, c, d ∈ R. Then

|min{a, b} −min{c, d}| ≤ max{|a− c|, |b− d|}.
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Proof. If a ≥ b ≥ d ≥ c, then

|min{a, b} −min{c, d}| = |b− c| ≤ |a− c| ≤ max{|a− c|, |b− d|}.

All other cases can be shown in a similar manner.

Theorem 3.18. For any x,y ∈ Rn,

1

max{L, 1}‖r(x)− r(y)‖ ≤ ‖x− y‖ ≤ L+ 1

γ
‖r(x)− r(y)‖.

Proof. In view of Lemma 3.16, it suffices to show that

‖r(x)− r(y)‖ ≤ max{L, 1}‖x− y‖.

Indeed,

‖r(x)− r(y)‖ ≤ max{‖x− y‖, ‖f(x)− f(y)‖}
≤ max{‖x− y‖, L‖x− y‖}
= max{L, 1}‖x− y‖,

where the first inequality follows from the previous lemma.

Using the above results, one can now obtain an absolute error bound for the NCP
with uniform P -function as a corollary of Theorem 3.18.

Corollary 3.19. Let z be the unique solution of NCP [f ]. Then

1

max{L, 1}‖r(x)‖ ≤ ‖x− z‖ ≤ L+ 1

γ
‖r(x)‖.

The next lemma will be used to obtain a relative error bound.

Lemma 3.20. Let z be the unique solution of NCP [f ]. Then

γ

L
‖(−f(0))+‖ ≤ ‖z‖ ≤

1

γ
‖(−f(0))+‖.

Proof. If f(0) ≥ 0, then z = 0 and the result clearly holds. Assume that f(0) 6≥ 0.
Then z 6= 0. In this case, one has

γ‖0− z‖2 ≤ max
i

(0− zi)(fi(0)− fi(z))

= max
i
zi(−fi(0))

≤ ‖z‖‖(−f(0))+‖.

This inequality gives the upper bound of ‖z‖. To establish the lower bound of ‖z‖,
note that since f is a uniform P -function and is Lipschitz continuous, it must be the
case that

max
i

(xi − yi)(fi(x)− fi(y)) ≥ γ‖x− y‖2 ≥ γ

L
‖f(x)− f(y)‖2 for all x,y ∈ Rn.
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Since z is the solution of NCP [f ], one has f(z) − f(0) ≥ −f(0), which implies
‖(−f(0))+‖ ≤ ‖f(z) − f(0)‖. In addition, zifi(z) = 0 for all i = 1, . . . , n. It fol-
lows that

γ

L
‖(−f(0))+‖2 ≤

γ

L
‖f(z)− f(0)‖2

≤ max
i

(zi − 0)(fi(z)− fi(0))

= max
i
zi(−fi(0))

≤ ‖z‖‖(−f(0))+‖.

As a result, the lower bound on ‖z‖ is obtained.
Combining Lemma 3.20 and Corollary 3.19, one can now obtain a relative error

bound for any point x in Rn.
Theorem 3.21. Let z be the unique solution of NCP [f ] and ‖z‖ 6= 0. Then

γ

max{L, 1}
‖r(x)‖

‖(−f(0))+‖
≤ ‖x− z‖

‖z‖ ≤ L(L+ 1)

γ2

‖r(x)‖
‖(−f(0))+‖

.

Under assumption (A1), one can easily express the above error bounds in terms
of R(x,u) by observing that

R(x,u) ≤ r(x) ≤ R(x,u) + b(u),

and, therefore,

min{‖R(x,u)‖, ‖R(x,u) + b(u)‖} ≤ ‖r(x)‖ ≤ max{‖R(x,u)‖, ‖R(x,u) + b(u)‖}.

Corollary 3.22. Let z be the unique solution of NCP [f ] and ‖z‖ 6= 0. Then
under assumption (A1),

1

max{L, 1}min{‖R(x,u)‖, ‖R(x,u) + b(u)‖} ≤ ‖x− z‖

≤ L+ 1

γ
max{‖R(x,u)‖, ‖R(x,u) + b(u)‖},

γ

max{L, 1}
min{‖R(x,u)‖, ‖R(x,u) + b(u)‖}

‖(−f(0))+‖
≤ ‖x− z‖

‖z‖

≤ L(L+ 1)

γ2

max{‖R(x,u)‖, ‖R(x,u) + b(u)‖}
‖(−f(0))+‖

.

In particular, for the solution x(u) of R(x,u) = 0, one has

‖x(u)− z‖ ≤ L+ 1

γ
‖b(u)‖ and

‖x(u)− z‖
‖z‖ ≤ L(L+ 1)

γ2

‖b(u)‖
‖(−f(0))+‖

.

This corollary is an extension to Theorem 3.2 of [3], where f was assumed to be
strongly monotone and no relative error bound was given.

4. Future research. Given the computational success of these smoothing meth-
ods as reported in [3], the next phase of this research involves the development and
testing of alternative smoothing functions, including those that are not derivable from
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the integration of probability densities. One such function is shown in the following
example.

Example 3. Auto-scaling interior point smooth function.

p(z, u) =
z +
√
z2 + 4u2

2
+ u,

where b(u) = 2u. With this approximation, it can be shown that x and y solve the
equation x = p(x− y, u) if and only if they solve the following system:

x > 0, y > 0, xy = u(x+ y).

The approximation is similar to the interior point smooth function except that it
scales u in the right-hand side of the above system by (x + y). However, it does not
satisfy assumption (A3). Extensions to the theory to handle such functions, if they
prove computationally efficient, will also be addressed in future research.

Acknowledgments. The authors are thankful to the referees and Jong-Shi Pang
for their insightful comments. In particular, Proposition 2.7 is motivated by an inter-
esting question raised by a referee.
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Abstract. Forward–backward splitting methods provide a range of approaches to solving large-
scale optimization problems and variational inequalities in which structures conducive to decompo-
sition can be utilized. Apart from special cases where the forward step is absent and a version of the
proximal point algorithm comes out, efforts at evaluating the convergence potential of such methods
have so far relied on Lipschitz properties and strong monotonicity, or inverse strong monotonicity,
of the mapping involved in the forward step, the perspective mainly being that of projection algo-
rithms. Here, convergence is analyzed by a technique that allows properties of the mapping in the
backward step to be brought in as well. For the first time in such a general setting, global and
local contraction rates are derived; moreover, they are derived in a form which makes it possible
to determine the optimal step size relative to certain constants associated with the given problem.
Insights are thereby gained into the effects of shifting strong monotonicity between the forward and
backward mappings when a splitting is selected.
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1. Introduction. This paper concerns a class of numerical methods for finding
solutions to variational inequalities and other “generalized equations,” especially in
circumstances where a need for decomposition into simpler subproblems is apparent.
Optimization problems fit the framework of these methods through the ways that
variational inequalities can express first-order optimality conditions in primal, dual,
or primal–dual form. Variational inequalities serve also in models of equilibrium and
a diversity of other applications.

In general, the variational inequality problem for a closed convex set C ⊂ Rn and
a continuous mapping F : C → Rn looks for a vector x̄ such that

(1.1) 0 ∈ T (x̄) for T (x) = F (x) +NC(x),

where NC(x) is the set-valued normal cone mapping associated with C:

(1.2) NC(x) =

{{
w ∈ Rn

∣∣ 〈w, x′ − x〉 ≤ 0 for all x′ ∈ C
}

when x ∈ C,
∅ when x /∈ C,

with 〈·, ·〉 denoting the canonical scalar product of vectors. The variational inequality
problem is a complementarity problem when C = Rn+. Especially important is the
case where F is monotone on C, in the sense that

(1.3)
〈
F (x′)− F (x), x′ − x

〉
≥ 0 for all x, x′ ∈ C,

which in the optimization setting characterizes problems of convex type. Then the
set-valued mapping T is itself monotone:

(1.4)
〈
w′ − w, x′ − x

〉
≥ 0 whenever w ∈ T (x), w′ ∈ T (x′).
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In fact, it is maximal monotone—its graph set
{

(x,w)
∣∣w ∈ T (x)

}
can’t be enlarged

without destroying monotonicity.
Forward–backward splitting methods are versatile in offering ways of exploiting

the special structure of variational inequality problems. Following Lions and Mercier
[1], such methods can be posed broadly in terms of solving

(1.5) 0 ∈ T (x̄) when T (x) = T1(x) + T2(x)

for any mapping T that associates with each x ∈ Rn a (possibly empty) set T (x) ⊂ Rn,
a situation we symbolize by T : Rn →→ Rn, and any representation of T as a sum of
two other such mappings T1 and T2. The representation T = T1 + T2, which might
be set up in a multitude of different ways, is called a splitting of T . From an initial
point x0, a point xk is generated in each iteration k for k = 1, 2, . . . by solving the
subproblem

(1.6) 0 ∈ (T1k + T2)(xk) with T1k(x) = T1(xk−1) + 1
λk
Hk[x− xk−1]

for a step size value λk > 0 and an implementation matrix Hk ∈ Rn×n. Under the
license of denoting the linear mapping x 7→ Hkx by the same symbol Hk, the iterations
can be written in the form

(1.7) xk ∈ Sk(xk−1) for Sk =
(
Hk + λkT2

)−1(
Hk − λkT1

)
.

The forward–backward name comes from the fact that (as long as Hk is nonsin-
gular) the iteration mapping Sk has the equivalent expression

Sk =
(
I + λkH

−1
k T2

)−1(
I − λkH−1

k T1

)
.

In the language of numerical analysis, I − λkH−1
k T1 gives a forward step with step

size λk and direction vector dk = −H−1
k uk, uk ∈ T1(xk) (or uk = T1(xk) when T1

is single valued), whereas (I + λkH
−1
k T2)−1 gives a backward step. Implementations

where Hk is symmetric and positive definite are central, but weaker requirements are
of interest in some situations.

For the purpose of solving a variational inequality (1.1), forward–backward split-
ting methods can be applied to

(1.8) T = F +NC , T1 = F1, T2 = F2 +NC , with F = F1 + F2

for a choice of continuous mappings F1 : C → Rn and F2 : C → Rn. The iterations
mean then that xk is determined by solving

(1.9)
0 ∈ Tk(xk) for Tk(x) = (F1k + F2)(x) +NC(x) with

F1k(x) = F1(xk−1) + 1
λk
Hk[x− xk−1].

This covers many numerical procedures, the most familiar among them being ones
that correspond to the splitting choices where either F1 = F , F2 = 0, or, at the other
extreme, F1 = 0, F2 = F .

For the splitting where F1 = F and F2 = 0 in (1.8), so that T1 = F and T2 = NC ,
the forward–backward iterations with symmetric, positive definiteHk give a projection
algorithm (of possibly “variable metric” type): xk is the point of C nearest to

(1.10) x′k = xk−1 − λkH−1
k F (xk−1),
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with respect to the norm induced by Hk. Indeed, (1.9) can be written in terms of
(1.10) as the relation −Hk[xk − x′k] ∈ NC(xk), which is necessary and sufficient for
having

(1.11) xk = argmin
x∈C

〈
[x− x′k], Hk[x− x′k]

〉
.

Of course, if C = Rn then the projection trivializes and there’s no backward step,
just a forward step: one has xk = xk−1 − λkH−1

k F (xk−1).

Among projection algorithms (1.9)–(1.10), the gradient case F = ∇f is the best
known. If Hk = I, a variant of Cauchy’s method is obtained, whereas if Hk is taken
to be an approximation to ∇F (x̄) = ∇2f(x̄), a form of Newton’s method comes out.
Gradient projection algorithms were first studied in the Cauchy form by Goldstein
[2] and in the Newton form by Levitin and Polyak [3], and they have since generated
a large literature in optimization. For general variational inequalities, projection
algorithms go back to Brézis and Sibony [4]; see also Sibony [5], Gajewski and Kluge
[6], and for early developments attuned to mathematical programming, especially
Dafermos [7].

For the other extreme splitting in (1.8), where F1 = F and F2 = 0 so that T1 = 0
and T2 = F + NC , the forward–backward procedure specializes to backward steps
only and thus turns into (a “variable metric” form of) the proximal point algorithm
for the mapping T = F + NC . The proximal point algorithm was developed as a
numerical method by Rockafellar [8], [9] in the case of Hk ≡ I or, equivalently, Hk ≡ H
symmetric and positive definite, since that differs only in the designation of the norm
(the context being one of a Hilbert space anyway). This algorithm is known to include,
through various special choices, many other schemes such as generalized Douglas–
Rachford splitting, cf. Eckstein and Bertsekas [10], and Spingarn splitting [11], which
apply to maximal monotone mappings T not just of the variational inequality type in
(1.1). An illuminating overview of splitting methods of all kinds has been provided
by Eckstein [12].

Forward–backward splitting is closely related to an algorithmic approach intro-
duced by Cohen as the “auxiliary problem principle” for problems of optimization
in [13], [14], and variational inequalities in [15]. Cohen’s formulation allows for the
replacement of the linear implementation mapping x 7→ Hkx by a kind of nonlinear
mapping, an idea treated also by Pang and Chan [16], among others. Patriksson [17]
has explored this possibility broadly, showing how a vast array of known procedures
can thereby be put into the framework of forward–backward methods.

Our focus in this paper is on the general iterations (1.7) for splittings T = T1 +T2

with T1 single valued in which T , T1, and T2 are monotone and both T1 6≡ 0 and
T2 6≡ 0, so that nontrivial forward steps as well as nontrivial backward steps can be
expected. In the variational inequality context this corresponds to splittings of type
(1.8) in which F , F1, and F2 are monotone and F1 6≡ 0. We aim in particular at
an understanding of convergence in cases where F2 6≡ 0 too, so that more than a
projection algorithm is involved. Such forms of forward–backward splitting methods
are suggested by the decomposition needs of large-scale optimization problems with
dynamic or stochastic structure [18], [19], [20] or PDE structure [21], but they haven’t
previously received much attention.

Except in connection with a weak ergodic type of convergence, cf. Passty [22],
most of the research on general forward–backward splitting methods has relied on
assumptions of strong monotonicity. Recall that a mapping T : Rn →→ Rn is strongly
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monotone if there is a constant µ > 0 such that

(1.12)
〈
w′ − w, x′ − x

〉
≥ µ‖x′ − x‖2 whenever w ∈ T (x), w′ ∈ T (x′)

or, equivalently, the mapping T − µI is monotone. By the same token the inverse
mapping T−1, defined by taking x ∈ T−1(w) to mean that w ∈ T (x), is strongly
monotone if there is a constant ν > 0 such that

(1.13)
〈
w′ − w, x′ − x

〉
≥ ν‖w′ − w‖2 whenever w ∈ T (x), w′ ∈ T (x′).

The strong monotonicity of T−1 is sometimes called the Dunn property or the co-
coercivity of T . If T is single valued and Lipschitz continuous with constant κ and
strongly monotone with constant µ, then T−1 is strongly monotone with constant
ν = µ/κ2.

For implementations with Hk ≡ I and λk ≡ λ, Gabay [23] showed that if T1

is single valued and maximal monotone with constant µ1 as well as Lipschitz con-
tinuous with constant κ1, the sequence of iterates xk generated from any starting
point x0 converges to the unique solution x̄ to (1.1), as long as 0 < λ < 2µ1/κ

2
1.

Alternatively he obtained convergence by assuming that a solution exists and T−1
1 is

strongly monotone with constant ν1 (which entails T1 being Lipschitz continuous with
constant 1/ν1) and by taking 0 < λ < 2ν1. Tseng [24] extended the latter result to
nonconstant step sizes λk and used it in that paper and in [25] to verify convergence
for some schemes of problem decomposition. Further work in this vein, allowing for
nonlinear implementation mappings and even for the approximation of T1 and T2 by
mappings T k1 and T k2 in iteration k, was carried out to a certain degree by Mouallif,
Nguyen, and Strodiot [26] and Makler–Scheimberg, Nguyen, and Strodiot [27].

In the special case of projection algorithms, Dafermos in [7] obtained Q-linear
convergence as a consequence of deriving a global contraction rate for the iterations
(1.10)–(1.11). She did this for a fixed matrix Hk ≡ H, possibly different from I,
employing the H-norm

(1.14) ‖x‖H =
√〈

x,Hx
〉

and its dual instead of the canonical norm ‖x‖. She determined the fixed step size
λk ≡ λ for which the contraction rate would be optimal relative to constants of
Lipschitz continuity and strong monotonicity for F when estimated in a certain way.
These results were sharpened for affine variational inequalities by Dupuis and Darveau
[28]. Bertsekas and Gafni [29] demonstrated R-linear convergence, i.e.,

(1.15) lim sup
k→∞

‖xk − x̄‖1/k < 1,

for the case where C is polyhedral but F is not itself strongly monotone, rather just
of the form A>F0A for a strongly monotone mapping F0 and a matrix A. Zanni [30]
showed that the rate estimates of Dafermos and of Bertsekas and Gafni could not be
expected to support rapid convergence; as an alternative he developed for the affine
case in [31] a change of variables which offers a substantial improvement. Renaud
in his thesis [32] got a contraction rate based on strong monotonicity constants for
both F and F−1. Marcotte and Wu [33], in proceeding from Tseng [25] and Luo and
Tseng [34], proved linear convergence when C is polyhedral and F is affine with F−1

strongly monotone. Tseng in [35] developed broad conditions for Q-linear convergence
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of iterative methods which he applied to projection methods for affine variational
inequalities without, however, dealing explicitly with rate estimates or step sizes.
For a survey of solution methods for finite-dimensional variational inequalities more
generally, see Harker and Pang [36].

Little was known until recently about linear rates of convergence in the general
setting of forward–backward methods. Renaud [32] succeeded in demonstrating R-
linear convergence (1.15), although not actual contraction, in circumstances where
T−1

1 is strongly monotone while T exhibits strong monotonicity relative to a unique
solution x̄. In Chen’s thesis [37], contraction rates were developed under a variety of
hypotheses entailing strong monotonicity of T , and step size optimization relative to
those rate estimates was carried out.

Our efforts here take off from [37] in directions pioneered by Dafermos [7], going
further than she and through territory encompassing much more than just projection
algorithms. We reach conclusions significantly stronger than those of Chen [37] in
some respects.

For simplicity at the start, we concentrate in section 2 on a constant step size
λk ≡ λ and a constant matrix Hk ≡ H, which we allow to differ from I but assume
to be symmetric and positive definite. We work at establishing linear convergence in
the strong sense of global contractivity of the mapping

(1.16) Sλ =
(
H + λT2

)−1(
H − λT1

)
=
(
I + λH−1T2

)−1(
I − λH−1T1

)
with respect to the norm ‖ · ‖H . Thus, we seek θλ ∈ [0, 1) such that ‖Sλ(x′) −
Sλ(x)‖H ≤ θλ‖x′ − x‖H for all x and x′, hence, in particular,

(1.17) ‖Sλ(x)− x̄‖H ≤ θλ‖x− x̄‖H for all x.

We try to do this in such a manner that θλ can be expressed in terms of estimated
properties of the given problem, thereby opening the way to optimizing θλ with respect
to the choice of λ and obtaining some guidance on how λ might be selected in practice.

Obviously αmin‖x‖ ≤ ‖x‖H ≤ αmax‖x‖ for the lowest and highest eigenvalues
αmin and αmax of H, so that linear convergence with respect to ‖ · ‖H is equivalent
to linear convergence with respect to ‖ · ‖. But the rate of linear convergence, as
quantified by the size of the contraction factor, which is the crucial measure for
numerical purposes, could be quite different in the two cases. By working with ‖ · ‖H
we are able to capture a better rate through finer tuning. This corresponds essentially
to a change of variables in which we look at behavior in u = H−1/2x instead of x, but
our pattern is to proceed with the analysis directly in terms of x. More consistently
than Dafermos and others in this subject, we avoid reference to the canonical norm
‖ · ‖ so as to keep our results close to the natural geometry of the method and away
from extraneous dependence on the condition number of H through appeal to the
eigenvalues αmin and αmax. The philosophy is that if the condition number is to have
any role at all, it should only be relative to a one-time change of variables, not a
change to another norm and back again in every iteration, which is the unfortunate
effect of bringing αmin and αmax into estimates of a contraction rate.

We utilize Lipschitz properties of T1, but, in contrast to all previous research,
we base the constant on a residual part of T1, obtained by subtracting off the strong
monotonicity that has been identified. We refer the Lipschitz constant to ‖ · ‖H and
the corresponding dual norm ‖ · ‖H−1 . Likewise, we adapt our estimates of strong
monotonicity to ‖ · ‖H instead of ‖ · ‖.
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Especially to be noted is that we don’t insist on strong monotonicity of either
T1 or T−1

1 . This is motivated by prospective applications to the large-scale problems
cited in [18], [19], and [20]. Roughly, such problems follow the lines of minimizing
f(x) + g

(
D(x)

)
for proper lower semicontinuous (lsc) convex functions f and g and a

mapping D like a discrete differential operator, integration operator, or expectation
operator. The subgradient condition for x̄ to be optimal involves a dual element ȳ
such that −D>ȳ ∈ ∂f(x̄) and Dx̄ ∈ ∂g∗(ȳ), where g∗ is the convex function conjugate
to g. This condition can be written as

(1.18) (0, 0) ∈ (T1 + T2)(x̄, ȳ) for

{
T1(x, y) = (D>y,−Dx),

T2(x, y) =
(
∂f(x), ∂g∗(y)

)
,

and it thus corresponds to a problem in z = (x, y) that consists of solving 0 ∈ T (z̄) in
the presence of a splitting T = T1+T2 with T1 and T2 maximal monotone. Separability
properties of f and g, reflected in a parallel choice of H, typically make it easy to
iterate with (xk, yk) = Sλ(xk−1, yk−1), but T1 is an antisymmetric linear mapping,
so that neither T1 nor T−1

1 can be strongly monotone. No results prior to ours could
say anything substantial about convergence in this instance of a forward–backward
splitting method. Note that (1.18) also gives incentive for not stopping at variational
inequality models (1.8) in the treatment of such methods.

In section 3 we study the implications of our basic results for the ways that a
splitting T = T1 +T2 might be set up most advantageously. Applications are made to
procedures for solving variational inequalities—in particular, projection algorithms.
We show a better contraction rate than that of Dafermos [7] or the one of Dupuis
and Darveau [28] for affine variational inequalities; the result resembles a recent one
of Zanni [31] but goes further. The step size associated with our contraction rate has
the remarkable property of automatically optimizing performance with respect to the
possible shifts of strong monotonicity between T1 and T2. The surprising result that
as long as our step size prescription is followed any forward–backward method in the
variational inequality case (1.8)–(1.9) can equally well be executed as a projection
algorithm is thus achieved.

The global analysis of section 3 is supplemented in section 4 by a local analysis
of convergence. Variable step sizes λk and implementation matrices Hk are taken up
in section 5 and methods with asymmetric implementation matrices in section 6. For
the literature on asymmetric implementations in solving variational inequalities, see
Pang and Chan [16], Dafermos [38], Tseng [25], and Patriksson [17].

Because we are concerned with broad theoretical issues, we omit from the present
study a number of refinements that could be pursued. The question of what happens
when the subproblems in (1.6) or (1.9) are solved only approximately is not dealt
with here, nor is the question of improvements based on augmenting the procedure
with line search relative to some merit function. On the other hand, because we put
our energy into the task of solving 0 ∈ T (x̄) for mappings T not necessarily of the
variational inequality form (1.1), we get results that apply equally well to problems
where, for example as in (1.18), the normal cone mapping NC in (1.1) may be replaced
by the subgradient mapping associated with a possibly nonsmooth convex function.

2. Global convergence analysis. A mapping T that assigns to each x ∈ Rn
a set T (x) ⊂ Rn (perhaps a singleton) is indicated by T : Rn →→ Rn. The effective
domain of such a mapping is the set domT =

{
x
∣∣T (x) 6= ∅

}
. When T is maximal

monotone, domT is almost convex, in the sense that cl(domT ) is a convex set whose
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relative interior lies within domT ; cf. Minty [39]. The graph of T is considered to be
the set of pairs (x,w) such that w ∈ T (x), and the graph of T−1 consists therefore of
the reversals (w, x) of all such pairs. The set of solutions x̄ to 0 ∈ T (x̄) is T−1(0).

We investigate the feasibility of determining a solution x̄ through iterations xk ∈
Sλ(xk−1) of the mapping in (1.16), as dictated by a choice of a splitting T = T1 +T2,
a step size λ > 0, and an implementation matrix H. We don’t suppose necessarily
that T takes the variational inequality form in (1.1), but we do, for now, make the
following assumptions.

Basic assumptions (A). The mapping T2 : Rn →→ Rn is maximal monotone,
and the set domT2, denoted for simplicity by D, contains more than just one point
(to avoid trivialities). The mapping T1 : D → Rn is single valued, monotone, and
Lipschitz continuous, so in particular the mapping T = T1+T2 has effective domain D
like T2. The matrix H ∈ Rn×n is symmetric and positive definite (hence nonsingular
with H−1 symmetric and positive definite), while µ1 and µ2 denote constants such
that

(2.1)

{
the mappings T̃1 = T1 − µ1H and T̃2 = T2 − µ2H are

monotone on D with µ1 ≥ 0, µ2 ≥ 0, µ1 + µ2 > 0.

Furthermore, κ̃1 is a Lipschitz constant for T̃1 on D from ‖ · ‖H to ‖ · ‖H−1 :

(2.2) ‖T̃1(x′)− T̃1(x)‖H−1 ≤ κ̃1‖x′ − x‖H for all x′, x ∈ D.

Here in parallel to (1.14) we use the notation ‖w‖H−1 =
√
〈w,H−1w〉. The norm

‖w‖H−1 is dual to the norm ‖ · ‖H ; one has

(2.3)
〈
x,w

〉
≤ ‖x‖H‖w‖H−1 for all x, w ∈ Rn.

Because monotone mappings must be interpreted technically as going from a vector
space to its dual, it’s natural in (2.2) to match the H-metric on the domain of T̃1 with

the H−1-metric on the range of T̃1.
The monotonicity assumptions in (2.1) correspond (in the face of T1 being single

valued on D = domT2) to requiring that〈
T1(x′)− T1(x), x′ − x

〉
≥ µ1

〈
x′ − x,H[x′ − x]

〉
for all x, x′ ∈ D,

〈
w′ − w, x′ − x

〉
≥ µ2

〈
x′ − x,H[x′ − x]

〉
whenever w ∈ T2(x), w′ ∈ T2(x′).

Because µ1 +µ2 > 0, these inequalities combine to imply that T is strongly monotone
with constant (µ1 +µ2)αmin, where αmin stands again for the lowest eigenvalue of H.
But this constant of strong monotonicity won’t come into play. We’ll stay entirely
with µ1 and µ2 as measures of monotonicity adapted to ‖ · ‖H rather than to ‖ · ‖.

Assumptions (A) in the variational inequality case (1.1) (for a closed convex set
C with more than one point and continuous mappings F1 and F2 from C to Rn) have
D = C and mean that F1 − µ1H and F2 − µ2H are monotone on C or, equivalently
for i = 1, 2, that〈

Fi(x
′)− Fi(x), x′ − x

〉
≥ µi

〈
x′ − x,H[x′ − x]

〉
when x, x′ ∈ C,

while F̃1 = F1 − µ1H is Lipschitz continuous on C with constant κ̃1 from ‖ · ‖H to
‖·‖H−1 . For the maximal monotonicity of T2 = F2 +NC , see Rockafellar [40, Theorem
3].
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The introduction in (A) of a Lipschitz constant not for T1 but the residual map-

ping T̃1 = T1 − µ1H may seem odd, but it’s crucial to our strategy of trying to
separate the convergence analysis of forward–backward splitting methods from cer-
tain “unessential” features of the splitting. This will be clarified in section 3. For
practical purposes there’s no disadvantage, at least, by virtue of the following fall-
back estimate.

Proposition 2.1 (Lipschitz estimate). Suppose κ1 is a Lipschitz constant for T1

itself on D from the norm ‖ · ‖H to the norm ‖ · ‖H−1 :

‖T1(x′)− T1(x)‖H−1 ≤ κ1‖x′ − x‖H for all x′, x ∈ D.

Then κ1 ≥ µ1, and the value
√
κ2

1 − µ2
1 is a Lipschitz constant for T̃1 = T1 − µ1H on

D with respect to the same norms. Thus, one can always take κ̃1 =
√
κ2

1 − µ2
1 in the

absence of anything better.
Proof. By squaring both sides of the Lipschitz inequality given by κ1, we can

write

κ2
1

∥∥x′ − x∥∥2

H
≥
∥∥T1(x′)− T1(x)

∥∥2

H−1 =
∥∥(T̃1 + µ1H)(x′)− (T̃1 + µ1H)(x)

∥∥2

H−1

=
∥∥ [T̃1(x′)− T̃1(x)] + µ1H[x′ − x]

∥∥2

H−1

=
∥∥T̃1(x′)− T̃1(x)

∥∥2

H−1 + 2µ1

〈
H[x′ − x], H−1[T̃1(x′)− T̃1(x)]

〉
+µ2

1

〈
H[x′ − x], H−1H[x′ − x]

〉
=
∥∥T̃1(x′)− T̃1(x)

∥∥2

H−1 + 2µ1

〈
x′ − x, T̃1(x′)− T̃1(x)

〉
+ µ2

1

∥∥x′ − x∥∥2

H
.

Here
〈
x′ − x, T̃1(x′)− T̃1(x)

〉
≥ 0 because T̃1 is monotone by assumption. Hence∥∥T̃1(x′)− T̃1(x)

∥∥2

H−1 ≤ (κ2
1 − µ2

1)
∥∥x′ − x∥∥2

H
.

Because this holds for all x and x′ in D and D has more than one point, it’s apparent
that κ1 ≥ µ1 and that

√
κ2

1 − µ2
1 serves as a Lipschitz constant κ̃1 for T̃1 on D.

We develop next a technical fact which will repeatedly be brought into play.
Proposition 2.2 (inverse Lipschitz continuity from strong monotonicity). If

a mapping T0 : Rn →→ Rn is maximal monotone and T0 − µ0H is monotone for
some µ0 > 0 where H is symmetric and positive definite, then T−1

0 is single valued
and Lipschitz continuous, with µ−1

0 serving as a Lipschitz constant from the ‖ · ‖H−1

metric to the ‖ · ‖H metric.
Proof. Whenever w ∈ T0(x) and w′ ∈ T0(x′) we have by assumption that

0 ≤
〈
[w′ − µ0Hx

′]− [w − µ0Hx], x′ − x
〉

=
〈
w′ − w, x′ − x

〉
− µ0

〈
H[x′ − x], [x′ − x]

〉
≤ ‖x′ − x‖H‖w′ − w‖H−1 − µ0‖x′ − x‖2H .

Thus, ‖x′ − x‖H ≤ µ−1
0 ‖w′ − w‖H−1 whenever x′ ∈ T0(w′) and x ∈ T−1

0 (w), so that
T−1

0 (w) can’t contain more than one point, and T−1
0 is Lipschitz continuous on its

effective domain with constant µ−1
0 and in particular is locally bounded everywhere.

But T−1
0 inherits maximal monotonicity from T0, so the latter necessitates T−1

0 being
nonempty valued everywhere, cf. Rockafellar [41].
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Theorem 2.3 (algorithmic background). Under (A) the mapping T = T1 + T2

is maximal monotone and also strongly monotone. There is a unique solution x̄ to
0 ∈ T (x̄), and for any λ > 0 the iteration mapping Sλ is single valued and Lipschitz
continuous from the set D = domT into itself, with unique fixed point x̄.

Proof. Although the single-valued mapping T1 need not be defined outside of
D, it at least has (through Lipschitz continuity) a unique continuous extension T ′1
to the closed convex set C = clD, this extension being monotone and having the
same Lipschitz constant as T1. We can enlarge T ′1 to a maximal monotone mapping
T ′′1 : Rn →→ Rn by defining T ′′1 (x) = T ′1(x) +NC(x) when x ∈ C but T ′′1 (x) = ∅ when
x /∈ C, cf. Rockafellar [40, Theorem 3]. Since dom T ′′1 = C = cl(domT2), the relative
interiors of domT ′′1 and domT2 have nonempty intersection (they actually coincide).
Then, because T2 like T ′′1 is maximal monotone, it follows that T ′′1 + T2 is maximal
monotone, cf. Rockafellar [40, Theorem 2]. To deduce that T is maximal monotone,
it suffices therefore to demonstrate that T ′′1 (x) + T2(x) = T1(x) + T2(x) for all x ∈ C
or, in other words, that T2(x) +NC(x) ⊂ T2(x) for all x ∈ C. Unless actually x ∈ D,
this holds trivially with both sides empty.

For any x ∈ D and w ∈ T2(x), we have
〈
x′−x, w′−w

〉
≥ 0 whenever w′ ∈ T2(x′);

also, for any u ∈ NC(x̂), we have
〈
x′ − x, u

〉
≤ 0 for all x′ ∈ C. Consequently, we

have
〈
x′ − x, w′ − (w + u)

〉
≥ 0 whenever w′ ∈ T2(x′). The maximal monotonicity

of T2 then implies w + u ∈ T2(x); if it doesn’t, the pair (x,w + u) could be added to
the graph of T2 to get a properly larger mapping that is still monotone. Therefore,
T2(x) +NC(x) ⊂ T2(x) for all x ∈ D, as required. Thus, T is maximal monotone.

From the representation T = (T1−µ1H)+(T2−µ2H)+(µ1+µ2)H with µ1+µ2 > 0,
where the first two terms are monotone by assumption, we have T − (µ1 + µ2)H
monotone. Because H is itself strongly monotone, as a consequence of being positive
definite, T likewise is strongly monotone. Hence T−1 is single valued and Lipschitz
continuous by Proposition 2.2. In particular the set T−1(0), which consists of the
solutions x̄ to 0 ∈ T (x̄), has to be a singleton.

Turning now to the properties of Sλ, we observe first that the mapping λT2, like
T2 itself, is maximal monotone and has the same effective domain as T2, the relative
interior of which meets that of the mapping x 7→ Hx (namely, Rn). Furthermore, the
latter mapping, by virtue of linearity and positive definiteness, is maximal monotone,
even strongly monotone. It follows through [40, Theorem 2] that H +λT2 is maximal
monotone. Moreover, the mapping [H+λT2]− (1+λµ2)H is monotone, so by Propo-
sition 2.2 the mapping (H + λT2)−1 must be single valued everywhere and Lipschitz
continuous. In fact, it has constant (1 + λµ2)−1 from ‖ · ‖H−1 to ‖ · ‖H . At the same
time the mapping H −λT1 is single valued and Lipschitz continuous on D under (A),
and, therefore, Sλ, the composite of these two mappings, is of such type as well.

The condition x = Sλ(x) corresponds to having [H − λT1](x) ∈ [H + λT2](x)
and hence to having −T1(x) ∈ T2(x), which is the same as 0 ∈ T (x). Therefore, the
unique fixed point of Sλ on D is the unique x̄ with 0 ∈ T (x̄).

Theorem 2.4 (global contraction rate). Under (A) and for any λ > 0, the value

(2.4) θλ =


√

(1− λµ1)2 + λ2κ̃2
1

1 + λµ2
when λ−1 ≥ µ1,

λ(κ̃1 + µ1)− 1

1 + λµ2
when λ−1 ≤ µ1,

which depends continuously on λ, is a Lipschitz constant for Sλ : D → D as a mapping
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from the ‖ · ‖H metric to the ‖ · ‖H metric. In particular,

‖Sλ(x)− x̄‖H ≤ θλ‖x− x̄‖H for all x ∈ D,

so that Sλ is globally contractive to x̄ on D when θλ < 1, which is true for all λ > 0
sufficiently small, specifically if and only if λ is chosen small enough that

(2.5) λ−1 >
µ1 − µ2

2
+
κ̃1

2
max

{
1,

κ̃1

µ1 + µ2

}
.

The best such estimated contraction rate, θλ, as λ ranges over these choices, is

(2.6) θ = θλ =
1√

1 +

(
µ1 + µ2

κ̃1

)2
, for λ =

1(
κ̃2

1

µ1 + µ2

)
+ µ1

.

Proof. As already argued in the proof of Proposition 2.2, our assumptions on T2 in
(A) ensure that (H + λT2)−1 is single valued and Lipschitz continuous with constant
(1 + λµ2)−1 from ‖ · ‖H−1 to ‖ · ‖H . Since Sλ = (H + λT2)−1(H − λT1), our task in
establishing the Lipschitz constant θλ for Sλ comes down to showing that the second
factor in the formula for θλ serves as a Lipschitz constant for H − λT1 on D from
‖ · ‖H to ‖ · ‖H−1 . Fix any points x and x′ in D. In terms of having T1 = T̃1 + µ1H,
we expand
(2.7)∥∥(H − λT1)( x′)− (H − λT1)(x)

∥∥2

H−1

=
∥∥[(1− λµ1)H − λT̃1

]
(x′)−

[
(1− λµ1)H − λT1

]
(x)
∥∥2

H−1

=
∥∥(1− λµ1)H[x′ − x]− λ

[
T̃1(x′)− T̃1(x)

] ∥∥2

H−1

= (1− λµ1)2
〈
H[x′ − x], H−1H[x′ − x]

〉
−2λ(1− λµ1)

〈
H[x′ − x], H−1

[
T̃1(x′)− T̃1(x)

]〉
+λ2

〈[
T̃1(x′)− T̃1(x)

]
, H−1

[
T̃1(x′)− T̃1(x)

]〉
= (1− λµ1)2

∥∥x′ − x∥∥2

H
+ λ2

∥∥T̃1(x′)− T̃1(x)
∥∥2

H−1

−2λ(1− λµ1)
〈
x′ − x, T̃1(x′)− T̃1(x)

〉
.

At this stage our analysis divides into the cases where 1− λµ1 ≥ 0 or 1 − λµ1 ≤ 0,
which correspond to λ−1 ≥ µ1 or λ−1 ≤ µ1. (When equality holds in these relations
the two paths of argument will lead to the same thing.)

In the case where 1−λµ1 ≥ 0, we can invoke the fact that
〈
x′−x, T̃1(x′)−T̃1(x)

〉
≥

0 because T̃1 is monotone on D. We then get from (2.7) and the specification of κ̃1

that∥∥(H − λT1)(x′)− (H − λT1)(x)
∥∥2

H−1 ≤ (1− λµ1)2
∥∥x′ − x∥∥2

H
+ λ2κ̃2

1

∥∥x′ − x∥∥2

H
,

hence ‖(H − λT1)(x′) − (H − λT1)(x)‖H−1 ≤ [(1 − λµ1)2 + λ2κ̃2
1] 1/2‖x′ − x‖H in

accordance with the first version of θλ. In the case where 1−λµ1 ≤ 0 instead, we use
the inequality〈

x′ − x, T̃1(x′)− T̃1(x)
〉
≤ ‖x′ − x‖H‖T̃1(x′)− T̃1(x)‖H−1 ≤ κ̃1‖x′ − x‖2H
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from (2.3) to argue through (2.7) that∥∥( H − λT1)(x′)− (H − λT1)(x)
∥∥2

H−1

≤ (1− λµ1)2
∥∥x′ − x∥∥2

H
+ λ2κ̃2

1

∥∥x′ − x∥∥2

H
+ 2λ(λµ1 − 1)κ̃1

∥∥x′ − x∥∥2

H

≤
[
(1− λµ1)2 + λ2κ̃2

1 + 2λ(λµ1 − 1)κ̃1

]∥∥x′ − x∥∥2

H

=
[
λ(κ̃1 + µ1)− 1

]2∥∥x′ − x∥∥2

H
.

We obtain ‖(H−λT1)(x′)−(H−λT1)(x)‖H−1 ≤ [λ(κ̃1+µ1)−1]‖x′−x‖H in accordance
with the second version of θλ.

In order to understand the nature of the factor θλ better, we begin by observing
that for λ large enough that λ−1 ≤ µ1, the function φ(λ) = θλ = [λ(κ̃1 + µ + 1) −
1]/(1 + λµ2) has φ′(λ) = [κ̃1 + µ1 + µ2]/(1 + λµ2)2 > 0 and hence is an increasing
function. In seeking low values of θλ we therefore aren’t interested in λ with λ−1 < µ1

and can concentrate on the case of λ−1 ≥ µ1, where the other formula holds for θλ.
Note, though, that

(2.8) θλ < 1 ⇐⇒ λ−1 > (µ1 − µ2 + κ̃1)/2 when λ−1 < µ1.

The analysis of θλ when λ−1 ≥ µ1 is simplified by passing temporarily from λ to
the parameter

τ = (λ−1 + µ2)−1, which gives τ−1 = λ−1 + µ2, λ−1 = τ−1 − µ2.

The condition λ−1 ≥ µ1 means τ−1 ≥ µ, where we introduce the notation µ = µ1 +µ2

for simplicity. We get

(2.9) θ2
λ =

(λ−1 − µ1)2 + κ̃2
1

(λ−1 + µ2)2
= τ2

[
(τ−1 − µ)2 + κ̃2

1

]
= 1− 2µτ + (κ̃2

1 + µ2)τ2.

From this expression it’s obvious that θλ < 1 if and only if (κ̃2
1 + µ2)τ2 < 2µτ

or, in other words, τ−1 > (κ̃2
1 + µ2)/2µ. This condition translates back to λ−1 >[

(κ̃2
1 +µ2)/2µ

]
−µ2 =

[
κ̃2

1/2µ]+(µ1−µ2)/2, because µ2−2µµ2 = µ(µ1 +µ2−2µ2) =
µ(µ1 − µ2). Thus,

(2.10) θλ < 1 ⇐⇒ λ−1 >
µ1 − µ2

2
+

κ̃2
1

2(µ1 + µ2)
when λ−1 ≥ µ1.

The union of (2.8) with (2.10) furnishes the condition claimed in (2.5) for having
θλ < 1.

The expression in (2.9) is a strictly convex function of τ which achieves its
minimum uniquely when −2µ + 2(κ̃2

1 + µ2)τ = 0 or, in other words, the value
τ̄ = µ/(κ̃2

1+µ2). This does have the property that τ̄ −1 ≥ µ, so the associated step size

λ satisfies λ
−1 ≥ µ1. The corresponding minimum value for the expression in (2.9) is

κ̃2
1/(κ̃

2
1 + µ2). Therefore, the lowest achievable value for θλ is θλ = κ̃1/

√
κ̃2

1 + µ2 for

λ = 1/(τ̄ −1 − µ2) = µ/[(κ̃2
1 + µ2)− µµ2],

which works out to the value claimed for λ in the theorem.
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Corollary 2.5 (special rate estimates). When the estimate κ̃1 =
√
κ2

1 − µ2
1 is

used in accordance with Proposition 2.1, the corresponding best contraction rate that
can be guaranteed is

(2.11) θλ =
1√

1 +
(µ1 + µ2)2

κ2
1 − µ2

1

for λ =
µ1 + µ2

κ2
1 + µ1µ2

.

In the case of µ2 = 0 this reduces to

(2.12) θλ =

√
1−

(
µ1

κ1

)2

for λ =
µ1

κ2
1

.

Proof. The case in (2.11) is obvious from Theorem 2.4, and the one in (2.12) then
follows by elementary algebra in replacing µ2 by 0.

The convergence result in Corollary 2.5 was developed in Chen’s thesis [37], but
Theorem 2.4 itself, with its emphasis on κ̃1 instead of κ1, appears here for the first
time.

An alternative result of Renaud [32, Proposition VI.25] under the assumption
that T and T−1

1 are strongly monotone gives R-linear convergence. The convergence
factor (not necessarily a contraction factor as above) is

(2.13)
1√

1 +
µν1

αmin/αmax

for λ = ν1αmin,

where µ and ν1 are strong monotonicity constants for T and T−1
1 in the sense of (1.12)

and (1.13) (i.e., calibrated by I instead of H), and αmin and αmax are the smallest and
biggest eigenvalues of H. (Here we specialize to Rn; Renaud operated in the context
of a possibly infinite-dimensional Hilbert space.) Renaud didn’t actually require µ to
be a strong monotonicity constant in the full sense of (1.12) but just a value satisfying

(2.14)
〈
w − w̄, x− x̄

〉
≥ µ‖x− x̄‖2 if w ∈ T (x), where w̄ = 0 ∈ T (x̄).

Likewise this would suffice in Theorem 2.4 if we aimed at Q-linear convergence to x̄
instead of insisting that Sλ be a contraction mapping; see section 4.

The dependence of Renaud’s factor in (2.13) on αmin/αmax, which is the condition
number of H, should be noted. This is disadvantageous unless H = I, so the condition
number is 1; see section 3. When H = I and T1 is strongly monotone, it’s possible
under our assumptions to take ν1 = µ1/κ

2
1. Then Renaud’s factor in (2.13) becomes

1√
1 +

µ1(µ1 + µ2)

κ2
1

for λ =
µ1

κ2
1

,

which isn’t as sharp as our factor in Corollary 2.5. On the other hand, if ν1 > 0
is known directly one can take κ1 = 1/ν1 and get 1/

√
1 + (µ1 + µ2)ν1 in (2.13) in

comparison to 1/
√

1 + [(µ1 + µ2)ν1]2 in Corollary 2.5, where µ1ν1 ≤ 1 but perhaps
(µ1 + µ2)ν1 > 1.
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3. Utilization of strong monotonicity. A major purpose of our analysis has
been to gain insight into how a splitting can be set up advantageously. In expressing
T as a sum T1 + T2, there may be terms that could be assigned either to T1 or to T2

without creating an obstacle to the implementation of the forward–backward method.
What approach is best in enhancing convergence?

Let’s focus on shifts of positive monotonicity. On the basis of (A) we can write

T = T̃1 + T̃2 + µH for T̃1 = T1− µ1H, T̃2 = T2− µ2H, and µ = µ1 + µ2. Here T̃1 and
T̃2 are maximal monotone (for if they are not, that would mean the graph of one of

them, say T̃1, could be enlarged without destroying monotonicity, in which case the
same would be true for T̃1 + µ1H = T1, contrary to the maximality of T1).

Suppose we were to divide up µ in a different way, i.e., µ = µ′1 + µ′2 with µ′1 ≥ 0

and µ′2 ≥ 0, and set T ′1 = T̃1 + µ′1H and T ′2 = T̃2 + µ′2H. This would give a different
splitting, T = T ′1 +T ′2, in which T ′1 and T ′2 are again maximal monotone. Could there
be any advantage in this for the algorithm’s performance when implemented with the
matrix H?

The answer is no as long as the optimal step size prescription of Theorem 2.4
is employed. This is clear from the fact that the optimal contraction rate θ in (2.6)
depends only on κ̃1 and the sum µ1 + µ2 and therefore would be the same under the
different splitting, since µ′1 + µ′2 = µ1 + µ2 and even T ′1 − µ′1H = T̃1 = T1 − µ1H
(so κ is unaffected). Indeed, the contraction rate has been optimized in Theorem 2.4
with respect to the whole range of splittings that we are looking at. In using the step
size λ prescribed for the splitting T = T1 + T2, one is able automatically to capture
whatever algorithmic advantages may lie in this direction. Although the step sizes for
the splittings T = T1 + T2 and T = T ′1 + T ′2 are given differently as

λ =
1(

κ̃2
1

µ1 + µ2

)
+ µ1

, λ
′

=
1(

κ̃2
1

µ′1 + µ′2

)
+ µ′1

and may not themselves be the same, they necessarily result in the same optimal
rate θ.

But a subtle distinction must be noted between Theorem 2.4 and Corollary 2.5.
If the tactic in developing a Lipschitz constant for T̃1 were to use an estimate based
on Proposition 2.1, the answer to the question posed would instead be yes!

The reason is that in passing from T = T1 + T2 to T = T ′1 + T ′2, such an estimate
κ̃1 =

√
κ2

1 − µ2
1, where κ1 is a Lipschitz constant for T1, would be replaced by a

different value κ̃′1 =
√
κ′1

2 − µ′12, where κ′1 is a Lipschitz constant for T ′1 (relative

to the specified norms). Then not only would the corresponding step sizes λ and λ
′
,

as dictated by (2.11), be different, they would result in different contraction rates:
θλ 6= θ

λ
′ in (2.11). The issue would arise of determining which splitting T = T ′1 + T ′2

minimizes
√
κ′1

2 − µ′12 and thus furnishes the best contraction rate. Actually, we

know from Proposition 2.1 that the minimum is achieved when T ′1 = T̃1 = T1 − µ1H,

T ′2 = T̃2 + µH = T2 + µ1H. Thus, if we were to rely on the result in Corollary 2.5
rather than the one in Theorem 2.4, as for instance in [37], the optimal splitting would
be obtained by extracting all possible strong monotonicity from T1 and reassigning it
to T2, a qualitatively very different conclusion.

This highlights the contrast between the technique adopted here and previous
research, which has utilized a Lipschitz constant for T1 itself (moreover one in terms
of the canonical norm only), not to speak of concentrating on strong monotonicity of
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T1. Through Theorem 2.4 we can optimally exploit strong monotonicity of T1 or T2

or both, without having to switch any terms in the splitting in the end.
The idea is illustrated by its application to solving variational inequalities.
Theorem 3.1 (application to projection algorithms). Consider the variational

inequality problem (1.1) in the case of a nonempty, closed convex set C ⊂ Rn and a
continuous, single-valued mapping F : C → Rn. Let H be a symmetric positive defi-
nite matrix, and let µ > 0 be a constant such that F satisfies the strong monotonicity
condition

(3.1)
〈
F (x′)− F (x), x′ − x

〉
≥ µ ‖x′ − x‖2H for all x, x′ ∈ C.

Let κ̃ ≥ 0 be a Lipschitz constant for F̃ = F − µH on C from the norm ‖ · ‖H to the
norm ‖ ·‖H−1 . Then in applying Theorem 2.4 to the splitting T = T1 +T2 for T1 = F ,
T2 = NC , and with µ1 = µ, µ2 = 0, the optimal contraction rate is

(3.2) θ = θλ =
1√

1 + (µ/κ̃)2
for λ =

µ

κ̃2 + µ2
.

No alternative splitting T = T ′1 +T ′2 in the mode of T ′1 = F − τH and T ′2 = τH +NC
for some τ ∈ (0, µ] can provide a better contraction rate through Theorem 2.4.

Proof. This is evident from the preceding remarks. The assumptions furnish a
specialization of the conditions in (A) to the special case in question.

The fact that under the circumstances described, execution of the forward–backward
splitting method as a projection method is just as good as any alternative execution
obtainable by shifting the strong monotonicity from the “forward” part to the “back-
ward” part of the iteration mapping, is perhaps surprising. But again, it must be re-
membered that this result depends on utilizing a Lipschitz constant κ̃ for F̃ = F−µH
rather than a constant κ attached directly to F itself.

Corollary 3.2. When the estimate κ̃ =
√
κ2 − µ2 is used in Corollary 3.2 in

accordance with Proposition 2.1, κ being a Lipschitz constant for F on C from ‖ · ‖H
to ‖ · ‖H−1 , the corresponding best contraction rate that can be guaranteed for the
projection algorithm is

(3.3) θλ =

√
1−

(µ
κ

)2

for λ =
µ

κ2
.

Proof. This applies the second part of Corollary 2.5.
For the case of H = I, results related to Corollary 3.2 were obtained recently

by Renaud. He noted in [32, p. 143] the contraction rate in (3.3) and went on to
demonstrate Q-linear convergence, although not the full contraction property, under
the assumption that F−1 is strongly monotone with constant ν > 0. The factor is
then

1√
1 + µν

for λ = ν,

cf. [32, Proposition VI.2]. This alternative assumption is satisfied when F is Lipschitz
continuous with constant κ (from ‖ · ‖ to ‖ · ‖), namely with ν = µ/κ2, and Renaud’s
factor reduces then to ours.

For the general case where H 6= I, the contraction rate in Corollary 3.2 may be
compared for the one derived for projection algorithms by Dafermos [7]. In effect she
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got

(3.4)

√
1− µ2

β2
1β

2
2cond(H)

,

where cond(H) is the condition number of H (its highest eigenvalue divided by its
lowest eigenvalue), β1 is a conversion factor from ‖ · ‖H to ‖ · ‖, and β2 is a Lipschitz
constant for F from ‖ · ‖ to ‖ · ‖H−1 , so that β1β2 is an (upper) estimate for the
Lipschitz constant κ in Corollary 3.2. Unless H = I, Dafermos’ denominator in (3.4)
has to be greater than ours in (3.3), and her contraction factor accordingly has to
be nearer to 1, thus not as good. The dependence of (3.4) on the condition number
for H illustrates very well the unwarranted consequences of bringing in the canonical
norm ‖ · ‖ instead of sticking consistently with the method’s intrinsic geometry. The
canonical norm is irrelevant in this appraisal of algorithmic performance.

Theorem 3.3 (application to affine variational inequalities). Consider the vari-
ational inequality problem (1.1) in the case of a nonempty, closed convex set C ⊂ Rn
and an affine mapping F (x) = Mx+q. Let Ms = 1

2 (M+M>) and Ma = 1
2 (M−M>)

be the symmetric and antisymmetric parts of the matrix M , and suppose Ms is positive
definite. Take H = Ms and define (with the canonical matrix norm)

(3.5) skew(M) = ‖M−1/2
s MaM

−1/2
s ‖.

Then Theorem 3.1 applies with µ = 1 and κ̃1 = skew(M), which is the minimal
Lipschitz constant for this case. The projection algorithm thus attains the global con-
traction rate

(3.6) θ = θλ =
1√

1 +
1

skew(M)2

for λ =
1

1 + skew(M)2
.

Proof. Here T̃1(x) = (F −µH)(x) = Max+q, an affine monotone mapping devoid
of strong monotonicity. We must verify that the specified value of κ̃1 serves as the
minimal Lipschitz constant for this mapping from the norm ‖·‖H to the norm ‖·‖H−1 .
The square of the required constant is the supremum of the quotient∥∥T̃1(x′)− T̃1(x)

∥∥2

H−1

‖x′ − x‖2H
=

〈
Ma[x′ − x],M−1

s Ma[x′ − x]
〉〈

[x′ − x],Ms[x′ − x]
〉 =

∥∥M−1/2
s Ma[x′ − x]

∥∥2∥∥M1/2
s [x′ − x]

∥∥2

over all x and x′ with x′ 6= 0. Through the change of variables u = M
1/2
s [x′ − x],

giving [x′−x] = M
−1/2
s u, we see that the constant is the supremum of the expression∥∥M−1/2

s MaM
−1/2
s u

∥∥/‖u‖ over all u 6= 0, and this is ‖M−1/2
s MaM

−1/2
s ‖.

The value skew(M) ∈ (0,∞) in (3.5) intrinsically measures the skewness of the
matrix M . Obviously

(3.7) skew(M) ≤ ‖Ma‖
/
‖Ms‖

in particular, but the right side of this inequality is dependent on the “conditioning”
of M with respect to the canonical norm, whereas skew(M) itself isn’t. The smaller
skew(M) is, the nearer M is to being symmetric and the better the rate of convergence
that is assured for the solution method addressed by Theorem 3.3. Of course, this
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realization of forward–backward splitting is practical only when it’s easy to project
onto C with respect to the norm induced by Ms as H, but that does cover many
applications in which C has a product structure matched by a box-diagonal pattern
of Ms, as in [20].

Dupuis and Darveau [28], in building on the result of Dafermos [7], likewise ob-
tained for the affine variational inequality case of projection algorithms a contraction

factor incorporating the value ‖M−1/2
s MaM

−1/2
s ‖. But the factor they got resembles

the one in (3.4) in being the square root of an expression that depends in part on the
condition number of H. In contrast to our contraction factor in (3.3), it doesn’t tend
to 0 as M approaches symmetry and the implementation matrix H = Ms coalesces
with M . Again, the cost of deviating from the underlying geometry is evident.

The result in Theorem 3.3 can best be compared with a recent result of Zanni
[31] for the same method. He obtains the rate

(3.8)

√
1− 1∥∥M−1/2

s MM
−1/2
s

∥∥2 for λ =
1∥∥M−1/2

s MM
−1/2
s

∥∥2 ,

which he elaborates by the estimate

(3.9)
∥∥M−1/2

s MM−1/2
s

∥∥ ≤ 1 + cond(Ms)
‖Ma‖
‖Ms‖

,

taking the ratio ‖Ma‖/‖Ms‖ as a measure of skewness. The appearance of M instead
of Ma in (3.8) can be seen as reflecting a reliance on a Lipschitz constant for M instead
of for Ma; this parallels the difference between Corollary 3.2 and Theorem 3.1. The
estimate in (3.9) suffers from dependence on translation to the canonical norm, but
to avoid this it could be replaced by∥∥M−1/2

s MM−1/2
s

∥∥ =
∥∥M−1/2

s (Ms +Ma)M−1/2
s

∥∥
≤
∥∥M−1/2

s MsM
−1/2
s

∥∥+
∥∥M−1/2

s MaM
−1/2
s

∥∥ = 1 + skew(M).

Even so, it wouldn’t yield the lower contraction factor in Theorem 3.3.
Yet another measure of skewness was introduced by Marcotte and Guélat [42] for

the special context of solving problems of traffic equilibrium. This differs from ours in
being localized to the solution point x̄ and dependent on the vector q as well as on the
submatrices Ms and Ma. These authors nonetheless demonstrate through numerical
testing of several algorithms an empirical relationship between skewness and difficulty
of solvability such as appears in Theorem 3.3.

For projected gradient algorithms, where F = ∇f for a C2 function f with
bounded Hessians ∇2f(x), better contraction estimates can be given than are ob-
tainable by specializing the ones here; see Polyak [43].

4. Local convergence analysis. Our efforts so far have gone into identifying
a rate of linear convergence that’s effective immediately from any starting point x0

for a forward–backward splitting method. There is interest too, of course, in knowing
what might be possible with convergence as the solution x̄ is neared. For this purpose
we don’t have to start building up a broader theory but can make use of the results
we already have. Although Theorem 2.4 presents a contraction rate relative to the
entire set D = domT , its formulation already allows us to deduce local contraction
rates in a neighborhood of x̄.
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Theorem 4.1 (local contraction rates). Let U be an open ball around x̄ with
respect to the norm ‖ · ‖H , and let µ̂1, µ̂2, and κ̂1 be constants as in (A) but relative
to D ∩ U in place of D. Then, as long as λ > 0 is small enough that

(4.1) λ−1 >
µ̂1 − µ̂2

2
+
κ̂1

2
max

{
1,

κ̂1

µ̂1 + µ̂2

}
,

the mapping Sλ carries D ∩ U into D ∩ U , and the conclusions of Theorem 2.4 hold
for this localization of Sλ but with µ̂1, µ̂2, and κ̂1 in place of µ1, µ2, and κ̃1.

Proof. Taking C = clU , define T̂2 = T2 +NC . This mapping, like T2, is maximal
monotone; cf. [39, Theorem 2]. Proposition 2.1 and Theorem 2.4 are applicable to

T̂ = T1 + T̂2 with respect to the constants µ̂1, µ̂2, and κ̂1 on D̂ = dom T̂2 = D ∩ C.
In particular, T̂−1(0) must be a singleton, but because x̄ belongs to the interior of C,

we have NC(x̄) = {0} and T̂ (x̄) = T (x̄). Hence T̂−1(0) = {x̄}, and the contraction

properties given by Theorem 2.4 for the mapping Ŝλ = (H + λT̂2)−1(H − λT1) must

refer to this same x̄. Distances from x̄ can then only be decreased under Ŝλ, so Ŝλ
must carry D ∩ U into itself.

Consider now any x ∈ D∩U and let w = Ŝλ(x). As just seen, we have w ∈ D∩U ,
which implies that w belongs to the interior of C, so NC(w) = {0}. From the definition

of Ŝλ we see that

(H − λT1)(x) ∈ (H + λT̂2)(w) = (H + λT2)(w) +NC(w) = (H + λT2)(w),

hence, in fact, w = (H + λT2)(H − λT1)(x) = Sλ(x). This shows that Ŝλ agrees with

Sλ on D ∩U . The conclusions about the behavior of Ŝλ on D ∩U therefore translate
to ones about Sλ.

The proof of Theorem 2.4 reveals a way of refining that result and with it Corollary
2.5 and Theorem 4.1. Although the monotonicity of T2 − µ2H is fully utilized in
obtaining a Lipschitz constant for the factor (H+λT2)−1 of Sλ, the assumptions in (A)
about µ1 and κ̃1 could be weakened if instead of asking for Sλ to be contractive on D
we merely asked for a bound in [0, 1) on the ratios ‖Sλ(x)−Sλ(x̄)‖H/‖x−x̄‖H . The key
is just to observe that if the argument for estimating ‖(H−λT1)(x′)−(H−λT1)(x)‖H−1

is applied only to ‖(H −λT1)(x)− (H −λT1)(x̄)‖H−1 , all that one needs from µ1 and

κ̃1 is that the mapping T̃1 = T1 − µ1H satisfies〈
x− x̄, T̃1(x)− T̃1(x̄)

〉
≥ 0,

∥∥T̃1(x)− T̃1(x̄)
∥∥
H−1 ≤ κ̃1

∥∥x− x̄∥∥
H
.

Likewise, under these inequalities the estimate in Proposition 2.1 remains valid with
respect to a constant κ1 merely satisfying∥∥T1(x)− T1(x̄)

∥∥
H−1 ≤ κ1

∥∥x− x̄∥∥
H
.

This refinement appears to offer little advantage in general over the global picture
in Theorem 2.4, inasmuch as special properties of T1 and T2 around the solution point
x̄, in contrast to other points, can hardly be available in advance of calculating x̄,
which threatens a kind of circularity. Indeed, if the assumption on µ1 is weakened,
the very existence and uniqueness of x̄ could be thrown into doubt, because Theorem
2.3 might no longer be applicable. Yet in the localized context of Theorem 4.1, the
refinement does at least furnish insights into what might be expected of the rate of
convergence in the tail of a forward–backward sequence as xk nears x̄. The following
is what we get.
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Theorem 4.2 (ultimate linear convergence rate). Assuming (A), define the con-
stants µ̄1 ≥ 0, µ̄2 ≥ 0, and κ̄1 ≥ 0 at the unique solution point x̄ by

µ̄2 = lim sup
w∈T2(x), w′∈T2(x′)

x,x′→x̄, x′ 6=x

〈
x′ − x, w′ − w

〉
‖x′ − x‖2H

,

µ̄1 = lim sup
x→x̄

x∈D, x 6=x̄

〈
x− x̄, T1(x)− T1(x̄)

〉
‖x− x̄‖2H

,

κ̄1 = lim sup
x→x̄

x∈D, x 6=x̄

∥∥T 1(x)− T 1(x̄)
∥∥
H−1

‖x− x̄‖H
for T 1 = T1 − µ̄1H,

necessarily obtaining µ̄1 ≥ µ1, µ̄2 ≥ µ2, and κ̄1 ≤ κ̃1; in fact, κ̄1 ≤
√
κ̃2

1 − (µ̄1 − µ1)2

(hence µ̄1 ≤ µ1 + κ̃1). Also define

γ = lim inf
(x,u)→(x̄,T1(x̄))
−u∈T2(x)

∥∥u− T1(x̄)
∥∥
H−1

‖x− x̄‖H
,

necessarily obtaining γ ≥ µ̄2. Then for any step size λ > 0, the sequence of points xk
generated by xk = Sλ(xk−1) from any starting point x0 ∈ D will satisfy

(4.2) lim sup
k→∞

‖xk − x̄‖H
‖xk−1 − x̄‖H

≤



√
(1− λµ̄1)2 + λ2κ̄2

1√
1 + 2λµ̄2 + λ2γ2

when λ−1 ≥ µ̄1,

λ(κ̄1 + µ̄1)− 1√
1 + 2λµ̄2 + λ2γ2

when λ−1 ≤ µ̄1.

In particular, this holds for the step size λ̄ identified in (2.6) as optimal relative to
the globally estimated constants µ1, µ2, and κ̃1.

Proof. It’s clear from (A) that µ̄1 ≥ µ1 and µ̄2 ≥ µ2, since the monotonicity
of Ti − µiH on D corresponds to having

〈
x′ − x, Ti(x′) − Ti(x)

〉
≥ µi‖x′ − x‖2H for

x, x′ ∈ D. The verification that κ̄1 ≤ κ̃1 takes more effort. It relies indirectly on the
observation above that Proposition 2.1 stays valid when the context is that of points
x compared to x̄ rather than general pairs x and x′. If µ̄1 = µ1, we have T 1 = T̃1 and
the inequality κ̄1 ≤ κ̃1 is elementary from the definitions, so we can concentrate on
the case where µ̄1 > µ1.

Consider any δ ∈ (0, µ̄1 − µ1). From the definition of µ̄1 there’s a neighborhood
Z of x̄ consisting of points x for which

〈
x − x̄, T1(x) − T1(x̄)

〉
≥ (µ̄1 − δ)‖x − x̄‖2H .

This inequality means that for the mapping T
δ

1 = T1 − (µ̄1 − δ)H = T 1 − δH,

(4.3)
〈
x− x̄, T δ1(x)− T δ1(x̄)

〉
≥ 0 for x ∈ D ∩ Z.

But T
δ

1 = T̃1 − τH for τ = µ̄1 − µ1 − δ > 0. It follows from applying the extended
version of Proposition 2.1 to this relation in light of (4.3) that∥∥T δ1(x)− T δ1(x̄)

∥∥
H−1 ≤

√
κ̃2

1 − τ2
∥∥x− x̄∥∥

H
for x ∈ D ∩ Z.

On the other hand, since T
δ

1 = T 1 − δH and ‖H[x − x̄]‖H−1 = ‖H(x − x̄)‖H−1 =

‖x′ − x‖H , we know that
∥∥T 1(x)− T 1(x̄)

∥∥
H−1 ≤

∥∥T δ1(x)− T δ1(x̄)
∥∥
H−1 + δ

∥∥x− x̄∥∥
H

.
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This tells us that∥∥T 1(x)− T 1(x̄)
∥∥
H−1 ≤

(
δ +

√
κ̃2

1 − (µ̄1 − µ1 − δ)2

)∥∥x− x̄∥∥
H

for x ∈ D ∩ Z.

Taking the limit in the definition of κ̄1 and using the fact that a neighborhood Z like
this exists for any δ > 0, we obtain κ̄1 ≤

√
κ̃2

1 − (µ̄1 − µ1)2; hence, κ̄1 ≤ κ̃1 because
µ̄1 ≥ µ1.

We look next at the claims about γ and θ∗λ, the latter being the symbol by which
we’ll denote the right side of (4.2). For any ε > 0, let µ̂i = max{µi, µ̄i− ε} for i = 1, 2
and κ̂1 = min{κ̃1, κ̄1 + ε}. On the basis of the definitions we know there’s a ball U
around x̄ with respect to the norm ‖ · ‖H such that
〈
x′ − x, w′ − w

〉
≥ µ̂2‖x′ − x‖H if x, x′ ∈ D ∩ U, w ∈ T2(w), w′ ∈ T2(x′),〈

x− x̄, T1(x)− T1(x̄)
〉
≥ µ̂1‖x− x̄‖H if x ∈ D ∩ U ,

‖T 1(x)− T 1(x̄)‖H−1 ≤ κ̂1‖x− x̄‖H if x ∈ D ∩ U .

We are then in the framework of the extended version of Theorem 4.1 and are able
to see that lim supk ‖xk − x̄‖H

/
‖xk−1 − x̄‖H ≤ θ̂λ, the latter being the same as θλ

except that µ̂1, µ̂2, and κ̂1 replace µ1, µ2, and κ̃1. An improvement can be made,
however, in taking advantage of the constant γ.

Let γ̂ = max{0, γ − ε}. From the definition of γ there’s a neighborhood V of
T1(x̄) with respect to the norm ‖ · ‖H−1 such that, when the ball U is small enough,
we have

(4.4)
∥∥u− T1(x̄)‖H−1 ≥ γ̂‖x− x̄‖2H when x ∈ D ∩ U, u ∈ V, −u ∈ T2(x).

However, the point ū = T1(x̄) also satisfies −ū ∈ T2(x̄) because 0 ∈ T (x̄) = T1(x̄) +
T2(x̄). This implies from earlier that

µ̂2‖x− x̄‖2H ≤
〈
− u+ ū, x− x̄

〉
≤ ‖x− x̄‖H‖u− ū‖H−1 ,

so µ̂2‖x − x̄‖H ≤ ‖u − ū‖H−1 . Therefore, µ̂2 ≤ γ̂, which establishes µ̄2 ≤ γ through
the arbitrariness of ε in the definition of µ̂2 and γ̂.

Let w̄ = (H − λT1)(x̄) = Hx̄− λT1(x̄). Since

x̄ = Sλ(x̄) = (H + λT2)−1(H − λT1)(x̄),

we have x̄ = (H + λT2)−1(w̄). Consider along with this any elements w and x with
x = (H+λT2)−1(w). For these, the set T−1

2 (x) contains λ−1[w−Hx], whereas T−1
2 (x̄)

contains λ−1[w̄ −Hx̄], the latter being just −T1(x̄). When w is close to w̄, not only
does x lie in the ball U around x̄, due to the continuity of (H + λT2)−1, but also the
vector u = −λ−1[w −Hx] lies in the neighborhood V of ū = −T1(x̄). Then by (4.4),

γ̂2‖x− x̄‖2H ≤
∥∥u− T1(x̄)‖2

H−1 =
∥∥− λ−1[w −Hx] + λ−1[w̄ −Hx̄]

∥∥2

H−1

= λ−2‖w − w̄‖2
H−1 − 2λ−2

〈
w − w̄, x− x̄

〉
+ ‖x− x̄‖2H

≤ λ−2‖w − w̄‖2
H−1 − 2λ−2µ̂2‖x− x̄‖2H + λ−2‖x− x̄‖2H ,

where the last inequality invokes the property arranged for µ̂2. Rearranging, we obtain
‖x− x̄‖2H ≤ [1 + λµ̂2 + λ2γ̂2]‖w − w̄‖2

H−1 . This shows that the factor (1 + λµ̂2)−1 in

θ̂λ can be replaced by (1 + λµ̂2 + λ2γ̂2)−1/2, which if anything is lower.
It remains only to observe that, having demonstrated that this modified factor

θ̂λ operates in terms of µ̂1, µ̂2, κ̂1, and γ̂ as defined for arbitrary ε > 0, we must in
the limit as ε↘0 get the factor θ∗λ corresponding to µ̄1, µ̄2, κ̄1, and γ.



440 GEORGE H.-G. CHEN AND R. T. ROCKAFELLAR

5. Variable step sizes and matrices. In the introduction, forward–backward
splitting methods were described with variable step sizes λk and matrices Hk. We
now look at what can be said about such methods on the basis of our contraction
results for fixed λ and H. The easier case of variable λk with a fixed H has broader
significance, so we deal with it first.

Theorem 5.1 (convergence with variable step sizes). Under assumptions (A),
consider any step size interval [λ−, λ+] ⊂ (0,∞) with λ+ small enough that

(5.1) λ−1
+ >

µ1 − µ2

2
+
κ̃1

2
max

{
1,

κ̃1

µ1 + µ2

}
.

Let θ(λ−, λ+) = max{θλ− , θλ+} for θλ defined as in (2.4). Then θ(λ−, λ+) < 1, and
for any sequence of step sizes λk ∈ [λ−, λ+], all the iteration mappings

(5.2) Sk = (H + λkT2)−1(H − λkT1) = (I + λkH
−1T2)−1(I − λkH−1T1)

are contractions from D = domT into itself with fixed point x̄ and contraction factor
θ(λ−, λ+). In particular, the iterates xk = Sk(xk−1) from any starting point x0 ∈ D
converge linearly to x̄ at a rate no worse than θ(λ−, λ+). Indeed,

(5.3) lim sup
k→∞

‖xk − x̄‖H
‖xk−1 − x̄‖H

≤ min
{
θ(λ−, λ+), θ∗(λ−, λ+)

}
,

where θ∗(λ−, λ+) = min{θ∗λ− , θ
∗
λ+
} with θ∗λ denoting the right side of (4.2).

Proof. The justification of this lies in the proof of Theorem 2.4. It was demon-
strated there that θλ is an increasing function of λ on the interval of λ values satisfying
λ−1 < µ1, which includes all λ sufficiently large. On the other hand, it was observed
that on the complementary interval, where λ−1 ≥ µ1, the expression θ2

λ is convex as
a function of τ under the change of variables induced by taking τ−1 = λ−1 +µ2. This
implies that θ2

λ is unimodal on that interval with respect to λ, and the same then
holds for θλ. Indeed, we saw for the value λ defined in (2.6) that θλ is a continu-
ous, decreasing function of λ on

(
0, λ

]
but a continuous, increasing function of λ on[

λ,∞
)
.

It follows that the max of θλ over any interval [λ−, λ+] ⊂ (0,∞) is θ(λ−, λ+). As
long as this value doesn’t exceed 1, as guaranteed by (5.1) through Theorem 2.4, we
get contraction at the claimed rate θ(λ−, λ+). An appeal to the ultimate convergence
property in Theorem 4.2 then justifies the assertion in (5.3).

For the case of variable implementation matrices, we won’t attempt to prove a
result along the lines of a Newton or quasi-Newton method. That would be incompat-
ible with most applications of forward–backward splitting to problem decomposition,
where the need to preserve a degree of separability, in order to facilitate computation
of the backward steps, is paramount. Also, such applications tend to demand a global
statement rather than a local one. For literature on Newton-like results for variational
inequalities, see Pang and Chan [16] and Patriksson [17].

Theorem 5.2 (convergence with variable matrices). Under (A), suppose the
iterates xk = Sk(xk−1) are generated from any x0 ∈ D by the mappings

(5.4) Sk = (Hk + λkT2)−1(Hk − λkT1) = (I + λkH
−1
k T2)−1(I − λkH−1

k T1)

through a sequence of step sizes λk > 0 and symmetric, positive definite matrices Hk

converging to H. Let λ− = lim infk λk and λ+ = lim supk λk, and suppose that λ− > 0
while λ+ satisfies (5.1). Then (5.3) holds for these values λ− and λ+.
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Proof. The convergence of Hk to H implies the existence of values 0 < αk↗1
and 0 < βk↗1 such that H − αkHk and Hk − βkH are positive definite. Through
this, the monotonicity of T1 − µ1H and T2 − µ2H in condition (2.1) of (A) yields
the monotonicity of T1 − µ1kHk and T2 − µ2kHk for the values µ1k = µ1αk↗µ1 and
µ2k = µ2αk↗µ2.

We develop now a Lipschitz constant for T̃1k = T1−µ1kHk = T̃1 +µ1(H−αkHk)
from the norm ‖ · ‖Hk to the norm ‖ · ‖H−1

k
. First, let ηk be such a constant for

H − αkHk, then ηk → 0. Next, observe that ‖ · ‖Hk ≥
√
βk ‖ · ‖H , which means that

for the corresponding dual norms given by the inverse matrices,
√
βk ‖·‖H−1

k
≤ ‖·‖H−1 .

By these estimates, the Lipschitz inequality in condition (2.2) of (A) gives us√
βk ‖T̃1(x′)− T̃1(x)‖H−1

k
≤ κ̃1(1/

√
βk)‖x′ − x‖Hk for all x′, x ∈ D.

Hence κ̃1/βk is a Lipschitz constant for T̃1 on D from ‖ · ‖Hk to ‖ · ‖H−1
k

. Since

T̃1k = T̃1 + µ1(H − αkHk), we conclude that the constant κ̃1k = (κ̃1/βk) + µ1ηk↘ κ̃1

has this property for T̃1k.
It follows that the splitting T = T1k+T2k with implementation matrix Hk satisfies

(Ak), the version of (A) in which µ1, µ2, and κ̃1 are replaced by µ1k, µ2k, and κ̃1k.
Now let φ stand for the value on the right side of (2.5) and φk for the corresponding
value under this same replacement of constants. Obviously φk → φ.

Consider any ε > 0 small enough that the value λε− = λ− − ε is positive, while
the value λε+ = λ+ + ε satisfies (5.1); i.e., (λε+)−1 > φ. For all k sufficiently large, we
have λk ∈ [λε−, λ

ε
+] and also that (λε+)−1 > φk. Then by Theorem 2.4 as applied under

(Ak), the mapping Sk is a contraction from D into itself at the rate θk,λk , where θk,λ
denotes the factor obtained from formula (2.4) with µ1k, µ2k, and κ̃1k substituting
for µ1, µ2, and κ̃1. Furthermore, we have

θk,λ ≤ θk(λε−, λ
ε
+) = max{θk,λε− , θk,λε+}

for the reasons in the proof of Theorem 5.1 (when applied to θk,λ as a function of λ).
Therefore, the lim sup in (5.3) is bounded above by the limit of θk(λε−, λ

ε
+) as k →∞,

which is θ(λε−, λ
ε
+). This being valid for all ε > 0 sufficiently small, we can take the

limit as ε↘0 and obtain the inequality in (5.3), as targeted.

6. Asymmetric implementations. Only symmetric implementation matrices
Hk are covered directly by our results up to this stage, but what about the possibility
of more general matrices that are not symmetric, although still positive definite?
Such modes of implementation crop up, for example, in applications to variational
inequality when Hk is taken to be an approximation to the Jacobian matrix∇F (xk) or
some part of it. Aside from the gradient case where F = ∇f and ∇F (xk) = ∇2f(xk),
Hk may then lack symmetry.

Asymmetric implementation matrices can be incorporated into our theory by a
simple device. This device has already been used by others, e.g., Tseng in [25], but we
go beyond previous instances because of the attention we pay to step sizes. To explain
the idea, we keep to the case of constant H for simplicity. Also, to avoid conflicts with
our earlier statements, we follow the notational strategy of replacing H by H + K
with K antisymmetric (K> = −K) and H still symmetric, rather than taking H itself
to lack symmetry. This conforms to the fact that any positive definite matrix can be
written as the sum of an antisymmetric matrix and a symmetric, positive definite
matrix.
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In this mode, the iteration mappings for the forward–backward method with
respect to a splitting T = T1 + T2 take the form

(6.1)
(
[H +K] + λT2

)−1(
[H +K]− λT1

)
.

Their practicality hinges on the ease of calculating images under the inverse mapping(
[H + K] + λT2

)−1
. This has to be assumed for any analysis to be worthwhile, and

it’s true that in applications such have been pinpointed by Pang and Chan [16] and
Tseng [25].

For our purposes we’ll make such practicality of backward step execution part of
the framework by assuming that for any τ ∈ (−∞,∞), the inverse

(
[H+τK]+λT2

)−1

can be handled just as readily as
(
[H +K] + λT2

)−1
. We put our focus therefore on

two-parameter iteration mappings, namely

(6.2) Sλ,τ =
(
[H + τK] + λT2

)−1(
[H + τK]− λT1

)
.

These mappings, like the earlier ones where K didn’t appear, all have the unique
solution x̄ as their unique fixed point. We explore the relation between contraction
properties of Sλ,τ and the values of both λ and τ .

Theorem 6.1 (reduction of asymmetric to symmetric implementations). Assume
(A) as before, except for what it says about κ̃1; in place of that, consider a Lipschitz

constant κ̃1(σ) for the mapping T̃1 − σK on D, with σ being any value in (−∞,∞).
Let

(6.3) λ(σ) =
1(

κ̃1(σ)2

µ1 + µ2

)
+ µ1

, τ(σ) = σλ(σ).

Then the asymmetrically implemented iteration mapping

(6.4) Sλ(σ),τ(σ) =
(
[H + τ(σ)K] + λ(σ)T2

)−1(
[H + τ(σ)K]− λ(σ)T1

)
,

with respect to the splitting T = T1 +T2, is identical to the symmetrically implemented
iteration mapping

(6.5) S′λ(σ) =
(
H + λ(σ)T ′2

)−1(
H − λ(σ)T ′1

)
,

with respect to the splitting T = T ′1 + T ′2, where T ′1 = T1 − σK and T ′2 = T2 + σK,
and it is Lipschitz continuous on D with constant

(6.6) θ(σ) =
1√

1 +

(
µ1 + µ2

κ̃1(σ)

)2
< 1.

Proof. Iterations xk = Sλ,τ (xk−1) have the meaning that

0 ∈ 1

λ
[H + τK][xk − xk−1] + T1(xk−1) + T2(xk).

This condition can equally well be written as

(6.7) 0 ∈ 1

λ
H[xk − xk−1] + [T1 − σK](xk−1) + [T2 + σK](xk)
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under the correspondence σ = τ/λ, τ = σλ. Thus, the same iterations can be written
as xk = S′λ(xk−1) for S′λ = (H + λT ′2)−1(H − λT ′1). The splitting T = T ′1 + T ′2
satisfies (A) with Lipschitz constant κ̃1(σ), so Theorem 2.4 applies. The optimal step
size coming out of that result is λ(σ) as given by (6.3), and it yields for S′λ(σ) the

contraction rate θ(σ) defined in (6.6).
The observation to be made from Theorem 6.1 is that instead of pursuing asym-

metric implementations directly, a good strategy is to first subtract off from T1 to get
T ′1 whatever multiple σ of the asymmetric part K of the implementation matrix H+K
is appropriate in order to reduce the Lipschitz constant κ̃1(σ) as far as possible. This
multiple is added to T2 to get T ′2. Thereafter, it’s just a matter of taking the optimal
step size λ(σ) for the altered splitting T = T ′1 + T ′2 with respect to the symmetric
part H of the implementation matrix, in accordance with the earlier results. The net
effect will be the same as the asymmetric iterations (6.4) but executed symmetrically
and at an optimized rate.
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Abstract. We present a local convergence analysis of generalized Newton methods for singular
smooth and nonsmooth operator equations using adaptive constructs of outer inverses. We prove
that for a solution x∗ of F (x) = 0, there exists a ball S = S(x∗, r), r > 0 such that for any starting
point x0 ∈ S the method converges to a solution x̄∗ ∈ S of ΓF (x) = 0, where Γ is a bounded
linear operator that depends on the Fréchet derivative of F at x0 or on a generalized Jacobian of
F at x0. Point x̄∗ may be different from x∗ when x∗ is not an isolated solution. Moreover, we
prove that the convergence is quadratic if the operator is smooth and superlinear if the operator is
locally Lipschitz. These results are sharp in the sense that they reduce in the case of an invertible
derivative or generalized derivative to earlier theorems with no additional assumptions. The results
are illustrated by a system of smooth equations and a system of nonsmooth equations, each of which
is equivalent to a nonlinear complementarity problem.

Key words. Newton’s method, convergence theory, nonsmooth analysis, outer inverses, nonlin-
ear complementarity problems
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1. Introduction. Let X and Y be Banach spaces and let L(X,Y ) denote the
set of all bounded linear operators on X into Y . Let F : X → Y be a continuous
function. We consider the nonlinear operator equation

(1.1) F (x) = 0, x ∈ X.

When X = Y , it is well known that if F is Fréchet differentiable and F ′ is locally
Lipschitz and invertible at a solution x∗, then there exists a ball S(x∗, r), r > 0 such
that for any x0 ∈ S(x∗, r), the Newton method

(1.2) xk+1 = xk − F ′(xk)−1F (xk)

is quadratically convergent to x∗. See, e.g., [9, 27, 34].

In the nonsmooth case, F ′(xk) may not exist. The generalized Newton method
proposes to use generalized Jacobians of F to play the role of F ′ in the Newton
method (1.2) in the finite dimensional case. Let F be a locally Lipschitzian mapping
from Rn into Rm. Then Rademacher’s theorem implies that F is almost everywhere
differentiable. Let DF be the set where F is differentiable. Denote

∂BF (x) = { lim
xi→x
xi∈DF

∇F (xi)}.
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The generalized Jacobian of F at x ∈ Rn in the sense of Clarke [8] is equal to the
convex hull of ∂BF (x),

∂F (x) = conv∂BF (x),

which is a nonempty convex compact set. The Newton method for nonsingular non-
smooth equations using the generalized Jacobian is defined by

(1.3) xk+1 = xk − V −1
k F (xk), Vk ∈ ∂F (xk).

A local superlinear convergence theorem is given in [33], where it is assumed that all
V ∈ ∂F (x∗) are nonsingular.

Qi [31] suggested a modified version of method (1.3) in the form

(1.4) xk+1 = xk − V −1
k F (xk), Vk ∈ ∂BF (xk)

and gave a local superlinear convergence theorem for method (1.4). His theorem
reduced the nonsingularity requirement on all members of ∂F (x∗) to all members of
∂BF (x∗).

Another modification is an iteration function method introduced by Han, Pang,
and Rangaraj [13] using an iteration function G(·; ·) : Rn × Rn → Rn. If F has a
one-sided directional derivative

(1.5) F ′(x; d) := lim
t↓0

F (x+ td)− F (x)

t

and G(x; d) = F ′(x; d), a variant of the iteration function method can be defined by

(1.6)

{
solve F (xk) + F ′(xk; d) = 0,
set xk+1 = xk + d.

See also Pang [28] and Qi [31].
Methods (1.2), (1.3), (1.4), and (1.6) are very useful, but they are not applicable

to the singular case. At each step in (1.2), (1.3), and (1.4), the inverse of a Jacobian
or a generalized Jacobian is required; in (1.6) a nonlinear equation is solved at each
step (in the singular case, it may have no solutions). Often, the inverse cannot be
guaranteed to exist; singularity occurs in many applications. For example, we consider
the nonlinear complementarity problem (NCP): for a given f : Rn → Rn, find x ∈ Rn
such that

x ≥ 0, f(x) ≥ 0, and xT f(x) = 0.

Mangasarian [19] formulated the NCP in the case when f is Fréchet differentiable
as an equivalent system of smooth equations:

(1.7) F̂i(x) = (fi(x)− xi)2 − fi(x)|fi(x)| − xi|xi| = 0, i = 1, 2, . . . , n,

where f = (f1, . . . , fn)T . Let

sgn(α) =

{
1, α ≥ 0,
−1, α < 0,
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and let δij denote the Kronecker function. It is easy to show that the Jacobian of

F̂ := (F̂1, . . . , F̂n)T at x is given by

∂F̂i(x)

∂xj
= 2fi(x)

∂fi(x)

∂xj
(1− sgn(fi(x))) + 2xiδij(1− sgn(xi))− 2fi(x)δij − 2xi

∂fi(x)

∂xj
,

i, j = 1, 2, . . . , n.

The Jacobian ∇F̂ (x) is singular when there is some degeneracy; i.e., xi = fi(x) = 0
for some i.

The NCP can also be formulated as a system of nonsmooth equations [28]:

(1.8) F̃ (x) = min(f(x), x) = 0,

where the “min” operator denotes the componentwise minimum of two vectors. It is
hard to guarantee that all members of ∂BF (x) are nonsingular when there is some
nonsmoothness; i.e., xi = fi(x) and ei 6= ∇fi(x) for some i, where ei is the ith row of
the identity matrix I ∈ Rn×n.

In [5], Chen and Qi studied a parameterized Newton method:

xk+1 = xk − (Vk + λkI)−1F (xk), Vx ∈ ∂BF (xk),

where λk is a parameter to ensure the existence of the inverse of Vk + λkI. The local
superlinear convergence theorem in [5] requires all V∗ ∈ ∂BF (x∗) to be nonsingular.

In Newton-like methods for solving smooth and nonsmooth equations, e.g., quasi-
Newton methods and splitting methods, the Jacobian is often required to be nonsin-
gular at a solution x∗ to which the method is supposed to converge [4, 5, 6, 9, 15,
16, 27, 28, 32, 40]. Hence, it is interesting to know what happens with the Newton
methods when F ′(x∗) or some V∗ ∈ ∂BF (x∗) are singular at x∗. In this case the
solution set is locally a manifold of positive dimension; hence, x∗ is not an isolated
solution.

Let A ∈ L(X,Y ). We denote the range and nullspace of A by R(A) and N(A),
respectively. A linear operator A] : Y → X is said to be an outer inverse of A if
A]AA] = A].

In this paper, for X = Rn and Y = Rm, we consider a generalized Newton method

(1.9) xk+1 = xk − V ]kF (xk),

where Vk ∈ ∂BF (xk) and V ]k denotes an outer inverse of Vk.
Newton’s method for singular smooth equations using outer inverses

(1.10) xk+1 = xk − F ′(xk)]F (xk)

has been considered by Ben-Israel [1], Deuflhard and Heindl [10], and Nashed [25] and
more recently by Nashed and Chen [26]. Reference [26] presented a Kantorovich-type
theorem (semilocal convergence) for Newton-like methods for singular smooth equa-
tions using outer inverses: if some conditions hold at the starting point x0, method
(1.10) converges to a solution of F ′(x0)]F (x) = 0.

This paper establishes new results on Newton’s method for smooth and non-
smooth equations. In particular, we consider the behavior of methods (1.9) and (1.10)
when the singularity occurs at a solution x∗, which is close to the starting point.
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In section 2 we state the definitions and properties of generalized gradients, semi-
smooth functions, and outer inverses. These results are used to analyze convergence
of methods (1.9) and (1.10).

In section 3, by using a Kantorovich-type theorem, we give a locally quadratic
convergence theorem for Newton’s method (1.10) in the following sense: for a solution
x∗ of (1.1), there is a ball S(x∗, r) with r > 0 such that for any x0 ∈ S(x∗, r), Newton’s
method (1.10) with F ′(xk)] = (I + F ′(x0)](F ′(xk) − F ′(x0)))−1F ′(x0)] converges
quadratically to a solution x̄∗ of F ′(x0)]F (x) = 0. Here, x̄∗ may be different from x∗,
because of singularity; there is no guarantee for uniqueness of the solutions. This is a
major difference between singular and nonsingular equations.

In section 4, by using a Mysovskii-type theorem, we prove the superlinear conver-
gence of method (1.9) for nonsmooth equations. Difficulties in the analysis of method
(1.9) for singular nonsmooth equations that have not been previously resolved in the
literature arise from the fact that there are some singular elements Vx ∈ ∂BF (x),
so rank(Vx) are different and V ]xVx 6= I. Previous results for nonsingular equations
require that all Vx ∈ ∂BF (x) have full rank and VxV

−1
x = V −1

x Vx = I. We develop
new techniques for considering singular nonsmooth equations. It is noteworthy that
the solution to which our method converges (in both smooth and nonsmooth cases)
need not be the original solution, and our method applies even when the solution set
is locally a manifold of positive dimension.

In section 5 we illustrate the singularity issue by numerical examples. We give
numerical results for computing three examples of the NCP by methods (1.9) and
(1.10) via a system of smooth equations (1.7) and a system of nonsmooth equations
(1.8), respectively.

2. Definitions and lemmas on outer inverses and semismooth functions.
Outer inverses of linear operators play a pivotal role in the formulation and conver-
gence analysis of the iterative methods studied in this paper. Their role is derived from
projectional properties of outer inverses and, more importantly, from perturbation and
stability analysis of outer inverses. The strategy is based on Banach-type lemmas and
perturbation bounds for outer inverses which show that the set of outer inverses (to
a given bounded linear operator) admits selections that behave like bounded linear
inverses, in contrast to inner inverses or generalized inverses, which do not depend
continuously on perturbations of the operators. This strategy was first used in [26]
to generate adaptive constructs of outer inverses that would lead to sharp conver-
gence results. Lemmas 2.1–2.4 below summarize important perturbation bounds and
projectional properties of outer inverses which are used in the convergence analysis.
For detailed proofs and related properties and references, see [26]. For definition and
properties of generalized inverses in Banach spaces, see [24] or [25].

Lemma 2.1 (Banach-type lemma for outer inverses). Let A ∈ L(X,Y ) and let
A] ∈ L(Y,X) be an outer inverse of A. Let B ∈ L(X,Y ) be such that ||A](B −
A)|| < 1. Then B] := (I + A](B − A))−1A] is a bounded outer inverse of B with
N(B]) = N(A]) and R(B]) = R(A]). Moreover,

||B] −A]|| ≤ ||A
](B −A)||||A]||

1− ||A](B −A)||

and

||B]A|| ≤ 1

1− ||A](B −A)|| .
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Lemma 2.2. Let A ∈ L(X,Y ). If A] is a bounded outer inverse of A, then the
following topological direct sum decompositions hold:

X = R(A])⊕N(A]A),

Y = N(A])⊕R(AA]).

Lemma 2.3. Let A,B ∈ L(X,Y ) and let A] and B] ∈ L(Y,X) be outer inverses
of A and B, respectively. Then B](I −AA]) = 0 if and only if N(A]) ⊂ N(B]).

Lemma 2.4. Let A ∈ L(X,Y ) and let A† be a bounded generalized inverse of
A. Let B ∈ L(X,Y ) satisfy the condition ||A†(B − A)|| < 1, and define B] :=
(I +A†(B −A))−1A†. Then B] is a generalized inverse of B if and only if

dimN(B) = dimN(A)

and

codimR(B) = codimR(A).

Note that if A and B are Fredholm operators with the same index, the two
dimensionality conditions are equivalent. Thus Lemma 2.4 and Theorem 3.4 below
are not restricted to finite dimensional spaces. A simple example of a Fredholm
operator is an operator of the form I +K, where K is a compact operator.

For nonsmooth problems, we consider functions which are semismooth. We now
recall two definitions and an important property related to this class of functions.

Definition 2.5. A function F : Rn → Rm is said to be B-differentiable at a
point x if F has a one-sided directional derivative F ′(x;h) at x (see (1.5)) and

(2.1) lim
h→0

F (x+ h)− F (x)− F ′(x;h)

‖ h ‖ = 0.

We may write (2.1) as F (x+ h) = F (x) + F ′(x;h) + o(‖ h ‖).

Definition 2.6. A function F : Rn → Rm is semismooth at x if F is locally
Lipschitz at x and

lim
V∈∂F (x+th′)
h′→h,t↓0

{V h′}

exists for every h ∈ Rn.

Lemma 2.7 (see [31]). If F : Rn → Rm is semismooth at x, then F is directionally
differentiable at x, and for any V ∈ ∂F (x+ h),

V h− F ′(x;h) = o(||h||).

Shapiro [36] showed that a locally Lipschitzian function F is B-differentiable at x
if and only if it is directionally differentiable. Hence, F is B-differentiable at x if F is
semismooth at x. For a comprehensive analysis of the role of semismooth functions,
see [21, 31, 33].
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3. Local convergence for smooth equations. S(x, r) denotes the open ball
in X with center x and radius r, and S̄(x, r) is its closure. For a fixed A ∈ L(X,Y ),
we denote the set of nonzero outer inverses of A by

Ω(A) := {B ∈ L(Y,X) : BAB = B,B 6= 0}.

In this section we give two local convergence theorems for method (1.10) by using
the following Kantorovich-type theorem (semilocal convergence).

Theorem 3.1. Let F : D ⊂ X → Y be Fréchet differentiable. Assume that
there exist an x0 ∈ D, F ′(x0)] ∈ Ω(F ′(x0)) and constants η,K > 0 such that for all
x, y ∈ D the following conditions hold:

(3.1) ||F ′(x0)]F (x0)|| ≤ η,

(3.2) ||F ′(x0)](F ′(x)− F ′(y))|| ≤ K||x− y||,

(3.3) h := Kη ≤ 1

2
, S(x0, t

∗) ⊂ D,

where t∗ = (1−
√

1− 2h)/K. Then, the sequence {xk} defined by method (1.10) with
F ′(xk)] = (I + F ′(x0)](F ′(xk)− F ′(x0)))−1F ′(x0)] lies in S(x0, t

∗) and converges to
a solution x∗ of F ′(x0)]F (x) = 0.

(See Theorem 3.1 and Corollary 3.1 in [26].)
Theorem 3.2. Let F : D ⊂ X → Y be Fréchet differentiable and assume that

F ′(x) satisfies a Lipschitz condition

(3.4) ||F ′(x)− F ′(y)|| ≤ L||x− y||, x ∈ D.

Assume that there exists an x∗ ∈ D such that F (x∗) = 0. Let p > 0 be a positive
number such that S(x∗, 1

p ) ⊂ D. Suppose that the following condition holds:

(a) There is an F ′(x∗)] ∈ Ω(F ′(x∗)) such that ||F ′(x∗)]|| ≤ p, and for any x ∈
S(x∗, 1

3Lp ), the set Ω(F ′(x)) contains an element of minimal norm.

Then there exists a ball S(x∗, r) ⊂ D with 0 < r < 1
3Lp such that for any x0 ∈

S(x∗, r), the sequence {xk} defined by method (1.10) with

(3.5) F ′(x0)] ∈ argmin{||B|| : B ∈ Ω(F ′(x0))}

and with F ′(xk)] = (I + F ′(x0)](F ′(xk) − F ′(x0)))−1F ′(x0)] converges quadratically
to x̄∗ ∈ S(x0,

1
Lp )∩ {R(F ′(x0)]) + x0}, which is a solution of F ′(x0)]F (x) = 0. Here,

R(F ′(x0)]) + x0 := {x+ x0 : x ∈ R(F ′(x0)])}.
Proof. Let

r̄ =
1

3Lp
and ε =

4

27Lp2
.

We first prove that there exists a ball S(x∗, r) ⊂ D, 0 < r ≤ r̄ such that for any
x0 ∈ S(x∗, r), all conditions of Theorem 3.1 hold.

Since F is continuous at x∗, there exists a ball S(x∗, r) ⊂ D, 0 < r ≤ r̄, such that
for any x ∈ S(x∗, r),

||F (x)|| < ε.
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From (3.4), there is an F ′(x∗)] ∈ Ω(F ′(x∗)) such that

||F ′(x∗)](F ′(x)− F ′(x∗))|| ≤ pLr < 1.

By Lemma 2.1, we have that

F ′(x)] = (I + F ′(x∗)](F ′(x)− F ′(x∗)))−1F ′(x∗)]

is an outer inverse of F ′(x) and

||F ′(x)]|| ≤ ||F
′(x∗)]||

1− pLr ≤
p

1− pLr =: β.

Hence, for any x0 ∈ S(x∗, r), the outer inverse

F ′(x0)] ∈ argmin{||B|| : B ∈ Ω(F ′(x0))}

satisfies ||F ′(x0)]|| ≤ β. Let K = 3
2βL. Then, for x, y ∈ D,

||F ′(x0)](F ′(x)− F ′(y))|| ≤ β||F ′(x)− F ′(y)|| ≤ K||x− y||,

and

h = K||F ′(x0)]F (x0)|| ≤ 3

2
Lβ2ε ≤ 2

9(1− pLr)2 ≤
1

2
.

Furthermore, for any x ∈ S(x0, t
∗) with t∗ = (1−

√
1− 2h)/K, we have

||x∗ − x|| ≤ ||x0 − x∗||+ ||x0 − x|| ≤
1

3Lp
+

2

3Lβ
≤ 1

3Lp
+

2(1− Lpr)
3Lp

≤ 1

Lp
.

This implies S(x0, t
∗) ⊂ S(x∗, 1

Lp ) ⊂ D. Hence, all conditions of Theorem 3.1 hold

at x0. Thus, the sequence {xk} lies in S(x0, t
∗) and converges to a solution x̄∗ of

F ′(x0)]F (x) = 0.
Now we prove that the convergence rate is quadratic.
Since F ′(xk)] = (I+F ′(x0)](F ′(xk)−F ′(x0)))−1F ′(x0)] by Lemma 2.1, R(F ′(x0)])

= R(F ′(xk)]). By

xk+1 − xk = F ′(xk)]F (xk) ∈ R(F ′(xk)]),

we have

xk+1 ∈ R(F ′(xk)]) + xk = R(F ′(xk−1)]) + xk = R(F ′(x0)]) + x0

and x̄∗ ∈ R(F ′(xk)]) + xk+1 for any k ≥ 0. This implies that

x̄∗ ∈ R(F ′(x0)]) + x0 = R(F ′(xk)]) + x0

and

F ′(xk)]F ′(xk)(x̄∗ − xk+1)

= F ′(xk)]F ′(xk)(x̄∗ − x0)− F ′(xk)]F ′(xk)(xk+1 − x0) = x̄∗ − xk+1.
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From Lemma 2.3, we have F ′(xk)] = F ′(xk)]F ′(x0)F ′(x0)]. Using F ′(x0)]F (x̄∗) = 0
and N(F ′(x0)]) = N(F ′(xk)]), we obtain F ′(xk)]F (x̄∗) = 0 and

||x̄∗ − xk+1|| = ||F ′(xk)]F ′(xk)(x̄∗ − xk+1)||
= ||F ′(xk)]F ′(xk)(x̄∗ − xk + F ′(xk)](F (xk)− F (x̄∗)))||

= ||F ′(xk)](F ′(xk)(x̄∗ − xk)−
∫ 1

0

F ′(xk + t(xk − x̄∗))dt(x̄∗ − xk))||

= ||F ′(xk)]F ′(x0)||||F ′(x0)](F ′(xk)−
∫ 1

0

F ′(xk + t(xk − x̄∗))dt)(x̄∗ − xk)||

≤ 1

1−Kt∗ ·
K

2
||x̄∗ − xk||2.

Hence, xk → x̄∗ quadratically.
Lemma 3.3. Let A ∈ L(X,Y ), A 6= 0, where X and Y are finite dimensional

normed spaces. Then the infimum of ||B|| over Ω(A) is attained.
Proof. Let A be a fixed nonzero linear operator from X into Y . For any nonzero

outer inverse B of A, we have ||B|| = ||BAB|| ≤ ||B||2||A||; hence, ||B|| ≥ 1
||A|| .

Let α :=inf {||B|| : B ∈ Ω(A)}. There exists {Bk} ⊂ Ω(A) such that lim ‖Bk‖ = α;
since {Bk} is bounded, it has a limit point B. Then BkABk = Bk and ||Bk|| ≥ 1

||A|| .

Hence, BAB = B and ||B|| = α. Thus, Ω(A) contains an element of minimal operator
norm.

Theorem 3.4. Let F satisfy the assumptions of Theorem 3.2 except that condition
(a) is replaced by the following condition:

(b) The generalized inverse F ′(x∗)† exists, ‖F ′(x∗)†‖ ≤ p, and for any x ∈
S(x∗, 1

3Lp ),

dimN(F ′(x)) = dimN(F ′(x∗))

and

codimR(F ′(x)) = codimR(F ′(x∗)).

Then, the conclusion of Theorem 3.2 holds with

(3.6) F ′(x0)] ∈ {B : B ∈ Ω(F ′(x0)), ||B|| ≤ ||F ′(x0)†||}.

Proof. Condition (a) of Theorem 3.2 ensures that for any x ∈ S(x∗, r), 0 < r ≤
1/3Lp, the outer inverse F ′(x)] ∈ argmin{‖B‖ : B ∈ Ω(F ′(x))} satisfies ‖F ′(x)]‖ ≤
p/(1 − Lpr). Now we show that under condition (b) for any x ∈ S(x∗, r), 0 < r ≤
1/3Lp, the outer inverse F ′(x)] ∈ {B : B ∈ Ω(F ′(x)), ||B|| ≤ ||F ′(x)†||} satisfies
‖F ′(x)]‖ ≤ p/(1− Lpr).

From (3.4),

||F ′(x∗)†(F ′(x)− F ′(x∗))|| ≤ p||F ′(x)− F ′(x∗)|| ≤ pL||x− x∗|| ≤ pLr < 1.

By Lemma 2.4,

F ′(x)† = (I + F ′(x∗)†(F ′(x)− F ′(x∗)))−1F ′(x∗)†

is the generalized inverse of F ′(x). By Lemma 2.1,

||F ′(x)†|| ≤ ||F
′(x∗)†||

1− pLr ≤
p

1− pLr =: β.
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Hence, for any x0 ∈ S(x∗, r), the outer inverse

F ′(x0)] ∈ {B : B ∈ Ω(F ′(x0)), ||B|| ≤ ||F ′(x0)†||}

satisfies ||F ′(x0)]|| ≤ β. By the same argument in the proof of Theorem 3.2, we can
show that the conclusion of Theorem 3.2 holds with

F ′(x0)] ∈ {B : B ∈ Ω(F ′(x0)), ‖B‖ ≤ ‖F (x0)†‖}.

Remark 3.5. Let X = Rn and Y = Rm. Then condition (a) of Theorem 3.2 holds
automatically. Condition (b) of Theorem 3.4 holds if and only if F ′(x) is of a constant
rank in S(x∗, 1

3Lp ). In the case of infinite dimensional spaces, condition (a) depends
on the norm being used. Operator extremal properties of various generalized inverses
have been studied by Engl and Nashed [11].

Remark 3.6. Rall [34] assumed that F ′(x∗)−1 exists, ||F ′(x∗)−1|| ≤ p,

||F ′(x)− F ′(y)|| ≤ L||x− y||,

and S(x∗, 1
Lp ) ⊂ D and proved that there is a ball S(x∗, r) such that Kantorovich

conditions hold at each x0 ∈ S(x∗, r). Under Rall’s conditions, all conditions of
Theorem 3.4 hold. Therefore, Theorem 3.4 reduces to Rall’s theorem for nonsingular
equations. In [39], Yamamoto and Chen compared three local convergence balls for
Newton-like methods for nonsingular equations. Their results also can be generalized
to singular equations using the technique in the proof of Theorem 3.2.

4. Local convergence for nonsmooth equations. In this section, we consider
method (1.9) for singular nonsmooth equations with X = Rn and Y = Rm. The
discussion in this section is presented in finite dimensional spaces since for technical
reasons we wish to confine ourselves to the notion of the generalized derivative of
locally Lipschitzian mappings. Furthermore, because we could not restrict ||Vx− Vy||
by ||x − y|| for nonsmooth operators, Lemma 2.1 could not be used to construct Vk
from V0. A Kantorovich-type theorem is difficult to establish for local analysis of
singular nonsmooth equations. For overcoming the difficulty, we use a Mysovskii-type
theorem [27] to give a local convergence theorem for singular nonsmooth equations.

First, we give a Mysovskii theorem (semilocal convergence) for singular non-
smooth equations.

Theorem 4.1. Let F : Rm → Rn be locally Lipschitz. Assume that there exist
x0 ∈ D, V0 ∈ ∂BF (x0), V ]0 ∈ Ω(V0), and constants η > 0 and α ∈ (0, 1) such that
for any Vx ∈ ∂BF (x), x ∈ D, there exists an outer inverse V ]x ∈ Ω(Vx) satisfying

N(V ]x ) = N(V ]0 ). Also assume that for this outer inverse the following conditions
hold:

||V ]0 F (x0)|| ≤ η,

(4.1) ||V ]y (F (y)− F (x)− Vx(y − x))|| ≤ α||y − x|| if y = x− V ]xF (x).

Let S := S(x0, r) ⊆ D with r = η/(1− α). Then, the sequence {xk} defined by (1.9)

with V ]k satisfying N(V ]k ) = N(V ]0 ) lies in S̄ = S̄(x0, r) and converges to a solution

x∗ of V ]0 F (x) = 0 in S̄.
Proof. First we show that the sequence defined by method (1.9) lies in S. For

k = 1, we have

||x1 − x0|| = ||V ]0 F (x0)|| ≤ η = r(1− α),
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and thus x1 ∈ S. Suppose now x1, x2, . . . , xk ∈ S. Let V ]k be an outer inverse of

Vk ∈ ∂BF (xk) such that N(V ]k ) = N(V ]k−1) = N(V ]0 ). Then, by Lemma 2.3, we have

V ]k (I − Vk−1V
]
k−1) = 0 and thus

||xk+1 − xk|| = ||V ]kF (xk)||
= ||V ]k (F (xk)− Vk−1(xk − xk−1)− Vk−1V

]
k−1F (xk−1))||

= ||V ]k (F (xk)− Vk−1(xk − xk−1)− F (xk−1))||
≤ α||xk − xk−1|| ≤ αk||x1 − x0|| ≤ αkη = rαk(1− α).

Hence,

||xk+1 − x0|| ≤
k∑
j=0

||xj+1 − xj || ≤
k∑
j=0

rαj(1− α) ≤ r.

This proves that {xk} ⊆ S. Hence, for any positive integers k and p,

||xk+p+1 − xk|| ≤
k+p∑
j=k

||xj+1 − xj || ≤
k+p∑
j=k

rαj(1− α) ≤ rαk.

So, the method (1.9) converges to a point x∗ ∈ S. Since F is Lipschitz on S̄, ||Vk|| is
uniformly bounded on S̄. Thus, by Lemma 2.3,

||V ]0 F (x∗)|| = lim
k→∞

||V ]0 F (xk)|| = lim
k→∞

||V ]0 VkV
]
kF (xk)||

≤ lim
k→∞

||V ]0 ||||VkV
]
kF (xk)|| = lim

k→∞
||V ]0 ||||Vk(xk+1 − xk)|| = 0.

Therefore, V ]0 F (x∗) = 0.
Remark 4.2. Suppose that m = n and all Vx ∈ ∂F (x), x ∈ S are nonsingular.

Then, we have V −1
x ∈ Ω(Vx) and N(V −1

x ) = N(V −1
0 ). Moreover, x∗ is a solution of

F (x) = 0. Hence, Theorem 4.1 generalizes Theorem 3.3 in [33] to singular equations.
Moreover, our assumptions are weaker than assumptions of Theorem 3.3 in [33] in the
nonsingular case.

Theorem 4.3. Let F : Rn → Rm be locally Lipschitz. Let p be a positive
constant. Assume that there exist a Γ ∈ Rn×m and an x∗ ∈ D such that ΓF (x∗) = 0;

for any V∗ ∈ ∂BF (x∗), there is an outer inverse V ]∗ ∈ Ω(V∗) satisfying N(V ]∗ ) = N(Γ)

and ‖ V ]∗ ‖≤ p. Then, there exists a positive number r such that for any x ∈ S(x∗, r)
and Vx ∈ ∂BF (x) there is an outer inverse V ]x ∈ Ω(Vx) such that N(V ]x ) = N(Γ).
Moreover assume that (4.1) holds for this outer inverse. Then, there is a δ ∈ (0, r/2]

such that for any x0 ∈ S(x∗, δ), the sequence {xk} defined by (1.9) with V ]k ∈ Ω(Vk)

and N(V ]k ) = N(Γ) lies in S(x∗, r) and converges to a solution x̄∗ of ΓF (x) = 0.

Furthermore, if F is semismooth at x̄∗ and R(V ]k ) = R(V ]0 ), then the convergence
rate is superlinear.

Proof. First, we claim that for ε̂ ∈ (0, 1/p) there is a ball S(x∗, r) ⊂ D with r > 0
such that for any Vx ∈ ∂BF (x), x ∈ S(x∗, r), we have

(4.2) ‖ Vx − V∗ ‖< ε̂ for a V∗ ∈ ∂BF (x∗).
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If (4.2) is not true, then there is a sequence {yk : yk ∈ DF } with yk → x∗ such that

(4.3) ‖ ∇F (yk)− V∗ ‖≥ ε̂ for all V∗ ∈ ∂BF (x∗).

By passing to a subsequence, we may assume that {∇F (yk)} converges to a V∗ ∈
∂BF (x∗). This contradicts (4.3); hence, (4.2) holds.

Suppose that x ∈ S(x∗, r). Then, there is a V∗ ∈ ∂BF (x∗) such that

(4.4) ‖ Vx − V∗ ‖≤ ε̂ <
1

p
.

From the assumptions of this theorem, there is a V ]∗ ∈ Ω(V∗) which satisfies ||V ]∗ || ≤ p
and N(V ]∗ ) = N(Γ). Hence, from Lemma 2.1, we have that V ]x = (I+V ]∗ (Vx−V∗))−1V ]∗
is an outer inverse and

N(V ]x ) = N(V ]∗ ) = N(Γ), R(V ]x ) = R(V ]∗ ), ‖ V ]xV∗ ‖≤
1

1− ε̂p =: β.

Since F is continuous and ‖V ]∗ ‖ is bounded for any ε ∈ (0, r(1 − α)/2β], there

exists a δ ∈ (0, r/2) such that for any x ∈ S(x∗, δ), ||V ]∗F (x)|| < ε. Therefore, for
any x0 ∈ S(x∗, δ), V0 ∈ ∂BF (x0), there exists V∗ ∈ ∂BF (x∗) such that (4.2) holds.

Moreover, there exist V ]0 ∈ Ω(V0) and V ]∗ ∈ Ω(V∗) such that

N(V ]0 ) = N(V ]∗ ) = N(Γ)

and

||V ]0 F (x0)|| = ||V ]0 V∗V ]∗F (x0)|| ≤ ||V ]0 V∗||||V ]∗F (x0)|| ≤ βε ≤ r(1− α)/2.

Since x0 ∈ S(x∗, r/2), we have S(x0, r/2) ⊂ S(x∗, r). Hence, all conditions of
Theorem 4.1 hold with η = r(1 − α)/2. By Theorem 4.1 for any x0 ∈ S(x∗, δ), the

sequence {xk} defined by method (1.9) with V ]k satisfying (4.1) lies in S(x∗, r) and

converges to a solution x̄∗ of V ]0 F (x) = 0. Since N(V ]0 ) = N(Γ), we have ΓF (x̄∗) = 0.
Now, we prove that the convergence rate is superlinear.
Since xk ∈ S(x∗, r), there is a V ]∗ ∈ Ω(V∗) such that

N(V ]k ) = N(V ]∗ ) and ‖Vk − V∗‖ < 1/p.

From Lemma 2.3, V ]k = V ]kV∗V
]
∗ and

‖V ]k ‖ ≤ ‖V
]
kV∗‖‖V ]∗ ‖ ≤ βp,

i.e., ‖V ]k ‖ is bounded. Since N(V ]k ) = N(Γ) and ΓF (x̄∗) = 0, V ]kF (x̄∗) = 0. Since

R(V ]k ) = R(V ]0 ), xk+1 − x̄∗ ∈ R(V ]k ). Hence,

‖ xk+1 − x̄∗ ‖
= ||V ]kVk(xk+1 − x̄∗)||
= ||V ]kVk(xk − V ]k (F (xk)− F (x̄∗))− x̄∗)||
= ||V ]k (Vk(xk − x̄∗)− F (xk) + F (x̄∗))||
≤‖ V ]k ‖ (‖ F (xk)− F (x̄∗)− F ′(x̄∗;xk − x̄∗) ‖

+ ‖ Vk(xk − x̄∗)− F ′(x̄∗;xk − x̄∗) ‖).
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By (2.1) and Lemma 2.7, we have

‖ F (x)− F (x̄∗)− F ′(x̄∗;x− x̄∗) ‖= o(‖ x− x̄∗ ‖)

and

‖ Vx(x− x̄∗)− F ′(x̄∗;x− x̄∗) ‖= o(‖ x− x̄∗ ‖).

This implies

‖ xk+1 − x̄∗ ‖= o(‖ xk − x̄∗ ‖).

Hence, method (1.9) converges to x̄∗ superlinearly.

Remark 4.4. Suppose that there is a V ]0 ∈ Ω(V0) satisfying N(V ]0 ) = N(Γ). If
there is a Vk ∈ ∂BF (xk) such that

(4.5) ‖V ]0 (Vk − V0)‖ < 1,

then V ]k = (I + V ]0 (Vk − V0))−1V ]0 is an outer inverse of Vk with N(V ]k ) = N(V ]0 ) =

N(Γ) and R(V ]k ) = R(V ]0 ). Because of the nonsmoothness, we do not have the benefit
of a condition such as (3.4) to ensure (4.5). This is a major difference between smooth
and nonsmooth equations.

Remark 4.5. Superlinear convergence results in [31, 33] assume that all V∗ ∈
∂BF (x∗) are nonsingular. Under this assumption, x∗ is the unique solution of F (x) =
0 in a neighborhood N∗ of x∗, and it was only shown that ‖xk+1−x∗‖ = o(‖xk−x∗‖)
for a sequence {xk} ⊂ N∗. In the singular case, the set of solutions may be locally a
manifold of positive dimension. There is no neighborhood N∗ of x∗ such that method
(1.9) converges to x∗ for any close starting point x0 ∈ N∗. Condition (4.1) is imposed
in Theorem 4.3 to guarantee the existence of a neighborhood N∗ such that method
(1.9) converges to a solution of V ]0 F (x) = 0 for any starting point x0 ∈ N∗. The
following corollary shows that condition (4.1) can be replaced by special choices of
starting points.

Corollary 4.6. Let p be a positive number, Γ be an n×m matrix, and x∗ be a
solution of ΓF (x) = 0. Suppose that F is semismooth at x∗ and, for all V∗ ∈ ∂BF (x∗),

there exists a V ]∗ ∈ Ω(V∗) such that N(V ]∗ ) = N(Γ) and ||V ]∗ || ≤ p. Then method (1.9)

with V ]k satisfying N(V ]k ) = N(Γ), R(V ]k ) = R(V ]0 ), and x0 ∈ R(V ]0 )+x∗ is convergent
to x∗ superlinearly in a neighborhood of x∗.

Proof. From the proof of Theorem 4.3, we have that there is a ball S(x∗, r̄) such
that for any Vx ∈ ∂BF (x), x ∈ S(x∗, r̄), there is an outer inverse V ]x ∈ Ω(Vx) satisfying

N(V ]x ) = N(Γ) and ||V ]xV∗|| ≤ β for a V∗ ∈ ∂BF (x∗). Choosing x0 ∈ R(V ]0 ) + x∗,

we have xk+1 − x∗ ∈ R(V ]k ) since R(V ]k ) = R(V ]0 ) and xk+1 − xk ∈ R(V ]k ). Then we
can show the superlinear convergence by the last part of the proof of Theorem 4.3
(superlinear convergence).

Remark 4.7. If we assume that m = n and all V∗ ∈ ∂BF (x∗) are nonsingular,
then we can take Γ = I ∈ Rn×n. Furthermore, there is a neighborhood N∗ of x∗ such
that for any x ∈ N∗, all Vx ∈ ∂BF (x) are nonsingular. Then for any xk ∈ N∗, we

can take V ]k = V −1
k , which satisfies N(V ]k ) = N(Γ) = {0}, R(V ]k ) = R(V ]0 ) = Rn,

and xk ∈ R(V ]0 ) + x∗. Hence, Theorem 4.3 and Corollary 4.6 generalize the local
convergence theorems given in [31, 33].

Remark 4.8. In Theorem 4.3 and Corollary 4.6, V ]k should be chosen to satisfy

N(V ]k ) = N(V ]0 ) and R(V ]k ) = R(V ]0 ) at each step of (1.9). There exists an outer
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inverse V ]k such that N(V ]k ) = N(V ]0 ) and R(V ]k ) = R(V ]0 ) if and only if N(V ]0 ) and

R(VkV
]
0 ) are complementary subspaces of Rm. If such an outer inverse exists, it is

unique [2; p. 62]. Now we give a method for numerical construction of such an outer

inverse based on V ]0 and Vk. Let s =rank(V ]0 ) and rank(Vk) ≥ s. Let U be a matrix

whose columns form a basis for R(V ]0 ), and let W be a matrix whose rows form a

basis for the orthogonal complement of N(V ]0 ). Then WVkU is an s× s matrix with

rank s, so it is invertible. Let V ]k := U(WVkU)−1W. Then V ]k is an outer inverse of

Vk with N(V ]k ) = N(V ]0 ) and R(V ]k ) = R(V ]0 ).

5. Examples and numerical experiments. In this section we give methods
for constructing outer inverses which are needed in the theorems and illustrate our
results with three examples from nonlinear complementarity problems. The first ex-
ample compares the theorems given in this paper with earlier results. The second
example shows how outer inverses apply while generalized inverses fail for Newton’s
method. The third example tests the methods (1.9) and (1.10) for problems with
different dimensions. The performance of algorithms is given by using Matlab 4.2c on
a Sun 2000 workstation.

5.1. Calculation of outer inverses. Methods for constructing outer inverses
of a given matrix or a linear operator are given in [2, 23, 24, 26]. For the case
of an m × n matrix A with rank r > 0, we have a method using singular value
decomposition (SVD). Let A = V ΣUT , where Σ is a diagonal matrix of the same
size as A and with nonnegative diagonal elements in decreasing order; V and U are
m × m and n × n orthogonal matrices, respectively. Let ε > 0 be a computational
error control, Σ]s=diag(v1, v2, . . . , vs, 0, . . . , 0) ∈ Rn×m, where s ≤min(m,n) and

vi =

{
σ−1
i,i , σi,i > |ε|,

0, otherwise.

Then UΣ]sV
T is an outer inverse of A.

As we know, orthogonal-triangular decomposition (QR) is less expensive than
SVD. Here we give a new method to construct an outer inverse of A by using QR.

Let A = QR be a factorization, where Q is an m×m orthogonal matrix, R is an
m× n upper triangular matrix of the form

R =

(
R11 R12

0 0

)
,

and R11 is an r×r matrix of rank r. Then A] = R]QT is an outer inverse of A, where

R] =

(
R̄−1

11 0
0 0

)
,

and R̄11 is an r̄ × r̄ matrix of rank r̄ ≤ r.
Remark 5.1. Outer inverses of a matrix A are more stable than the generalized

inverses when some singular values of A are close to zero because we can choose Σ]

and R̄] such that their elements are bounded. For details of the perturbation analysis
that demonstrates stability of certain selections of outer inverses, see [22, 24, 26].

Remark 5.2. For the smooth case, we need not construct an outer inverse at each
step but only at the starting point. In practice, method (1.10) is implemented in the
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following form: x1 = x0 − F ′(x0)]F (x0). For k ≥ 1, we let xk+1 = xk + d, where d is
the unique solution of the linear system

(I + F ′(x0)](F ′(xk)− F ′(x0)))d = −F ′(x0)]F (xk).

Obviously, if m = n and F ′(xk) is invertible, then the method reduces to F ′(xk)d =
−F (xk).

5.2. Numerical examples. As we stated in section 1, an NCP can be formu-
lated as a system of smooth equations by (1.7) and also as a system of nonsmooth
equations by (1.8). We can solve the smooth equations (1.7) by method (1.10) and
the nonsmooth equations (1.8) by method (1.9). The singularity occurs very often in
solving these two systems. It is interesting to see how to overcome the singularity by
methods (1.9) and (1.10) and Theorems 3.2 and 4.3.

Example 1. We consider the following example [12]. Let

f(x) = (1− x2, x1)T .

The solution set of the associated NCP is W = {(0, α), | 0 ≤ α ≤ 1}. For each
x∗ ∈W , the Jacobian of F̂ defined by (1.7) is

F̂ ′(x∗) =

(
−2(1− α) 0
−2α 0

)
,

which is singular. Hence, previous local convergence theorems of Newton’s method
[9, 27, 34] are not applicable for this example. Now we apply Theorem 3.2 to this
problem. We take x∗ = (0, 0.5); then,

F̂ ′(x∗)] =

(
a −1− a
a −1− a

)
∈ Ω(F ′(x∗))

for any a ∈ (−∞,∞). We take a = −1, L = 4, and p = 1. Then we can show that
there is a ball S(x∗, r) with 0 < r < 0.5 such that ||F̂ ′(x∗)]||∞ ≤ p and, for any
x ∈ S(x∗, r), ||F̂ ′(x)− F̂ ′(y)||∞ ≤ L||x− y||∞. Hence, all conditions of Theorem 3.2
hold.

Now we consider the nonsmooth equation (1.8). For any x∗ ∈W ,

V∗ =

(
1 0
1 0

)
∈ ∂BF̃ (x∗).

This implies that F is not strongly BD-regular at all solutions in the sense of [31, 33].
Hence, the local convergence theorems in [31, 33] are not applicable for this example.
However, we can choose an outer inverse as

V ]∗ =

(
1 0
0 0

)
∈ Ω(V∗).

Take x∗ = (0.0, 0.0). Then, F is nonsmooth at x∗. There is a ball S(x∗, r) with
0 < r < 0.5 such that for any x ∈ S(x∗, r), the generalized Jacobian is

V (x) =

(
1 0
1 0

)
or V (x) =

(
1 0
0 1

)
.

(For determination of a Vx ∈ ∂BF (x), see [7, 31].)
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Hence, we can take outer inverses V ]x = V ]∗ . Note that this is a linear com-
plementarity problem; all conditions of Theorem 4.3 hold. Furthermore, for any
x0 = (α, β) ∈ S(x∗, r), x1 = x0 − V ]0 F̃ (x0) = (0, β). If β ≥ 0, then (0, β) ∈W .

Example 2. The generalized inverse A† of a matrix A is an outer inverse, but A†

may not be a good outer inverse for Newton’s method. This example, given by one
of the referees, illustrates that conditions of Theorem 4.3 and Corollary 4.6 fail when
we use generalized inverses. However, these conditions hold for a number of outer
inverses.

Consider the piecewise linear equation

F (x1, x2) = min(2x1 + x2 − 2,−2x1 + x2 − 2).

The solution of F (x) = 0 is the union of the two rays:

{(x1, x2) : x1 ≤ 0, x2 = −2x1 + 2} ∪ {(x1, x2) : x1 ≥ 0, x2 = 2x1 + 2}.

This particular function, though nonsmooth, is well behaved in that its set of zeros is
a 1-dimensional manifold, just as the solution of a linear equation in two variable is
(usually) a line.

For x1 ≤ 0, let V = V1 = [2, 1] ∈ ∂BF (x) and

V †1 =

[
2/5
1/5

]
.

Similarly, for x1 > 0, let V = V2 = [−2, 1] ∈ ∂BF (x);

V †2 =

[
−2/5
1/5

]
.

It can be seen that for any starting point x0 = (x0
1, x

0
2) such that x0

2 ≤ −(1/2)x0
1 + 2

and x0
2 ≤ (1/2)x0

1 + 2 (for instance x0 = (0, 0)), the Newton’s method defined by

xk+1 = xk − V †i F (xk),

where i = 1 if xk1 ≤ 0 and i = 2 otherwise, converges linearly but not superlinearly to

x̄ = (0, 2). The convergence is only linear because, although N(V †1 ) = N(V †2 ) = {0},
we have R(V †1 ) 6= R(V †2 ). We also see ‖V †2 (V1 − V2)‖ = 8/5 > 1. Thus, Lemma 2.1
cannot be applied; likewise, (4.1) fails to hold in this case.

Now we consider the use of outer inverses. It is easy to verify

Ω(V1) =

{(
α
β

)
, 2α+ β = 1, |α|+ |β| 6= 0

}
and

Ω(V2) =

{(
α
β

)
,−2α+ β = 1, |α|+ |β| 6= 0

}
.

For any V ]2 ∈ Ω(V2) with α < 1/4, ‖V ]2 (V1 − V2)‖2 < 1. By Lemma 2.1, V ]1 =

(I + V ]2 (V1 − V2))−1V ]2 is an outer inverse of V1 with N(V ]1 ) = N(V ]2 ) and R(V ]1 ) =

R(V ]2 ). For instance, we choose

V ]2 =

(
−1/5
3/5

)
.
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Table 1

n (1.10) for smooth eq. (1.9) for nonsmooth eq.

k ||F (xk)]F (xk)|| cputime k ||V ]kF (xk)|| cputime
50 13 2.83× 10−15 31.85 5 1.0× 10−16 3.97
100 12 1.25× 10−14 144.15 4 1.0× 10−16 15.18
200 8 3.10× 10−10 586.97 4 1.0× 10−16 137.20
350 14 4.91× 10−14 4.92× 103 4 1.0× 10−16 577.95
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Fig. 1. Computational results for Example 3.

Then,

V ]1 = (I + V ]2 (V1 − V2))−1V ]2 =

(
−1
3

)
.

Furthermore, for the starting point x0 = (0, 0),

x1 = x0 − V ]1 F (x0) =

(
−2
6

)
is a solution of F (x) = 0.

Example 3. To compare methods (1.9) and (1.10), we randomly generate an NCP
with

f(x) = Ax2 +Bx+ c,

where A and B are n× n matrices, c ∈ Rn is a vector, and x2 = (x2
i ) ∈ Rn.
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We first randomly generate singular matrices A and B and a nonnegative vector
x∗, which has some zero elements. Then we choose c such that x∗ is a solution of
an NCP with f(x) = Ax2 + Bx + c. The problem is randomly generated but with
known solution characteristic and singularity, so we can test the efficiency of methods
(1.9) and (1.10). Table 1 summarizes computational results with different n. Also,

we choose n = 100, x0 = x∗+random vector and show ||F ′(xk)]F (xk)||, ||V ]kF (xk)||
and convergence rate ||F (xk+1)||/||xk+1 − xk|| in Figure 1.

6. Concluding remarks. In this paper, we discussed local convergence of New-
ton’s method for singular smooth and nonsmooth equations, respectively. These re-
sults generalize and extend earlier results on nonsingular smooth and nonsmooth
equations. Singularity occurs in many areas of optimization and numerical analysis.
Pang–Gabriel [29] mentioned that the singularity badly affected the convergence of
the NE/SQP method for the NCP in a number of numerical examples. The results
in this paper present a strategy to treat singularity and to guarantee convergence of
Newton’s method and related iterative methods. Some of our results are also stronger
than earlier results in the nonsingular case since they involve weaker assumptions.

Acknowledgments. We are grateful to the referees for their constructive com-
ments.
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Abstract. The paper presents concrete realizations of quasi-Newton methods for solving several
standard problems including complementarity problems, special variational inequality problems, and
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1. Introduction. In recent years, many authors have considered various forms
of Newton methods for solving nonsmooth equations (NE) (see, e.g., [17, 18, 19, 20,
11, 12, 13, 21, 22, 23, 26]). Some authors have also considered the application of
the quasi-Newton methods to nonsmooth equations. In Kojima and Shindo [11], the
quasi-Newton method was applied to piecewise smooth equations. When the iteration
sequence moves to a new C1-piece, a new approximate starting matrix is needed. Ip
and Kyparisis [9] considered the local convergence of quasi-Newton methods directly
applied to B-differentiable equations (in the sense of Robinson [25]). The superlin-
early convergent theorems are established under the assumption that F is strongly
F-differentiable [15] at the solution.

The main object of this paper is to construct a practical quasi-Newton method for
nonsmooth equations, especially for those which are of concrete background. In order
to complete this, we first give a slight modification of the generalized Newton method
[21, 22, 13]. Based on the modified generalized Newton method, we give a quasi-
Newton method for solving a class of nonsmooth equations, which arises from the
complementarity problem, variational inequality problem, the Karush–Kuhn–Tucker
(KKT) system of nonlinear programming, and related problems. In each step, we
only need to solve a linear equation. The Q-superlinear convergence is established
under mild conditions.

The characteristics of the quasi-Newton method for solving (4.12) established in
section 4 include the following: (i) without assuming the existence of F ′(x∗), we prove
the Q-superlinearly convergent property; (ii) only one approximate starting matrix is
needed; and (iii) from the QR factorization of the kth iterate matrix we need at most
O((I(k) + 1)n2) arithmetic operations to get the QR factorization of the (k + 1)th
iterate matrix (for the definition of I(k), see (5.8)).

The remainder of this paper is organized as follows. In section 2, we give some
preliminaries on nonsmooth functions. In section 3, we propose a modified generalized
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Newton method. In section 4, we give a quasi-Newton method for solving a class
of nonsmooth equations. In section 5, we discuss the implementation of the quasi-
Newton method for the nonlinear complementarity problem. The KKT system of
variational inequality problems with upper and lower bounds are discussed in section
6. The computational results are given in section 7.

2. Preliminaries. In general, assume that F : Rn → Rm is locally Lipschitzian.
In order to reduce the nonsingularity assumption of the generalized Newton method
[22], the concept ∂BF (x) was introduced by Qi [21]:

(2.1) ∂BF (x) =
{

lim
xk→x
xk∈DF

F ′(xk)
}
,

where DF is the set where F is differentiable. Let ∂F be the generalized Jacobian of
F in the sense of Clarke [4]. Then ∂F (x) is the convex hull of ∂BF (x),

(2.2) ∂F (x) = conv ∂BF (x).

For m = 1, ∂BF (x) was introduced by Shor [28]. Here, we denote

(2.3) ∂bF (x) = ∂BF1(x)× ∂BF2(x)× · · · × ∂BFm(x).

When m = 1, ∂bF (x) = ∂BF (x).
We say that F is semismooth at x if

(2.4) lim
V∈∂F (x+th′)
h′→h, t↓0

{V h′}

exists for any h ∈ Rn. Semismoothness was originally introduced by Mifflin [14]
for functionals. Convex functions, smooth functions, and piecewise linear functions
are examples of semismooth functions. Scalar productions and sums of semismooth
functions are still semismooth functions (see [14]). In [23], Qi and Sun extended the
definition of semismooth functions to F : Rn → Rm. It was proved in [23] that F is
semismooth at x if and only if all its component functions are so.

Condition (2.4) is stronger than the assumption that for any h ∈ Rn,

(2.5) lim
V∈∂F (x+th)

t↓0

{V h}

exists. Under the latter assumption, Qi and Sun [Proposition 2.1, 22] proved that the
classical derivative

F ′(x;h) = lim
t↓0

F (x+ th)− F (x)

t

exists and is equal to the limit in (2.5); i.e.,

(2.6) F ′(x;h) = lim
V∈∂F (x+th)

t↓0

{V h}.

If the right-hand side limit in (2.6) is uniformly convergent for all h with unit norm,
then from Theorem 2.3 of [22] we have that F is semismooth at x. In [13], Kum-
mer discussed sufficient and necessary conditions for the convergence of the Newton
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method based on generalized derivatives. One of the conditions for guaranteeing con-
vergence (see Theorem 2 of [13]) is (specialized to the fourth case discussed in [13])
that for any V ∈ ∂F (x+ h), h→ 0,

(2.7) F (x+ h)− F (x)− V h = o(‖h‖).

Since F is locally Lipschitz continuous, from [27] we know that if F ′(x;h) exists, then
F ′(x;h) coincides with the B-derivative of F at x; i.e.,

(2.8) lim
h→0

F (x+ h)− F (x)− F ′(x;h)

‖h‖ = 0.

So, if F ′(x;h) exists, then (2.7) implies that for any V ∈ ∂F (x+ h), h→ 0,

(2.9) V h− F ′(x;h) = o(‖h‖).

Again, (2.9) implies the semismoothness of F at x from Theorem 2.3 of [22]. But in
[13], Kummer also discussed the case that F ′(x;h) may not exist. In this paper we
will only consider the case that F ′(x;h) exists. Under the existence assumption of
F ′(x;h), similar to the above discussion from Theorem 2.3 of [22], we can prove that
in finite dimensional space the condition (CA∗) in Theorem 2 of [13] implies (2.9)
(by assuming F (x) = 0), which is essentially equivalent to the semismoothness of F
at x. Semismoothness is a useful tool in proving the Q-superlinear convergence of
the generalized Newton method for nonsmooth equations [21, 22, 23]. We also need
it in this paper. In addition, Kummer [13] discussed the approximation of Newton
matrices and errors when solving the auxiliary problems. In this paper we will put
our main attention on constructing concrete quasi-Newton methods for solving special
nonsmooth equations and will not discuss the inexact solution of the subproblems.

Lemma 2.1 (see [22]). Suppose that F : Rn → Rm is a locally Lipschitzian
function and semismooth at x. Then

(1) for any V ∈ ∂F (x+ h), h→ 0,

V h− F ′(x;h) = o(‖h‖);

(2) for any h→ 0,

F (x+ h)− F (x)− F ′(x;h) = o(‖h‖).

In the rest of this paper, let ‖ · ‖ denote the l2 vector norm or its induced matrix
norm.

Lemma 2.2. Suppose that F : Rn → Rn is a locally Lipschitzian function. If all
V ∈ ∂bF (x) are nonsingular, then there exists a positive constant β such that

‖V −1‖ ≤ β

for any V ∈ ∂bF (x). Furthermore, there exists a neighborhood N(x) of x such that
for any y ∈ N(x), all W ∈ ∂bF (y) are nonsingular and satisfy

(2.10) ‖W−1‖ ≤ 10

9
β.

Proof. From the definition of ∂bF we can easily know that ∂bF (·) is bounded and
closed in a neighborhood of x. Then the proof of the theorem is similar to that of [21,
22]. We omit the detail here.
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3. Newton method for nonsmooth equations. Suppose that F : Rn → Rn

is locally Lipschitzian. We are interested in finding a solution of the equation

(3.1) F (x) = 0.

Qi and Sun [22], Qi [21], and Kummer [13] considered various forms of the Newton
method for solving (3.1) when F is not F -differentiable. Here we will consider the
following slightly modified Newton method

(3.2) xk+1 = xk − V −1
k F (xk), k = 0, 1, . . . ,

where Vk ∈ ∂bF (xk). This method is useful to establish the superlinear convergence
of quasi-Newton methods given in section 4. Similar to that of [21, 22], we can give
the following convergence theorem.

Theorem 3.1. Suppose that x∗ is a solution of (3.1), F is locally Lipschitzian and
semismooth at x∗, and all V∗ ∈ ∂bF (x∗) are nonsingular. Then the iteration method
(3.2) is well defined and converges to x∗ Q-superlinearly in a neighborhood of x∗.

Proof. By Lemma 2.2, (3.2) is well defined in a neighborhood of x∗ for the first
step k = 0. Since Vk ∈ ∂bF (xk), the ith row V ik of Vk satisfies

V ik ∈ ∂BFi(xk).

From the semismoothness of F we know that Fi is semismooth at x∗. By Lemma 2.1,

V ik (xk − x∗)− F ′i (x∗;xk − x∗) = o(‖xk − x∗‖), i = 1, . . . , n.

Therefore,

(3.3) Vk(xk − x∗)− F ′(x∗;xk − x∗) = o(‖xk − x∗‖).

From Lemma 2.1 and (3.3) we have

‖xk+1 − x∗‖ = ‖xk − x∗ − V −1
k F (xk)‖

≤ ‖V −1
k [F (xk)− F (x∗)− F ′(x∗;xk − x∗)]‖

+‖V −1
k [Vk(xk − x∗)− F ′(x∗;xk − x∗)]‖

= o(‖xk − x∗‖).

From the theoretical point of view, there is no need to allow Newton matrices
in ∂bF (·) only since, due to the semismoothness assumptions, even each matrix of
conv ∂bF (·) could be used. The latter would lead to more general statements than
those in Theorem 3.1. On the other hand, from the computational point of view,
the assumption that all matrices V ∈ conv ∂bF (x) are nonsingular is too strong and
not necessary. So here we only restrict V ∈ ∂bF (x) and will not discuss the more
general case that V ∈ conv ∂bF (x). See [20] and section 6 for further discussions
on the nonsingularity assumption of V ∈ ∂bF (x). For general statements on Newton
methods for nonsmooth equations, see Qi and Sun [22] and Kummer [13].
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4. Quasi-Newton method for nonsmooth equations and its specializa-
tions. In this section, we will first consider a quasi-Newton method for general non-
smooth equations and then discuss its specializations to a class of nonsmooth equa-
tions and related problems.

Consider the following quasi-Newton method:

(4.1) xk+1 = xk − V −1
k F (xk), Vk ∈ Rn×n, k = 0, 1, . . . .

Theorem 4.1. Suppose that F : Rn → Rn is a locally Lipschitzian function in
the open convex set D ⊂ Rn and x∗ ∈ D is a solution of F (x) = 0. Suppose that
F is semismooth at x∗ and all W∗ ∈ ∂bF (x∗) are nonsingular. There exist positive
constants ε, ∆ such that if x0 ∈ D, ‖x0 − x∗‖ ≤ ε, and there exists Wk ∈ ∂bF (xk)
such that

(4.2) ‖Vk −Wk‖ ≤ ∆,

then the sequence of points generated by (4.1) is well defined and converges to x∗

Q-linearly in a neighborhood of x∗.
Proof. From Lemma 2.2, there exists a positive constant β such that ‖W−1

∗ ‖ ≤ β
for all W∗ ∈ ∂bF (x∗) and there exists a neighborhood N0(x∗) (⊆ D) of x∗ such that

‖W−1‖ ≤ 10

9
β

for any y ∈ N0(x∗), W ∈ ∂bF (y). Choose ∆ > 0 such that

(4.3) 6β∆ ≤ 1.

Recall that a map is semismooth at x∗ if and only if each of its components is semi-
smooth at x∗. So from (1) and (2) of Lemma 2.1, for any W i ∈ ∂bFi(x), x→ x∗,

(4.4) ‖Fi(x)− Fi(x∗)−W i(x− x∗)‖ = o(‖x− x∗‖).

Therefore, for any W ∈ ∂bF (x), x→ x∗, we have

(4.5) ‖F (x)− F (x∗)−W (x− x∗)‖ = o(‖x− x∗‖).

Then we can choose a positive constant ε small enough such that for any x ∈ N(x∗) =
{y|‖y − x∗‖ ≤ ε} ⊆ N0(x∗), W ∈ ∂bF (x), we have

(4.6) ‖F (x)− F (x∗)−W (x− x∗)‖ ≤ ∆‖x− x∗‖.

If ‖xk − x∗‖ ≤ ε, then Wk ∈ ∂bF (xk) is nonsingular and ‖W−1
k ‖ ≤ 10

9 β. By Theorem
2.3.2 of Ortega and Rheinboldt [15], Vk is invertible and

(4.7) ‖V −1
k ‖ ≤

‖W−1
k ‖

1− ‖W−1
k (Wk − Vk)‖

≤
10
9 β

1− 5
27

<
3

2
β.

Then when ‖xk − x∗‖ ≤ ε, we have

(4.8)

‖xk+1 − xk‖ = ‖xk − V −1
k F (xk)− x∗‖

≤ ‖V −1
k ‖‖F (xk)− F (x∗)− Vk(xk − x∗)‖

≤ ‖V −1
k ‖[‖F (xk)− F (x∗)−Wk(xk − x∗)‖

+‖Vk −Wk‖‖xk − x∗‖].
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Substituting (4.2), (4.6), and (4.7) into (4.8) gives

(4.9)

‖xk+1 − x∗‖ ≤ 3

2
β[∆‖xk − x∗‖+ ∆‖xk − x∗‖]

≤ 3β∆‖xk − x∗‖

≤ 1

2
‖xk − x∗‖.

This shows that the sequence of points generated by (4.1) is well defined and converges
to x∗ Q-linearly in a neighborhood of x∗.

In [20], Pang and Qi extended Theorem 2.2 in Dennis and Moré [5] to nonsmooth
equations. Here, we can do a similar extension and point out that some quasi-Newton
methods belong to our frame form.

Theorem 4.2. Suppose that F : Rn → Rn is a locally Lipschitzian function in the
open convex set D ⊂ Rn. Assume that F is semismooth at some x∗ ∈ D and all W∗ ∈
∂bF (x∗) are nonsingular. Let {Vk} be a sequence of nonsingular matrices in Rn×n,
and suppose for some x0 in D that the sequence of points generated by (4.1) remains
in D and satisfies xk 6= x∗ for all k, and limk→∞ xk = x∗. Then {xk} converges
Q-superlinearly to x∗, and F (x∗) = 0 if and only if there exists Wk ∈ ∂bF (xk) such
that

(4.10) lim
k→∞

‖(Vk −Wk)sk‖
‖sk‖ = 0,

where sk = xk+1 − xk.
Proof. Write ek = xk − x∗. Then both sequence {ek} and {sk} converge to zero.

From (4.1) we have

(4.11)

F (x∗) = [F (xk) +Wks
k]− [F (xk)− F (x∗)−Wke

k]−Wke
k+1

= [F (xk) + Vks
k] + [(Vk −Wk)sk]

−[F (xk)− F (x∗)−Wke
k]−Wke

k+1

= [(Vk −Wk)sk]− [F (xk)− F (x∗)−Wke
k]−Wke

k+1.

From the semismoothness of F at x∗ and (4.5) we know that the term in the second
square bracket approaches zero as k → ∞. So if (4.10) holds, then H(x∗) = 0.
From Lemma 2.2, {‖W−1

k ‖} is bounded. Thus, from (4.5), (4.10), (4.11), and the
boundedness of {‖W−1

k ‖}, we have

‖ek+1‖ ≤ o(‖sk‖) + o(‖ek‖) ≤ o(‖ek‖) + o(‖ek+1‖),

which means that

lim
k→∞

‖ek+1‖
‖ek‖ = 0.

Conversely, suppose that H(x∗) = 0 and {xk} converges Q-superlinearly to x∗.
Then reversing the above discussion easily establishes condition (4.10).
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As applications to Theorems 4.1 and 4.2, we will first consider the following
nonsmooth equations, which arise from complementarity problems, special variational
inequality problems, and the KKT system of nonlinear programming:

(4.12) F (x) = x− PX [x− f(x)] = 0,

where f : Rn → Rn is a continuously differentiable function, PY (·) is the orthogonal
projection operator onto a nonempty closed convex set Y , and X = {x ∈ Rn| l ≤ x ≤
u}, where l, u ∈ {R ∪ {∞}}n. To solve equation (4.12) is the original motivation in
investigating nonsmooth equations. When f ∈ C1, F is a semismooth function. The
results of the Newton method for solving (4.12) are fruitful, but not for the quasi-
Newton method. In this section, we will give a new quasi-Newton method for solving
equation (4.12).

Quasi-Newton method (Broyden’s case [1]).

Given f : Rn → Rn, x0 ∈ Rn, A0 ∈ Rn×n

Do for k = 0, 1, . . . :

Define

fk(x) = f(xk) +Ak(x− xk)

(4.13) F k(x) = x− PX [x− fk(x)]

Choose Vk ∈ ∂bF k(xk)

Solve Vks
k + F (xk) = 0 for sk

xk+1 = xk + sk

yk = f(xk+1)− f(xk)

(4.14) Ak+1 = Ak +
(yk −Aksk)sk

T

skT sk
.

For any matrix B ∈ Rn×n, let Bi be the ith row of B. For an arbitrary function
f ∈ C1, if V ∈ ∂bF (x), then V satisfies

(4.15) V i =


Ii if xi − fi(x) < li (or > ui),

λiI
i + (1− λi)f ′i(x) if xi − fi(x) = li (or = ui),

f ′i(x) if li < xi − fi(x) < ui,

where λi ∈ {0, 1} and I is the unit matrix of Rn×n. On the other hand, any V of the
above form is an element of ∂bF (x).

Corollary 4.1. Suppose that f : Rn → Rn is continuously differentiable, x∗ is
a solution of (4.12), f ′(x) is Lipschitz continuous in a neighborhood of x∗, and the
Lipschitz constant is γ. Suppose that all W∗ ∈ ∂bF (x∗) are nonsingular. There exist
positive constants ε, δ such that if ‖x0 − x∗‖ ≤ ε and ‖A0 − f ′(x∗)‖ ≤ δ, then the
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sequence {xk} generated by the quasi-Newton method (Broyden’s case) is well defined
and converges Q-superlinearly to x∗.

Proof. First we prove the Q-linear convergence of {xk}. Choose ε and ∆ as
in the proof of Theorem 4.1 and restrict ε to be small enough such that for any
y ∈ N(x∗) = {x|‖x− x∗‖ ≤ ε}, we have

(4.16) ‖f ′(y)− f ′(x∗)‖ ≤ γ‖y − x∗‖,

(4.17) 3γε ≤ ∆.

Denote δ := ∆/2. From the definition of F k(x) and (4.15), the jth row V jk of Vk
satisfies

(4.18) V jk =


Ij if xkj − fkj (xk) < lj (or > uj),

λkj I
j + (1− λkj )Ajk if xkj − fkj (xk) = lj (or = uj),

Ajk if lj < xkj − fkj (xk) < uj ,

where λkj ∈ {0, 1}. For such constants λkj we define a companion matrix Wk such that

the jth row W j
k of Wk satisfies

(4.19) W j
k =


Ij if xkj − fkj (xk) < lj (or > uj),

λkj I
j + (1− λkj )f ′j(x

k) if xkj − fkj (xk) = lj (or = uj),

f ′j(x
k) if lj < xkj − fkj (xk) < uj .

From f(xk) = fk(xk) and (4.19) we get

Wk ∈ ∂bF (xk).

From (4.18) and (4.19) for any x ∈ Rn we get

|(W j
k − V

j
k )x| ≤ |(Ajk − f ′j(xk))x|,

which means that

(4.20) ‖(Wk − Vk)x‖ ≤ ‖(Ak − f ′(xk))x‖.

Thus,

(4.21)

‖Wk − Vk‖ ≤ ‖Ak − f ′(xk)‖

≤ ‖Ak − f ′(x∗)‖+ ‖f ′(xk)− f ′(x∗)‖.

The local Q-linear convergence proof consists of showing by induction that

(4.22) ‖Ak − f ′(x∗)‖ ≤ (2− 2−k)δ,

(4.23) ‖Vk −Wk‖ ≤ ∆.
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For k = 0, (4.22) is trivially true. The proof of (4.23) is identical to the proof at the
induction step, so we omit it here.

Now assume that (4.22) and (4.23) hold for k = 0, 1, . . . , i− 1. From the proof of
Theorem 4.1, for k = 0, 1, . . . , i− 1, we have

(4.24) ‖ek+1‖ ≤ 1

2
‖ek‖.

For k = i, we have from Lemma 8.2.1 of [6] (also see [5]), (4.24), and the induction
hypothesis that

(4.25)

‖Ai − f ′(x∗)‖ ≤ ‖Ai−1 − f ′(x∗)‖+
γ

2
(‖ei‖+ ‖ei−1‖)

≤ (2− 2−(i−1))δ +
3γ

4
‖ei−1‖.

From (4.24) and ‖e0‖ ≤ ε we get

‖ei−1‖ ≤ 2−(i−1)‖e0‖ ≤ 2−(i−1)ε.

Substituting this into (4.25) and using (4.17) gives

‖Ai − f ′(x∗)‖ ≤ (2− 2−(i−1))δ +
3γ

4
ε · 2−(i−1)

≤ (2− 2−(i−1) + 2−i)δ = (2− 2−i)δ,

which verifies (4.22).
To complete the induction, we verify (4.23). Substituting (4.22) into (4.21) for

k = i and using ‖e0‖ ≤ ε, (4.16), (4.17), and (4.24) gives

‖Wi − Vi‖ ≤ (2− 2−i)δ + 2−iεγ

= (2− 2−i)
∆

2
+

1

3
· 2−i∆

< ∆.

This proves (4.23). So the Q-linear convergence follows from Theorem 4.1.
Next we will prove the Q-superlinear convergence of {xk} under the assumptions.

Let Ek = Ak − f ′(x∗). From the last part of the proof of Theorem 8.2.2 of [6] (also
see [5]) we get

(4.26) lim
k→∞

‖Eksk‖
‖sk‖ = 0.

From (4.20) and (4.16), we have

(4.27)

‖(Vk −Wk)sk‖ ≤ ‖(Ak − f ′(xk))sk‖

≤ ‖(Ak − f ′(x∗))sk‖+ ‖(f ′(xk)− f ′(x∗))sk‖

≤ ‖Eksk‖+ γ‖ek‖‖sk‖.
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Substituting (4.26) into (4.27) and using the linear convergence of {xk} gives

lim
k→∞

‖(Vk −Wk)sk‖
‖sk‖ = 0,

which, from Theorem 4.2, means that {xk} converges to x∗ Q-superlinearly.
Recall that when X is the nonnegative orthant, i.e., X = Rn+, F (x) defined

by (4.12) is essentially equivalent to the function H(x) in [9] and [17]. In [9], Ip
and Kyparisis discussed the convergence properties of quasi-Newton methods directly
applied to nonsmooth equations. For nonlinear complementarity problems, they de-
scribed the sufficient conditions to guarantee the convergence of the quasi-Newton
method (see Theorem 5.2 of [9]). A restrictive assumption in [9] is that F is strongly
F-differentiable at x∗. This condition, which restricts the class f to which Theorem
5.2 of [9] applies, is satisfied if f ′i(x

∗) = Ii for all i ∈ {j|fj(x∗) = x∗j , j = 1, . . . , n}.
Here, to guarantee the convergence of our new quasi-Newton method, we need the
nonsingularity of ∂bF (x∗) instead of needing the existence and invertibility of F ′(x∗).
For nonlinear complementarity problems, the nonsingularity assumption of ∂bF (x∗)
is equivalent to the b-regularity assumption in [19]. For a detailed discussion on
b-regularity, see [19].

Next we consider the following nonsmooth equation:

(4.28) F (x) = min(f(x), g(x)) = 0,

where f, g : Rn → Rn are continuously differentiable and the “min” operator denotes
the componentwise minimum of two vectors. Such a system arises from nonsmooth
partial differentiable equations [3, 2, 15] and implicit complementarity problems (see,
e.g., [16]). When g(x) = x, (4.28) is the function H(x) discussed in [9] and [17] and
is equivalent to (4.12) for X = Rn+. Here we will give a new quasi-Newton method
(Broyden’s case) for solving (4.28). In particular, the new resulting method with
g(x) = x coincides with the quasi-Newton method for solving (4.12) with X = Rn+.
In both methods, the concept ∂bF (·) has an important role.

Quasi-Newton method (Broyden’s case [1]).

Given x0 ∈ Rn, A0, B0 ∈ Rn×n

Do for k = 0, 1, . . . :
Define

fk(x) = f(xk) +Ak(x− xk)

gk(x) = g(xk) +Bk(x− xk)

F k(x) = min(fk(x), gk(x))

Choose Vk ∈ ∂bF k(xk)

Solve Vks
k + F (xk) = 0 for sk

xk+1 = xk + sk

yk = f(xk+1)− f(xk)
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zk = g(xk+1)− g(xk)

Ak+1 = Ak +
(yk −Aksk)sk

T

skT sk

Bk+1 = Bk +
(zk −Bksk)sk

T

skT sk
.

Corollary 4.2. Suppose that f, g : Rn → Rn are continuously differentiable,
x∗ is a solution of (4.28), f ′(x), g′(x) are Lipschitz continuous in a neighborhood
of x∗, and the common Lipschitz constant is γ. Suppose that all W∗ ∈ ∂bF (x∗)
are nonsingular. There exist positive constants ε, δ such that if ‖x0 − x∗‖ ≤ ε,
‖A0 − f ′(x∗)‖ ≤ δ, and ‖B0 − g′(x∗)‖ ≤ δ, then the sequence {xk} generated by the
quasi-Newton method (Broyden’s case) is well defined and converges Q-superlinearly
to x∗.

Proof. The proof is similar to that of Corollary 4.1. Here we only give an outline
of the proof. It is not difficult to give the detail.

Choose ε and ∆ as in the proof of Theorem 4.1 and restrict ε to be small enough
such that for any y ∈ N(x∗) = {x|‖x− x∗‖ ≤ ε}, we have

(4.29) ‖f ′(y)− f ′(x∗)‖ ≤ γ‖y − x∗‖, ‖g′(y)− g′(x∗)‖ ≤ γ‖y − x∗‖,

(4.30) 6γε ≤ ∆.

Denote δ := ∆/4. From the definition of F k(x) there exists λkj ∈ {0, 1} such that the

jth row V jk of Vk satisfies

(4.31) V jk =


Ajk if fkj (xk) < gkj (xk),

λkjA
j
k + (1− λkj )Bjk if fkj (xk) = gkj (xk),

Bjk if fkj (xk) > gkj (xk).

For such constants λkj we define a companion matrix Wk such that the jth row W j
k

of Wk satisfies

(4.32) W j
k =


f ′j(x

k) if fkj (xk) < gkj (xk),

λkj f
′
j(x

k) + (1− λkj )g′j(x
k) if fkj (xk) = gkj (xk),

g′j(x
k) if fkj (xk) > gkj (xk).

From f(xk) = fk(xk), g(xk) = gk(xk), and the definition of ∂bF (xk), we get

Wk ∈ ∂bF (xk).

From (4.31) and (4.32), for any x ∈ Rn we get

(4.33) ‖(Vk −Wk)x‖ ≤ ‖(Ak − f ′(xk))x‖+ ‖(Bk − g′(xk))x‖.
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Thus,

(4.34)

‖Wk − Vk‖ ≤ ‖Ak − f ′(xk)‖+ ‖Bk − g′(xk)‖

≤ ‖Ak − f ′(x∗)‖+ ‖f ′(xk)− f ′(x∗)‖

+‖Bk − g′(x∗)‖+ ‖g′(xk)− g′(x∗)‖.

The local Q-linear convergence proof consists of showing by induction that

‖Ak − f ′(x∗)‖ ≤ (2− 2−k)δ, ‖Bk − g′(x∗)‖ ≤ (2− 2−k)δ,

‖Vk −Wk‖ ≤ ∆.

The induction proof is similar to that of Corollary 4.1. We omit it here.
To prove the Q-superlinear convergence of {xk}, let Ek = Ak − f ′(x∗) and Hk =

Bk − g′(x∗). From the last part of the proof of Theorem 8.2.2 of [6] (also see [5]) we
get

(4.35) lim
k→∞

‖Eksk‖
‖sk‖ = 0, lim

k→∞

‖Hks
k‖

‖sk‖ = 0.

From (4.33) and (4.29), we have

(4.36)

‖(Vk −Wk)sk‖ ≤ ‖(Ak − f ′(xk))sk‖+ ‖(Bk − g′(xk))sk‖

≤ ‖Eksk‖+ γ‖ek‖‖sk‖+ ‖Hks
k‖+ γ‖ek‖‖sk‖.

Thus, from (4.35), (4.36), and the linear convergence of {xk}, we get

lim
k→∞

‖(Vk −Wk)sk‖
‖sk‖ = 0,

which, from Theorem 4.2, means that {xk} converges to x∗ Q-superlinearly.
In [21], Qi discussed a Newton method for solving (4.28) and provided a method to

compute ∂BF . Here, by using the concept ∂bF , we give a quasi-Newton method. The
main condition to guarantee the local Q-superlinear convergence is the nonsingularity
assumption of ∂bF (x∗). When g(x) = x, this nonsingularity assumption is exactly
the b-regularity in [19].

5. Implementation of the quasi-Newton method. The implementation of
the quasi-Newton method discussed in section 4 for solving equation (4.12) has no
difference to the smooth case except for the implementation of the QR factorization
of the iterate matrix Vk. The entire QR factorization of Vk costs O(n3) arithmetic
operations. If we do this in every step, then the advantage of quasi-Newton method
loses a lot. In this section, we will show how to update the QR factorization of Vk
into the QR factorization of Vk+1 at most in O((I(k) + 1)n2) operations (see (5.8) for
the definition of I(k)). For simplicity, we will assume that X = Rn+.

For a given vector x ∈ Rn, denote the index sets

α(x) = {i : xi > fi(x)},
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β(x) = {i : xi = fi(x)},

γ(x) = {i : xi < fi(x)}.

Suppose for each k that we choose Vk ∈ ∂bF
k(xk) such that the ith row V ik of Vk

satisfies

(5.1) V ik =

 Aik if i ∈ α(xk),

Ii if i ∈ β(xk) ∪ γ(xk).

Denote a matrix V k such that its ith row V
i

k satisfies

(5.2) V
i

k =

 Aik+1 if i ∈ α(xk),

Ii if i ∈ β(xk) ∪ γ(xk).

From (5.1), (5.2), and (4.14), we get

(5.3) V k = Vk +
(yk − Vksk)sk

T

skT sk
,

where yk satisfies

(5.4) yki =

 yki if i ∈ α(xk),

ski if i ∈ β(xk) ∪ γ(xk).

It is well known that we can update the QR factorization of Vk into the QR factor-
ization of V k in O(n2) operations (see, e.g., [7, 8]).

The ith row V ik+1 of Vk+1 satisfies

(5.5) V ik+1 =

 Aik+1 if i ∈ α(xk+1),

Ii if i ∈ β(xk+1) ∪ γ(xk+1).

Therefore,

(5.6) Vk+1 = V k + ∆V k,

where ∆V k satisfies

(5.7) ∆V
i

k =


0 if i ∈ α(xk) ∩ α(xk+1),

0 if i ∈ {β(xk) ∪ γ(xk)} ∩ {β(xk+1) ∪ γ(xk+1)},

V ik+1 − V
i

k otherwise.

Denote

(5.8) I(k) = n− (|α(xk) ∩ α(xk+1)|+ |{β(xk) ∪ γ(xk)} ∩ {β(xk+1) ∪ γ(xk+1)}|).
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Since the number of the nonzero rows of ∆V k is at most I(k), we can update the QR
factorization of V k into the QR factorization of Vk+1 at most in O(I(k)n2) operations
(see, e.g., [7, 8]).

Therefore, we get the following theorem.
Theorem 5.1. The cost of updating the QR factorization of Vk into the QR

factorization of Vk+1 is at most O((I(k) + 1)n2) arithmetic operations.
Josephy [10] considered the quasi-Newton method for solving generalized equa-

tions (see Robinson [24]). For nonlinear complementarity problems, in every step his
method needs to solve a linear complementarity problems, which requires more cost
than solving a linear equation. Kojima and Shindo [11] extended the quasi-Newton
method to piecewise smooth equations. They applied the classical Broyden’s method
as the points xk stayed within a given C1-piece. When the points xk arrived at a new
piece, a new starting matrix was used and it was needed to perform the entire QR fac-
torization (or other factorizations) in O(n3) operations in general. Thus a potentially
large number of matrices need to be stored and need to be performed to get an entire
QR factorization (or other factorizations). Here, our method needs only one approx-
imate matrix, and except for the first step we only need less effort to solve a linear
equation, which may be solved in much less than O(n3) operations. The smaller the
measure of I(k) is, the less computing effort is needed in the (k+ 1)th step (note that
I(k) is related to the nonsmoothness of F ). Ip and Kyparisis [9] discussed the local
convergence of the classical Broyden’s quasi-Newton method for solving nonsmooth
equations. Although the form used in [9] is very simple, the convergence remains open
without assuming the existence of F ′(x∗).

6. The KKT system of variational inequality problems. For a given closed
set X ⊆ Rn and a mapping f : X → Rn, the variational inequality problem which is
denoted by VI(X, f) is to find a vector x∗ ∈ X such that

(x− x∗)T f(x∗) ≥ 0 for all x ∈ X.

If X = Rn+, then VI(X, f) is equivalent to the complementarity problem which is to
find x∗ ∈ Rn+ such that

f(x∗) ∈ Rn+ and x∗T f(x∗) = 0.

When f is a gradient mapping, say f(x) = ∇θ(x) for some real-valued function θ,
VI(X, f) is equivalent to the problem of finding a stationary point for the following
minimization problem:

minimize θ(x)

subject to x ∈ X.

Here we shall assume that X has the form

(6.1) X = {x ∈ Rn| g(x) ≤ 0, h(x) = 0, l ≤ x ≤ u},

where g : Rn → Rm and h : Rn → Rp are assumed to be twice continuously differ-
entiable, and l, u ∈ {R ∪ {∞}}n. By introducing multipliers (λ, µ, v, w) ∈ Rm+p+2n

corresponding to the constraints in X, the (VI) Lagrangian (vector-valued) function
(see, e.g., Tobin [29]) can be defined by

L(x, λ, µ, v, w) = f(x) +

m∑
i=1

∇gi(x)λi +

p∑
j=1

∇hj(x)µj − v + w.
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If li = −∞ (or ui = +∞) for some i, the corresponding vi (wi, respectively) is absent
in the above formula. Then the KKT system of VI(X, f) can be written as

(6.2)



L(x, λ, µ, v, w) = 0,

λ ≥ 0, −g(x) ≥ 0, and λT g(x) = 0,

−h(x) = 0,

v ≥ 0, x− l ≥ 0, and vT (x− l) = 0,

w ≥ 0, u− x ≥ 0, and wT (x− u) = 0.

Define

L̃(x, λ, µ) = f(x) +

m∑
i=1

∇gi(x)λi +

p∑
j=1

∇hj(x)µj

and

(6.3) H(x, λ, µ) =


x− P[l,u][x− L̃(x, λ, µ)]

λ− PRn
+

[λ− (−g(x))]

−h(x)

 .

Suppose that (x∗, λ∗, µ∗, v∗, w∗) ∈ Rn+m+p+2n is a solution of the KKT system
(6.2), then (x∗, λ∗, µ∗) satisfies H(x∗, λ∗, µ∗) = 0; conversely, if (x∗, λ∗, µ∗) ∈ Rn+m+p

is a solution of H(x, λ, µ) = 0, then (x∗, λ∗, µ∗, v∗, w∗) is a solution of the KKT system
(6.2), where v∗, w∗ are defined as

(6.4) v∗ = PRn
+

[L̃(x∗, λ∗, µ∗)] and w∗ = PRn
+

[−L̃(x∗, λ∗, µ∗)].

So finding a solution of the KKT system of VI is equivalent to solving H(x, λ, µ) = 0.
Let z = (x, λ, µ), K = [l, u]×Rn+ ×Rp, and

f̃(z) =


L̃(z)

−g(x)

−h(x)

 .

Then H(x, λ, µ) = 0 can be written as

(6.5) H(z) = z − PK [z − f̃(z)] = 0,

which is a special form of (4.12).
Now suppose that z∗ is a solution of H(z) = 0 and f is continuously differen-

tiable at x∗; we will discuss a sufficient condition on the nonsingularity assumption
of ∂bH(z∗). Let

I(z∗) = {i| 1 ≤ i ≤ m, gi(x∗) = 0},
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I+(z∗) = {i ∈ I(z∗)| λ∗i > 0},

G+(z∗) = {d ∈ Rn| ∇gi(x∗)T d = 0 for i ∈ I+(z∗)

and ∇hi(x∗)T d = 0 for i = 1, . . . , p},

and

R(z∗) = {d ∈ Rn| di = 0 if x∗i = li (or ui) and (L̃(z∗))i 6= 0 for i = 1, . . . , n}.

Theorem 6.1. Suppose that z∗ is a solution of H(z) = 0 and that it satisfies
dT∇2

xxL̃(z∗)d > 0 for all d ∈ G+(z∗) ∩ R(z∗)\{0}. If {∇gi(x∗), i ∈ I(z∗)} and
{∇hi(x∗), i = 1, . . . , p} are linearly independent, then all V ∈ ∂bH(z∗) are nonsin-
gular.

Proof. Combining (4.15) and the proof of Theorem 4.1 in Robinson [24], we can
get the result.

7. Numerical examples. In this section, we report computational results ob-
tained for two small nonlinear complementarity problems using the above Newton
method and quasi-Newton method. For the quasi-Newton method, the initial matri-
ces are generated by the difference approximation method. In Table 1, “N” and “QN”
represent the Newton method and quasi-Newton method, respectively, and “P 1” and
“P 2” represent Problem 1 and Problem 2, respectively.

Problem 1 (a nondegenerate nonlinear complementarity problem [10, 9]). Consider
the following problem: find x ∈ R4 such that x ≥ 0, f(x) ≥ 0, and xT f(x) = 0, where
f : R4 → R4 is given by

f1(x) = 3x2
1 + 2x1x2 + 2x2

2 + x3 + 3x4 − 6,

f2(x) = 2x2
1 + x1 + x2

2 + 3x3 + 2x4 − 2,

f3(x) = 3x2
1 + x1x2 + 2x2

2 + 2x3 + 3x4 − 1,

f4(x) = x2
1 + 3x2

2 + 2x3 + 3x4 − 3.

This problem has the solution

x∗ =

(
1

2

√
6 ≈ 1.2247, 0, 0, 0.5

)
, f(x∗) =

(
0, 2 +

1

2

√
6 ≈ 3.2247, 5, 0

)
.

Since β(x∗) = ∅, x∗ is nondegenerate (see [9]) and it is easy to check that F ′(x∗)
(here ∂bF

′(x∗) = {F ′(x∗)}) is nonsingular.
Problem 2 (a degenerate nonlinear complementarity problem [11, 9]). Consider

the following problem: find x ∈ R4 such that x ≥ 0, f(x) ≥ 0, and xT f(x) = 0, where
f : R4 → R4 is given by

f1(x) = 3x2
1 + 2x1x2 + 2x2

2 + x3 + 3x4 − 6,

f2(x) = 2x2
1 + x1 + x2

2 + 10x3 + 2x4 − 2,

f3(x) = 3x2
1 + x1x2 + 2x2

2 + 2x3 + 9x4 − 9,

f4(x) = x2
1 + 3x2

2 + 2x3 + 3x4 − 3.
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Table 1

Results for Problems 1 and 2, where D = degenerate solution and ND = nondegenerate solution.

Algorithm Starting point Number of Iterations sum of I(k)
P 1 P 2 P 1 P 2

N (1,0,0,0) 3 3(D)
QN (1,0,0,0) 4 4(D) 0 2
N (1,0,1,0) 4 1(ND)

QN (1,0,1,0) 5 1(ND) 1 0
N (1,0,0,1) 4 4(D)

QN (1,0,0,1) 5 5(D) 1 2
N (1,0.2,0.5,1) 4 4(D)

QN (1,0.2,0.5,1) 6 6(D) 0 2
N (1,0,1,-1) 3 3(D)

QN (1,0,1,-1) 5 5(D) 1 2
N (1.5,-0.5,4.5,-1.0) 4 4(D)

QN (1.5,-0.5,4.5,-1.0) 6 6(D) 1 0
N (1.1,-0.1,3.1,-0.1) 4 3(ND)

QN (1.1,-0.1,3.1,-0.1) 5 4(ND) 1 0
N (0.85,0.2,0.5,1) 4 5(D)

QN (0.85,0.2,0.5,1) 7 7(D) 1 2

This problem has the following two solutions:

x∗D =

(
1

2

√
6 ≈ 1.2247, 0, 0, 0.5

)
, f(x∗D) =

(
0, 2 +

1

2

√
6 ≈ 3.2247, 0, 0

)
,

and

x∗ND = (1, 0, 3, 0), f(x∗ND) = (0, 31, 0, 4).

Since β(x∗ND) = ∅ for the solution x∗ND, it is a nondegenerate solution (see [9]). On
the other hand, β(x∗D) = {3} for the solution x∗D, so it is a degenerate solution (see
[9]). It is easy to check that ∂bF (x∗ND) and ∂bF (x∗D) are nonsingular.

From Table 1 we see that even for Problem 2 when the starting point is close to a
solution, the sequence will converge to the corresponding solution no matter whether
it is degenerate or not.

In this paper two small examples are used to show the effectiveness of the Newton
method and the quasi-Newton method for solving some nonsmooth equations. More
examples are needed to show the efficiency of the above algorithms. For problem (4.12)
with a general convex set X, especially when X is a polyhedral set, how to construct
appropriate Newton methods and quasi-Newton methods is our further research topic.
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Abstract. The generalized bilevel programming problem (GBLP) is a bilevel mathematical
program where the lower level is a variational inequality. In this paper we prove that if the objective
function of a GBLP is uniformly Lipschitz continuous in the lower level decision variable with respect
to the upper level decision variable, then using certain uniform parametric error bounds as penalty
functions gives single level problems equivalent to the GBLP. Several local and global uniform para-
metric error bounds are presented, and assumptions guaranteeing that they apply are discussed. We
then derive Kuhn–Tucker-type necessary optimality conditions by using exact penalty formulations
and nonsmooth analysis.

Key words. generalized bilevel programming problems, variational inequalities, exact penalty
formulations, uniform parametric error bounds, necessary optimality conditions, nonsmooth analysis
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1. Introduction. We consider the following mathematical programming problem
with variational inequality constraints (which is called the generalized bilevel program-
ming problem (GBLP)):

GBLP minimize f(x, y) subject to x ∈ X and y ∈ S(x)(1)

where f : Rn+m → R, X is a nonempty and closed subset of Rn, and for each x ∈ X,
S(x) is the solution set of a variational inequality with parameter x,

S(x) = {y ∈ U(x) : 〈F (x, y), y − z〉 ≤ 0 ∀z ∈ U(x)}.

Here U : X → Rm is a set-valued map and F : Rn+m → Rm is a function. Throughout
this paper, we make the blanket assumption that GrS := {(x, y) : x ∈ X, y ∈ S(x)},
the graph of S, is not empty.

One can interpret the above problem as a hierarchical decision process where there
are two decision makers and the upper level decision maker always has the first choice
as follows: given a decision vector x for the upper level decision maker (the leader),
S(x) is viewed as the lower level decision maker’s (the follower’s) decision set, i.e.,
the set of decision vectors that the follower may use. Assuming that the game is
cooperative (i.e., the follower’s decision set S(x) is not a singleton), the follower allows
the leader to choose the lower level decision from S(x). Having complete knowledge
of the follower’s possible reactions, the leader selects decision vectors x ∈ X and
y ∈ S(x), minimizing his objective function f(x, y).
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If F (x, y) is the partial gradient of a real-valued differentiable function (i.e.,
F (x, y) = −∇yg(x, y), where g : Rn+m → R is differentiable in y and U(x) is convex),
then the variational inequality with parameter x,

〈F (x, y), y − z〉 ≤ 0 ∀z ∈ U(x),(2)

is the first-order necessary optimality condition for the following optimization problem
with parameter x:

Px minimizey g(x, y) subject to y ∈ U(x)(3)

(see, e.g., [13]). Furthermore, if g(x, y) is pseudoconvex in y (i.e., 〈∇yg(x, y), y −
z〉 ≤ 0 implies g(x, y) ≤ g(x, z) for all y, z ∈ U(x)), then a vector y ∈ U(x) is a
solution to (2) if and only if it is a global optimal solution to (3). In this case,
the mathematical programming problem with variational inequality constraints (1)
is the classical bilevel programming problem (CBLP), or Stackelberg game (see, e.g.,
[1, 6, 17, 26, 29, 30, 31, 32]),

CBLP minimize f(x, y) subject to x ∈ X and y ∈ Σ(x),

where Σ(x) is the set of solutions for the problem Px. The correspondence between
lower level problems breaks down if F is not the partial gradient of a function with
respect to y. Since problem (1) includes problems that are not classical bilevel pro-
gramming problems, we call problem (1) a generalized bilevel programming problem
(GBLP). The problem has been studied under the name “mathematical programs
with equilibrium constraints” by other authors (see [12] and [19]).

In this paper we assume that

U(x) = {y ∈ Rm : c(x, y) ≤ 0},
where c : Rn+m → Rd is a function. Throughout this paper we assume that f, c, and
F are continuous. Under these assumptions, it is known [12, Lem. 1] that the solution
set S(x) of the variational inequality with parameter x is closed. Refer to [12] for the
results on the existence of solutions for GBLP and CBLP.

Reducing a (generalized or classical) bilevel programming problem to a single level
optimization problem is a useful strategy from both theoretical and computational
points of view. There are several equivalent single level formulations for the GBLP.
The Karush–Kuhn–Tucker (KKT) approach is to interpret the variational inequality
constraint y ∈ S(x) with y being a solution of the following optimization problem:

minimize 〈F (x, y), z〉 subject to z ∈ U(x),

and to replace this minimization problem by its KKT necessary optimality conditions.
These conditions are also sufficient if the feasible region U(x) is convex. Assuming
that U(x) is convex, c(x, y) is differentiable in y and one of the usual constraint qual-
ifications, such as the Mangasarian–Fromowitz, condition is satisfied by the system of
constraints c(x, y) ≤ 0 in terms of variable y at a feasible point (x∗, y∗). Then (x∗, y∗)
is a solution to the GBLP if and only if there exists u∗ ∈ Rd such that (x∗, y∗, u∗) is
a solution to the following problem:

KS minf(x, y)

s.t. F (x, y) +∇yc(x, y)Tu = 0,

〈u, c(x, y)〉 = 0,(4)

u ≥ 0, c(x, y) ≤ 0,

x ∈ X, y ∈ Rm.
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To handle general GBLPs and CBLPs where U(x) may or may not be convex,
the value function and the gap function can be used to derive equivalent single level
problems. Consider the CBLP. Define the value function V (x) : X → [−∞,∞] by

V (x) := inf{g(x, y) : y ∈ U(x)}.(5)

Then, for any x ∈ X, we have

g(x, y)− V (x) ≥ 0 ∀y ∈ U(x), and g(x, y)− V (x) = 0 if and only if y ∈ Σ(x).(6)

Thus, CBLP is equivalent to the following single level optimization problem:

VS minf(x, y)

s.t. g(x, y)− V (x) = 0,(7)

c(x, y) ≤ 0,

x ∈ X, y ∈ Rm.

Following [14] and [25], define the gap function G0(x, y) : X ×Rm → [−∞,∞] by

G0(x, y) := sup{〈F (x, y), y − z〉 : z ∈ U(x)}.(8)

It is easy to see that, for any x ∈ X,

G0(x, y) ≥ 0 ∀y ∈ U(x) and G0(x, y) = 0 if and only if y ∈ S(x).(9)

Hence GBLP is equivalent to the following single level optimization problem:

GS minf(x, y)

s.t. G0(x, y) = 0,(10)

c(x, y) ≤ 0,

x ∈ X, y ∈ Rm,

Using the single level equivalent formulations KS, VS, and GS (see (4), (7), and
(10)), one can derive Fritz John-type necessary optimality conditions for the origi-
nal GBLP or CBLP. (See, e.g., [30] for the derivation of Fritz John-type necessary
optimality conditions for CBLP.) In deriving Kuhn–Tucker-type necessary optimal-
ity conditions, however, we need to find constraint qualifications. Unfortunately,
the usual constraint qualifications such as the Mangasarian–Fromowitz condition,
never hold for problems VS and GS. To see this, for convenience, we assume that
U(x) = Rm, X = Rn and that g(x, y), V (x), and G0(x, y) are Lipschitz continuous.
Now suppose that (x∗, y∗) is a solution of GBLP. Then (6) and (9) imply the inclusions
0 ∈ ∂(g(x∗, y∗)−V (x∗)) and 0 ∈ ∂G0(x∗, y∗), respectively. These imply that there al-
ways exist abnormal multipliers for problems VS and GS. This is equivalent to saying
that the Mangasarian–Fromowitz condition will never hold (see, e.g., [30, Prop. 3.1]
for the equivalence). This phenomenon is intrinsic in bilevel problems. Even when
using the KKT approach, the usual constraint qualifications will never hold for KS as
long as the lower level problem is constrained. The following is a precise statement
of this fact.

Proposition 1.1. Let (x∗, y∗, u∗) be a solution of KS. Suppose that I := {0 ≤
i ≤ d : ci(x

∗, y∗) = 0} 6= ∅. Then the Mangasarian–Fromowitz condition does not
hold at (x∗, y∗, u∗).
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Proof. The complementary slackness condition (4) implies that u∗i = 0 ∀i ∈ Ic :=
{0 ≤ i ≤ d : ci(x

∗, y∗) 6= 0}. So

ci(x
∗, y∗) = 0, i ∈ I

and

−u∗i = 0, i ∈ Ic

are active constraints for KS at (x∗, y∗, u∗). Set

c̃i(x, y, u) := ci(x, y),

ĉi(x, y, u) := −ui,

and

h(x, y, u) := 〈u, c(x, y)〉.

Suppose that there exists a vector v ∈ Rn+m+d such that

〈v,∇c̃i(x∗, y∗, u∗)〉 =
n+m∑
j=1

vj∇jci(x∗, y∗) < 0 ∀i ∈ I

and

〈v,∇ĉi(x∗, y∗, u∗)〉 = −vn+m+i < 0 ∀i ∈ Ic,

where ∇jci(x, y) denotes the gradient of ci with respect to the jth component of the
vector (x, y). Then

〈v,∇h(x∗, y∗, u∗)〉

=
∑
i∈I

ui

n+m∑
j=1

vj∇jci(x∗, y∗) +
∑
i∈Ic

vn+m+ici(x
∗, y∗) < 0.

Thus, the Mangasarian–Fromowitz condition cannot hold at (x∗, y∗, u∗).
The difficulty here is obviously due to the equality constraints (4), (7), and (10),

which reflect the bilevel nature of the problem.
The partial calmness condition is identified in [30] as an appropriate constraint

qualification for problem VS. It is also proved that the existence of a uniformly weak
sharp minimum is a sufficient condition for partial calmness, and a parametric linear
lower level problem is always partially calm.

Recently, using the theory of exact penalization for mathematical programming
problems with subanalytic constraints and the theory of error bounds for quadratic
inequality systems, Luo et al. [19] successfully derived various penalty functions for the
single level equivalent mathematical programming problem KS. By using the theory
of parametric normal equations, Luo et al. [19] also obtained some necessary and
sufficient stationary point conditions for GBLP.

In this paper we use the uniform parametric error bound as a tool to establish
(local or global) exact penalty formulations of several single level mathematical pro-
gramming problems (including KS, VS, and GS) that are equivalent to GBLP. Since
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the exact penalty formulations move the troublesome equality constraints (4), (7),
and (10) to the objective function, we can get Kuhn–Tucker-type necessary optimal-
ity conditions under the usual constraint qualifications. The concept of a uniform
parametric error bound generalizes the uniformly weak sharp minimum defined in
[30]. Thus, the uniform parametric error bounds derived in this paper provide many
more exact penalty formulations than those in [30] for VS. Using the uniform para-
metric error bound as a tool, the conditions we derived in this paper are very general
and distinct (cf. Theorem 6.5) from the ones derived in [19].

The paper is arranged as follows. In the next section we introduce uniform para-
metric error bounds and show that they provide local and global exact penalty for-
mulations of GBLP. In section 3, we discuss several useful uniform parametric error
bounds. Kuhn–Tucker-type necessary optimality conditions for problem GBLP associ-
ated with various uniform parametric error bounds are derived in section 4. In section
5, the relationships between various uniform parametric error bounds are discussed
and some examples are given showing that the various equivalent single level opti-
mization formulations with uniform parametric error bounds and their corresponding
necessary optimality conditions complement each other. In section 6, we show that
uniform parametric error bounds can be used to derive exact penalty formulations for
KS.

2. Partial calmness and exact penalization. In this section we introduce
uniform parametric error bounds and show that they are useful in deriving exact
penalty formulations for GBLP.

Consider the following mathematical programming problem:
MP minimize f(x)

subject to h(x) = 0,
g(x) ≤ 0,
x ∈ C,

where f : Rn → R, h : Rn → R, g : Rn → Rm are lower semicontinuous and C is a
closed subset in Rn. The corresponding perturbed problem is

MP(ε) minimize f(x)
subject to h(x) = ε,

g(x) ≤ 0,
x ∈ C,

where ε ∈ R. The following definition was introduced in [30].
Definition 2.1 (partial calmness). Let x∗ solve MP. The problem MP is said to

be partially calm at x∗ provided that there exist constants µ > 0, δ > 0 such that, for
all ε ∈ δB and all x ∈ x∗ + δB that are feasible for MP(ε), one has

f(x)− f(x∗) + µ|h(x)| ≥ 0.

Here B denotes the open unit ball in Rn. The constants µ and δ are called the modulus
and radius, respectively.

The partial calmness condition is similar to, but different from, the calmness
condition introduced by Clarke and Rockafellar (see, e.g., [5]; see also Definition 4.1)
in that only the equality constraint h(x) = 0 is perturbed.

The concept of calmness was shown to be closely related to “exact penalization”
in [5, Prop. 6.4.3]. More precisely, if x∗ is a local solution of MP and the problem MP
is calm at x∗, then x∗ is a local solution for a penalized problem. In the following
proposition we show that the concept of partial calmness is equivalent to local exact
penalization.
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Proposition 2.2. Assume that f is continuous. Suppose x∗ is a local minimum
of MP and MP is partially calm at x∗. Then there exists µ∗ > 0 such that x∗ is a
local minimum of the following penalized problems for all µ ≥ µ∗:

MPµ minimize f(x) + µ|h(x)|
subject to g(x) ≤ 0,

x ∈ C.
Any local minima of MPµ with µ > µ∗ with respect to the neighborhood of x∗ in which
x∗ is a local minimum are also local minima of MP.

Proof. Suppose that x∗ is a local minimum of MP but not MPµ for any µ > 0.
Then, for each positive integer k, there exists a point xk ∈ x∗ + (1/k)B ⊂ C and
g(xk) ≤ 0 such that

f(xk) + k|h(xk)| < f(x∗).(11)

Since x∗ is a local minimum of MP, the above inequality implies that |h(xk)| > 0.
Therefore,

0 < |h(xk)| < f(x∗)− f(xk)

k
.(12)

Taking the limit as k goes to infinity in (12), one has

|h(xk)| → 0 as k →∞.

But then the inequality (11) contradicts the hypothesis that MP is partially calm at
x∗. Thus for some µ∗ > 0, x∗ must be a local minimum of MPµ∗ .

It is obvious that a local minimum of MPµ∗ must be a local minimum for MPµ
whenever µ ≥ µ∗.

Conversely, let µ > µ∗ and xµ be a local minimum of MPµ in the neighborhood
of x∗ in which x∗ is a local minimum. Then

f(xµ) + µ|h(xµ)| = f(x∗) since x∗ is a local minimum of MPµ,

≤ f(xµ) +
1

2
(µ+ µ∗)|h(xµ)| since

1

2
(µ+ µ∗) > µ∗,

which implies that

(µ− µ∗)|h(xµ)| ≤ 0.

Therefore, h(xµ) = 0, which implies that xµ is also a local minimum of MP.
Remark 2.3. Notice that in the above result, no continuity assumption is required

for the function h(x). When the function h is continuous, it is easy to see that if MP
is partially calm at a solution x∗ of MP with modulus µ and radius ε, then there
exists a δ̂ ≤ δ such that x∗ is a δ̂-local solution to the penalized problem MPµ; i.e.,

f(x) + µ|h(x)| ≥ f(x∗) ∀x ∈ C s.t. g(x) ≤ 0, x ∈ x∗ + δ̂B.

Therefore, in our definition of partial calmness, the restriction on the size of per-
turbation ε ∈ δB can be removed when h is continuous, and it then corresponds to
the definition of calmness given by Burke [2]. Furthermore, the infimum of µ∗ in
Proposition 2.2 can be taken as the modulus of partial calmness.
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For any x ∈ X, y ∈ Rm, define the parametric distance function

dS(x)(y) := inf{‖y − z‖ : z ∈ S(x)}

to be the distance from the point y to the set S(x). The GBLP is equivalent to
a mathematical programming problem involving a parametric distance function con-
straint:

DP minimize f(x, y)
subject to dS(x)(y) = 0,

c(x, y) ≤ 0,
x ∈ X, y ∈ Rm.

It is known (see [5, Prop. 2.4.3]) that if the objective function of a constrained
optimization problem is Lipschitz continuous then the distance function is an exact
penalty term. In what follows, we extend this result to the mathematical programming
problem with variational inequality constraints, GBLP. The constraint implied in the
parametric distance function is, in fact, in the lower level decision variable. It is
natural that we only need to assume that the objective function is locally Lipschitz
in the lower level decision variable uniformly in the upper level decision variable to
prove the exact penalty property of the parametric distance function. We need the
following definition.

From now on we shall use N(z) to denote a neighborhood of z.
Definition 2.4. Let (x∗, y∗) ∈ Rn+m. The function f(x, y) is said to be locally

Lipschitz near y∗ uniformly in x ∈ N(x∗) if there exists L > 0 and a neighborhood
N(y∗) of y∗ such that

|f(x, y′)− f(x, y)| ≤ L|y′ − y| ∀y′, y ∈ N(y∗), x ∈ N(x∗).

The following result generalizes Proposition 2.4.3 of Clarke [5] to GBLP. We omit
the proof of the global result, since it is essentially the same as the local one and the
converse part of the proof in Proposition 2.2.

Theorem 2.5. Let (x∗, y∗) be a local solution of problem DP. Assume that f
is locally Lipschitz near y∗ uniformly in x on a neighborhood of x∗ with constant L.
Then problem DP is partially calm at (x∗, y∗) with modulus L.

Furthermore, let (x∗, y∗) be a global solution of GBLP and assume that f(x, ·) is
Lipschitz continuous in y with constant L > 0 uniformly for all x ∈ X. Then (x∗, y∗)
is a global solution of the penalized problem

DPµ minimize f(x, y) + µdS(x)(y)
subject to c(x, y) ≤ 0,

x ∈ X, y ∈ Rm
for any µ ≥ L, and any other global solution of DPµ for any µ > L is also a global
solution of GBLP.

Proof. Let δ > 0 be such that (x∗, y∗) is a local solution of DP in (x∗, y∗)+2δB ⊂
X × Y . For any 0 ≤ ε < δ, let (x, y) ∈ (x∗, y∗) + δB be feasible for DPε; i.e.,
dS(x)(y) = ε and c(x, y) ≤ 0, (x, y) ∈ (x∗, y∗) + δB. Since S(x) is closed, one can
choose a y′ ∈ S(x) such that ‖y′ − y‖ = ε. Since (x, y′) is feasible for DP and

‖(x, y′)− (x∗, y∗)‖ ≤ ‖(x, y′)− (x, y)‖+ ‖(x, y)− (x∗, y∗)‖
≤ ε+ δ < 2δ,

we have

f(x, y′) ≥ f(x∗, y∗).(13)
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Since f(x, ·) is locally Lipschitz near y∗,

f(x, y)− f(x, y′) ≥ −Lε.(14)

Combining (13) and (14) yields

f(x, y)− f(x∗, y∗) + Lε ≥ 0;

i.e., DP is partially calm at (x∗, y∗) with modulus L.

Theorem 2.5 shows that the distance function provides an exact penalty equivalent
formulation for GBLP under very mild conditions. However, the parametric distance
function is usually an implicit nonsmooth function of the data in the original problem.
It is difficult to compute or estimate its Clarke generalized gradient.

To overcome this difficulty, we shall use the parametric distance function dS(x)(y)
establishing some equivalent exact penalty formulations of GBLP. These equivalent
formulations have penalty functions with computable Clarke generalized gradients.

We call a function r(x, y) : Rn+m → R a merit function provided

r(x, y) ≥ 0 ∀(x, y) ∈ GrU and r(x, y) = 0 if and only if (x, y) ∈ GrS.(15)

A merit function is called a uniform parametric error bound for the inclusion y ∈ S(x)
with modulus δ > 0 in the set Q ⊂ GrU if it satisfies

dS(x)(y) ≤ δr(x, y) ∀(x, y) ∈ Q.(16)

A merit function provides the following equivalent formulation of GBLP:

RP minimize f(x, y)
subject to r(x, y) = 0,

c(x, y) ≤ 0,
x ∈ X, y ∈ Rm.

Its corresponding penalized problem is

RPµ minimize f(x, y) + µr(x, y)
subject to c(x, y) ≤ 0,

x ∈ X, y ∈ Rm.
Next we show that if r(x, y) is a uniform parametric error bound and f is Lipschitz

near y∗ uniformly in x, then there exists µ > 0 such that the problem RPµ is an exact
penalty equivalence of RP. As in Theorem 2.5 we omit the proof for the global result.

Theorem 2.6. Let (x∗, y∗) be a local solution of problem GBLP and r be a
uniform parametric error bound with modulus δ > 0 in a neighborhood of (x∗, y∗).
Suppose that f is locally Lipschitz near y∗ uniformly for all x in a neighborhood of x∗.
Then there exists µ∗ > 0 such that (x∗, y∗) is a local solution of the penalized problem
RPµ for all µ ≥ δµ∗ and any local solution to RPµ with µ > δµ∗ with respect to the
neighborhood of (x∗, y∗) is also a local solution to RP.

Furthermore, let (x∗, y∗) be a global solution of GBLP and r be a uniform para-
metric error bound in GrU . Assume that f(x, ·) is Lipschitz continuous with constant
L > 0 uniformly for all x ∈ X. Then (x∗, y∗) is a global solution of RPµ for all
µ ≥ δL, and any other global solution of RPµ for all µ > δL is also a global solution
of GBLP.

Proof. Being a local solution of GBLP, (x∗, y∗) is also a local solution of DP. DP
is partially calm by Theorem 2.5. Thus, by Proposition 2.2, there exists a µ∗ > 0
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such that (x∗, y∗) is also a solution to DPµ∗ . Hence, for all (x, y) in a neighborhood
of (x∗, y∗) which are feasible for RPδµ∗ , one has

f(x∗, y∗) + δµ∗ · r(x∗, y∗) = f(x∗, y∗) + µ∗ · dS(x∗)(y
∗) since y∗ ∈ S(x∗),

≤ f(x, y) + µ∗ · dS(x)(y) since (x∗, y∗) solves DPµ∗ ,

≤ f(x, y) + δµ∗ · r(x, y) by inequality (16).

Therefore, (x∗, y∗) is also a local solution of RPδµ∗ . The proof for the converse is
similar to that of the converse part of Proposition 2.2.

Remark 2.7. As in Remark 2.3 when the uniform parametric error bound r is
continuous, the constant µ∗ in Theorem 2.6 can be taken as the modulus of partial
calmness, which is the Lipschitz constant of f(x, ·) by virtue of Theorem 2.5.

Sometimes a uniform parametric error bound is not nicely behaved but its square
is; e.g.,

√
|x| is not Lispchitz continuous near 0 but |x| is. Therefore, we are interested

in the following formulations which are equivalent to GBLP when r(x, y) is a merit
function.

RSP minimize f(x, y)
subject to r2(x, y) = 0,

c(x, y) ≤ 0,
x ∈ X, y ∈ Rm.

Its penalized problem is
RSPµ minimize f(x, y) + µr2(x, y)

subject to c(x, y) ≤ 0,
x ∈ X, y ∈ Rm.

Although the penalty term r2(x, y) might be better behaved, it is smaller than r(x, y)
for all (x, y) that are close to (x∗, y∗). Hence, to formulate an equivalent exact penalty
formulation for the problem RSP, one needs to impose a stronger condition on f . The
following definition gives such a condition.

Definition 2.8. Let x0 ∈ X. The mapping f(x, y) : Rn × Rm → R is up-
per Hölder continuous with exponent 2 near every y ∈ S(x) uniformly for x in a
neighborhood of x0 provided there exists L > 0 such that

f(x, y′)− f(x, y) ≥ −L‖y′ − y‖2 ∀y′ ∈ N(y), y ∈ S(x), x ∈ N(x0).

The constant L is called the modulus.
We prove that r2(x, y) provides an exact penalty formulation for GBLP if r(x, y)

is a uniform parametric error bound and f is upper Hölder continuous with exponent
2 near every y ∈ S(x) uniformly in x in a neighborhood of x∗.

Theorem 2.9. Let (x∗, y∗) be a local solution of the problem RSP. Assume that
r is a uniform parametric error bound with modulus δ in a neighborhood of (x∗, y∗)
and that f is upper Hölder continuous with exponent 2 and modulus L > 0 near every
y ∈ S(x) uniformly in x in a neighborhood of x∗. Then (x∗, y∗) is a local solution
of the penalized problem RSPµ for all µ ≥ δ2L, and any local solution to RSPµ with
µ > δ2µ∗ in the neighborhood of (x∗, y∗) is also a local solution to RSP.

Proof. Let α > 0 be such that (x∗, y∗) is a local solution of RSP in (x∗, y∗) +

α(δ + 1)B ⊂ X × Y . For any ε, 0 ≤ ε
1
2 < α, let (x, y) ∈ (x∗, y∗) + αB be such that

r2(x, y) = ε, c(x, y) ≤ 0. Since S(x) is closed, one can choose y′(x) ∈ S(x) such that

‖y − y′(x)‖ = dS(x)(y) ≤ δr(x, y) = δε
1
2 . Since (x, y′(x)) is feasible for RSP and

‖(x, y′(x))− (x∗, y∗)‖ ≤ ‖(x, y′(x))− (x, y)‖+ ‖(x, y)− (x∗, y∗)‖
≤ δε 1

2 + α < α(δ + 1),
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we have

f(x, y′(x)) ≥ f(x∗, y∗).

Therefore

f(x, y)− f(x∗, y∗)

≥ f(x, y)− f(x, y′(x)) by optimality of (x∗, y∗),

≥ −L‖y − y′(x)‖2 by upper Hölder continuity of f,

= −L(dS(x)(y))2,

≥ −Lδ2r2(x, y) since r(x, y) is a uniform parametric error bound,

= −Lδ2ε;

i.e., RSP is partially calm at (x∗, y∗) with modulus δ2L. The rest of the proof is
similar to the converse part of Proposition 2.2.

3. Some uniform parametric error bounds. In this section we discuss some
useful uniform parametric error bounds. We start with two definitions.

Definition 3.1. Let Ω ⊂ Rn. A mapping F (x, y) : Rn × Rm → Rm is called
strongly monotone with respect to y uniformly in x ∈ Ω with modulus µ > 0 provided

〈F (x, y)− F (x, z), y − z〉 ≥ µ‖y − z‖2 ∀y, z ∈ U(x), x ∈ Ω.

Definition 3.2. Let Ω ⊂ Rn. The mapping F (x, y) : Rn × Rm → Rm is called
pseudostrongly monotone with respect to y uniformly in x ∈ Ω with modulus µ > 0
provided

〈F (x, y), z − y〉 ≥ 0 implies 〈F (x, z), z − y〉 ≥ µ‖z − y‖2 ∀y, z ∈ U(x), x ∈ Ω.

3.1. Uniformly weak sharp minima for the lower level optimization
problem.

Definition 3.3 (see [30]). A family of parametric mathematical programming
problems {(Px) : x ∈ X} as defined in (3) is said to have uniformly weak sharp
minima in Ω ⊂ GrU if there exists an δ > 0 such that

dΣ(x)(y) ≤ δ(g(x, y)− V (x)) ∀(x, y) ∈ Ω,(17)

where Σ(x) is the solution set of the lower level optimization problem Px. The constant
δ is called the modulus of the uniformly weak sharp minima.

By virtue of (9), g(x, y) − V (x) is a merit function. When Σ(x) = S(x) (e.g.,
when U(x) is convex, g(x, y) is pseudoconvex and differentiable in y), g(x, y)− V (x)
is obviously a uniform parametric error bound.

The next result follows easily from a result about regular points due to Ioffe
(Theorem 1 and Corollary 1.1 of [8]).

Proposition 3.4. Let (x∗, y∗) be an optimal solution of the CBLP. Suppose that
g(x, y) is Lipschitz continuous in y uniformly in x ∈ X with constant Lg > 0. Assume
that there exist σ > 0 such that for any (x, y) ∈ GrU satisfying y 6∈ S(x) and any
ξ ∈ ∂yg(x, y), η ∈ (Lg + 1)∂dS(x)(y) (or η ∈ NS(x)(y)),

‖ξ + η‖ ≥ σ.
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Then

dS(x)(y) ≤ (1/σ)(g(x, y)− V (x)) ∀(x, y) ∈ GrU.

Consider the bilevel programming problem where the lower level problem is the
following parametric quadratic programming problem:

QPx ming(x, y) := 〈y, Px〉+
1

2
〈y,Qy〉+ ptx+ qty

s.t. y ∈ Ωx := {y ∈ Y : Ax+By − b ≤ 0}.

Here Q ∈ Rm×m is a symmetric and positive semidefinite matrix, p ∈ Rn, q ∈ Rm,
P ∈ Rm×n; A and B are d× n and d×m matrices, respectively, and b ∈ Rd.

The next proposition gives a sufficient condition for the family of parametric
quadratic programming problems {QPx : x ∈ Rn} to have uniformly weak sharp
minima.

Proposition 3.5. Assume that there exists a constant M > 0 such that for all
(x, y) ∈ GrS, every element z of (N(y,Ωx) + span(∇yg(x, ȳ))) ∩ B can be expressed
as

z = η∇yg(x, ȳ) + ξ,

where |η| ≤M and ξ ∈ N(y,Ωx). Assume

ker(∇2
yg(x, ȳ))⊥ ⊂ span(∇yg(x, ȳ)) +N(y,Ωx) ∀ (x, y) ∈ GrS(18)

or, equivalently,

(∇yg(x, ȳ))⊥ ∩ T (y,Ωx) ⊂ ker(∇2
yg(x, ȳ)) ∀ (x, y) ∈ GrS,

where ȳ is any element in S(x), A⊥ := {y ∈ Rm : 〈y, x〉 = 0 ∀x ∈ A} denotes the
subspace perpendicular to A, span(d) represents the subspace generated by the vector
d, T (y, C) is the tangent cone to the set C at y, and ker(A) is the nullspace of the
matrix A. Then {QPx : x ∈ X} has uniformly weak sharp minima.

Before proving the above result we first state the following description of the
solution set of a convex program given in Mangasarian [21].

Lemma 3.6. Let S be the set of solutions to the problem min{g(y) : y ∈ Ω} where
g : Rn → R is a twice continuously differentiable convex function and Ω is a convex
subset of Rn. Let ȳ ∈ S. Then

S = {y ∈ Ω : ∇g(y) = ∇g(ȳ), 〈∇g(ȳ), y − ȳ〉 = 0}.

It follows that for QPx, the solution set S(x) is

S(x) = Ωx ∩ {y : 〈∇yg(x, ȳ), y − ȳ〉 = 0} ∩ {y : ∇2
yg(x, ȳ)(y − ȳ) = 0}.

Since Ωx is a polyhedral one has

T (y, S(x)) = T (y,Ωx) ∩ (∇yg(x, ȳ))⊥ ∩ ker(∇2
yg(x, ȳ))(19)

by virtue of Corollaries 16.4.2 and 23.8.1 of Rockafellar [28].
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Proof of Proposition 3.5. By virtue of Theorem 2.6 of Burke and Ferris [4], it
suffices to show that for all x ∈ X, y ∈ S(x), there exists an α > 0 such that

g′2(x, y; d) ≥ α‖d‖ ∀d ∈ T (y,Ωx) ∩N(y, S(x)),

where g′2(x, y; d) is the directional derivative of g with respect to y in the direction d.
Note that (19) and (18) imply that

N(y, S(x)) = N(y,Ωx) + span(∇yg(x, ȳ)) + ker(∇2
yg(x, ȳ))⊥

= N(y,Ωx) + span(∇yg(x, ȳ)).

Since d ∈ T (y,Ωx) ∩N(y, S(x)), one has

‖d‖ = sup{〈z(x), d〉 : z(x) ∈ B ∩N(y, S(x))}
≤ sup{〈η∇yg(x, ȳ) + ξ, d〉 : |η| < M, ξ ∈ N(y,Ωx)}
≤M〈∇yg(x, ȳ), d〉 = M〈∇yg(x, y), d〉 = Mg′2(x, y; d).

The first inequality follows from the assumption, and the second equality follows from
Lemma 3.6. Setting α = 1/M completes the proof.

The following bilinear programming problem with parameter x is a special case
of QPx.

BLPx min〈y, Px〉+ ptx+ qty

s.t. Ax+By − b ≤ 0,

y ∈ Rm.

Proposition 3.5 has the following simple consequence.
Corollary 3.7. The bilinear programming problem BLPx has a uniformly weak

sharp minima if there exists a constant M > 0 such that for all (x, y) ∈ GrS, every
element z of (N(y,Ωx) + span(Px+ q)) ∩B can be expressed as

z = η(Px+ q) + ξ

where |η| ≤M and ξ ∈ N(y,Ωx).
The following example shows that the assumption in Corollary 3.7 cannot be

omitted.
Example 3.8. Consider the problem

minx+ y

s.t. 0 ≤ x ≤ 1, y ∈ arg min{−xy : x+ y − 1 ≤ 0, y ≥ 0}.

The solution set of the lower level problem is

S(x) =

{
[0, 1] if x = 0,
1− x if 0 < x ≤ 1.

The value function of the lower problem is

V (x) =

{
0 if x = 0,
−x(1− x) if 0 < x ≤ 1.

It is easy to check that the assumption in Corollary 3.7 is not satisfied and there is
no uniformly weak sharp minimum. In fact, if we replace the constraint 0 ≤ x ≤ 1 by
0 < ε ≤ x ≤ 1, then the assumption in Corollary 3.7 is satisfied, and uniformly weak
sharp minima exist.
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3.2. A standard gap bound. Consider a parametric variational inequality
with nonseparable and linear constraints, i.e.,

U(x) = {y ∈ Rm|c(x, y) = Ax+By − b ≤ 0},(20)

where A and B are d × n and d × m matrices, respectively, and b ∈ Rd. In this
case, ∀x0 ∈ X, y0 ∈ U(x0) solve the variational inequality with parameter x0 (see
(2)) if and only if there exists λ0 ∈ Rd such that (x0, y0, λ0) satisfies the following
complementarity system:

F (x0, y0) +BTλ0 = 0,

(Ax0 +By0 − b)Tλ0 = 0,

Ax0 +By0 − b ≤ 0, λ0 ≥ 0.

If the gradients of the binding constraints in the variational inequality (2) at (x0, y0),
i.e., those ∇ycj(x0, y0) such that cj(x0, y0) = 0, j ∈ {1, 2, . . . , d}, are linearly indepen-
dent, and the strict complementarity condition

λ0i > 0 ⇐⇒ ci(x0, y0) = 0, ∀i ∈ {1, 2, . . . , d}(21)

holds, then the variational inequality (2) with parameter x has a unique solution y(x)
for all x in a neighborhood of x0, and the above complementarity system has a unique
solution (y(x), λ(x)) for all x in a neighborhood of x0. Furthermore, the functions
y(x) and λ(x) are Lipschitz continuous, and the strict complementarity condition (21)
is satisfied in a neighborhood of x0 (see, e.g., Friesz et al. [10]).

The following result due to Marcotte and Zhu [25] shows that the gap function
defined by (8) can serve as a uniform parametric error bound under certain conditions.

Proposition 3.9. Assume that X is a compact, convex subset of Rn and U(x)
defined as in (20) is compact. Let the mapping F be strongly monotone with respect
to y uniformly in x ∈ X, and let ∇yF be Lipschitz continuous in y uniformly in x.
Suppose x0 ∈ X. If the linear independence and strict complementarity conditions
hold at y0 = y(x0), then there exists a constant δ > 0 and a neighborhood of (x0, y0)
such that

dS(x)(y) ≤ δG0(x, y) ∀(x, y) ∈ GrU ∩N(x0, y0).

Now we consider a parametric variational inequality with separable and linear
constraints; i.e., U(x) = {y ∈ Rm|By ≤ b} is a convex polyhedron. In this case we
can weaken the assumptions of Proposition 3.9.

We need the following definition due to Dussault and Marcotte [7].
Definition 3.10. Let F be a continuous, monotone mapping from a convex

polyhedron X ⊂ Rn into Rn and denote by VIP(X,F ) the variational inequality
problem associated with X and F ; i.e., find x∗ in X such that

VIP(F,X) 〈F (x∗), x∗ − x〉 ≤ 0 for all x in X.

We say that VIP(F,X) is geometrically stable if, for any solution x∗ of the variational
inequality, 〈F (x∗), x∗−x〉 = 0 implies that x lies on the optimal face, i.e., the minimal
face of X containing the (convex) solution set to VIP(F,X).

The following result due to Marcotte and Zhu [25] gives a useful error bound.
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Proposition 3.11. Assume that X is a convex polyhedron, U(x) = {y : By−b ≤
0} is compact, and the mapping F is strongly monotone with respect to y uniformly
in x ∈ X. Let x0 ∈ X and assume that there exists a neighborhood of x0 such that
VIP(F (x, ·), Y ) is geometrically stable inside that neighborhood. Then there exist some
neighborhood N(x0) of x0 and a positive number δ > 0 such that

dS(x)(y) ≤ δG0(x, y) ∀y ∈ U(x), x ∈ N(x0).

3.3. A square root standard gap bound. The following result gives a uni-
form parametric error bound in terms of the square root of the gap function G0.

Proposition 3.12. Assume that the mapping F is pseudostrongly monotone
with respect to y uniformly in x ∈ N(x0) with modulus µ. Then one has

dS(x)(y) ≤
√
µ

µ

√
G0(x, y) ∀y ∈ U(x), x ∈ N(x0).

Proof. Let y(x) ∈ S(x). Then, by the definition of S(x), one has

〈F (x, y(x)), y − y(x)〉 ≥ 0 ∀y ∈ U(x).

Since y(x) ∈ U(x), it follows from the pseudostrong monotonity of F and the definition
of G0 that, for all x ∈ N(x0) and y ∈ U(x), one has

µ‖y(x)− y‖2 ≤ 〈F (x, y), y − y(x)〉 ≤ G0(x, y),

from which the result follows readily.

3.4. A square root differentiable gap bound. Recently, Fukushima [11] gave
an optimization formulation of a variational inequality based on the differentiable gap
function defined as

Gα(x, y) = max
z∈U(x)

{
〈F (x, y), y − z〉 − 1

2α
‖y − z‖2M

}
,(22)

where α > 0 is a given constant, ‖ · ‖M denotes the elliptic norm in Rm defined by

‖z‖M = 〈z,Mz〉 12 , and M is a symmetric positive definite matrix. It is easy to see
that the differentiable gap function Gα satisfies condition (15). The following result
gives a uniform parametric error bound based on

√
Gα.

Proposition 3.13. Suppose U(x) is convex and x0 ∈ X. Let the mapping F be
pseudostrongly monotone with respect to y uniformly in x ∈ N(x0). Then there exists
δ > 0 such that

dS(x)(y) ≤ δ
√
Gα(x, y) ∀y ∈ U(x), x ∈ N(x0).

Proof. Let y(x) ∈ S(x). Then, by the definition of S(x), one has

〈F (x, y(x)), y − y(x)〉 ≥ 0 ∀y ∈ U(x).

Since y(x) ∈ U(x), it follows from the pseudostrong monotonity of F that, for every
x ∈ N(x0) and y ∈ U(x),

〈F (x, y), y − y(x)〉 ≥ µ‖y − y(x)‖2.
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Let yt = y + t(y(x) − y) for t ∈ [0, 1]. By the convexity of U(x), yt ∈ U(x) for any
y ∈ U(x). It follows from the definition of Gα(x, y) (see (22)) that

Gα(x, y) ≥ 〈F (x, y), y − yt〉 −
1

2α
‖y − yt‖2M

= t〈F (x, y), y − y(x)〉 − t2

2α
‖y − y(x)‖2M

≥
(
tµ− t2‖M‖

2α

)
‖y − y(x)‖2.

Letting t = min{1, αµ
‖M‖} gives

Gα(x, y) ≥ σ‖y − y(x)‖2,

where

σ =

{
(µ− ‖M‖2α ) if µ ≥ ‖M‖α ,
αµ2

2‖M‖ if µ ≤ ‖M‖α .

This proves the result.

3.5. A projection bound. The following projection characterization of y ∈
S(x) is well known (see, e.g., [15]).

Lemma 3.14. An arbitrary vector y ∈ Y is a solution of the variational inequality
with parameter x if and only if it satisfies

h(x, y) = y − projU(x)(y − F (x, y)) = 0

where projU(x)(z) is the orthogonal projection of a vector z onto the set U(x).

It follows from the above lemma that any vector norm of h(x, y) satisfies condition
(15). The following result is a parametric version of [27, Thm. 3.1]. The proof is
omitted since it is essentially the same as that of [27, Thm. 3.1].

Proposition 3.15. Let x0 ∈ X. Assume that the mapping F is strongly mono-
tone with respect to y uniformly in N(x0) with modulus µ, and F is Lipschitz contin-
uous in y with constant LF > 0 uniformly in x ∈ N(x0). Then we have

dS(x)(y) ≤ ((LF + 1)/µ)‖h(x, y)‖ ∀y ∈ U(x), x ∈ N(x0).(23)

Remark 3.16. An important special case of GBLP is one where F (x, y) = Qx+
My+q and U(x) = Rm+ , the nonnegative orthant inRm. In this case, finding a solution
y ∈ Rm to the parametric variational inequality (1) reduces to the parametric linear
complementarity problem of finding a y ∈ Rm satisfying

y ≥ 0, Qx+My + q ≥ 0, 〈y,Qx+My + q〉 = 0.

The uniform projection error bound holds when M is a P -matrix (see Mathias and
Pang [24]) and when M is an R0-matrix. (See Mangasarian and Ren [23] and Luo
and Tseng [18].)
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4. Kuhn–Tucker-type necessary optimality conditions. In this section we
derive Kuhn–Tucker-type necessary optimality conditions for GBLP.

Without loss of generality, we assume in this section that all solutions of the
mathematical programming problems lie in the interior of their abstract constraint
sets.

First we give a concise review of the material on nonsmooth analysis. Our refer-
ence is Clarke [5].

Consider the following mathematical programming problem:
P minimize φ(x, y)

subject to c(x, y) ≤ 0,
x ∈ X, y ∈ Rm.

The corresponding perturbed problem is
P(α) minimize φ(x, y)

subject to c(x, y) + α ≤ 0,
x ∈ X, y ∈ Rm,

where φ(x, y) : Rn+m → R and c(x, y) : Rn+m → Rd are locally Lipschitz near the
points of interest.

Definition 4.1 (calmness). Let (x∗, y∗) solve P. Problem P is calm at (x∗, y∗)
provided that there exist δ > 0 and µ > 0 such that for all α ∈ δB, for all (x, y) ∈
(x∗, y∗) + δB which are feasible for P(α), one has

φ(x, y)− φ(x∗, y∗) + µ‖α‖ ≥ 0.

Definition 4.2 (abnormal and normal multipliers). Let (x, y) be feasible for P.
Define M0(x, y), the set of abnormal multipliers corresponding to (x, y), as the set

M0(x, y) := {s ∈ Rd : 0 ∈ ∂c(x, y)>s, s ≥ 0, 〈s, c(x, y)〉 = 0}.

Define M1(x, y), the set of normal multipliers corresponding to (x, y), as the set

M1(x, y) := {s ∈ Rd : 0 ∈ ∂φ(x, y) + ∂c(x, y)>s, s ≥ 0, 〈s, c(x, y)〉 = 0}.

Remark 4.3. A sufficient condition for P to be calm at (x∗, y∗) is M0(x∗, y∗) =
{0}. M0(x∗, y∗) = {0} if and only if the Mangasarian–Fromowitz conditions are
satisfied [30].

Proposition 4.4 (Kuhn–Tucker Lagrange multiplier rule). Let (x∗, y∗) solve
P. Suppose φ, c are locally Lipschitz near (x∗, y∗) and problem P is calm at (x∗, y∗).
Then there exists s ≥ 0 such that

0 ∈ ∂φ(x∗, y∗) + ∂c(x∗, y∗)>s

and

0 = 〈s, c(x∗, y∗)〉.

The following theorem gives a necessary condition for optimality when an error
bound r(x, y) is explicitly known.

Theorem 4.5. Let (x∗, y∗) be a solution of problem GBLP. Let r(x, y) be a uni-
form parametric error bound in a neighborhood of (x∗, y∗) and RPµ be the associated
penalized problem of RP, where µ > 0. Assume that f and r are locally Lipschitz near
(x∗, y∗) and the associated penalized problem RPµ is calm at (x∗, y∗). Then there
exists a nonzero vector s ≥ 0 such that

0 ∈ ∂f(x∗, y∗) + µ∂r(x∗, y∗) + ∂c(x∗, y∗)>s
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and

0 = 〈s, c(x∗, y∗)〉.

Proof. By Theorem 2.6, (x∗, y∗) is also a solution of the associated penalized
problem RPµ. The result follows from Proposition 4.4.

However, in many cases, uniform parametric error bounds are implicit functions
of the original problem data. The useful uniform parametric error bounds derived in
section 4 involve the class of marginal functions or value functions. In order to derive
necessary conditions in these cases, one must first study the generalized differentia-
bility of marginal functions.

Consider the following parametric mathematical programming problem:
Pα minimize φ(α, y)

subject to c(α, y) ≤ 0,
y ∈ Rm.

We assume that for problem Pα the functions φ and c are locally Lipschitz near the
point of interest y0 ∈ Rm. Let y be feasible for Pα. Define

M0
α(y) : = {π ∈ Rd : 0 ∈ ∂yc(α, y)>π, 〈π, c(α, y)〉 = 0, π ≥ 0},

M1
α(y) : = {π ∈ Rd : 0 ∈ ∂yφ(α, y) + ∂yc(α, y)>π, 〈π, c(α, y)〉 = 0, π ≥ 0}.

Let W (α) = inf{φ(α, y) : c(α, y) ≤ 0, y ∈ Y }. The following result is an easy conse-
quence of Corollary 1 of Theorem 6.5.2 of Clarke [5].

Proposition 4.6 (generalized differentiability of marginal functions). Let Σα0 be
the solution set to problem Pα0 and suppose it is nonempty. Suppose M0

α0
(Σα0) = {0}.

Then W (α) is Lipschitz near α0, and one has

∂W (α0) ⊂ clco{∂αφ(α0, y) + ∂αc(α0, y)>π : y ∈ Σα0
, π ∈M1

α0
(y)},

where clcoA denotes the closed convex hull of the set A.
Set G0(x, y) = −min{〈F (x, y), z − y〉 : c(x, z) ≤ 0, z ∈ Rm}. The parameter

here is α = (x, y). Let Σ(x,y) denote the set of vectors at which G0(x, y) attains the
maximum. By Proposition 4.6, one has the following result.

Proposition 4.7. Suppose M0
(x∗,y∗)(Σ(x∗,y∗)) = {0}. Assume that f, F , and c

are locally Lipschitz near (x∗, y∗) and that ∂F (x∗, y∗) ⊂ ∂xF (x∗, y∗) × ∂yF (x∗, y∗).
Then G0(x, y) is Lipschitz near (x∗, y∗) and one has

∂G0(x∗, y∗)

⊂ co{(∂xF (x∗, y∗)>(y∗ − y)− ∂xc(x∗, y)>π, ∂yF (x∗, y∗)>(y∗ − y) + F (x∗, y∗)) :

y ∈ Σ(x∗,y∗), π ∈M1
(x∗,y∗)(y)},

where

M0
(x∗,y∗)(y) = {π ∈ Rd : 0 ∈ ∂yc(x∗, y)>π, π ≥ 0, 〈π, c(x∗, y)〉 = 0},

M1
(x∗,y∗)(y) = {π ∈ Rd : 0 ∈ F (x∗, y∗) + ∂yc(x

∗, y)>π, π ≥ 0, 〈π, c(x∗, y)〉 = 0}.

Combining Proposition 4.7, Remark 4.3, and Theorems 2.6, 2.9, and 4.5, one has
the following result.

Theorem 4.8. Suppose f, F , and c are C1. Let (x∗, y∗) be a solution of GBLP.
Assume either of the following assumptions is satisfied:
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• G0(x, y) is a uniform parametric error bound in a neighborhood of (x∗, y∗).
•
√
G0(x, y) is a uniform parametric error bound in a neighborhood of (x∗, y∗)

and f is upper Hölder continuous with exponent 2 near every y ∈ S(x) uni-
formly in x in a neighborhood of x∗.

Suppose M0
(x∗,y∗)(Σ(x∗,y∗)) = {0}. Then there exist µ > 0, s ∈ Rd, positive integers

I, J , λij ≥ 0,
∑I
i=1

∑J
j=1 λij = 1, yi ∈ Σ(x∗,y∗), and πij ∈ Rd such that

0 = ∇xf(x∗, y∗) +∇xc(x∗, y∗)>s+ µ
∑
ij

λij{∇xF (x∗, y∗)>(y∗ − yi)−∇xc(x∗, yi)>πij},

0 = ∇yf(x∗, y∗) +∇yc(x∗, y∗)>s+ µ
∑
ij

λij{∇yF (x∗, y∗)>(y∗ − yi) + F (x∗, y∗)},

0 = 〈s, c(x∗, y∗)〉, s ≥ 0,

0 = F (x∗, y∗) +∇yc(x∗, yi)>πij ,
0 = 〈πij , c(x∗, yi)〉, πij ≥ 0.

For Gα(x, y), the differentiable gap function defined in (22), since y is the unique
solution in the right-hand side of (22), we have Σ(x,y) = {y}. By Proposition 4.6, one
has the following result.

Proposition 4.9. Suppose f, F , and c are locally Lipschitz near (x∗, y∗). As-
sume that M0

(x∗,y∗)(y
∗) = {0}. Then Gα(x, y) is Lipschitz near (x∗, y∗) and one has

∂Gα(x∗, y∗) ⊂ {(−∂xc(x∗, y∗)>π, F (x∗, y∗)) : π ∈M1
(x∗,y∗)(y

∗)},
where

M1
(x∗,y∗)(y

∗) = {π ∈ Rd : 0 ∈ F (x∗, y∗) + ∂yc(x
∗, y∗)>π, π ≥ 0, 〈π, c(x∗, y∗)〉 = 0}.

Furthermore, if c is a C1 function and M1
(x,y)(y) = {π} is a singleton, then Gα(x, y)

is C1 and one has

∇Gα(x, y) = (−∇xc(x, y)>π, F (x, y)).

Combining Proposition 4.9, Remark 4.3, and Theorems 2.6, 2.9, and 4.5, one has the
following result.

Theorem 4.10. Let (x∗, y∗) be a solution of GBLP. Suppose F is locally Lipschitz
near (x∗, y∗) and f and c are C1 functions. Assume that either of the following
assumptions is satisfied:

• Gα(x, y) is a uniform parametric error bound in a neighborhood of (x∗, y∗).
•
√
Gα(x, y) is a uniform parametric error bound in a neighborhood of (x∗, y∗)

and f is upper Hölder continuous with exponent 2 near every y ∈ S(x) uni-
formly in x in a neighborhood of x∗.

Suppose M0
(x∗,y∗)(y

∗) = {0}. Then there exist µ > 0, s ∈ Rd, and π ∈ Rd such that

0 = ∇xf(x∗, y∗) +∇xc(x∗, y∗)>s− µ∇xc(x∗, y∗)>π,
0 = ∇yf(x∗, y∗) +∇yc(x∗, y∗)>s+ µF (x∗, y∗),

0 = 〈s, c(x∗, y∗)〉 = 0, s ≥ 0,

0 = F (x∗, y∗) +∇yc(x∗, y∗)>π,
0 = 〈π, c(x∗, y∗)〉, π ≥ 0.

Remark 4.11. To shorten the exposition, we have assumed in Theorems 4.8 and
4.10 that f, F, g, and c are C1 functions. However, these theorems can also be stated
without difficulty when f, F, g, and c are merely Lipschitz continuous.
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5. Relationships between various uniform parametric error bounds. In
this section, we study the relationships between various uniform parametric error
bounds. Through illustrative examples we show that various equivalent single level op-
timization formulations with uniform parametric error bounds and their corresponding
necessary optimality conditions complement each other.

The following result is easy to prove.
Proposition 5.1. Suppose that rS and rB are two merit functions that satisfy

the following inequality:

rS(x, y) ≤ δrB(x, y) ∀(x, y) ∈ GrU,

for a constant δ > 0. If rS(x, y) is a uniform parametric error bound, then so is
rB(x, y).

Motivated by the above result we now establish certain inequalities and equalities
among various uniform parametric error bounds.

Proposition 5.2.

(1) If the objective function g(x, y) of the lower level optimization problem (3) is
convex and C1 (continuously differentiable) in y, then

g(x, y)− V (x) ≤ G0(x, y).(24)

Furthermore, if the lower level problem is linear, then

g(x, y)− V (x) = G0(x, y).

(2) For GBLP, we have √
Gα(x, y) ≤

√
G0(x, y).(25)

(3) For (x, y) in a neighborhood of the solution (x∗, y∗) of GBLP,

G0(x, y) ≤
√
G0(x, y).(26)

(4) For GBLP, we have

‖h(x, y)‖ ≤
√

2G0(x, y).(27)

Proof. (1) Let y(x) ∈ arg miny∈U(x) g(x, y). By the convexity of g(x, ·) and the
definition of G0, we have

G0(x, y) ≥ 〈∇yg(x, y), y − y(x)〉
≥ g(x, y)− g(x, y(x))

= g(x, y)− V (x).

The second assertion follows from the definitions of V (x) and G0(x, y).
(2) This follows directly from the definitions of Gα and G0.
(3) Since G0 is continuous in (x, y) and G0(x∗, y∗) = 0, G0(x, y) < 1 in a neigh-

borhood of the solution (x∗, y∗) of GBLP. This implies the result.
(4) Taking α = 1 and M = I the identity matrix in the definition of Gα, we have

G1(x, y) = 〈F (x, y), y − p(x, y)〉 − 1

2
‖y − p(x, y)‖2 ≥ 0,



500 J. J. YE, D. L. ZHU, AND Q. J. ZHU

where p(x, y) = ProjU(x)(y − F (x, y)). Thus

G0(x, y) ≥ 〈F (x, y), y − p(x, y)〉

≥ 1

2
‖y − p(x, y)‖2 =

1

2
‖h(x, y)‖2.

The proof is completed.
As shown in section 4, one of the major applications of the exact penalty formu-

lation with uniform parametric error bounds is to derive Kuhn–Tucker-type necessary
optimality conditions. For this purpose parametric error bounds must be Lipschitz
continuous (see Theorem 4.5). Among the aforementioned error bounds, G0, h, and
g − V are Lipschitz continuous under appropriate constraint qualifications on U(x).
The rest are generally not Lipschitz. By virtue of Proposition 5.1, if we have an exact
penalty formulation with a given uniform parametric error bound then a similar ex-
act penalty formulation is also valid, with that error bound replaced by a larger one.
Smaller error bounds generally require stronger conditions. Hence, on one hand, error
bounds G0, h, and φ−V can be Lipschitz continuous but require stronger conditions.
On the other hand, larger bounds such as

√
G0 may not be Lipschitz continuous but

require weaker conditions. In the case when uniform parametric error bounds are not
Lipschitz continuous, Theorems 4.8 and 4.10 show that stronger assumptions, such
as upper Hölder continuity on the upper level objective functions, may be required.
Therefore, various error bounds and their equivalent exact penalty representations
complement each other. The following are some illustrative examples.

Example 5.3. Consider the following classical bilevel programming problem:

(P1) minx2 − 2y

s.t. x ∈ [0, 2] and y ∈ arg min{y2 − 2xy : y ∈ [0, 2x]}.
It is easy to verify that (1, 1) is the unique solution of (P1) and assumption (18) does

not hold. Therefore, Proposition 3.5 does not apply and one may suspect that (P1)
does not have a uniformly weak sharp minimum. Indeed, direct calculation shows
that the value function for the lower level problem is V (x) = x2. Using the value
function approach, problem (P1) is equivalent to the following problem:

minx2 − 2y

s.t. (y − x)2 = 0,

y ∈ [0, 2x], x ∈ [0, 2].

Here (y−x)2 is not an exact penalty term for the above problem, since for any µ > 0
(1, y) where y ∈ (1, 2+µ

µ ) assigns a lower value to the objective function than (1, 1) in
the penalized problem

minx2 − 2y + µ(y − x)2

s.t. y ∈ [0, 2x], x ∈ [0, 2].

It is clear that the function F (x, y) = ∇yg(x, y) = y − x is strongly monotone in y
uniformly for x ∈ R. The standard gap function takes the form

G0(x, y) = max
z∈[0,2x]

〈y − x, y − z〉

= y2 − xy + max
z∈[0,2x]

〈y − x,−z〉

= y2 − xy − x[(y − x)− |y − x|]
= (y − x)2 + x|y − x|.
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The linear independence and the strict complementarity conditions can easily be ver-
ified at (1, 1). Hence, by Proposition 3.9, the gap function G0(x, y) is a uniform
parametric error bound in a neighborhood of (1, 1). Indeed, it is easy to see that
(1, 1) is also the unique solution of the penalized problem

s.t. y ∈ [0, 2x], x ∈ [0, 2]

for any µ > 0.
We now slightly modify the above example to show that the strict complemen-

tarity conditions cannot be omitted from Proposition 3.9.
Example 5.4. Consider the same problem in Example 5.3 with constraints y, z ∈

[0, 2x] replaced by y, z ∈ [0, x] and with x ∈ [0, 2] replaced by x ∈ [0,∞).
Again, one can check that (1, 1) is the only solution to the problem. However,

the gap function is different. In fact, in this example,

G0(x, y) = max
z∈[0,x]

〈y − x, y − z〉

= y2 − xy + max
z∈[0,x]

〈y − x,−z〉

= y2 − xy + x2 − xy
= (y − x)2.

Thus the equivalent single level problem involving the standard gap function is
minimize x2 − 2y
subject to (y − x)2 = 0,

y ∈ [0, x], x ∈ [0,∞).
Again, (y − x)2 is not an exact penalty term. This is due to the fact that the strict
complementarity condition does not hold at (1,1).

F (x, y) = y − x is strongly monotone; therefore, it is pseudostrongly monotone
with respect to y uniformly for all x ∈ Rn. Using Propositions 3.12, 3.13, and 3.15,
the problem has the square root standard gap bound, the square root differentiable
gap bound, and the projection bound. The differentiable gap function associated with
α = 1 and M = I takes the form

G1(x, y) = max
z∈[0,x]

{
〈y − x, y − z〉 − 1

2
(y − z)2

}
=

1

2
(y − x)2.

The projection bound takes the form |h(x, y)| = |y− x|. Indeed, the original problem
is equivalent to the following penalized problem:

s.t. y ∈ [0, x], x ∈ [0,∞),

for all µ > 0.
Note that the uniform parametric error bounds for Example 5.4 are all Lipschitz

continuous. We now give an example which has a square root standard gap bound
that is not Lipschitz continuous.

Example 5.5. Consider the following classical bilevel programming problem:

min(x− 1)2 + x2(y + 1)2

s.t. x ∈ [−1, 1] and y ∈ arg min
{(

sin
π

2
x
)
y : y ∈ [−1, 1]

}
.
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Here (1,−1) is the optimal solution of the problem, and the solution set of the
lower level problem is

S(x) =

 {1} if − 1 ≤ x < 0,
[-1,1] if x = 0,
{−1} if 0 < x ≤ 1.

The standard gap function for the problem is

G0(x, y) = max
{

sin
π

2
x · (y − z) : z ∈ [−1, 1]

}
=

 sin π
2x · (y − 1) −1 ≤ x < 0,

0 x = 0,
sin π

2x · (y + 1) 0 < x ≤ 1.

Since F (x, y) = sin π
2x is independent of y, F is pseudostrongly monotone with respect

to y uniformly for all x in a neighborhood of 1. By Proposition 3.12,
√
G0(x, y) is

an error bound in the neighborhood of (1,−1). However,
√
G0(x, y) is not Lipschitz

continuous near (x∗, y∗) = (1,−1). Theorem 4.5 cannot be used.
We now verify that the assumptions of Theorem 4.8 are satisfied. The objective

function f(x, y) = (x−1)2 +x2(y+1)2 is upper Hölder continuous near every y ∈ S(x)
uniformly for x in a neighborhood of 1. Since the constraint set −1 ≤ x ≤ 1,−1 ≤
y ≤ 1 has an interior point, the Slater condition is satisfied. Theorem 4.8 implies
that at (x∗, y∗) = (1,−1), there must exist µ > 0, (s1, s2, s3) ≥ (0, 0, 0), an integer J ,

λj ≥ 0,
∑J
j=1 λj = 1, and πj = (π1

j , π
2
j , π

3
j ) ∈ R3 such that

0 = 2(x∗ − 1) + 2x∗(y∗ + 1)2 + s3 − µ
∑
j

λjπ
3
j ,

0 = 2x∗2(y∗ + 1) + µ sin
(π

2
x∗
)

+ s1 − s2,

0 = s1(y∗ − 1),

0 = s2(−1− y∗),
0 = s3(x∗ − 1),

0 = sin
(π

2
x∗
)

+ π1
j − π2

j ,

0 = π1
j (y∗ − 1),

0 = π2
j (−1− y∗),

0 = π3
j (x∗ − 1).

Indeed, the above condition holds for J = 1, λ1 = 1, µ = s2 = π2
1 = 1, and s1 = s3 =

π1
1 = π3

1 = 0.

6. Exact penalty functions for the KKT formulation. In this section, we
assume that c(x, y) is convex and differentiable in y and that one of the usual con-
straint qualifications holds for the inequality system c(x, y) ≤ 0 in terms of variable
y. Under these assumptions, besides formulating GBLP as the single level equiva-
lent problem GS or VS, one can also formulate GBLP as the equivalent single level
problem KS. We will show that some of the uniform parametric error bounds such
as G0(x, y),

√
G0(x, y), and g(x, y)− V (x) can not only serve as exact penalty terms
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themselves, but can also play an important role in deriving equivalent exact penalty
formulations for KS.

The following results establish the relationships among the KKT, the standard
gap, and the value function formulations of GBLP.

Proposition 6.1. Suppose c(x, y) is convex and differentiable in the y variable.
Then

G0(x, y) ≤ −〈u, c(x, y)〉 for all (x, y, u) ∈ X ×Rm ×Rdsuch that

u ≥ 0, c(x, y) ≤ 0, F (x, y) +∇yc(x, y)tu = 0.

Proof. From mathematical programming weak duality (see, e.g., [20]), one has

G0(x, y) := sup{〈F (x, y), y − z〉 : ∀z ∈ Rm s.t. c(x, z) ≤ 0}
= − inf{〈F (x, y), z − y〉 : ∀z ∈ Rm s.t. c(x, z) ≤ 0}
≤ − sup{〈F (x, y), z − y〉+ 〈u, c(x, y)〉 : ∀(z, u) ∈ Rm ×Rd s.t.

u ≥ 0, c(x, z) ≤ 0,

F (x, z) +∇yc(x, z)tu = 0}
≤ − sup{〈u, c(x, y)〉 : ∀(x, y, u) ∈ X ×Rm ×Rd s.t.

u ≥ 0, c(x, y) ≤ 0,

F (x, y) +∇yc(x, y)tu = 0}.

Combining Proposition 6.1 and (1) from Proposition 5.2, we get the following
result.

Corollary 6.2. Assume that the objective function g(x, y) for the lower level
optimization problem (3) and c(x, y) are convex and C1 in y. Then

g(x, y)− V (x) ≤ −〈u, c(x, y)〉∀(x, y, u) ∈ X ×Rm ×Rd such that

u ≥ 0, c(x, y) ≤ 0,∇yg(x, y) +∇c(x, y)tu = 0.

Remark 6.3. Propositions 5.1 and 6.1 and Corollary 6.2 show that any condition
ensuring that the standard gap function or g(x, y) − V (x) provides exact penalty
terms for the equivalent single level problems GS and VS, respectively, ensure that
−〈u, c(x, y)〉 is an exact penalty function for the equivalent single level problem KS.
The converse is not necessarily true.

Under assumptions involving continuous subanalytic functions, Luo et al. proved
in [19] that there exists a constant N > 0 such that (−〈u, c(x, y)〉)1/N is an exact
penalty term for KS. Moreover, for the case where the mapping F (x, y) is affine and
the feasible region is compact, N can be taken as 1 or 2 depending on whether or not
the strict complementarity condition is satisfied. To compare our results with those
in [19], we summarize the related results in [19].

Theorem 6.4 (see Theorems 4 and 6 of [19]). Consider GBLP where the lower
level problem is QPx. Assume that f(x, y) is Lipschitz continuous in both variables
and that the set

{(x, y) ∈ X ×Rm : Ax+By − b ≤ 0}

is a compact polyhedron. Suppose GBLP has a solution. Then there exist positive
scalars µ∗ and β such that for all scalars µ ≥ µ∗, any vector (x∗, y∗) solves GBLP
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if and only if for some u∗ ∈ Rd, the triple (x∗, y∗, u∗) solves the following penalized
problem in the variables (x, y, u):

minf(x, y) + µ
√
−〈u,Ax+By − b〉

s.t. Px+Qy + q +BTu = 0,

u ≥ 0, ‖u‖ ≤ β,
Ax+By − b ≤ 0,

x ∈ X, y ∈ Rm.

Furthermore, if the strict complementarity condition is satisfied for all (x, y, u) in the
feasible region of KS, then we can remove the square root.

In the following result we relax most of the assumptions of Theorem 6.4 but we
require stronger conditions on F (x, y).

Theorem 6.5. Consider GBLP where f(x, y) is Lipschitz continuous in y uni-
formly in x ∈ Rn with constant L, and c(x, y) is convex and differentiable in y.
Suppose that there exists a solution to GBLP.

If F (x, y) is pseudostrongly monotone with respect to y uniformly in x ∈ X with
modulus δ, then any vector (x∗, y∗) is a global solution to GBLP if and only if for
some u∗ ∈ Rd, the triple (x∗, y∗, u∗) is a global solution to the following penalized
problem in the variables (x, y, u):

minf(x, y) + µ
√
−〈u, c(x, y)〉

s.t. F (x, y) +∇yc(x, y)Tu = 0,

u ≥ 0, c(x, y) ≤ 0,

x ∈ X, y ∈ Rm,

for all µ ≥
√
δ
δ L.

Under the assumptions of Propositions 3.4 and 3.5, any vector (x∗, y∗) is a global
solution to GBLP if and only if for some u∗ ∈ Rd, the triple (x∗, y∗, u∗) is a global
solution to the following penalized problem in the variables (x, y, u):

minf(x, y)− δµ〈u, c(x, y)〉
s.t. F (x, y) +∇yc(x, y)Tu = 0,

u ≥ 0, c(x, y) ≤ 0,

x ∈ X, y ∈ Rm,

for all µ ≥ L, where δ is the modulus of the uniformly weak sharp minimum.
Proof. We only prove the first assertion, since the proof of the second is similar.

Assume (x∗, y∗, u∗) is a global solution of CS. Then (x∗, y∗) is a global solution of
GBLP. By Proposition 3.12,

√
G0(x, y) is a uniform parametric error bound with

modulus
√
δ
δ . Therefore, by Theorem 2.6, (x∗, y∗) is a global solution of RP√δ

δ µ
with

r(x, y) =
√
G0(x, y) for all µ ≥ L. Therefore,

f(x∗, y∗) ≤ f(x, y) +

√
δ

δ
µ
√
G0(x, y) ∀x, y s.t. c(x, y) ≤ 0,

≤ f(x, y) +

√
δ

δ
µ
√
−〈u, c(x, y)〉 ∀(x, y, u) s.t.

u ≥ 0, c(x, y) ≤ 0, F (x, y) +∇yc(x, y)tu = 0,
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where the last inequality follows from Proposition 6.1.
The proof of the converse is similar to the converse part in the proof of Proposition

2.2.
Even when c(x, y) is convex and C1 in y, the ranges of applications of Theorems

6.4 and 6.5 are different. Indeed, the following example, taken from [19], is a situation
where Theorem 6.5 is applicable but Theorem 6.4 is not.

Example 6.6. Consider the problem:

(P2) minx− y

s.t. x ≥ 0, and y ∈ arg min

{
1

2
y2 : x+ y ≥ 0, y ≥ 0

}
.

In [19], by direct arguments, (P2) is shown to be equivalent to the penalized problem

(P3) minx− y + µ
√
u(x+ y)

s.t. y − u = 0, x+ y ≥ 0,

(x, y, u) ≥ 0,

for any µ > 0. Indeed, it is easy to see that (0, 0) is the unique solution to the problem
(P2) and (0, 0, 0) is the unique solution of the penalized problem (P3) for any µ > 0. It
is also observed in [19] that Theorem 6.4 is not applicable because the feasible region
is not compact. On the other hand, since F (x, y) = y is strongly monotone with
respect to y for all x ∈ Rn, this example does satisfy all the conditions of Theorem
6.5. By Theorem 6.5 both

√
G0(x, y) and the square root of the complementarity

term are exact penalty terms. The standard gap function in this case is G0(x, y) = y2

for all x ≥ 0. Therefore, (P2) is equivalent to both (P3) and the following problem:

(P4) minx− y + µ|y|
s.t. x+ y ≥ 0, x ≥ 0, y ≥ 0.

Indeed, it is easy to see that (0, 0) is the unique solution of (P4).
Now we discuss an example to which both the KKT and the non-KKT approaches

apply, but yield different equivalent single level problems.
Example 6.7. Consider the problem

(P5) minx+ y1 + y2

s.t. a ≤ x ≤ b,

(y1, y2) ∈ arg min
y1,y2

{
1

2
y2

1 + xy1 + y2, :
1

2
y1 + x ≥ 0, y1 ≥ 0, y2 ≥ 0

}
,

where a and b are positive constants. It is obvious that S(x) = {(0, 0)} and V (x) = 0
for all x ≥ 0. F (x, y) = (y1 + x, 1) is not pseudostrongly monotone. Therefore, the
assumptions of Propositions 3.9, 3.11, and 3.13 are not satisfied. However, one can
verify that the assumptions of Proposition 3.5 are satisfied. Therefore, for any µ > 0,
(x∗, y∗) is a solution of the original problem (P5) if and only if it is the solution of
the following problem (by the value function approach):

(P6) minx+ y1 + y2 + µ

(
1

2
y2

1 + xy1 + y2

)
s.t.

1

2
y1 + x ≥ 0, a ≤ x ≤ b, y1 ≥ 0, y2 ≥ 0.
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By Theorem 6.5, there exists u∗ ∈ R3 such that (x∗, y∗, u∗) is a solution of the
following problem:

(P7) minx+ y1 + y2 + µ

(
u1

(
1

2
y1 + x

)
+ u2y1 + u3y2

)
s.t. 0 = y1 + x− 1

2
u1 − u2,

0 = 1− u3,

a ≤ x ≤ b, 1

2
y1 + x ≥ 0, y1 ≥ 0, y2 ≥ 0, u1 ≥ 0, u2 ≥ 0

for any µ > 0. Clearly, (P5) and (P6) have a unique solution (a, 0, 0), and (P7) has a
unique solution (a, 0, 0, 0, 0, 1). Note that the compactness of the feasible region and
the strict complementarity assumptions of Theorem 6.4 fail for this example.

Examples 6.6 and 6.7 illustrate that both the KKT and the non-KKT approaches
have their advantages and disadvantages. On one hand, by the KKT approach, the
exact penalty term is an explicit function of the problem data, but the number of
variables in the single level problem increases. On the other hand, by the non-KKT
approach, although the number of variables stays the same in the equivalent single
level problem, the exact penalty function needs to be computed.
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of this paper, which helped to improve the exposition.
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Abstract. In this paper we study uniqueness of Lagrange multipliers in optimization problems
subject to cone constraints. The main tool in our investigation of this question will be a calculus
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1. Introduction. Consider the following optimization problem:

min
x∈X

f(x) subject to g(x) ∈ K.(1.1)

Here X and Y are (real) Banach spaces, f : X → R and g : X → Y are continuously
differentiable functions, K ⊂ Y is a convex closed cone, and

L(x, λ) = f(x) + 〈λ, g(x)〉

is the Lagrangian function. The first-order necessary conditions for a feasible point
x0 to be a locally optimal solution of the above problem can be written as follows (see
[6, 9, 10]). Under a constraint qualification there exists λ ∈ K− such that

DxL(x0, λ) = 0,(1.2)

〈λ, g(x0)〉 = 0.(1.3)

In this paper we discuss uniqueness of Lagrange multipliers satisfying the first-
order necessary conditions. The question of uniqueness of Lagrange multipliers arises
naturally, for example, in sensitivity analysis of optimization problems (see, e.g., [7,
13]) and in convergence analysis of Newton type optimization algorithms (cf. [2]).
In case the space Y is finite dimensional and the cone K is polyhedral, there are
reasonably simple necessary and sufficient conditions ensuring uniqueness of Lagrange
multipliers [5]. The situation is considerably more subtle in the general case of cone
constraints.

The main tool in our investigation of this question will be a calculus of dual cones.
For the reader’s convenience and in order to make the paper self contained we describe
in the remainder of this section a few required facts from the theory of dual cones. We
view the Banach space Y and its dual Y ∗ as paired spaces. By 〈α, y〉 we denote the
value α(y) of a continuous linear functional α ∈ Y ∗. We consider 〈·, ·〉 as a bilinear
form on Y ∗×Y and equip Y and Y ∗ with a pair of compatible topologies. That is, for
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every α ∈ Y ∗ the linear functional 〈α, ·〉 is continuous in the considered topology of Y ,
and all continuous linear functionals on Y can be represented in such form. Similarly,
all linear, continuous in the considered topology of Y ∗ functionals can be represented
in the form 〈·, v〉 for some v ∈ Y . The pair of compatible topologies that we use in
this paper will be the norm topology of Y and the weak star topology (w∗-topology)
of Y ∗.

For a cone C ⊂ Y , its polar (negative dual) cone C− is defined as follows:

C− = {α ∈ Y ∗ : 〈α, y〉 ≤ 0 for all y ∈ C}.

Similarly, for a cone Σ ⊂ Y ∗, its polar cone is given by

Σ− = {y ∈ Y : 〈α, y〉 ≤ 0 for all α ∈ Σ}.

Note that the polar cones C− and Σ− are always convex and closed in the considered
compatible topologies; i.e., C− is closed in the w∗-topology of Y ∗ and Σ− is closed in
the norm topology of Y . If C is a linear space, then C− coincides with the orthogonal
complement C⊥ of C. In particular, if λ ∈ Y ∗, then [λ]− = [λ]⊥ = Kerλ, where Kerλ
is the null space of λ and [λ] denotes the (one-dimensional) space generated by λ.

It follows from the Hahn–Banach theorem that if the cone C ⊂ Y is convex, then
(C−)− = cl{C}, where cl{C} denotes the topological closure, in the norm topology
of Y , of the cone C (e.g., [1, Chapter 1, section 5]). Similarly, if the cone Σ ⊂ Y ∗ is
convex, then (Σ−)− = cl∗{Σ}, where cl∗{Σ} denotes the topological closure of Σ in
the w∗-topology of Y ∗. Note that if the space Y is reflexive and Σ is convex, then
cl∗{Σ} = cl{Σ}.

It is straightforward to verify (cf. [1]) that if C1 and C2 are two cones in Y or in
Y ∗, then

(C1 + C2)− = C−1 ∩ C−2 .(1.4)

It follows from (1.4) that the polar of the cone C−1 ∩ C−2 coincides with the polar of
(C1 +C2)−. Consequently, if the cones C1 and C2 are convex, then the polar cone of
C−1 ∩ C−2 is given by the topological closure of the cone C1 + C2. Denote K1 = C−1
and K2 = C−2 . It follows that (K1 ∩K2)− coincides with the topological closure of
the cone K−1 + K−2 . Since any convex closed cone can be represented as the polar
cone, we obtain that if K1 and K2 are two convex cones in Y or Y ∗, closed in the
respective compatible topology, then

(K1 ∩K2)− =

{
cl∗{K−1 +K−2 } if K1,K2 ⊂ Y,
cl{K−1 +K−2 } if K1,K2 ⊂ Y ∗.

(1.5)

(See, e.g., [3] for details.)
Now let S be a convex set in Y or Y ∗ and v ∈ S. We denote by R(S, v) the

radial cone of S at v. That is, R(S, v) is the cone generated by the set S − v or
(equivalently) is the set formed by such vectors u that v + tu ∈ S for some t > 0.
If S is a convex cone, then R(S, v) = S + [v], where [v] denotes the one-dimensional
linear space generated by vector v. The topological closure in the norm topology of
R(S, v) is called the tangent cone to S at v and denoted T (S, v). When S ⊂ Y ∗, we
also consider T ∗(S, v) = cl∗{R(S, v)}. Since the radial cone of a convex set is convex,
we have that if Y is reflexive, then T ∗(S, v) = T (S, v). If S is a convex cone closed in
the respective compatible topology, we have that

T ∗(S, v)− = T (S, v)− = R(S, v)− = (S + [v])− = S− ∩ [v]⊥.
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Let A : X → Y be a continuous linear operator. Its adjoint operator A∗ : Y ∗ →
X∗ is defined by the relation

〈A∗λ, x〉 = 〈λAx〉 for all x ∈ X and λ ∈ Y ∗.

Note that it follows from the above definition that A∗λ = 0 iff 〈λ,Ax〉 = 0 for all
x ∈ X. Therefore KerA∗ = (AX)⊥.

For a convex set S ⊂ Y we denote by int(S), lin(S), and ri(S) its interior, the
linear space generated by S, and its relative interior, respectively. That is, lin(S) is
the intersection of all linear subspaces which contain S and ri(S) is the interior of S
relative to lin(S); i.e., y ∈ ri(S) iff y ∈ S and there is a neighborhood N (in the norm
topology of Y ) of y such that N ∩ lin(S) ⊂ S.

Proposition 1.1. Let Y be a normed space, C ⊂ Y be a convex cone with a
nonempty interior, and L be a linear subspace of Y . Then cl{L+C} = Y if and only
if L ∩ int(C) 6= ∅.

Proof. Suppose that L∩ int(C) 6= ∅. This means that there exist y ∈ L and a ball
B ⊂ Y of radius r > 0 and centered at zero such that y+B ⊂ C. We have then that
B = (−y) + y+B ⊂ L+C, and since L+C is a cone, it follows that tB ⊂ L+C for
any t ≥ 0. This implies that L+ C = Y .

Conversely, suppose that L∩ int(C) = ∅. Then by a separation theorem (e.g., [4,
p. 163]) there exists α ∈ Y ∗, α 6= 0 such that 〈α, y〉 = 0 for any y ∈ L and 〈α, y〉 ≤ 0
for any y ∈ C. It follows that α ∈ (L+ C)− and hence cl{L+ C} ⊂ {y : 〈α, y〉 ≤ 0}
6= Y .

2. Basic results. Let λ0 ∈ K− be a Lagrange multiplier satisfying optimality
conditions (1.2) and (1.3). In this section we discuss general conditions for uniqueness
of this Lagrange multiplier. Consider the set

C = {λ ∈ K− : 〈λ, g(x0)〉 = 0}.

Note that C is a convex cone, closed in the w∗-topology of Y ∗, and that λ0 ∈ C.
Moreover, by (1.5), C− = cl{K + [g(x0)]} and hence C− = T (K, g(x0)).

Proposition 2.1. The Lagrange multiplier λ0 is unique if and only if

R(C, λ0) ∩ [Dg(x0)X]⊥ = {0}.(2.1)

Proof. Consider a vector λ ∈ K− and let µ = λ − λ0. We have that λ satisfies
(1.2) iff [Dg(x0)]∗µ = 0, and λ satisfies (1.3) iff λ0 + µ ∈ C. Therefore λ can be a
Lagrange multiplier different from λ0 iff there exists a nonzero vector µ ∈ Y ∗ such
that µ ∈ [Dg(x0)X]⊥ and µ ∈ R(C, λ0).

In the following theorem we give sufficient, and in some cases necessary, conditions
for uniqueness of λ0 which can be viewed as dual to (2.1).

Theorem 2.2. The following condition is sufficient for uniqueness of λ0:

cl{Dg(x0)X + T (K, g(x0)) ∩Kerλ0} = Y.(2.2)

If R(C, λ0) = T ∗(C, λ0), then condition (2.2) is also necessary.
Proof. Consider the cone

Q = Dg(x0)X + T (K, g(x0)) ∩Kerλ0.

Its polar cone is given by

Q− = [Dg(x0)X]− ∩ [T (K, g(x0)) ∩Kerλ0]−.
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Moreover, we have that [Dg(x0)X]− = [Dg(x0)X]⊥ and, by (1.5),

[T (K, g(x0)) ∩Kerλ0]− = cl∗{[T (K, g(x0))]− + [λ0]} = cl∗{C + [λ0]} = T ∗(C, λ0).

Therefore,

Q− = [Dg(x0)X]⊥ ∩ T ∗(C, λ0).(2.3)

Suppose now that condition (2.2) holds. Then Q− = {0} and since R(C, λ0) ⊂
T ∗(C, λ0), condition (2.1) follows from (2.3). Moreover, if R(C, λ0) = T ∗(C, λ0), then
by (2.3) condition (2.1) is equivalent to Q− = {0}, which in turn is equivalent to
(2.2).

Consider now the coneK0 = K∩Kerλ0. We have that T (K0, g(x0)) ⊂ T (K, g(x0))∩
Kerλ0 and hence it follows from Theorem 2.2 that the condition

Dg(x0)X + T (K0, g(x0)) = Y(2.4)

is sufficient for uniqueness of λ0. Condition (2.4) is equivalent to a constraint qualifi-
cation, with respect to the cone K0, in the sense of Robinson [11]. Its sufficiency for
uniqueness of λ0 was discussed in [12]. If the space Y is finite dimensional and the
cone K is polyhedral, the condition (2.4) is also necessary (cf. [5]).

Let us remark that since [Dg(x0)X]⊥ = Ker[Dg(x0)]∗, condition (2.1) is equiva-
lent to

{µ ∈ R(C, λ0) : [Dg(x0)]∗µ = 0} = {0}.(2.5)

Similarly and because of (2.3), condition (2.2) is equivalent to

{µ ∈ T ∗(C, λ0) : [Dg(x0)]∗µ = 0} = {0}.(2.6)

In some applications it will be convenient to formulate the sufficient condition
(2.2) of Theorem 2.2 in the following form.

Proposition 2.3. Let L be a linear space generated by the cone T = T (K, g(x0))∩
Kerλ0 and suppose that T has a nonempty relative interior (relative to L). Then con-
dition (2.2) holds if the following two conditions are satisfied:

(i) cl{Dg(x0)X + L} = Y , and

(ii) there exists a vector h ∈ X such that Dg(x0)h ∈ ri(T ).

Conversely, if condition (2.2) holds and L ⊂ Dg(x0)X + T , then conditions (i) and
(ii) follow.

Proof. Suppose that the above conditions (i) and (ii) are satisfied. By Proposition
1.1 it follows from condition (ii) that L ⊂ Dg(x0)X + T . Together with condition (i)
this implies that cl{Dg(x0)X + T } = Y , meaning that condition (2.2) holds.

Conversely, let us suppose that condition (2.2) holds. Since cl{Dg(x0)X + T } ⊂
cl{Dg(x0)X + L}, condition (i) then follows. Also, we have that L ⊂ Dg(x0)X + T
and, since T ⊂ L, we obtain that L = M + T , where M = L ∩ Dg(x0)X. By
Proposition 1.1, condition (ii) then follows.

By Theorem 2.2 we obtain then that conditions (i) and (ii) of Proposition 2.3 are
sufficient for uniqueness of λ0. Note that if Dg(x0)X+T is closed, then the condition
L ⊂ Dg(x0)X + T follows from condition (2.2). In that case conditions (i) and (ii)
are equivalent to condition (2.2).
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3. Examples and applications. In this section we discuss two examples of
semidefinite and semi-infinite programming. Let us start with the example of semidef-
inite programming. Let X = Rm and Y = Sn, where Sn denotes the space of an n×n
symmetric matrix. We equip Rm with the standard scalar product x · y =

∑m
i=1 xiyi

and Sn with the scalar product A •B = trAB for any A,B ∈ Sn. The spaces X and
Y can be then identified with their duals X∗ and Y ∗, respectively. In the space Sn
we consider the cone K of positive semidefinite matrices, i.e., K = {A ∈ Sn : A � 0}.
The cone K is convex and closed and its polar cone K− is formed by negative semidef-
inite matrices, i.e., K− = {Ω ∈ Sn : Ω � 0}. In what follows we denote by ET the
transpose of a matrix E.

Let f : Rm → R and G : Rm → Sn be continuously differentiable functions,
L(x,Λ) = f(x) + Λ •G(x), and let x0 ∈ Rm be a point satisfying the corresponding
first-order optimality conditions. That is, G(x0) ∈ K and there exists a matrix
Λ0 ∈ K− such that

DxL(x0,Λ0) = 0,(3.1)

Λ0[G(x0)] = 0.(3.2)

Note that since G(x0) � 0 and Λ0 � 0, condition (3.2) is equivalent to the comple-
mentarity condition Λ0

•G(x0) = 0.
Let r = rankG(x0) and let E be an n× (n− r) matrix of full column rank n− r

such that G(x0)E = 0. Then it is not difficult to show (cf. [15]) that the tangent cone
to K at G(x0) can be written in the form

T (K,G(x0)) = {Z ∈ Sn : ETZE � 0}.(3.3)

We also have that the cone C = {Λ ∈ K− : Λ •G(x0) = 0} is given by

C = {EΘET : Θ ∈ Sn−r, Θ � 0}.(3.4)

We say that the strict complementarity condition holds if

rank Λ0 + rankG(x0) = n.(3.5)

The Lagrange multipliers matrix Λ0 belongs to the cone C and hence can be rep-
resented in the form Λ0 = EΘ0E

T for some (n − r) × (n − r) symmetric, negative
semidefinite matrix Θ0. The strict complementarity condition (3.5) means that the
matrix Θ0 is nonsingular and hence is negative definite.

Under the strict complementarity condition the radial cone R(C,Λ0) coincides
with the tangent cone T (C,Λ0) and is given by the linear space {Ω ∈ Sn : Ω =
EΘET : Θ ∈ Sn−r}. Furthermore,

R(C,Λ0)− = R(C,Λ0)⊥ = T (K,G(x0)) ∩KerΛ0 = LT (K,G(x0)),

where

LT (K,G(x0)) = {Z ∈ Sn : ETZE = 0}

is the lineality space of the cone T (K,G(x0)). Therefore we obtain from Theorem 2.2
that, under the strict complementarity condition, the Lagrange multipliers matrix Λ0

is unique iff

DG(x0)Rm + LT (K,G(x0)) = Sn.(3.6)
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Equation (3.6) represents a necessary and sufficient condition for a transversality
relation between the mapping G and the manifold of symmetric n × n matrices of
rank r (cf. [15]). It can be written in an equivalent form as follows. The adjoint
[DG(x0)]∗ : Sn → Rm of DG(x0) is given by

[DG(x0)]∗Ω = (Ω •G1(x0), . . . ,Ω •Gm(x0)), Ω ∈ Sn,

where Gi(x0) = ∂G(x0)/∂xi are the n × n partial derivatives matrices of G(x) at
x = x0. Therefore, by using (2.6), we have that (3.6) is equivalent to the condition that
the m-dimensional vectors vij = (eTi G1(x0)ej , . . . , e

T
i Gm(x0)ej), 1 ≤ i ≤ j ≤ n − r,

are linearly independent. Here e1, . . . , en−r are the column vectors of the matrix E.
Suppose now that rank Θ0 = q < n − r. Let Θ0 = V Φ0V

T be the spectral
decomposition of Θ0; i.e., V is an (n− r)× q matrix such that V TV = Iq and Φ0 is a
q × q negative definite (diagonal) matrix. Let U be an orthogonal complement of V ,
i.e., U is an (n− r)× (n− r− q) matrix such that UTV = 0 and UTU = In−r−q, and
consider the matrices E1 = EV and E2 = EU and the cone T = T (K,G(x0))∩KerΛ0.
We have then that

T = {Z ∈ Sn : ETZE � 0, ET
1 ZE1 = 0}.

Note that the column space generated by the n× (n− r) matrix [E1, E2] is the same
as the column space generated by the matrix E. Therefore we can write the cone T
in the form

T = {Z ∈ Sn : ET
1 ZE1 = 0, ET

1 ZE2 = 0, ET
2 ZE2 � 0}.

The linear space L, generated by the cone T , is then given by

L = {Z ∈ Sn : ET
1 ZE1 = 0, ET

1 ZE2 = 0}

and the relative interior of T is

ri(T ) = {Z ∈ Sn : ET
1 ZE1 = 0, ET

1 ZE2 = 0, ET
2 ZE2 � 0}.

We now can employ conditions (i) and (ii) of Proposition 2.3 in order to de-
rive sufficient conditions for uniqueness of the Lagrange multipliers matrix Λ0. Let
ē1, . . . , ēn−r be the column vectors of the matrix [E1, E2]; i.e., ē1, . . . , ēq are the col-
umn vectors of E1 and ēq+1, . . . , ēn−r are the column vectors of E2, and consider
the m-dimensional vectors v̄ij = (ēTi G1(x0)ēj , . . . , ē

T
i Gm(x0)ēj), i, j = 1, . . . , n − r.

Then, in the present situation, conditions (i) and (ii) are equivalent to the following
conditions and hence, by Theorem 2.2, are sufficient for uniqueness of Λ0.

Proposition 3.1. The following two conditions are sufficient for uniqueness of
the Lagrange multipliers matrix Λ0.

(i′) Vectors v̄ij, (i, j) ∈ I, where

I = {(i, j) : i, j = 1, . . . , q, i ≤ j} ∪ {(i, j) : i = 1, . . . , q, j = q + 1, . . . , n− r},

are linearly independent.
(ii′) There exists a vector h ∈ Rm such that h · v̄ij = 0, (i, j) ∈ I, and

m∑
k=1

hkE
T
2 Gk(x0)E2 � 0.(3.7)
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In a sense conditions (i′) and (ii′) can be viewed as an analog of the strong
Mangasarian–Fromovitz constraint qualification used in [5] for nonlinear programming
problems.

Let us discuss now the example of semi-infinite programming. Consider the fol-
lowing optimization problem:

min
x∈Rm

f(x) subject to h(x, t) ≤ 0, t ∈ T,(3.8)

where f : Rm → R, h : Rm × T → R and T is a compact metric space. We assume
that f(·) and h(·, t) for all t ∈ T are continuously differentiable and that h(x, t) and
∇h(x, t) are continuous on Rm × T . (The gradient ∇h(x, t) is taken with respect
to x.)

In order to formulate the inequality constraints of the semi-infinite program (3.8)
in a form of cone constraints, we proceed as follows. Consider the space C(T ) of
continuous functions y : T → R, equipped with the sup-norm ‖y‖ = supt∈T |y(t)|, and
the cone

K = {y ∈ C(T ) : y(t) ≤ 0, t ∈ T}

formed by nonpositive valued continuous functions. Consider also the mapping g :
Rm → C(T ) taking a point x ∈ Rm into the function y = g(x), y(·) = h(x, ·). Then
the feasible set of the program (3.8) can be defined by the cone constraint g(x) ∈ K.
Note that under the above assumptions the mapping g is continuously differentiable
and [Dg(x)v](·) = v · ∇h(x, ·).

The dual space Y ∗ of the Banach space Y = C(T ) is the space of finite signed
measures on (T,B), where B is the Borel σ-algebra of T , with the norm given by
the total variation of the corresponding measure, and 〈λ, y〉 =

∫
T
y(t)λ(dt), λ ∈ Y ∗,

y ∈ Y . The polar cone K− of the cone K is formed by the set of (nonnegative) Borel
measures on T . For a feasible point x (satisfying g(x) ∈ K), denote by ∆(x) the set

∆(x) = {t ∈ T : h(x, t) = 0}

of active-at-x constraints. Then the tangent cone to K at g(x) can be written in the
form (e.g., [14])

T (K, g(x)) = {y ∈ C(T ) : y(t) ≤ 0 for all t ∈ ∆(x)}.(3.9)

Let x0 be a locally optimal solution of (3.8). Suppose that there exists a vector
v ∈ Rm such that

v · ∇h(x0, t) < 0 for all t ∈ ∆(x0).(3.10)

In case the set T is finite, this is the Mangasarian–Fromovitz constraint qualification
[8]. In the case of semi-infinite programming this condition is equivalent (e.g., [14])
to regularity of x0 (with respect to the mapping g and the cone K) in the sense of
Robinson [10].

Under the constraint qualification (3.10), x0 corresponds with a Lagrange mul-
tiplier µ ∈ K−, satisfying the first-order optimality conditions, and the set of such
Lagrange multipliers is bounded in the norm topology of Y ∗ (e.g., [9]). In the present
case of semi-infinite programming, µ ∈ K− is a measure and the first-order optimality
conditions (1.2) and (1.3) take the form

∇f(x0) +

∫
T

∇h(x0, t)µ(dt) = 0,(3.11)
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and the support of the measure µ is contained in the set ∆(x0). Moreover, the measure
µ can be chosen to be a discrete measure. That is, there are points ti ∈ ∆(x0) and
numbers λi > 0, i = 1, . . . , n such that µ =

∑n
i=1 λiδ(ti), where δ(t) denotes the

measure of mass one at the point t. The optimality condition (3.11) then takes the
form

∇f(x0) +
n∑
i=1

λi∇h(x0, ti) = 0.(3.12)

It is not difficult to show that if a measure µ is not discrete, then it cannot be an
extreme point of the set of Lagrange multipliers measures and hence cannot be unique
(e.g., [14, p. 750]). Therefore, we assume subsequently that µ =

∑n
i=1 λiδ(ti) is a

discrete measure satisfying the first-order optimality conditions.
The cone T = T (K, g(x0)) ∩Kerµ can be written here in the form

T = {y ∈ C(T ) : y(t) ≤ 0 for all t ∈ ∆(x0), y(ti) = 0, i = 1, . . . , n}.(3.13)

The linear space L generated by the cone T is given then by

L = {y ∈ C(T ) : y(ti) = 0, i = 1, . . . , n}.

Let us observe that it is possible that the relative interior of the cone T (relative to
the space L) is empty. This can happen if the points t1, . . . , tn are not isolated points
of the set ∆(x0). Consider, for example, T = [0, 1] and let h(x0, t) = 0 for all t ∈ [0, 1];
i.e., ∆(x0) = [0, 1], and let t1 = 1/2, n = 1. Then it is not difficult to see that for any
function y(·) in T , one can find a function ȳ(·) in L, arbitrarily close to y(·) in the
sup-norm topology and such that ȳ(t) > 0 for some t sufficiently close to 1/2.

This shows that in general we cannot apply here the sufficient conditions of Propo-
sition 2.3. Therefore we work directly with condition (2.2) of Theorem 2.2.

Proposition 3.2. The following two conditions are necessary and sufficient for
uniqueness of the Lagrange multipliers measure µ =

∑n
i=1 λiδ(ti).

(i′′) The gradient vectors ∇h(x0, ti), i = 1, . . . , n are linearly independent.
(ii′′) For any neighborhood N of the set {t1, . . . , tn} there exists v ∈ Rm such that

v · ∇h(x0, ti) = 0, i = 1, . . . , n,(3.14)

v · ∇h(x0, t) < 0, t ∈ ∆(x0) \N.(3.15)

Proof. Let us first show that if the set of Lagrange multipliers measures is not
a singleton, then it contains at least two different discrete measures. We argue as
follows. Consider the set Γ of measures γ ∈ K−, whose support is contained in the
set ∆(x0) and such that ‖γ‖∗ ≤ 1 and

c∇f(x0) +

∫
∇h(x0, t)γ(dt) = 0(3.16)

for some c ≥ 0. Here ‖ · ‖∗ denotes the total variation norm on the space Y ∗. For a
nonnegative measure γ ∈ K−, we have that ‖γ‖∗ = γ(T ). Clearly, if γ ∈ Γ and the
corresponding coefficient c in (3.16) is not zero, then c−1γ is a Lagrange multipliers
measure. Conversely, if λ is a nonzero Lagrange multipliers measure, then λ/‖λ‖∗ ∈ Γ.
It is not difficult to see that Γ is convex, bounded and closed in the w∗-topology subset
of Y ∗, and hence is w∗-compact. By the Krein–Millman theorem it follows then that Γ



516 ALEXANDER SHAPIRO

coincides with the closure (in the w∗-topology) of the convex hull of its extreme points.
In order to complete the arguments it will be sufficient to show now that if a measure γ
is an extreme point of Γ, then it is discrete. Consider a nondiscrete, nonzero measure
γ ∈ Γ. Then γ = γ1 + · · · + γm+2, where γi, i = 1, . . . ,m + 2 are positive measures
with disjoint supports. Consider vectors bi =

∫
∇h(x0, t)γi(dt), i = 1, . . . ,m + 2.

By dimensionality arguments there exist numbers ai, i = 1, . . . ,m + 2, not all of
them zeros, such that |ai| < 1,

∑m+2
i=1 aibi = 0 and

∑m+2
i=1 aiγi(T ) = 0. Consider the

measures γ′ =
∑m+2

i=1 (1 − ai)γi and γ′′ =
∑m+2

i=1 (1 + ai)γi. Clearly γ′, γ′′ ∈ Γ and
γ = (γ′ + γ′′)/2. Therefore γ cannot be an extreme point of Γ.

Suppose that conditions (i′′) and (ii′′) hold. Because of the above arguments, in
order to verify uniqueness of µ it will be sufficient to show that if α ∈ [Dg(x0)Rm+T ]−

and α is discrete, then α = 0. Let α ∈ [Dg(x0)Rm + T ]− be a discrete measure and
let S be a finite subset of T containing the support of α and the set {t1, . . . , tn}. We
can write then α =

∑
t∈S α(t)δ(t), where α(t) is a nonnegative valued function on the

set S. Consider a function z ∈ C(T ). Because of the condition (i′′), there exists a
vector u ∈ Rm such that u · ∇h(x0, ti) = z(ti), i = 1, . . . , n. Choose a neighborhood
N of the set {t1, . . . , tn} which does not contain other points of the set S. Then,
because of the assumption (ii′′), there exists a vector v satisfying condition (3.14) and
such that v · ∇h(x0, t) < −c for all t ∈ S \ {t1, . . . , tn} and some c > 0. Let τ be
a positive number and consider the function a(t) = (u − τv) · ∇h(x0, t). Note that
a ∈ Dg(x0)Rm, and it follows from (3.14) that a(ti) = z(ti), i = 1, . . . , n. Moreover,
we can choose τ large enough such that a(t) ≥ z(t) for all t ∈ S \ {t1, . . . , tn}. It
follows then from the representation (3.13) of the cone T that there exists y ∈ T such
that a(t) + y(t) = z(t) for all t ∈ S. Since

∫
T
z(t)α(dt) =

∑
t∈S α(t)z(t) and z(t) is

an arbitrary function, it follows that α(t) = 0 for all t ∈ S and hence α = 0.
Now let us show that in the present situation the condition (2.2) is necessary, as

well as sufficient, for uniqueness of the Lagrange multipliers measure µ. In order to
show that condition (2.2) is necessary we have to verify that R(C, µ) = T ∗(C, µ). For
a set A ∈ B, denote by Z(A) the set of (nonnegative) Borel measures whose support
is contained in the set A. We have that C = Z(∆(x0)) and

R(C, µ) = {α ∈ Y ∗ : α = α1 − α2, α1 ∈ Z(∆(x0)), α2 ∈ Z({t1, . . . , tn})}.(3.17)

Consider a signed measure β ∈ Y ∗ \R(C, µ). Let β = β+−β− be the Jordan decom-
position of β; i.e., β+ and β− are (nonnegative) Borel measures with disjoint supports
T1 and T2, respectively. Since β 6∈ R(C, µ), we have that T2 6⊂ {t1, . . . , tn}. Conse-
quently there is a nonzero function y ∈ K whose support has empty intersection with
the set {t1, . . . , tn} and such that

∫
T
y(t)β(dt) < 0. It follows from the representation

of R(C, µ) given in (3.17) that for any α ∈ R(C, µ),
∫
T
y(t)α(dt) ≥ 0 and hence we

can separate β from R(C, µ) by the linear functional 〈·, y〉. This shows that R(C, µ)
is closed in the w∗-topology of Y ∗ and hence R(C, µ) = T ∗(C, µ).

Suppose now that condition (2.2) holds. Since T ⊂ L, condition (2.2) implies
that Dg(x0)Rm +L is dense in C(T ). Therefore L⊥ ∩Ker[Dg(x0)]∗ = {0} and hence
condition (i′′) follows. Furthermore, consider a function z ∈ C(T ) such that z(ti) = 0,
i = 1, . . . , n, and z(t) > 0 for all t ∈ T \ {t1, . . . , tn}. Let N be an open neighborhood
of the set {t1, . . . , tn}. Then the set ∆(x0)\N is compact and hence there exists ε > 0
such that z(t) ≥ ε for all t ∈ ∆(x0) \ N . It follows then from condition (2.2) that
there exists a function a(t) = w · ∇h(x0, t) such that a(t) ≥ ε/2 for all t ∈ ∆(x0) \N
and a(ti), i = 1, . . . , n, are arbitrarily close to zero. Because of the condition (i′′), we
can find a vector u ∈ Rm such that u · ∇h(x0, ti) = a(ti), i = 1, . . . , n. We obtain
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then that (w − u) · ∇h(x0, ti) = 0, i = 1, . . . , n. Moreover, for a(ti), i = 1, . . . , n
sufficiently close to zero, we can choose such u that (w−u) ·∇h(x0, t) ≥ ε/3 for all t ∈
∆(x0)\N . Vector v = u−w then satisfies (3.14) and (3.15) and hence condition (ii′′)
follows.

Note that the Mangasarian–Fromovitz constraint qualification (3.10) is not as-
sumed in Proposition 3.2. We only assume existence of a discrete Lagrange multipliers
measure µ.

Vector v in the condition (ii′′) of Proposition 3.2 generally depends on the neigh-
borhood N . It is natural then to ask whether condition (ii′′) can be replaced by the
following stronger condition.

(ii′′′) There exists v ∈ Rm such that

v · ∇h(x0, ti) = 0, i = 1, . . . , n,(3.18)

v · ∇h(x0, t) < 0, t ∈ ∆(x0) \ {t1, . . . , tn}.(3.19)

It is not difficult to see that if the set of active constraints ∆(x0) is finite, then
conditions (ii′′) and (ii′′′) are equivalent. As the following example shows, however,
in general condition (ii′′′) is not necessary for uniqueness of the Lagrange multipliers
measure µ.

Example 3.1. Let T = [0, 4] and consider h : R3 × [0, 4]→ R of the form h(x, t) =
x1a1(t) + x2a2(t) + x3a3(t), with the functions ai(t) defined as follows:

a1(t) =

 t2, t ∈ [0, 1],
1.5− 0.5t, t ∈ [1, 3],
0, t ∈ [3, 4],

a2(t) =

{
−t, t ∈ [0, 1],
t− 2, t ∈ [1, 4],

and a3(t) = 1 for t ∈ [0, 4]. Also let f(x) be a linear function with ∇f(x) = (0, 0,−1).
We have then that at x0 = 0, ∇f(x0) +∇h(x0, 0) = 0 and ∆(x0) = [0, 4]. Therefore
the first-order optimality conditions hold at x0 = 0, with the Lagrange multipliers
measure µ = δ(t1), t1 = 0, and hence, since the considered program is convex, x0 = 0
is the optimal solution of the considered program. We also have that for v = (0, 0,−1)
and all t ∈ [0, 4], v · ∇h(x0, t) = −1 and hence condition (3.10) is satisfied.

Let us observe now that condition (ii′′′) does not hold here. Indeed, suppose there
is a vector v = (v1, v2, v3) satisfying (3.18) and (3.19). It follows then from (3.18)
that v3 = 0 and from (3.19) that v2 < 0. We obtain that v · ∇h(x0, 0) = 0 and
∂[v · ∇h(x0, 0)]/∂t > 0. Therefore v · ∇h(x0, t) is positive for sufficiently small t > 0,
which of course contradicts (3.19).

On the other hand, it is not difficult to verify that conditions (i′′) and (ii′′) of
Proposition 3.2 are satisfied here and hence µ is unique. This demonstrates that
conditions (ii′′) and (ii′′′) are not equivalent and condition (ii′′′) is not necessary for
uniqueness of µ.
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Abstract. It is proved that Hadamard well-posedness of a constrained convex optimization
problem with respect to Attouch–Wets convergence on the data implies, in general, its strong (and
hence Tykhonov) well-posedness. An example is given showing that the opposite implication fails
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1. Introduction. Let (X, ‖ · ‖) be a real Banach space and Γ(X) denote the
family of all convex lower semicontinuous extended real-valued functions in X which
are proper. Recall that a function f : X → R ∪ {+∞} is called proper if its domain
dom f := {x ∈ X : f(x) < +∞} is nonempty. An equivalent way to say that the
function f is in Γ(X) is that its epigraph epi f := {(x, t) ∈ X × R : f(x) ≤ t} is
a nonempty convex and closed subset of X × R considered with the usual product
topology.

Further, let Conv(X) designate the family of all nonempty convex and closed sub-
sets of X. Each couple (A, f) from the Cartesian product Conv(X)×Γ(X) determines
in a natural way the following constrained convex minimization problem:

find x0 ∈ A so that f(x0) = inf{f(x) : x ∈ A} =: inf(A, f).

Such a problem (which often is also termed a convex program) will be identified
in the sequel with the couple (A, f), and its (possible empty) set of solutions will be
denoted by argmin(A, f).

A sequence {xn}∞n=1 ⊂ A with f(xn) → inf(A, f) is called minimizing for the
problem (A, f). Such sequences are also called sequences of approximate solutions for
(A, f). The minimization problem (A, f) ∈ Conv(X)×Γ(X) is called Tykhonov well-
posed [Ty, DZ] if it has a unique solution x0 ∈ A and, moreover, every minimizing
sequence for (A, f) converges to x0. For convex functions in finite dimensions the
uniqueness of the solution is enough to guarantee its Tykhonov well-posedness (even
a stronger notion for well-posedness; see below). This is no longer valid in infinite
dimensions (even in Hilbert spaces) as the following well-known example shows.

Example 1.1. Consider the Hilbert space `2 = {{xi}∞i=1 : xi ∈R,
∑∞
i=1 x

2
i < ∞}

with the usual `2-norm. Let f : `2 → R be defined as follows:

f(x) =

∞∑
n=1

〈x, en〉2
n2

,
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where 〈·, ·〉 is the usual scalar product and en = (0, 0, . . . , 1, 0, . . .), 1 at the nth place;
n = 1, 2, . . ., is the standard basis. The function f is convex and continuous, the
problem (X, f) has unique solution at x0 = 0, but {en}∞n=1 is a minimizing sequence
which does not converge to x0.

The idea of Tykhonov well-posedness is to control the sequences of approximate
solutions, and this is motivated by the numerical point of view—every numerical
method solving (A, f) usually produces a minimizing-for-(A, f) sequence. This notion,
however, takes into account the minimizing sequences only inside A. But when we
search for a minimum of f on a proper subset A of X the above idea deserves to
be broadened by taking care also for sequences of approximate solutions that can be
outside A, not only those in A. Various reasons could lead to such kinds of sequences
like, for example, approximations of the data A and f , possible “errors” in these data,
the use of methods for solving (A, f) which allow a minimizing sequence for (A, f) to
be outside A (e.g., penalty methods), etc.

We will consider two generalizations of the notion of minimizing sequence. The
first one was introduced and studied by Levitin and Polyak [LePo]: A sequence
{xn}∞n=1 ⊂ X is called a Levitin–Polyak minimizing sequence for the minimization
problem (A, f) if, in addition to f(xn)→ inf(A, f), one has also d(xn, A)→ 0 where
d(x,A) := inf{‖x − y‖ : y ∈ A}, x ∈ X, is the distance function generated by the
set A. In other words, a sequence {xn}∞n=1 is a Levitin–Polyak minimizing sequence
for (A, f) if not only {f(xn)}∞n=1 approaches the infimum of f over A but also the
sequence {xn}∞n=1 tends (with respect to the norm) to A.

A second (and further) generalization of the usual notion of minimizing sequence
is the following: a sequence {xn}∞n=1 ⊂ X is said to be a generalized minimizing
sequence for the minimization problem (A, f) [BL2, BL3] if both d(xn, A) → 0 and
lim sup f(xn) ≤ inf(A, f) are fulfilled. Let us mention a fact that will be used often in
the sequel: every subsequence of a usual, Levitin–Polyak, or generalized minimizing
sequence is again a minimizing sequence from the corresponding type.

Now, following the scheme of the definition of Tykhonov well-posedness, we have
the next two strengthened versions of the well-posedness: the minimization problem
(A, f) ∈ Conv(X)× Γ(X) is said to be Levitin–Polyak well-posed [LePo, DZ] (respec-
tively, strongly well-posed [BL2, BL3]) if it has unique solution x0 ∈ A and, moreover,
every Levitin–Polyak minimizing sequence (respectively, every generalized minimiz-
ing sequence) for (A, f) converges to x0. The strong well-posedness was previously
considered in an equivalent geometric form by this author in [R1, R2].

The three notions above, each of which is based on the behavior of a certain
prescribed set of minimizing sequences, have been intensively studied (not only for
convex programs) in many papers—see, e.g., [BL1, BL2, BL3, L, LPa1, LPa2, R1, R2,
RZh, Sh] and especially the monograph [DZ] and the collection of overviews devoted
to the subject [LR]. We will mention here several facts related to them only for convex
problems from Conv(X)× Γ(X).

In the following facts we always have in mind a convex minimization problem
(A, f) ∈ Conv(X) × Γ(X). Obviously, in general, strong well-posedness of the prob-
lem (A, f) implies Levitin–Polyak one, which in its turn implies Tykhonov well-
posedness. In finite dimensions the uniqueness of the solution to (A, f) implies its
strong well-posedness ([BL2], Theorem 2.4; here the convexity assumptions play a
crucial role), a fact which is no longer valid in infinite dimensions as Example 1.1
shows. Levitin–Polyak and strong well-posedness for (A, f) coincide in reflexive Ba-
nach spaces ([BL2], Theorem 2.2), but, in general, in this setting (even in the setting
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of Hilbert spaces), Tykhonov well-posedness is a strictly weaker notion than Levitin–
Polyak well-posedness (a counterexample is given in [BL2]).

Our concern here, however, will be to compare the above types of well-posedness
with another one, which arises from the original idea of Hadamard for continuous
dependence of the solution of a problem on the data. To introduce it in the setting we
consider, we need a suitable topology on the data space Conv(X) × Γ(X). Here we
will consider the already well-known Attouch–Wets topology (known also as bounded
Hausdorff topology) in the hyperspace of all closed and convex subsets of a Banach
space (see [AW, Mo] for the origins and the recent monograph of Beer [B] for a
detailed study). This topology has turned out to be very useful in quantitative analysis
in convex optimization when we deal with convex subsets that are not necessarily
bounded. Below we give a short description of this topology following mostly [B].

Given the Banach space X and two nonempty subsets A,B ⊂ X we put, as usual,
e(A,B) := sup{d(a,B) : a ∈ A} to denote the excess of A to B. Further, for ρ > 0
let Bρ(X) be the closed ball in X centered at the origin θ with radius ρ. Then, the
so-called ρ-Hausdorff distance between A and B is the following number:

hausρ(A,B) := max{e(A ∩Bρ(X), B), e(B ∩Bρ(X), A)}.

The usual convention here is e(∅, C) = 0 for each nonempty C ⊂ X.
The sequence {An}∞n=1 ⊂ Conv(X) is called Attouch–Wets convergent to A ∈

Conv(X) if there exists ρ0 > 0 so that limn→∞ hausρ(An, A) = 0 for every ρ ≥ ρ0.
This convergence is (completely) metrizable (see, e.g., [B]), but we will use here the
above definition which is more convenient in our setting. The resulting topology is
denoted usually by τaw and is known as Attouch–Wets topology or bounded Hausdorff
topology.

Further, to introduce the same kind of topology in Γ(X) we identify, as usual,
each function from Γ(X) with its epigraph epi f which is an element of Conv(X×R),
X × R being considered with the product topology. Take on X × R the box norm
(which generates the product topology)

‖(x, α)‖ := max{‖x‖, |α|}, (x, α) ∈ X ×R.

Thinking that Γ(X) is the family {epi f : f ∈ Γ(X)}, we consider on the latter the
topology inherited from the Attouch–Wets topology in Conv(X ×R). This inherited
topology is again known as Attouch–Wets topology in Γ(X) or also as epi-distance
topology. For this topology we will again use the symbol τaw. Let us mention that
the uniform convergence on bounded subsets of X in Γ(X) is a stronger convergence
than that generated by the Attouch–Wets topology.

Having the Attouch–Wets topology both in Conv(X) and Γ(X) we consider on
the Cartesian product Conv(X) × Γ(X) the (metrizable) product topology (again
denoted by τaw) generated by the Attouch–Wets topologies in Conv(X) and Γ(X).

A minimization problem (A, f) ∈ Conv(X)× Γ(X) is said to be Hadamard well-
posed with respect to τaw (or τaw-Hadamard well-posed) if it has unique solution
x0 ∈ A and, moreover, if {(An, fn)}∞n=1 is a sequence of problems from Conv(X) ×
Γ(X) which τaw-converges to (A, f) and if {xn}∞n=1 is a sequence form X so that
xn ∈ argmin(An, fn) for every n = 1, 2, . . ., then xn → x0.

The above notion reflects the idea of continuous dependence of the solution
on the data. Let us stress the fact that it depends both on the data space (here
Conv(X) × Γ(X)) and on the topology considered in this data space (in this case
the Attouch–Wets topology). Observe also that in the definition of τaw-Hadamard
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well-posedness for (A, f) we are interested only in those τaw-convergent to (A, f) se-
quences {(An, fn)}∞n=1 for which the solution sets argmin(An, fn), n = 1, 2, . . ., are
nonempty. The existence of nontrivial sequences from this type is guaranteed by the
Ekeland variational principle (see the next section).

Having this notion of well-posedness naturally arises the question of its compar-
ison with the above introduced notions of well-posedness based on the behavior of
minimizing sequences. With different convergences on Conv(X) or Γ(X) partial re-
sults in this direction have been already done. These partial results are related to
settings when either f is fixed and only A may vary, or vice-versa—f varies while A
is fixed and can be found in [BL1, L, LPa2].

Our aim, however, is to see what are the relationships in the general setting we
consider, namely, when both A and f can vary with respect to the Attouch–Wets
convergence in Conv(X) and Γ(X), respectively. In this case, Beer and Lucchetti
[BL3] proved that under suitable constrained qualification conditions for (A, f) ∈
Conv(X)× Γ(X), Tykhonov well-posedness of (A, f) implies its τaw-Hadamard well-
posedness (see the precise formulation in the next section). It has not been known
so far what could be said about the opposite implication. Here we fill this gap by
showing that, in general, τaw-Hadamard well-posedness of (A, f) ∈ Conv(X)× Γ(X)
implies even the strong well-posedness of (A, f) without any additional conditions on
(A, f). An example is given showing that, in general, (even in finite dimensions),
τaw-Hadamard well-posedness for a convex program is a strictly stronger notion than
the strong well-posedness of this program. A similar result in the case when the
constrained set is given by inequalities is obtained in [KoR]. Due to the different way
of introducing the notions of well-posedness in the setting with inequalities, neither
of the results is derivable from the other.

Finally, based on the recommendation of one of the referees we discuss the re-
lationship between the well-posedness of a convex program and its so-called value
well-posedness (convergence of infimal values).

2. Main result. We start this section with a known result giving a sufficient
condition under which Tykhonov well-posedness of a problem (A, f) ∈ Conv(X) ×
Γ(X) implies its τaw-Hadamard well-posedness. In the next theorem IntA means, as
usual, the interior of the set A ⊂ X.

Theorem 2.1 (see [BL3], Theorem 4.1). Let (A, f) ∈ Conv(X) × Γ(X) be
Tykhonov well-posed and suppose that either f is continuous and finite at some point
of A or IntA ∩ dom f 6= ∅. Then, (A, f) is τaw-Hadamard well-posed. Moreover,
inf(An, fn)→ inf(A, f)., whenever {(An, fn)}∞n=1τaw-converges to (A, f).

The last conclusion (i.e., when inf(An, fn) → inf(A, f), provided (An, fn) →
(A, f)) is known as value well-posedness of the problem (A, f) (see, e.g., [DZ]). Of
course this notion again depends on the convergence on the data space.

In general, Tykhonov well-posedness (even strong well-posedness) of (A, f) does
not imply its τaw-Hadamard well-posedness—see Example 2.3 below. However, we
will show that the opposite implication is always true. In other words, τaw-Hadamard
well-posedness for a minimization problem (A, f) ∈ Conv(X) × Γ(X) is a stronger
notion than Tykhonov well-posedness (even than strong well-posedness). Namely, we
will prove the following result.

Theorem 2.2. Let (A, f) ∈ Conv(X)×Γ(X) be τaw-Hadamard well-posed. Then,
(A, f) is strongly well-posed. In particular, (A, f) is Levitin–Polyak and Tykhonov
well-posed.

Before giving the proof of this theorem we formulate one of the versions of the
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famous Ekeland variational principle that we will need later.
Ekeland Variational Principle. Let (Z, d) be a complete metric space and f :

Z → R
⋃
{+∞} be a proper lower semicontinuous and bounded-from-below function.

Then for every ε > 0 and z0 ∈ Z with f(z0) < inf(Z, f)+ε there exists a point z1 ∈ Z
so that

(i) ‖z1 − z0‖ ≤
√
ε;

(ii) f(z) +
√
ε‖z − z1‖ > f(z1) for every z ∈ Z and z 6= z1.

Proof of Theorem 2.2. Let (A, f) ∈ Conv(X)×Γ(X) be τaw-Hadamard well-posed
with unique solution x0 ∈ A and assume that it is not strongly well-posed. Then there
is a generalized minimizing sequence {xn}∞n=1 ⊂ X for (A, f) which does not converge
to the unique solution x0. In other words, d(xn, A) → 0, lim sup f(xn) ≤ inf(A, f),
but xn 6→ x0 in the norm. Without loss of generality we may assume that x0 = θ, θ
being the origin in X, and also that f(θ) = inf(A, f) = 0. Since {xn}∞n=1 does not
converge to θ there is some real number r > 0 so that ‖xn‖ ≥ r for infinitely many n.
Again, without loss of generality, we may think that the last inequality is fulfilled for
every n = 1, 2, . . . and that r ≤ 1. Consider the line segments [θ, xn] and the points
zn := (r/‖xn‖)xn, n = 1, 2, . . . on them. Observe that ‖zn‖ = r for every n = 1, 2, . . ..

Since A is convex, we have d(zn, A) ≤ d(xn, A) for every n = 1, 2, . . .. Therefore,
d(zn, A) → 0. On the other hand, f(θ) = inf(A, f) = 0; when using the convexity
of f , one easily sees that lim sup f(zn) ≤ inf(A, f). Therefore, we have shown that
the sequence {zn}∞n=1 is again a generalized minimizing sequence for the minimization
problem (A, f).

For each n = 1, 2, . . ., consider now the sets An := co({zn} ∪ (Bn(X) ∩ A)),
where co means the convex hull operation and {zn} is the one-point set consisting
of zn. Remember that Bn(X) meant the closed ball with center at the origin and
radius n. Since θ ∈ A, the sets An are nonempty for every n = 1, 2, . . .. Hence,
{An}∞n=1 ⊂ Conv(X). We will show that this sequence τaw-converges to (A, f).

Let ρ0 > 0 and fix some ρ ≥ ρ0 and ε > 0. Take n so large that n ≥ ρ. Then

(1) e(Bρ(X) ∩A,An) = 0.

On the other hand, let n be so large that we also have d(zn, A) ≤ ε. Take an arbitrary
x ∈ An. Then for some a ∈ Bn(X) ∩ A and λ ∈ [0, 1], we have x = λzn + (1 − λ)a,
whence (using the convexity of A) we get d(x,A) ≤ ε. Since this is true for every
x ∈ An we obtain e(An, A) ≤ ε. This together with (1) imply that hausρ(An, A) ≤ ε.
Hence, {An}∞n=1 τaw-converges to A in Conv(X).

Further, consider the sequence of real numbers {γn}∞n=1 defined by

(2) γn := f(zn)− inf(An, f), n = 1, 2, . . . .

Each γn, n = 1, 2, . . ., is well defined since An are bounded and hence f is bounded
from below on An. Moreover, γn are nonnegative since zn ∈ An for every n = 1, 2 . . ..
We will show that {γn}∞n=1 converges to 0.

Indeed, fix n, take cn ∈ An with

(3) f(cn) ≤ inf(An, f) +
1

n4
,

and apply the Ekeland variational principle for the set An, the function f , the point
cn, and the number 1/n4. We get a point c′n ∈ An with the following two properties:

(a) ‖cn − c′n‖ ≤
1

n2
;
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(b) hn(x) := f(x) +
1

n2
‖x− c′n‖ > f(c′n) = hn(c′n) for each x ∈ An, x 6= c′n (i.e.,

c′n = argmin(An, hn)).
Repeating this procedure for every n = 1, 2, . . ., we obtain a sequence of points

{cn}∞n=1 ⊂ X, with cn ∈ An for every n, satisfying (3), a sequence of points {c′n}∞n=1 ⊂
X so that c′n ∈ An for every n, and a sequence of functions {hn}∞n=1 ⊂ Γ(X) satisfying
(a) and (b). We will show that {hn}∞n=1 τaw-converges to f .

First, observe that domhn = dom f for every n = 1, 2, . . .. Further, since epihn ⊂
epi f for each n = 1, 2, . . ., the only thing to be seen is that for some ρ0 we have
e(Bρ(X ×R) ∩ epi f, epihn)→ 0 for each ρ ≥ ρ0. Fix some ρ0 > 0 and observe that
Bρ0(X × R) ∩ epi f 6= ∅ since (θ, 0) ∈ epi f . Pick arbitrary ρ ≥ ρ0 and ε > 0. Let
(x, t) be from Bρ(X ×R)∩ epi f . Then, f(x) ≤ t and, moreover, ‖x‖ ≤ ρ and |t| ≤ ρ.
We will show that for n large enough d((x, t), epihn) < ε giving

e(Bρ(X ×R) ∩ epi f, epihn) ≤ ε,

thus showing that {hn}∞n=1 is τaw-convergent to f .
Indeed, let t = f(x) + t0, t0 ≥ 0. Consider the point (x, t′) where t′ := hn(x) + t0.

Obviously, (x, t′) ∈ epihn. Let n be so large that (1/n2)ρ + 1/n < ε. Hence, we
have the following (remember that r ≤ 1, hence An ⊂ Bn(X) giving ‖c′n‖ ≤ n since
c′n ∈ An):

hn(x)− f(x) =
1

n2
‖x− c′n‖ ≤

1

n2
‖x‖+

1

n2
‖c′n‖ ≤

1

n2
ρ+

1

n
≤ ε.

Therefore, for n large enough we get

‖(x, t)− (x, t′)‖ = |hn(x)− f(x)| ≤ ε,

giving d((x, t), epihn) ≤ ε.
Hence, we have shown that {hn}∞n=1 τaw-converges to f . We saw also that

{An}∞n=1 τaw-converges to A. Thus, by the fact that (A, f) is τaw-Hadamard well-
posed and {c′n} = argmin(An, hn) for every n = 1, 2, . . ., we get that c′n → x0.
Therefore (see (a) above), cn → x0(= θ). Let ε > 0 be arbitrary. Then, using that f
is lower semicontinuous, we have that for large n

(4) f(cn) ≥ f(x0)− ε = inf(A, f)− ε.

On the other hand, lim sup f(zn) ≤ inf(A, f) giving that for large n

(5) f(zn) ≤ inf(A, f) + ε.

Hence, combining (4) and (5) and having in mind (3) we get that for n large enough

0 ≤ γn = f(zn)− inf(An, f) ≤ inf(A, f) + ε− inf(An, f)

≤ f(cn) + 2ε− inf(An, f) ≤ 2ε+
1

n4
.

Therefore, γn → 0.
Let us mention that without loss of generality we may assume that γn > 0 for ev-

ery n = 1, 2 . . ., since, otherwise, passing to subsequences and with abuse of notation,
we would have zn ∈ argmin(An, f) which together with τaw-convergence of {An}∞n=1
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to A would give zn → x0 = θ in contrast to ‖zn‖ = r > 0. So, we may think that
γn > 0 for every n = 1, 2 · · ·.

Apply now for each n = 1, 2 · · · the Ekeland variational principle, this time for
the set An, the function f , the point zn, and the number 2γn (look at the definition
in (2)). We get the existence of z′n ∈ An with

(i) ‖zn − z′n‖ ≤
√

2γn;
(ii) fn(x) := f(x) +

√
2γn‖x − z′n‖ > f(z′n) = fn(z′n) for every x ∈ An with

x 6= z′n (i.e., {z′n} = argmin(An, fn)).

Observe that dom fn = dom f and that epi fn ⊂ epi f for every n = 1, 2, . . ..
Moreover, since {zn}∞n=1 is bounded and γn → 0, the sequence {z′n}∞n=1 is bounded
too. Hence, using that γn → 0, the sequence {fn}∞n=1 converges to f uniformly on the
bounded subsets of X. Therefore, {fn}∞n=1 is τaw-convergent to f . The last together
with τaw-convergence of {An}∞n=1 to A give that z′n → x0(= θ) since (A, f) was τaw-
Hadamard well-posed. By (i) above, zn → x0(= θ) as well. The last contradicts to
‖zn‖ = r > 0. The proof of the theorem is completed.

Now, let us give an example showing that, in general, τaw-Hadamard well-posedness
of a convex problem (A, f) ∈ Conv(X)× Γ(X) is a strictly stronger assumption than
strong well-posedness for (A, f) even in finite dimensions. In other words, in the ab-
sence of a constrained qualification condition, strong well-posedness does not imply
τaw-Hadamard well-posedness.

Example 2.3. Let X := R2 with the usual norm ‖ · ‖ and A := {(x, y) ∈ R2 : y =
0}. Let f(x) := ‖x‖ if x ∈ A and f(x) := ∞ provided x is outside A. Then, (A, f)
is Tykhonov well-posed and, moreover, since dom f = A, it is also strong well-posed
with unique minimum at (0, 0). On the other hand, let An := {(x, y) ∈ R2 : y =
1/n(x− 1)}. It is seen that {An}∞n=1 τaw-converges to A while (1, 0) = argmin(An, f)
does not converge to (0, 0).

Finally, we discuss shortly the connection between well-posedness of a convex
problem (A, f) ∈ Conv(X) × Γ(X) and its τaw-value well-posedness. This issue was
brought to our attention by one of the referees. Unfortunately, it seems little can
be done in this direction. First of all, in general, τaw-Hadamard well-posedness (or
Tykhonov well-posedness) does not imply τaw-value well-posedness as the following
example given by the same referee shows.

Example 2.4. Let X = R, f : X → R be defined by f(x) := 0 if x = 0 and
f(x) :=∞ if x 6= 0. Let A := {0}. Then, it is easily seen that (A, f) is τaw-Hadamard
well-posed (and also Tykhonov well-posed). However, if we consider An := {1/n}
and fn(x) := nx if x ∈ [0, 1/n] and f(x) =∞ otherwise, n = 1, 2, . . ., then obviously
(An, fn) τaw-converges to (A, f) while inf(An, fn) = 1 does not converge to inf(A, f) =
0.

On the other hand, as is stated in Theorem 2.1, the constrained qualification
conditions from Theorem 2.1 together with Tykhonov well-posedness imply τaw-value
well-posedness. Hence the following corollary is straightforward having in mind The-
orem 2.2.

Corollary 2.5. Let (A, f) ∈ Conv(X)×Γ(X) be τaw-Hadamard well-posed and
suppose that either f is continuous and finite at some point of A or IntA∩dom f 6= ∅.
Then, (A, f) is τaw-value well-posed.

The question that is put by the referee is whether the converse is true provided one
of the constrained qualification conditions above is fulfilled. Unfortunately, this is not
true either as the following slight modification of Example 1.1 shows. For a function
g ∈ Γ(X) and a set C ∈ Conv(X) we consider the following type of restriction:
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g|C(x) = g(x) if x ∈ C and g|C(x) = ∞ otherwise. Observe that g|C ∈ Γ(X) and
that inf(C, g) = inf(X, g|C).

Example 2.6. Let X and f be as in Example 1.1. Let A be the closed unit
ball in X. The problem (A, f) satisfies both constrained qualification conditions from
Theorem 2.1. Let {(An, fn)} τaw-converge to (A, f). Because of the constrained
qualification conditions we have that {fn|An} τaw-converges to f |A (Theorem 3.6
from [BL3]) and since f |A has bounded level sets, we get inf(X, fn|An)→ inf(X, f |A)
(Theorem 3.7 from [BL1]). Hence, (A, f) is τaw-value well-posed. But as Example
1.1 shows, (A, f) is not Tykhonov well-posed (and, by Theorem 2.2, it is not τaw-
Hadamard well-posed either; the latter also could be seen directly).

Acknowledgments. The author would like to express his gratitude to two anony-
mous referees for their valuable remarks and proposals for additional considerations
which led to an improvement of the paper.
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Abstract. Signal synthesis and reconstruction is considered when the signal is to be determined
by N constraint sets, Ci. The solution sought is required to minimize a weighted quadratic cost
functional Ĵ . Emphasis is on cases in which the intersection of the sets Ci is empty.

Our proposed procedure employs a suitably weighted simultaneous projection iteration method.
It is shown that the iterates generated by the algorithm converge weakly to a global minimizer
of Ĵ provided the set of fixed points of the algorithm is nonempty. If the problem is consistent
(Co :=

⋂
Ci 6= ∅), weak convergence is to an element in Co. However, it is indicated that large

classes of inconsistent problems, which could not be treated by existing methods, admit a solution
as well.

Key words. asymptotic regularity, fixed points, product space, projections onto convex sets,
nonexpansivity, weak convergence, weighted norms
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1. Introduction. With the increasing demands and complexity of signal pro-
cessing systems, renewed interest is emerging in the set theoretic formulations (see,
e.g., [11]) applied to optimization problems such as signal synthesis in pattern recogni-
tion [35, 33, 22, 26], computerized tomography [20], constrained deconvolution [36, 23],
etc. The general problem is to restore (or synthesize) a signal from a finite set of con-
straints it is known to satisfy.

More specifically, in the set theoretic formulation we are givenN convex constraint
sets Ci in a signal space H (typically a Hilbert space). A signal f ∈ H is called feasible
if and only if f ∈ Co := ∩Ni=1 Ci. The problem is called consistent if Co is nonempty,
i.e., if feasible signals exist. Assuming consistency, the aim is to produce a feasible
signal given an initial, nonfeasible estimate.

In theory, a consistent problem may be solved directly by projecting the initial
estimate orthogonally onto Co. This, however, requires a precise analytic description
of the intersection Co = ∩Ni=1Ci, which may be a highly nontrivial task in practice,
especially when the sets Ci contain uncertainties. In reality, a feasible solution can
be approached iteratively, via algorithms which use exclusively the N individual or-
thogonal projections onto the individual sets Ci.

The algorithms available for solving consistent problems are of two major types:
sequential (serial) or simultaneous (parallel). A third important class, consisting of
the so-called block iterative algorithms, will not be considered here.

In a sequential algorithm, each step involves a single set Ci, properly chosen. The
simplest sequential procedure consists of a cyclic selection of the sets Ci in equal cycles
of length N . In a simultaneous algorithm, each step involves all the sets Ci, where
typically the weighting of the different sets is iteration independent. The literature
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on the application of these two types of algorithms for solving consistent problems is
quite extensive; see, e.g., [1, 14, 15, 16] and the reference therein. Typically, general
conditions guarantee the weak convergence of the iterates to a feasible solution.

In practice, many problems turn out to be marginally consistent or fully incon-
sistent (see, e.g., [29]). This is often the result of overly optimistic design: underes-
timating noise statistics (in image restoration, see, e.g., [23]) or imposing too narrow
design margins (see, e.g., [34, 32] for a nondiffracting beam design). In other prob-
lems, consistency cannot be easily confirmed a priori. For further discussion, see also
[12].

When consistency is not guaranteed, feasible solutions may not exist, and the
design objectives must be redefined. The most natural alternative is optimization:
the introduction of a natural cost functional which describes the overall distance from
complete feasibility and the search for a solution which minimizes this functional.
Experience suggests a quadratic functional, such as Ĵ(h) =

∑
βid

2(h,Ci), where
βi are positive constants left for interactive tuning and d is the Euclidean distance
function, obtained via orthogonal projection of h onto Ci. A nonquadratic alternative
was suggested in [25] for nonconvex problems, i.e., the same functional Ĵ(h) which,
in the nonconvex case, may not be quadratic.

For various recent applications, this choice of cost function is too restrictive. In
particular, one would like to be able to apply different measures of distance to the
different sets Ci, i.e., minimize a functional of the more general form

Ĵ(h) =

N∑
i=1

βid
2
i (h, Pi(h)),(1)

where di are distance functions, chosen differently for different sets Ci, and Pi(h) is
the projection onto Ci with respect to di. We shall call such a problem multidistance,
as opposed to the special case di(h, g) = ‖h− g‖, which will be termed unidistance.

Strictly speaking, the multidistance problem is no longer purely “set theoretic”:
now the sets Ci are not the only data required, and one should also specify a priori
the distance functions di. The goal of a multidistance algorithm is to approximate the
optimal solution (minimize Ĵ(h) of (1)) using only the individual projections Pi = P diCi
which project the current signal onto the element di-closest to it in Ci. In other words,
the algorithm should be composed exclusively from the N possibly nonlinear, possibly
nonorthogonal, projections Pi.

The interest in inconsistent and, in particular, multidistance problems is relatively
new. We shall comment on this point in a while.

Whereas sequential algorithms fare well in a consistent environment, they are
not suitable for inconsistent problems, since the iterates are confined to the sets Ci
whereas the optimal solution may be found elsewhere. In some cases, this difficulty
can be overcome by the use of special relaxation policies, though these lead to very
slow convergence to the optimal solution [20, 6].

Moreover, weak convergence results for sequential algorithms are essentially re-
stricted to the unidistance case. For multidistance projections, weak convergence is
inconclusive, as stated in [34], and divergence is common, as a simple example in
[22, Fig. 1] suggests. Further evidence for divergence was accumulated based on the
papers [35, 21]. Some, severely restrictive, sufficient conditions for weak convergence
(in the sequential algorithms) were studied in [22].

Based on these reservations, focus is restricted here to parallel algorithms involv-
ing the nonorthogonal projections Pi. It turns out that for an inconsistent problem
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which requires the minimization of Ĵ in (1) with weights βi and the various distance
functions di, the appropriate parallel algorithm should weight the different projections
Pi exactly by the same weights βi. The algorithm is given in detail in section 2.

Following this choice, it turns out that Ĵ is always a Lyapunov functional in the
weak sense; i.e., its values are nonincreasing along iterates of the algorithm. This
behavior is instrumental in, but not sufficient for, guaranteeing the weak convergence
of the iterates, and some further assumptions must be made.

In studying the multidistance case, we were motivated by the results [22] of
Kotzer, Cohen, and Shamir and the work of [7] by Censor and Elfving. Below we
shall refer to a special case of the algorithm proposed in [7], to mitigate the difficul-
ties in [22], as Algorithm I.

Compared with [12], the goals of [7] were rather limited: (i) only the consistent
case was discussed; (ii) the signal space was real Euclidean space, as opposed to real
or complex (infinite dimensional) Hilbert space (this is a severe limitation in many
signal and image applications); (iii) relaxation was not incorporated in the algorithm.
However, [12] does not allow the wide latitude of generalized distance functions treated
in [7].

Some clarification may be necessary here concerning point (iii) above. Relax-
ation is a commonly used procedure for improving the convergence profile of many
projection-based algorithms. Admittedly, the role of relaxation in the convergence
pattern of projection-based algorithms has never been thoroughly analyzed. For se-
rial algorithms, it has been demonstrated experimentally in [27, 8]. Recently, it was
demonstrated in [14, 12] for Algorithm I, but assuming unidistance. See also [10] for
an analytical study of relaxation.

Reference [7] admits only zero relaxation. Reference [12] admits time-varying
relaxation, λi with |λi| ≤ 1 − ε, though the analysis pertains to the unidistance
case only. We shall consider in our analysis the multidistance case, allowing a fixed
relaxation value λ, with |λ| < 1.

Thus, our approach in the present paper combines the multidistance aspects of
Censor and Elfving with the wide signal-oriented treatment of Combettes in a non-
trivial way. One feature of [7] which we were forced to abandon was their latitude in
choosing the distance functions di. The class they considered was the so-called class
of Bregman distance functions, [3], which is so large that its elements are not even
confined to the usual axioms of a metric, such as symmetry (d(x, y) = d(y, x)). The
tremendous flexibility offered by this class is offset by one major disadvantage: due
to its generality, it leaves implicit the mathematical expression for the iterated map
representing Algorithm I (which is denoted by Pβ,λ in the present paper).

In variance with [7], we consider here only a relatively small subclass of Bregman
distance functions in L2(R): the set of weighted L2 norms in the “frequency domain”
(i.e., after the application of the Fourier transform, which is denoted here by )̂:

d2(f, g) =

∫ +∞

−∞
W (u)|f̂(u)− ĝ(u)|2du.(2)

This restraint allowed us to go beyond the analysis of Censor and Elfving and obtain
an explicit expression for the map Pβ,λ representing Algorithm I (as well as obtaining
weak convergence results even when Co is empty). Consequently, we were able to
characterize its set of fixed points. As mentioned earlier, this point is of crucial
significance, since weak convergence to a fixed point can be guaranteed whenever the
set of fixed points is not empty (even if Co is empty).
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It should be noted that the smaller set of distance functions used here is still
sufficient for the analysis of many important multidistance problems. In particular,
we were motivated by several problems in wave scattering analysis [21], design of
filters for pattern recognition [22, 35, 26], restoration [36], and image restoration [23],
to mention a few. In these problems, some of the sets Ci are known only implicitly:

Ci = {f ∈ H : Ki(f) ∈ Ĉi}, Ĉi is convex,

where Ĉi is given explicitly; see [22]. In principle, Ki may be any affine operator
but we restrict the discussion to the important class where Ki is a convolution oper-
ator. These problems are known as constrained deconvolution problems. A detailed
discussion and analysis in [22] shows that problems of this type, which are handled
relatively inefficiently by unidistance projection algorithms, can be solved efficiently
by recasting the problem as multidistance. In particular, (various) weighted L2 norms
in the frequency domain (a different weighted norm for each convolution operator Ki).
This can easily be justified by means of the Fourier transform; see Appendix A.

In analyzing Algorithm I, we use the so-called product space construction of
Pierra, as do the papers [7, 12]. Our construction, however, contains a nontrivial
topological extension, which is necessary to adopt this construction to a multidistance
environment.

The structure of the paper is as follows: Algorithm I is defined and studied.
Then the product space formalism is introduced and used to show that Algorithm I
is nonexpansive in an appropriate sense. Monotone nonincrease with respect to Ĵ is
established. Then we use functional analysis to characterize the set of fixed points
of Algorithm I and to show that the algorithm converges weakly whenever this set is
not empty. Sufficient conditions for the existence of fixed points are given.

Notationwise, we follow [7]. We shall use “∧” and “∨” to denote the Fourier
transform on L2(R) and its inverse, respectively. Indefinite integrals will invariably
denote integration over the real line.

2. Algorithm I and its stability. In this section we describe our main algo-
rithm and summarize its main stability and convergence properties.

Data. Given are N convex sets Ci, N respective norms di, N weights βi > 0 with∑N
i=1 βi = 1, and one relaxation parameter, λ ∈ [−1, 1]. We denote by Pi the mapping

of projecting onto Ci with respect to di. To include relaxation, we define Pi, λ(h) =

P diCi(h) + λ(h − P diCi(h)). Relaxation is used extensively in the literature, for both
theoretical and practical reasons, to enhance the convergence; see, e.g., [37, 27, 10].
In general, if T is a mapping, its relaxed version Tλ with relaxation parameter
λ ∈ R is defined as Tλ := T +λ(I−T ), i.e., Tλ(h) := T (h)+λ(h−T (h)). Following
Baillon, Bruck, and Reich, [1], whenever λ ∈ (0, 1) we term Tλ an averaged mapping.
For more details, see also [19, 10, 37].

We assume that the distance functions di are all of the weighted L2 type described
in (2). Let Wi(t) be the corresponding weight functions. The sets Ci are assumed
convex and closed with respect to di. βi are tuning parameters, which are added only
for practical design convenience. Mathematically, they may be absorbed in the weight
functions Wi.

Algorithm I has the following simple formulation.
Initialization. An arbitrary initial function ho ∈ L2(R).
The main step. Given the function hk ∈ L2(R), calculate hk+1 ∈ L2(R) via

vk+1
i (x) = Pi, λ(hk), i = 1, 2, . . . N,(3a)
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hk+1(x) =


(

N∑
i=1

βiWi(u)

)−1 N∑
i=1

βiWi(u)v̂k+1
i


∨

.(3b)

Recall that “∧” and “∨” denote the Fourier transform and its inverse, respectively.
Algorithm I with multiple metrics di but with zero relaxation has already been

successfully implemented in various signal synthesis and restoration tasks involving
nonconvex constraints [26, 25] and inconsistent constraints [23]. In all cases, some of
the original constraint sets were given implicitly.

The special unidistance case of Algorithm I with orthogonal projections onto the
sets Ci has been studied before for consistent as well as inconsistent problems. See,
e.g., [15, 16], [11, Section III.E], and [12].

2.1. Stability and convergence. To analyze the stability properties of Algo-
rithm I, we use a Lyapunov theoretic approach. We shall call a “Lyapunov functional”
any functional on H whose values are nonincreasing along iterates of Algorithm I. Ac-
cording to classical theory, the existence of such a functional is instrumental, but not
sufficient, for weak convergence. In problems involving only convex sets, it makes
sense to look for a convex functional, for which local minima must be global. The
additional assumption of coercivity of the functional guarantees weak convergence to
a global minimum. Strict convexity implies that the global minimum is unique.

Specifically for Algorithm I, it turns out (section 8) that the functional (1)

Ĵ(h) =

N∑
i=1

βid
2
i (h, Pi(h))

is a convex Lyapunov functional which decreases strictly along nonstationary iterates
(for other choices, see [28]). If the problem is consistent, Algorithm I converges weakly
to an element in Co (for which Ĵ is zero).

For an inconsistent problem, weak convergence of the iterates cannot be guaran-
teed in general. However, we find that the iterates generated by Algorithm I con-
verge weakly to the set of global minimizers of Ĵ , whenever this set is nonempty.
In accordance with this finding, we find some general conditions guaranteeing weak
convergence of the iterates even in the inconsistent formulation (Theorem 9.6 (b), (c),
combined with Theorems 7.6 and 8.3). In most routine applications, it can be shown
that Ĵ is also coercive and strictly convex. Coercivity is guaranteed if, e.g., any one of
the sets Ci are di-bounded. For a typical illustration of an inconsistent situation, see
Figure 1. Strict convexity is guaranteed if, e.g., all of the sets Ci are strictly convex.

To prove weak convergence of Algorithm I, one needs to go beyond stability. In
this paper we analyze the properties of the mapping Pβ,λ which represents Algorithm
I. It is shown that for all λ ∈ (−1, 1), this mapping is nonexpansive and asymp-
totically regular. Moreover, simple sufficient conditions (Theorem 9.6) are provided
which guarantee that this mapping has fixed points. According to classical theory,
these three elements (nonexpansivity, asymptotic regularity, and the existence of fixed
points) guarantee weak convergence.

2.2. A theoretical perspective. The problem is called nonconvex if at least
one of the sets Ci is not convex. For nonconvex problems in pattern recognition and
image restoration we refer the reader to [35, 26, 25] and [27]. Although a projection
onto a nonconvex set is not well defined mathematically, it can usually be implemented
without difficulty [27, 25].
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C1

C2 C3

Minimum Overall
distance !

Fig. 1. A typical global minimizer of Ĵ when Co is empty.

When the problem is inconsistent, or nonconvex, it may be impossible to establish
weak convergence under general conditions. Instead, and as a first step towards
convergence results, one would like to establish the weaker property of monotonicity
with respect to a particular Lyapunov functional.

In both the inconsistent and nonconvex contexts for serial algorithms, a general
Lyapunov monotonicity result is available only when N = 2, i.e., when only two con-
straints are involved. See [27, 25] for nonconvex problems and [9, 18] for inconsistent
problems. These results are, moreover, restricted to unidistance problems.

In contrast, for Algorithm I, Ĵ still acts as a Lyapunov functional; i.e., its values
are nonincreasing (and typically decreasing) along iterates, independent of the number
N of sets involved, and include multidistance. This is established in [25] for the
nonconvex case and in the present paper for the inconsistent case.

The distinction between N = 2 and N > 2 for serial algorithms is of theoretical
significance since there is a special construction, called the product space construction,
which can be used to transform any parallel multidistance algorithm, with N arbi-
trary, into an equivalent serial algorithm, with only two constraints, of a necessarily
unidistance character. Thus, the distinction between N = 2 and N > 2 does not exist
for parallel algorithms, in particular, for Algorithm I.

Formalization through the product space, introduced by Pierra [31], considered
only finite-dimensional and unidistance problems to begin with. It was generalized
to finite-dimensional multidistance problems in [7]. The product space is simply a
Cartesian product of N copies of the original signal space. We develop an infinite-
dimensional product space formalism, which requires some topological finesse: the
product space is not a cartesian product of identical copies of the original signal
space, since each copy is governed by a different distance function di, inducing a
possibly different Hilbert space Hi.

3. The product space. In this section we introduce the product space formu-
lation to be used in subsequent sections. For concreteness, and for the purpose of
one-dimensional continuous-time signal applications, we shall work with the space
H = L2(R).

Our data consists of N convex subsets Ci in H, N essentially positive weight
functions Wi(x), and N positive constants βi. We assume that Ci are di closed,
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where di are the weighted L2 distance functions associated with Wi via (1). We also

assume the normalization
∑N
i=1 βi = 1.

Let Hi denote the closure of H with respect to the norm di; namely,

Hi :=

{
h |

∫
Wi(u)|ĥ(u)|2du <∞

}
.

Let 〈·, ·〉i denote the natural (Wi-weighted) inner product on Hi, i.e., 〈f, g〉i =∫
Wi(u)f̂(u)ĝ(u)du. Recall that Wi is real, essentially bounded, and essentially posi-

tive. Therefore, H is a dense subspace in Hi (if, in addition, Wi is essentially bounded
away from zero, the metric di is equivalent to the norm in H, and Hi = H). The space

Ho :=

N⋂
i=1

Hi

may be described as the closure of H with respect to the overall weight function Wo

and distance function do given by

Wo :=
N∑
i=1

βiWi, d2
o =

N∑
i=1

βid
2
i .

The associated inner product will be denoted by 〈·, ·〉0. Again, H is a dense subspace
of Ho, and the two spaces coincide if and only if Wo is essentially bounded away from
zero. Note that this coincidence, whenever it occurs, is independent of the choice
of βi > 0. In particular, note that if any one of the distance functions di is the
(unweighted) Euclidean norm, H = Ho.

Define the product space of multiplicity N,

H :=
N∏
i=1

Hi,(4)

whose elements will be denoted by

h = (h1, h2, . . . , hN )T , hi ∈ Hi.(5)

H is endowed with the following inner product and norm:

� h,h′ �=
N∑
i=1

βi〈hi, h′i〉i, |||h|||2 =� h,h� .(6)

Clearly, the product space H is a Hilbert space with respect to this structure. The
associated distance function is

D(h,h′) := |||h− h′|||.

The space H and, more generally, the space Ho will be embedded in H via the linear
“duplication operator”

τ(h) := ( h, h, . . . h︸ ︷︷ ︸
N times

)T ; h ∈ Ho.(7)
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The linear subspace ∆ = τ(Ho) will be referred to as the diagonal subspace. It can
be seen that ∆ is D-closed.

The mapping τ : H → (H,D) is well defined but not necessarily isometric. Its
image is dense in ∆. However, let us change the metric of the input space. It is
easy to check that the mapping τ : (Ho, do) → (∆,D) is isometric and, in fact,
unitary. We shall later use the isometric properties of the densely restricted operator
τ : (H, do)→ (∆,D).

4. The mapping Pβ,λ. In this section we define our main objective as a mapping
Pβ,λ on H whose iterative action embodies Algorithm I. As a first step, we define the
auxiliary mapping Q : H → H and the auxiliary energy functionals ψh on H for all
h = (h1, . . . , hN ) ∈ H via

Q(h) =

{
N∑
i=1

βi
Wi(x)

Wo(x)
ĥi(u)

}∨
, ψh(h′) :=

N∑
i=1

βid
2
i (h
′, hi).(8)

The following lemma gives a nice variational characterization for the mapping Q.
Lemma 4.1. (i) g = Q(h) if and only if g is a global minimum of ψh.
(ii) Q is a well defined mapping on H.
Proof. (i): It can be seen by direct calculation that ψh is strictly convex; hence,

it can have at most one global minimum. The global minimizer g ∈ H, if it exists, is
the only point at which the first variation (or Gâteaux derivative [17, p. 23]) ∇ψh is
zero. In our case of weighted L2 norms, a routine computation shows that

∇ψh(g) = 2
N∑
i=1

βi{Wi(ĝ − ĥi)}∨.(9)

Now, by equating the first variation to zero, we obtain the equality g = Q(h), as
required.

(ii): We need to show that for any h ∈ H the function g = Q(h) is both measur-
able and square integrable. To show measurability, it suffices to note that in (8) both
the numerator and denominators of the expression for Q(h) are measurable, and the
denominator is nonzero almost everywhere (a.e.). To show square integrability, define

the function H = max1≤i≤N |ĥi| ∈ L2(R). By Parseval’s identity and the triangle
inequality we get∫

|g(x)|2dx =

∫
|W−1

o (u)
∑

βiWi(u)ĥi(u)|2du

≤
∫
|W−1

o

∑
βiWi(u)H(u)|2du =

∫
|H(u)|2du <∞ ,

showing that g is square integrable, i.e., g ∈ H.
If ψ is also coercive on H, it is a priori clear that its minimizer is in H, in which

case (ii) follows automatically from (i).
Define the mapping Pβ : H → H and the functional ϕh (h ∈ H) on H via

Pβ(h) = Q(P1(h), . . . , PN (h)), ϕh(g) =

N∑
i=1

βid
2
i (g, Pi(h)).(10)

It can be seen from the definition that Pβ represents Algorithm I with zero relaxation.
Adding relaxation in Algorithm I amounts to adding the same relaxation to Pβ ,



PROJECTION-BASED ALGORITHM 535

yielding the relaxed mapping

Pβ,λ(h) := Pβ(h) + λ(h− Pβ(h)).(11)

We note that indeed the image of Pβ,λ is in H (although Q is defined on H, which

contains
∏N
i=1 H), due to the fact that g = Q(h) is square integrable for any h ∈ H,

in particular for h = τ(h); h ∈ H. In any event, the mapping Pβ can be defined also
via Pβ : Ho → Ho, due to Lemma 4.1(ii). This will be used in various theorems used
in section 7.

Corollary 4.2. (i) g = Pβ(h) if and only if g minimizes ϕh.
(ii) Pβ is a well defined mapping on H.

4.1. A theoretical perspective. Although Pβ is in general not a projection, it
shares with the projections several essential properties. For a projection of the form
P = P dC , the following hold:

(a) Given h, the vector g = P (h) trivially minimizes the associated strictly convex
coercive energy functional d2(g, P (h)). This may be regarded as a “(trivial) variational
characterization” of P .

(b) The fixed points of P are the elements of C, i.e., the global minimizers of the
functional h→ d2(h,C).

(c) Every sequence of iterates of P converges weakly to C.
(d) For any relaxation λ ∈ (−1, 1], the relaxed projection is nonexpansive and its

iterates still converge weakly to the same set of fixed points of the unrelaxed operator
(we remark that for a general nonexpansive operator in Hilbert space, only relaxations
in [0, 1) are automatically guaranteed to be nonexpansive). We note that attribute
(c) above is trivial for a projection, and it was stated only because it holds for Pβ
too, with C appropriately defined.

For the mapping Pβ , Corollary 4.2(i) provides the variational characterization
analogous to (a) above. Concerning property (b), it will be shown in section 8 that
the fixed points of Pβ,λ are indeed the global minimizers of the functional Ĵ in (1),
independent of the relaxation. However, their existence is not a priori guaranteed, as
in the case of a projection. Concerning properties (c, d), nonexpansivity of Pβ,λ for
all λ ∈ [−1, 1] will be established in section 6, and sufficient conditions guaranteeing
weak convergence for all λ ∈ (−1, 1] will be given in section 9.

5. The cyclic algorithm on the product space. We now describe the dy-
namics of Algorithm I in the product space H defined in section 3. What emerges
is a cyclic unidistance projection algorithm on the product space H, involving two
projections PD

C and PD
∆ .

The metric D and the diagonal subspace ∆ were already defined in section 3.
The convex set C is just the direct sum

C =

N∏
i=1

Ci.

It can be checked that ∆ and C are closed and convex and are considered subsets of
(H, D). Moreover, recalling that Co = ∩Ni=1Ci, we find that ∆ ∩C = τ(Co). Namely,
the sets Ci intersect in H if and only if ∆ and C intersect in H.

Together with the two sets C and ∆ we associate the two respective projections
PD

C and PD
∆, defined with respect to the distance function D . Considered as

mappings on (H,D), these are two orthogonal projections; hence, in particular, the
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context is unidistance. This point will be of great significance later on. Below we
provide a more concrete description of the two projection mappings.

Lemma 5.1. Under the above construction, we have

PD
C (h) = (P1(h1), P2(h2), . . . , PN (hN ))

T
,(12a)

PD
∆(h) = τ ◦Q(h),(12b)

where h = (h1, . . . , hN )T .
Proof. Equations (12a, 12b) are direct consequences of the definition of the sets

C,∆ and the metric D (on H). In particular, to derive (12b) we note that, by
definition, we have the equality D(h, τ(g)) = ψh(g). Also by definition, projecting a
vector h ∈ H orthogonally onto ∆ amounts to minimizing D(h, τ(g)) over all τ(g).
By Lemma 4.1, applying Q amounts to minimizing the same expression over all g.
Thus, (12b) must hold.

Define the composed mapping on H by

Pc(h) = PD
∆ ◦ PD

C (h).(13)

Using Corollary 4.2 and Lemma 5.1, it is easy to establish the identity

Pc ◦ τ = τ ◦ Pβ .(14)

We interpret this identity as follows: without relaxation, Algorithm I, defined on
H, manifests itself in the product space H as a simple cyclic algorithm involving
two orthogonal projections, again with zero relaxation. We emphasize that even if
Algorithm I is multidistance and involves N > 2 convex sets, the product space
algorithm is unidistance and involves only two convex sets.

Adding relaxation to Algorithm I amounts to adding the same relaxation to Pc

or, equivalently, to PD
∆. This follows from an examination of (14). We therefore

conclude that Algorithm I with relaxation manifests itself in the product space as a
cyclic algorithm involving two projections, one relaxed and one unrelaxed.

6. Establishing nonexpansivity. It will be shown below that the dynamics of
Algorithm I are nonexpansive with respect to the metric do on H. To avoid notational
inconvenience, the zero subscript in do will be omitted throughout.

Theorem 6.1. (i) Pc
λ(h) is D-nonexpansive for all λ ∈ [−1, 1].

(ii) Pβ,λ(h) is d-nonexpansive for all λ ∈ [−1, 1].
(iii) In particular, Pβ and Pc are nonexpansive in the appropriate metrics.

Note that in general (iii) implies (i, ii) automatically only for λ ∈ [0, 1].
Proof. Using the isometric properties of τ in (14), it is enough to establish (iii)

only for Pc and then to establish only (ii).
To prove (iii) for Pc , note that PD

∆ and PD
C are orthogonal projections with

respect to D ; hence, they are nonexpansive with respect to this metric. Therefore,
their composition Pc is also D-nonexpansive.

To prove (ii), let h1, h2 ∈ H be arbitrary but fixed. Define the vectors

km := Pm,λ(h1)− Pm,λ(h2), m = 1, 2, . . . , N.

Then we have

d2(Pβ,λ(h1), Pβ,λ(h2)) =
∑

βid
2
i (Pβ,λ(h1), Pβ,λ(h2))
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=
N∑
i=1

βi

∫
Wi(u)

∣∣∣∣∣
∑N
m=1 βmWm(u)k̂m(u)∑N

m=1 βmWm(u)

∣∣∣∣∣
2

du

≤
∫ N∑

i=1

βiWi(u)

(∑N
m=1 βmWm(u)|k̂m(u)|∑N

m=1 βmWm(u)

)2

du

=

∫ (∑N
m=1 βmWm(u)|k̂m(u)|

)2

(∑N
m=1 βmWm(u)

) du .

Define the functions Qi(u) =
√
βiWi(u) and Si(u) =

√
βiWi(u)|k̂m(u)|. The Cauchy–

Schwarz inequality
[∑N

i=1Qi(u)Si(u)
]2
≤
∑N
i=1Q

2
i (u)

∑N
i=1 S

2
i (u) can be written as

(
N∑
m=1

βmWm(u)|k̂m|
)2

≤Wo(u)
N∑
m=1

βmWm(u)|k̂m|2.

Consequently, we have

∫ (∑N
m=1 βmWm(u)|k̂m(u)|

)2

Wo(u)
du ≤

∫ N∑
m=1

βmWm(u)|k̂m(u)|2

=

N∑
m=1

βmd
2
m(k̂m, 0) =

N∑
m=1

βmd
2
m(km, 0) ≤

N∑
m=1

βmd
2
m(h1 − h2, 0) .

To justify the last inequality above, note that since Pm is dm-nonexpansive, its relaxed
version Pm,λ is automatically nonexpansive for all 0 ≤ λ ≤ 1. In fact, since Pm is
also an orthogonal projection on the Hilbert space Hm, Pm,λ is nonexpansive for all
−1 ≤ λ ≤ 1.

Finally, combining the above chains of inequalities, we obtain

d(Pβ,λ(h1), Pβ,λ(h2)) ≤ d(h1, h2) ∀|λ| ≤ 1,

implying that Pβ,λ is nonexpansive with respect to the metric d.

7. Establishing weak convergence. Let Ho be as defined in section 3.
Definition 7.1. Denote by F the set of fixed points of Pβ in H.
In the next section we shall bring evidence to the fact that F (the set of fixed points

of Pβ in H) is not empty in most cases of interest. In this section we shall show that
nonemptiness of F implies the weak convergence of Algorithm I. The proof follows
from combining two classical results of Opial and Browder concerning asymptotic
regularity.

Definition 7.2. An operator T : H → H is termed asymptotically regular if
limk→∞ ‖ T k+1(h)− T k(h) ‖→ 0 ∀h ∈ H.

Theorem 7.3 (Opial, [30, Theorem 1]). Let C be a closed convex set in a Hilbert
space H and let T : C → C be a nonexpansive asymptotically regular mapping for
which the set FT of fixed points is nonempty. Then, for any h in C, the sequence of
successive approximations {ho, h1 . . .}, where hn+1 := Thn, is weakly convergent to
an element of FT .
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Theorem 7.4 (Browder, [4, Theorem 5]). Let X be a uniformly convex Banach
space, and let T : X → X be a nonexpansive mapping with a nonempty set FT of
fixed points. For a given constant γ, 0 < γ < 1, let Sγ = γI + (1 − γ)T , i.e.,
Sγ(h) = γh+ (1− γ)T (h). Then Sγ is asymptotically regular and has the same set of
fixed points as T .

We may sharpen Theorem 7.4 slightly, as follows.
Corollary 7.5. If, in the same setup, T and all its relaxations in the interval

[a, 1] are nonexpansive and FT is nonempty, then all the relaxations of T in the open
interval (a, 1) are nonexpansive and asymptotically regular and have the same set of
fixed points as T .

Proof. It is easy to see that any relaxed mapping Tλ with a < λ < 1 can be
represented as an averaged mapping based on Ta, i.e., a convex combination of Ta
and T1 = I. Indeed, we have

Tλ = γI + (1− γ)Ta; γ =
λ− a
1− a

and γ ∈ (0, 1). Now apply Theorem 7.4 on the operator Ta and its relaxation Tλ. It
follows that Tλ is asymptotically regular .

We are now able to state and prove our main result concerning weak convergence
of Algorithm I.

Theorem 7.6. The relaxed mapping Pβ,λ defined in section 4 is nonexpansive
and asymptotically regular for all λ ∈ (−1, 1) (where nonexpansivity and asymptotic
regularity are in (Ho, do)). Thus, for any initial point ho ∈ H, the sequence of suc-
cessive approximations {ho, h1, . . .}, where hk+1 := Pβ,λ(hk), converges weakly to an
element of F , whenever F is not empty.

Proof. The underlying Banach space in our case is (Ho, do), as defined in section
3. Theorem 6.1 guarantees nonexpansivity of Pβ,λ. Since Ho is a Hilbert space, it
is uniformly convex, and Corollary 7.5 can be applied to the mapping T = Pβ with
a = −1, completing the proof of asymptotic regularity of Pβ,λ.

Moreover, by Corollary 7.5, the set of fixed points of Pβ,λ is the same as the set
of fixed points of Pβ , i.e., F . Thus, assuming F is nonempty and using Theorem 7.3,
iterations of Pβ,λ converge weakly to an element of F from any initial function.

Concerning Theorem 7.6, we make the following remarks: (1) The extreme relax-
ation values λ = ±1 are not included in the Theorem, and λ = −1 may indeed lead
to nonconvergence, e.g., in the trivial case N = 1 where Pβ is a projection. (2) In
principle, we have only established that the weak limit point is in Ho. However, since
the image of Pβ is in H, the weak convergence is, in fact, to an element in H [al-
though the underlying Banach space in our case is (Ho, do)]. (3) F is independent of
relaxation, but may depend on βi (if Co is empty). This may be used to advantage:
if we wish the weak limit point to be closer to one of the sets Ci, we can increase the
relative value of βi.

An alternative proof of Theorem 7.6 would be to demonstrate weak convergence
on the product space mapping Pc , rather than on Pβ,λ, since the convergence pattern
of these two mappings is the same. Indeed, one could split Pc into its two constituents,
P∆,λ and PC, and use classical convergence results for cyclic projection algorithms.
For example, the paper of Cheney and Goldstein [9, Theorem 4] guarantees that
iterates of the composed mapping Pc converge (weakly) to a fixed point of P∆PC,
say h ∈ H, if such a point exists. In fact, h ∈ ∆ (see also [9, Theorem 2]); hence,
h = τ(h) for some h ∈ H, and h must be a fixed point of Pβ . However, we opted our
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approach, due to its generality, i.e., only requiring that the operator is nonexpansive,
asymptotically regular, and has a nonempty set of fixed points, not requiring the
operator to be a projection operator. Indeed, the operator Pβ,λ is only a projection-
based operator, not a projection operator.

A closely related approach is given in [12], using several classical results on firmly
nonexpansive mappings. This approach is more general in that it admits time-varying
relaxation (λi with |λi| ≤ 1−ε). Moreover, [12] presents a special variant of Algorithm
I which converges strongly without any special assumptions on the sets Ci, provided
F is not empty. However, unidistance projections are assumed in [12].

Theorem 7.6 provides an alternative proof of convergence of the Censor–Elfving
method [7], at least in the case of weighted L2 distance functions. In fact, their result
is generalized here in several directions: (1) the space H may be infinite dimensional;
(2) consistency is not assumed; (3) it may be real or complex; (4) relaxation values
(λ ∈ (−1, 1)) are allowed. Note that the consistency assumption made in [7] implies
the existence of a fixed point.

8. Characterization of the fixed points. To complete our analysis, it only
remains to check that F , the set of fixed points of Pβ in H, is nonempty. While
nonemptiness of F is expected in all practical situations, it cannot be easily guaranteed
a priori. However, an indirect variational characterization exists for the set F , in terms
of the nonnegative convex functional Ĵ on Ho defined in equation (1). Namely, it will
be shown in Theorem 8.3 below that F coincides with the set G of global minimizers
of Ĵ in Ho (and in particular it will follow that G ⊂ H).

This characterization of F is in full agreement with the consistent case, where
the set Co := ∩Ni=1Ci is nonempty. It is known that in this case the process always

converges weakly to an element in Co. Indeed, Ĵ(h) = 0 exactly when h ∈ Co, and so
we have F = G = Co, and weak convergence to Co is guaranteed.

In fact, it is intuitively quite clear that G is not empty also in many inconsistent
situations. The weak limit point in this case need not belong to any of the sets Ci
but is the “closest” point to these sets in an averaged sense, i.e., is a global minimizer
of Ĵ ; see, e.g., Figure 1.

Ĵ is a strict Lyapunov functional for the relaxed mapping Pβ,λ (λ ∈ (−1, 1)); i.e.,
it is strictly decreasing along iterates which are not fixed points. The discussion here
follows closely with [15, 12].

Lemma 8.1. For any h ∈ H we have

Ĵ(Pβ,λ(h)) ≤ Ĵ(h)− (1− λ2)d2(h, Pβ(h)).(15)

Proof. Since Pi{Pβ,λ(h)} is the closest element to Pβ,λ(h) in Ci (in the di sense),
we have

‖PiPβ,λ(h)− Pβ,λ(h)‖2i ≤ ‖Pi(h)− Pβ,λ(h)‖2i

= ‖Pi(h)− h‖2i + ‖h− Pβ,λ(h)‖2i − 2Re 〈Pi(h)− h, Pβ,λ(h)− h〉i.
(16)

Summing over i, using the definition of Pβ , the definition of the ith inner product,
and some algebra, we obtain

Ĵ(Pβ,λ(h)) =
N∑
i=1

βi‖Pi{Pβ,λ(h)} − Pβ,λ(h)‖2i ≤
N∑
i=1

βi‖Pi(h)− h‖2i
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+
N∑
i=1

βi‖h− Pβ,λ(h)‖2i − 2
N∑
i=1

βiRe 〈Pi(h)− h, Pβ,λ(h)− h〉i

≤
N∑
i=1

βi‖Pi(h)− h‖2i +
N∑
i=1

βi‖h− Pβ,λ(h)‖2i

−2
N∑
i=1

βiRe 〈Pβ(h)− h, Pβ,λ(h)− h〉i

≤
N∑
i=1

βi{‖Pi(h)− h‖2i + [(1− λ)2 − 2(1− λ)]‖Pβ(h)− h‖2i } .

By rearranging and using the definition of d and Ĵ , we obtain (15).

For λ = 0 (no relaxation), Lemma 8.1 guarantees the largest decrease rate bound
for Ĵ :

Ĵ(Pβ(h)) ≤ Ĵ(h)− d2(h, Pβ(h)).(17)

We will also need the following elementary result.

Lemma 8.2. (i) Ĵ is a convex functional on Ho.
(ii) If the problem is inconsistent (i.e., Co :=

⋂N
i=1 Ci = ∅) and all sets Ci are

strictly convex in Hi, then Ĵ is strictly convex.

Proof. We have the easily verifiable identity

2d2
i

(
g + h

2
,
Pg + Ph

2

)
+ 2d2

i

(
g + Pg

2
,
h+ Ph

2

)
= d2

i (g, Pg) + d2
i (h, Ph) .

Using this identity, we conclude that

d2
i

(
g + h

2
, P

(
g + h

2

))
≤ d2

i

(
g + h

2
,
Pg + Ph

2

)
≤ d2

i (g, Pg) + d2
i (h, Ph)

2
;

hence, by summation, Ĵ is convex. If g, h are not both in Ci and Ci is strictly convex
in Hi, the left inequality (as well as the right inequality) is strict, and Ĵ shows strict
convexity as required. However, if both g, h are inside Ci this argument is not valid.

The inconsistency assumption implies that indeed for some i either g or h does
not belong to Ci, completing the argument.

We are now able to prove the variational characterization proposed earlier.

Theorem 8.3. Let G be defined as the (possibly empty) set of global minimizers
of Ĵ in Ho. Then G ∈ H. Moreover, G coincides with the set F of fixed points of the
mapping Pβ in H.

Proof. (i) First we show that G ⊂ F . Take h ∈ G. By definition, Ĵ(h) ≤
Ĵ(Pβ(h)). However, from equation (17) we obtain the opposite inequality, hence,

Ĵ(h) = Ĵ(Pβ(h)). Again by equation (17), it follows that d(h, Pβ(h)) = 0, i.e.,
h = Pβ(h) as required.

(ii) Now we show that F ⊂ G. Take f ∈ F , h ∈ Ĥ. Assume by contradiction
that Ĵ(h) < Ĵ(f). Consider the set

A = {h1 ∈ H | Ĵ(h1) ≤ Ĵ(h)}.
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A is a closed convex set due to the continuity and convexity of Ĵ (see Lemma 8.2).
Let f ′ be the unique closest element to f in A (in the d sense), i.e., f ′ = P dA(f). Define

k = Pβ(f ′)− Pβ(f), mi = Pi(f
′)− Pi(f).

Using equation (17) we have Ĵ(Pβ(f ′)) ≤ Ĵ(f ′); hence, Pβ(f ′) ∈ A. Since Pβ is
nonexpansive, we have d(Pβ(f ′), f) ≤ d(f ′, f). However, the opposite inequality
holds in the strict sense; i.e., from the definition of f ′,

d(Pβ(f ′), f) ≥ d(f ′, f) with equality only if Pβ(f ′) = f ′.

This follows from the optimal choice of f ′ relative to f . From this it is concluded that
Pβ(f ′) = f ′, and since f ∈ F , we get

d2(f, f ′) = d2(Pβ(f), Pβ(f ′)) =
N∑
i=1

βi‖k‖2i =
N∑
i=1

βi 〈k,mi〉i ≤
N∑
i=1

βi‖k‖i‖mi‖i.

The last inequality is due to the Cauchy–Schwarz inequality applied to each di. Next,
since Pi and Pβ are contractive mappings, we get

d2(f, f ′) ≤
N∑
i=1

βi‖f ′ − f‖2i = d2(f, f ′).(18)

Hence, by Lemma 4.2 and section 4.1 for all i, the inequality ‖f ′ − f‖i = ‖Pi(f ′) −
Pi(f)‖i holds if and only if f ′ − f = Pi(f

′)− Pi(f). That is, f − Pi(f) = f ′ − Pi(f ′)
holds for all i, and Ĵ(f) = Ĵ(f ′) ≤ Ĵ(h), a contradiction. Hence, Ĵ(f) ≤ Ĵ(h) for all
h ∈ H, i.e., f ∈ G.

Finally, from (i) and (ii) we conclude that F = G.

9. Sufficient conditions. We shall give some sufficient conditions ensuring that
the set F of fixed points is nonempty. By Theorem 7.6, this nonemptiness guarantees
weak convergence of Algorithm I.

Definition 9.1. A functional Q : C → [−∞,∞] is termed coercive (over C) if
it satisfies

lim
‖cj‖→∞

Q(cj)→∞ for all cj ∈ C

and proper if it satisfies the following: (a) it does not assume the value −∞ anywhere
and (b) it is not identically +∞.

We shall make use of the following theorem.
Theorem 9.2 (Ekeland, [17, pp. 33–44]). Let C be a closed convex subset of H.

Let Q be a convex, lower-semicontinuous and coercive proper functional on C. Then
the set of global minimizers of Q over C is nonempty.

With this theorem we may establish the following theorem.
Lemma 9.3. Let at least one of the sets Ci be bounded with respect to the metric

di. Then the set G is nonempty.
Proof. If Ci is bounded with respect to di then the functional Ji(h) = di(h, Pi(h))

is coercive. Assuming βi > 0, it follows that Ĵ is coercive. The other properties of
the functional Ĵ can be routinely established.

Another important sufficient condition may be based on the following result.
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Theorem 9.4 (Baillon, [1, Corollary 2.2]). Let T : C → C be a nonexpansive
mapping on a subset of a uniformly convex Banach space. Then for any λ ∈ (0, 1), the
averaged mapping Tλ does not have any fixed point if and only if limk→∞ ‖T kλ (x)‖ =
∞ for all x ∈ C.

It may be easily shown that for any λ ∈ (−1, 1), Pβ,λ = γI + (1 − γ)Pβ,µ for
some 0 < γ < 1 and µ ∈ (−1, 1) (see proof of Corollary 7.5). In other words, every
relaxation of Pβ (and Pβ itself) is an averaged mapping. Therefore, since a Hilbert
space is a uniformly convex Banach space, we obtain the following corollary.

Corollary 9.5. Pβ,λ, λ ∈ (−1, 1), has a nonempty set of fixed points if there
exists h ∈ H such that

lim
k→∞

‖P kβ,λ(h)‖0 <∞,

i.e., the iterates are bounded for some h ∈ H.
This result is of paramount practical value, since nondivergence of a sequence can

be easily detected in practice.
The following result is a summary of the sufficient conditions obtained so far.
Theorem 9.6. Let any one of the following conditions be satisfied:
(a) Co =

⋂N
i= Ci 6= ∅.

(b) At least one of the sets Ci is bounded in the respective norm ‖ · ‖i.
(c) There exists h ∈ H such that limk→∞ ‖P kβ,λ(h)‖0 <∞.

Then G is nonempty. Moreover, if Co is empty and all sets Ci are strictly convex, G
is at most a singleton.

Proof. Item (a) follows from the fact that inf Ĵ (= 0) is obtained with functions
in Co, i.e., G = Co. Item (b) follows from Lemma 9.3 and item (c) from Corollary
9.5. Finally, the last statement follows from Lemma 8.2 and the fact that any strictly
convex function has at most one minimizer.

Our results in this section generalize results of De Pierro and Iusem [15, 16] and
Combettes [11, 12] to a multidistance problem in an infinite-dimensional complex
Hilbert space. In the special case of unidistance projections, Theorem 9.6 is in agree-
ment with results established in [16, Lemma 17] and noted in [11, section IV.C] and
[12].

10. Conclusions and remarks. This paper considers feasibility problems
which are both inconsistent and multidistance, with possibly many convex constraints.
It is demonstrated that sequential projection algorithms are not proper for such a
problem. An alternative parallel algorithm (Algorithm I) is proposed, and it is shown
that whenever it converges weakly, the solution is optimal, in the sense that it is
a global minimizer of a certain functional which averages the squared distances to
the various constraint sets. Moreover, we show that weak convergence is guaranteed
whenever a fixed point of the algorithm exists, and we give ample evidence that in
general such a fixed point does exist (Theorem 9.6). In particular, whenever the
problem is consistent, we prove weak convergence to Co.

We use the product space formalism of Pierra in an infinite-dimensional setting
to demonstrate that the multidistance algorithm (Algorithm I) is still equivalent (up
to Hilbert space intertwining) to a relaxed unidistance cyclic algorithm involving two
orthogonal projections.

For concreteness, our formulation is done in the space L2(R) of continuous-time
one-dimensional signals. Similar formulations can easily be derived in other cases of
interest, e.g., the space L2(R2) for image processing, the space l2 for discrete-time
one-dimensional signals, the space l2 × l2, etc.
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Windowing (in our continuous-time one-dimensional formulation: restricting the
signal support to a finite interval E ⊂ R) can be incorporated most elegantly by
adding CN+1 := L2(E) to the list of constraint sets.

Our approach is based on the algorithm of Censor and Elfving, restricted to
distance functions of the weighted norm type. Although we do not pursue this, we
could actually have considered without any difficulty the slightly larger set of measure-
based norms of the form

d2(f, g) =

∫ +∞

−∞
|f̂(t)− ĝ(t)|2dµ(t),

in the sense of a Stieltjes integral with respect to a general nonnegative measure µ.
Besides its improved convergence behavior, the algorithm presented here provides

ample tuning latitude. By changing the relative weights βi, one may achieve some
control on the expected location of the solution or express the reliability of the different
constraints used. We hope that the results presented here will stir renewed interest
in this class of algorithms. Indeed, promising results using this algorithm have been
reported in [23, 26, 25], exploiting the multidistance (projection) latitude.

Acknowledgments. We wish to thank Prof. Yair Censor from the Department
of Mathematics and Computer Science, Haifa University, and Prof. Simon Reich from
the Faculty of Mathematics, Technion, for many useful and enlightening discussions.

Appendix A. We wish to demonstrate how the use of multiple distance functions
(multidistance projections) can simplify the projection process. For a more complete
discussion, see [22]. We use for this task an example which appeared recently in
the literature, viz., the example in [12, Section V.A] entitled signal deconvolution.
The task in this example is to deconvolve a signal which is blurred by a linear shift
invariant blur and is modeled by

x = Lh+ u,

where x is the recorded signal, u is additional noise, h is the original signal to be
restored, and L is the blurring operator, e.g., Lh = f ∗ h where f is a Gaussian
function and ∗ denotes convolution. In this work (conceptually), three primary sets
are considered:

C1 = {a ∈ RN | x[n]− δ ≤ (f ∗ a)[n] ≤ x[n] + δ}, ∀n ∈ {1, 2, . . . N},
C2 = {a ∈ RN | angle (A[k]) = angle (H[k])}, ∀k ∈ {1, 2, . . . N},

where the Fourier phase of the original signal h is assumed known, and

C3 = {a ∈ RN | 0 ≤ a[n] ≤ 12}, ∀n ∈ {1, 2, . . . N},

where A[k] = F{a[n]}[k] and angle(A[k]) := A[k]
|A[k]| (assuming A[k] is nonzero). The

projections onto C2, C3 with respect to the Euclidean norm-based distance function
are simple (as the sets are explicit sets, using the terminology of [22]). However, the
projection onto C1 is complicated (as the set is characterized indirectly, through the
outcome of a linear shift invariant operator, i.e., a convolutional function, applied to
its members). Hence, C1 is further decomposed into

C1 =
N⋂
i=1

Si,



544 TUVIA KOTZER, NIR COHEN, AND JOSEPH SHAMIR

where

Si = {a ∈ RN | x[i]− δ ≤ (f ∗ a)[i] ≥ x[i] + δ} .

The projection onto the interval set Si is indeed simple. Hence, instead of performing
the projections onto just three sets C1, C2, C3, we project onto sixty-six sets, i.e.,
C2, C3, S1, S2, . . . S64 (in this case N = 64), which leads to many projections and,
hence, a lengthy procedure.

We now describe how by using a different distance function we are able to perform
the projection onto C1 in a single iteration. Consider the following weighted norm-
based distance function:

d1(a1, a2) = ‖a1 − a2‖W , where ‖a1‖2W =
∑
k

|A[k]|2W [k]

and W [k] = |F [k]|2, where F [k] = F{f [n]}[k]. Also, we have the standard (un-
weighted) Euclidean norm-based distance function de :

de(a1, a2) = ‖a1 − a2‖.

Then, we have that the projection onto C1 with respect to d1 assumes the simple
form (for the full details see [22])

P d1C1
(a) = F−1

{
R′[k]

F [k]

}
,

where R′[k] = F{ρ′[n]}, ρ[n] = (f ∗ a)[n], and ρ′[n] = P de
C1

1
(ρ)[n] (the projection of ρ

onto C1
1 with respect to the usual Euclidean norm-based distance function), where

C1
1 = {ρ ∈ RN | x[n]− δ ≤ ρ[n] ≤ x[n] + δ ∀n ∈ {1, 2, . . . N}

(a simple interval constraint on ρ).
Thus, we can obtain the projection of a onto C1 in one iteration, via a standard

simple projection of ρ onto C1
1 , rather than decomposing C1 into 64 individual sets

and projecting onto each set separately. However, the projection onto C1 is simple
(given by the above) only with respect to d1, not with respect to de. Hence, using our
parallel projection method, only three projections are employed, as opposed to the
method employed in [12] which requires a uniform metric for all projections (e.g., de)
and therefore 66 projections would have to be performed. See also a fully developed
example in [26, Section 3a].

Thus, the liberty of using multiple distance functions reduces the number of pro-
jections and, hence, enhances the efficiency of the special parallel projection method.

Observing the results in Figures 5–10 of [12] (which discusses a uniform met-
ric parallel projection method), it is clear that even the standard, uniform metric,
parallel projection method outperforms the serial projection method, let alone the
multidistance parallel projection method presented here.
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SINGLE MACHINE SCHEDULING TO MINIMIZE BATCH
DELIVERY AND JOB EARLINESS PENALTIES∗
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Abstract. We study a problem in which a set of n jobs has to be batched as well as scheduled
for processing on a single machine. A constant machine set-up time is required before the first job
of each batch is processed. A schedule specifies the sequence of batches, where each batch comprises
a sequence of jobs. The batch delivery time is defined as the completion time of the last job in a
batch. The earliness of a job is defined as the difference between the delivery time of the batch to
which it belongs and the job completion time. The objective is to find a number B of batches and a
schedule so as to minimize the sum of the total weighted job earliness and mean batch delivery time.
The problem is shown to be strongly NP -hard. It remains strongly NP -hard if the set-up time is
zero and B ≤ U for any variable U ≥ 2 or if B ≥ U for any constant U ≥ 2. The problem is proved
to be ordinary NP -hard even if the set-up time is zero and B ≤ 2. For the case B ≤ U , a dynamic
programming algorithm is presented, which is pseudopolynomial for any constant U ≥ 2. Algorithms
with O(n2) running times are derived for the cases when all weights are equal or all processing times
are equal. For the general problem, a family of heuristics is suggested. Computational experiments on
the proposed heuristic algorithm are conducted. The results suggest that the heuristics are effective
in generating near-optimal solutions quickly.

Key words. single machine scheduling, batch scheduling, NP -hardness, dynamic programming,
polynomial algorithms

AMS subject classifications. 68Q25, 90C39
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1. Introduction. Processing jobs in batches is a common practice in flexible
manufacturing. Scheduling models which combine partitioning jobs into batches and
sequencing jobs in each batch have been extensively studied lately. Most of the results
in the batch scheduling area are obtained for the problem of scheduling jobs in batches
on a single machine to minimize the total weighted job completion time. In this
problem, there is a common set-up time between consecutively scheduled batches,
and the completion time of a job is equal to the completion time of its batch, so
all jobs in the same batch are completed at the same time. Albers and Brucker
[1] proved that this problem is NP -hard but polynomially solvable when the job
sequence is predetermined. Polynomial time algorithms have also been presented for
the cases when all job weights are equal (Coffman, Yannakakis, Magazine, and Santos
[8]) all processing times are equal (Albers and Brucker [1]), and both weights and
processing times are equal (Nadeff and Santos [17]; Coffman, Nozari, and Yannakakis
[9]; Shallcross [19]).
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In this paper, we introduce a scheduling problem with batch delivery and job
earliness penalties, which may be stated as follows. There are n jobs to be scheduled
on a single machine. Each job j has an integer processing requirement pj > 0 and a
weight wj ≥ 0, which may be a noninteger. Jobs may be combined to form batches
containing contiguously scheduled jobs. For each batch, a constant machine set-up
time s ≥ 0 is required before the first job of the batch is processed. The machine can
handle only one job at a time and cannot process any jobs while a set-up is performed.
All jobs in the same batch are delivered to the customer together upon the completion
of the last job in the batch.

Given a number B of batches, a schedule specifies the sequence 1, . . . , B of these
batches, where each batch b is a sequence of jobs it contains. Given a number of
batches and a schedule, the completion time Cj of each job j is easily determined. It
is measured from the beginning of the scheduling horizon, i.e., from time zero. We
define the batch b delivery time Db as the completion time of the last job in the batch
and the earliness Ej of job j in batch b as the difference between the delivery time of
batch b and the completion time of job j: Ej = Db − Cj if j ∈ b.

The objective is to find an optimal number B of batches and an optimal schedule
so as to minimize the sum of the total weighted job earliness and mean batch delivery
time:

n∑
j=1

wjEj +
B∑
b=1

Db/B.

This problem is closely related to the single machine scheduling problem to min-
imize the total weighted job earliness plus a batch delivery penalty depending only
on the number of batches:

∑n
j=1 wjEj + γ(B), where γ(B) is a certain nonnegative

function. Cheng and Kahlbacher [7] first showed that the general version of this prob-
lem is ordinary NP -hard, while Cheng, Gordon, and Kovalyov [6] later proved that
it is strongly NP -hard. Polynomial algorithms for special cases when all weights are
equal or all processing times are equal are presented by Cheng and Gordon [5] and
Cheng, Gordon, and Kovalyov [6].

Motivation of our problem comes from the very large-scale integrated circuit man-
ufacturing, which can be divided into four main stages: wafer fabrication, wafer probe,
assembly, and final testing. Scheduling problems arising at the wafer fabrication stage
have been considered by Dayhoff and Atherton [10], Bitran and Tirupati [3], Chen et
al. [4], Glassey and Resende [13], and Wein [20]. Scheduling models which are typical
for the assembly stage have been addressed in Dobson, Karmarkar, and Rummel [11],
Baker [2], and in the papers indicated at the beginning of this section. The problem
of scheduling semiconductor burn-in operations at the final testing stage has been
studied by Lee, Uzsoy and Martin–Vega [16]. The scheduling problem studied in this
paper arises at the assembly stage. In this stage, chips of various types are attached
and placed on a circuit board by a pick-and-place machine. Each circuit board rep-
resents a job; upon completion, it is loaded onto a pallet. Intermittently, pallets are
moved to the soldering machine and then to the test area. A set of circuit boards
loaded on a pallet corresponds to a batch. The time to move a previous pallet and to
install a new one corresponds to a set-up time.

For the assembly stage, an important performance criterion is to minimize the
finished product inventories which are related to the total weighted earliness

∑
wjEj .

For succeeding operations, safety stocks of the product which justify the consideration
of the mean product flow time criterion are important. Since the product flows on
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pallets after assembly, the latter criterion is the mean batch delivery time
∑
Db/B.

Our objective
∑
wjEj +

∑
Db/B is a linear combination of the above two criteria.

By changing values for wj , we can increase or decrease the impact of one of these
criteria on the optimal schedule.

An analysis of our problem shows that the creation of small batches increases the
total batch delivery time while the creation of large batches increases the job earliness
within the batches. If only one of these strategies is applied to solve the problem,
it is unlikely to find a solution with a reasonable objective value. This observation
suggests that the batching decision is essential for our problem. As for the sequencing
decision, we now show that we may restrict our search to schedules in which jobs in
each batch are sequenced in LWPT (longest weighted processing time) order so that
pi1/wi1 ≥ pi2/wi2 ≥ · · · ≥ pik/wik if jobs i1, i2, . . . , ik are sequenced in the batch in
that order.

Lemma 1.1. In any optimal solution, jobs within each batch are sequenced in
LWPT order.

Proof. Consider an optimal solution and assume, without loss of generality, that
jobs i, i + 1, . . . , k are sequenced in a certain batch in that order. Assume that the
statement of the lemma is not satisfied: pj/wj < pj+1/wj+1 for a certain i ≤ j ≤ k−1.
It is easily checked that swapping j and j+1 decreases the total weighted job earliness
by wjpj+1−wj+1pj > 0 and does not affect the batch delivery times. This contradicts
the optimality of the original solution.

Since jobs within each batch must be processed in LWPT order, the problem
reduces to one of finding a number B of batches and a partition of the jobs into these
batches.

The remainder of the paper is organized as follows. In the next section, we prove
that the general problem is strongly NP -hard and that it remains strongly NP -hard
when s = 0 and B ≤ U for a variable U ≥ 2 or B ≥ U for any constant U ≥ 2. We
show that the problem is ordinary NP -hard even if s = 0 and B ≤ 2. A dynamic
programming algorithm is presented for the case when B ≤ U . This algorithm runs
in O(nU2(

∑n
j=1 pj)

U−1) time. In the following section, we derive O(n2) algorithms
for the cases when all weights are equal or all processing times are equal. A heuristic
approach for the general problem is then suggested. Computational results for the
heuristics are also included. The paper concludes with some remarks and suggestions
for further research.

2. NP-hardness proofs and dynamic programming. It is convenient to
adopt the three-field notation of Graham et al. [14] to denote our family of problems.
In the notation 1/β/γ, the first field denotes the single machine environment. The
second field, β ⊂ {∅, B ≤ U,B ≥ U,B = U, s = 0, pj = p}, indicates the batch
constraint and job characteristics. Here, B ≤ U and B ≥ U indicate that the number
of batches is bounded from above or from below, respectively, by a number U ; B =
U denotes that the number of batches is equal to U ; s = 0 denotes a zero set-
up time; pj = p denotes that all processing times are equal to p. The third field,
γ ∈ {

∑
wjEj+

∑
Db/B,w

∑
Ej+

∑
Db/B,

∑
Ej+

∑
Db/B}, refers to the optimality

criterion. Here, w
∑
Ej and

∑
Ej arise when wj = w and wj = 1, respectively, for

j = 1, . . . , n. Our original problem is represented by 1//(
∑
wjEj +

∑
Db/B).

In this section, we prove that the general problem, 1//(
∑
wjEj +

∑
Db/B), is

strongly NP -hard and the problem 1/B ≤ U/(
∑
wjEj +

∑
Db/B) is ordinary NP -

hard for any constant U ≥ 2. The complexities of the problems 1/B ≥ U/(
∑
wjEj +∑

Db/B) and 1/s = 0, B ≤ U/(
∑
wjEj +

∑
Db/B) are easily established using the
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same argument. Then, we present a dynamic programming algorithm for the problem
1/B ≤ U/(

∑
wjEj +

∑
Db/B). We begin with the strong NP -hardness proof.

Theorem 2.1. The problem 1//(
∑
wjEj +

∑
Db/B) is strongly NP -hard.

Proof. We show that the decision version of our problem is strongly NP -complete
by a transformation from the strongly NP -complete problem 3-Partition (Garey
and Johnson, [12]): given positive integers a1, . . . , a3U and A such that A/4 < aj <

A/2 for j = 1, . . . , 3U and
∑3U
j=1 aj = AU , is there a partition of the set X =

{1, . . . , 3U} into U disjoint setsX1, . . . , XU such that for 1 ≤ b ≤ U ,
∑
j∈Xb aj = A?

Define cj = 3Uaj for j = 1, . . . , 3U and C =
∑3U
j=1 cj/U = 3UA. Given any

instance of 3-Partition, we construct an instance of our problem in which the set-
up time

s = 2
∑

1≤i<j≤3U

cicj − C2U2 + C2U + 2CU + (C + 1)(U + 1)

and there are 4U jobs with wj = pj = cj for the partition jobs j = 1, . . . , 3U and
pj = 1, wj = y = (U + 2)s/2 for the enforcer jobs j = 3U + 1, . . . , 4U . We show that
there exists a solution to 3-Partition if and only if there exists a solution to our
problem with a value not exceeding y.

If X can be divided into U disjoint sets X1, . . . , XU such that
∑
j∈Xb aj = A for

b = 1, . . . , U , then we construct a schedule with U batches, where batch b consists of
the partition jobs of the set Xb and one enforcer job scheduled last. Since wj = pj
for j = 1, . . . , 3U , the order of the partition jobs in each batch does not affect the
objective value F , which can be calculated as follows:

F =

4U∑
j=1

wjEj +

U∑
b=1

Db/U,

where

4U∑
j=1

wjEj=
U∑
b=1

 ∑
i<j, i,j∈Xb

cicj +
∑
j∈Xb

cj


=

∑
1≤i<j≤3U

cicj −
∑

1≤b<e≤U

∑
j∈Xb

cj

∑
j∈Xe

cj

+
3U∑
j=1

cj

and

U∑
b=1

Db/U = (U + 1)s/2 +
U∑
b=1

(U + 1− b)

∑
j∈Xb

cj + 1

 /U.

Since

(CU)2 =

 3U∑
j=1

cj

2

=
U∑
b=1

∑
j∈Xb

cj

2

+ 2
∑

1≤b<e≤U

∑
j∈Xb

cj

∑
j∈Xe

cj

 ,

we have

F = (U + 1)s/2 +
∑

1≤i<j≤3U

cicj − C2U2/2(1)
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+
U∑
b=1

∑
j∈Xb

cj

2

/2 + CU +
U∑
b=1

(U + 1− b)

∑
j∈Xb

cj + 1

 /U.

Setting
∑
j∈Xb cj = 3U

∑
j∈Xb aj = 3UA = C for b = 1, . . . , U , we get F = y.

Assume that there is a solution to the problem 1//(
∑
wjEj +

∑
Db/B) with a

value F ≤ y. It is apparent that there cannot be more than U batches, since then
there are at least U+1 set-ups and we have F > (U+2)s/2 = y. If there are less than
U batches, then at least one batch includes at least two enforcer jobs. In this case, at
least one enforcer job is not scheduled last in one of the batches. Since the weight of
each enforcer job is equal to y, we again get F > y. Thus, there are exactly U batches
and each batch includes exactly one enforcer job which is scheduled last. Denote the
set of the partition jobs in batch b by Xb. Then the value F of our solution can be
calculated as shown in (1). By simplifying F ≤ y, we obtain

U∑
b=1

∑
j∈Xb

cj

2

/2 +
U∑
b=1

(U + 1− b)
∑
j∈Xb

cj/U ≤ C2U/2 + C(U + 1)/2.

The latter inequality can be represented as follows:

U∑
b=1

∑
j∈Xb

cj − C

∑
j∈Xb

cj + C

+ 2(U + 1− b)

∑
j∈Xb

cj − C

 /U ≤ 0.

Define δb =
∑
j∈Xb cj − C for b = 1, . . . , U . Clearly,

∑U
b=1 δb = 0. We have∑U

b=1(δ2b + 2(U + 1− b)δb/U) ≤ 0 or, equivalently,

U∑
b=1

(δb + (U + 1− b)/U)2 ≤
U∑
b=1

(U + 1− b)2/U2 ≤ U.

Thus, max1≤b≤U |δb| ≤ U1/2 + 1 ≤ 2U . The latter relations provide

C − 2U ≤
∑
j∈Xb

cj ≤ C + 2U for b = 1, . . . , U.

Substituting 3Uaj for cj and 3UA for C, we deduce that

A− 2/3 ≤
∑
j∈Xb

aj ≤ A+ 2/3 for b = 1, . . . , U.

These inequalities and the integrality of aj yield
∑
j∈Xb aj = A for b = 1, . . . , U ,

as required.
Similar reductions show that the problem 1/B ≥ U/(

∑
wjEj +

∑
Db/B) is

strongly NP -hard if U is a constant and the problems 1/B ≤ U/(
∑
wjEj +

∑
Db/B)

and 1/s = 0, B ≤ U/(
∑
wjEj +

∑
Db/B) are strongly NP -hard if U is a given vari-

able. For the former problem, the only modification of the above proof is that the
(variable) number U of sets in 3-Partition is substituted by B, since B is a variable
number of batches now and U is a constant. For the second problem, the proof is
completely the same. For the third problem with zero set-up time, we should set

y =
∑

1≤i<j≤3U

cicj − C2U2/2 + C2U/2 + CU + (C + 1)(U + 1)/2
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in order to show that B ≥ U . In Theorem 2.1, a nonzero set-up time has been used
to show only that B ≤ U . Therefore, if B ≤ U is given a priori, we can set s = 0 in
our proof.

Theorem 2.2. The problem 1/B ≤ U/(
∑
wjEj+

∑
Db/B) is ordinary NP -hard

for any constant U ≥ 2.
Proof. Our proof is similar to the one in the previous theorem. A transformation

from the NP -complete problem Partition (Garey and Johnson [12]) is used.
Besides the above results, we have also proved that the problem with a zero set-up

time, 1/s = 0, B ≤ U/(
∑
wjEj +

∑
Db/B), is ordinary NP -hard for any constant

U ≥ 2.
It should be noted that all of the above complexity results remain valid if the total

set-up time is included in the objective function instead of the mean batch delivery
time.

We now present a dynamic programming algorithm DP for the problem 1/B ≤
U/(

∑
wjEj +

∑
Db/B). This algorithm is based on Lemma 1.1. Assume that jobs

are numbered in SWPT (shortest weighted processing time) order so that p1/w1 ≤
· · · ≤ pn/wn. In Algorithm DP , jobs are considered in natural order 1, . . . , n. Job j is
either assigned to the beginning of one of the current batches or it starts a new batch.
Thus, jobs within each batch are sequenced in LWPT order. We recursively compute
the value of Fj(P1, . . . , PB), which represents the minimal objective value subject to j
jobs being scheduled in B batches, and the total processing time of the jobs in batch
b is equal to Pb for b = 1, . . . , B. Note that the set-up time is not included in Pb.

Set Tj =
∑j
i=1 pi for j = 1, . . . , n. A formal description of Algorithm DP is as

follows.
Algorithm DP .

Step 1 (Initialization) Number jobs in SWPT order so that p1/w1 ≤ · · · ≤
pn/wn. Set Fj(P1, . . . , PB) =∞ for j = 0, 1, . . . , n, 0 ≤ Pb ≤ Tn, b = 1, . . . , B
and B = 1, . . . , U . Set F0(0) = 0. Set j = 1.

Step 2 (Recursion) Compute the following for all tuples (P1, . . . , PB) such that
pj ≤ Pb ≤ Tj , b = 1, . . . , B,B = 1, . . . ,min{j, U}.

Fj(P1, . . . , PB) = min
1≤b≤B

min(2)


Fj−1(P1, . . . , Pb−1, Pb − pj , Pb+1, . . . , PB)
+wj(Pb − pj) + pj(B − b+ 1)/B if Pb > pj ,
Fj−1(P1, . . . , Pb−1, Pb+1, . . . , PB) + s/2 + pj(B − b+ 1)/B

+(
∑B
k=1,k 6=b(k − 1)Pk −

∑B
k=b+1(B − k + 1)Pk)/(B2 −B) if Pb = pj ,

∞ if Pb < pj .

The three quantities in the right-hand side of equation (2) represent the three
possible scheduling choices for job j with respect to batch b:
1. Add job j to the beginning of the existing batch b.
2. Form a new batch b consisting of the sole job j.
3. Do not assign job j to batch b.
If j = n, go to Step 3; otherwise set j = j + 1 and repeat Step 2.

Step 3 (Optimal solution) Define optimal solution value

F ∗ = min{Fn(P1, . . . , PB)|0 ≤ Pb ≤ Tn, B = 1, . . . , U}

and use backtracking to find the corresponding optimal solution.
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Theorem 2.3. Algorithm DP solves the problem 1/B ≤ U/(
∑
wjEj +

∑
Db/B)

in O(nU2(
∑n
j=1 pj)

U−1) time.
Proof. Due to Lemma 1.1, there is always an optimal schedule with jobs arranged

in LWPT order within each batch. Therefore, at each stage of the algorithm we need
only decide whether to include job j in batch b and, if so, whether batch b is new
or not. It is now easy to apply the general dynamic programming justification for
scheduling problems (Rothkopf, [18]; Lawler and Moore, [15]) to show that DP solves
the problem 1/B ≤ U/(

∑
wjEj +

∑
Db/B). The time complexity of this algorithm

can be established as follows.
In each iteration of Step 2, only B − 1 of the values P1, . . . , PB are independent,

since P1 + · · · + PB = Tj . Hence, in iteration j of Step 2, the number of different
tuples (P1, . . . , PB) for B = 1, . . . , U is at most UTU−1

j . For each tuple (P1, . . . , PB),
the right-hand side of equation (2) can be calculated in O(B) time. Thus, Step 2
requires O(nU2TU−1

n ) time, which is the overall time complexity of Algorithm DP as
well.

Theorem 3 shows that the problem 1/B ≤ U/(
∑
wjEj+

∑
Db/B) is not strongly

NP -hard for any constant U ≥ 2.

3. Polynomially solvable cases. In this section, we present polynomial time
algorithms for two special cases of our problem; namely, all weights are equal and
all processing times are equal. We first show that the problem with equal weights,
1//(w

∑
Ej +

∑
Db/B), can be solved in O(n2) time.

Consider a certain solution to the problem 1//(w
∑
Ej +

∑
Db/B). To facilitate

discussion, we represent it as a pair (U, x), where U is the number of batches, x is a
sequence of the batches 1, 2, . . . , U , and each batch b includes jobs ib1, i

b
2, . . . , i

b
j(b) in

that order. The total earliness of the jobs in batch b can be calculated as follows:

∑
k∈b

Ek = (j(b)− 1)pib
j(b)

+ (j(b)− 2)pib
j(b)−1

+ · · ·+ pib2 =

j(b)∑
k=1

(k − 1)pib
k
.

For all n jobs, we have
∑n
j=1Ej =

∑U
b=1

∑j(b)
k=1(k − 1)pib

k
.

Recall the definition of the total processing time of jobs in batch b: Pb =
∑j(b)
k=1 pibk

.

For the mean batch delivery time, we have

U∑
b=1

Db/U = s(U +1)/2+
U∑
b=1

(U +1− b)Pb/U = s(U +1)/2+
U∑
b=1

j(b)∑
k=1

pib
k
(U +1− b)/U.

Thus, the problem 1//(w
∑
Ej +

∑
Db/B) reduces to one of minimizing s(U +

1)/2 + F (U, x), where

F (U, x) =

U∑
b=1

j(b)∑
k=1

((U + 1− b)/U + w(k − 1))pib
k
.

Let (U∗, x∗) be an optimal solution to this problem and let x(U) be an optimal
solution to the problem of minimizing F (U, x). We have

s(U∗ + 1)/2 + F (U∗, x∗) = min{s(U + 1)/2 + F (U, x(U))|U = 1, . . . , n}.
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Table 1

(U).

b\k 1 2 3 ... n
1 1 1 + w 1 + 2w ... 1 + (n− 1)w
2 (U − 1)/U (U − 1)/U + w (U − 1)/U + 2w ... (U − 1)/U + (n− 1)w
. . . . ... .
. . . . ... .
. . . . ... .

U − 2 3/U 3/U + w 3/U + 2w ... 3/U + (n− 1)w
U − 1 2/U 2/U + w 2/U + 2w ... 2/U + (n− 1)w
U 1/U 1/U + w 1/U + 2w ... 1/U + (n− 1)w

Consider the problem of minimizing F (U, x). In this problem, F (U, x) is a
weighted sum of n number of pj values where the weights are presented in Table
1(U).

In F (U, x), each element in Table 1(U) may be used at most once in order to
satisfy the restriction that each job should be assigned to exactly one batch, and at
least one element from each row of this table should be used in order to satisfy the
restriction that there are exactly U batches. To find an optimal solution x(U), it is
obvious that we have to choose the smallest elements satisfying the above conditions,
i.e., all U elements from the first column and the n − U smallest elements from the
remaining part of the table, and then match the smallest chosen elements with the
largest processing requirements pj . The procedure of choosing the r smallest elements
tUbk = (U+1−b)/U+w(k−1) can be implemented in O(r) time. If pj is matched with
an element tUbk, then job j is sequenced kth in batch b. Thus, x(U) can be found in
O(n) time and (U∗, x∗) can be found in O(n2) time. Therefore, we have the following
theorem.

Theorem 3.1. The problem 1//(w
∑
Ej +

∑
Db/B) is solved in O(n2) time.

We now study the problem with equal processing times, 1/pj = p/(
∑
wjEj +∑

Db/B). For this problem, we first rearrange the jobs such that w1 ≥ w2 ≥ · · · ≥
wn. Assume that there are exactly U batches, B1, B2, . . . , and BU , 1 ≤ U ≤ n.
Because the jobs have the same processing time, there is an optimal solution in which
|Bi| ≤ |Bj | if batch Bi precedes batch Bj . With this observation, we devise the
following algorithm for a fixed U :

Step 1: Assign jobs 1, 2, . . . , and U to batch BU , BU−1, . . . , and B1 as a partial
schedule.

Step 2: Loop for job j over U + 1, U + 2, . . . , and n: For each partial sched-
ule, find the last batch Br satisfying |Br| < |BU |, and then assign job j in
accordance with the following cases.
Case 1. There is no such a batch, i.e., all batches have the same number

of jobs: Assign job j as the first job of batch BU .
Case 2. |Br| = |BU | − 1:

• Enhance the partial schedule by assigning job j as the first job of
batch BU . If j = n, output the schedule as a candidate solution.
• Enhance the partial schedule by assigning job j as the first job of

batch Br. If j = n, output the schedule as a candidate solution.
Case 3. |Br| = |BU | − 2: Assign jobs j, j + 1, . . . , n to batch BU in the

order of non-decreasing weights. Output this schedule as a candidate
solution.

Step 3: Amongst the candidate solutions, output one of those with the mini-
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mum cost.
To establish the correctness of the proposed algorithm, we first consider an impor-

tant property. Let si denote the number of successors of job i in the batch containing
job i. By a simple interchange argument, we readily see that there is an optimal
solution where, for any two jobs i and j, if wi ≥ wj , then si ≤ sj . Assume that
schedule S is an optimal solution satisfying this property. We show that S can be
transformed into a candidate solution delivered by the algorithm without increasing
the costs. Suppose that the partial schedule for jobs 1, 2, . . . , j − 1 in S is the same
as some partial schedule proposed by the algorithm. Now, consider the assignment of
job j. In Case 1, it is evident that job j can be assigned to batch BU to minimize the
delivery penalty. In analyzing Case 2, we know, by the property just stated, that job
j should be in some batch Bp with either |Bp| = |Br| or |Bp| = |BU |. Therefore, if job
j is not in one of the two specified positions, i.e., one in Br and the other in BU , we
can swap the job positions without increasing the costs. As for Case 3, we note that
the first job in batch BU must be job j−1. Suppose that job k, j ≤ k ≤ n, is assigned
to batch Bp, p 6= U . We can assume, without loss of generality, that p = U − 1.
By swapping the positions of jobs j − 1 and k, the cost will not increase. Further-
more, the derived solution has a partial schedule for jobs 1, 2, . . . , and j − 1 that
is the same as a partial schedule proposed by the algorithm. Continuing the above
interchange arguments, we finally obtain a schedule that is the same as a candidate
solution proposed by the algorithm.

Now, we turn to the issue of the time complexity of the algorithm. Because the
branching from a partial schedule terminates when the condition in Case 2 is satisfied,
the total number of candidate solutions is bounded by O(n). By performing a simple
preprocessing step to compute the cumulative job weights, the objective values of all
candidate solutions can be calculated in O(n) time. Noting that there are n possible
values for the variable U , we conclude with the following theorem.

Theorem 3.2. The problem 1/pj = p/(
∑
wjEj +

∑
Db/B) is solved in O(n2)

time.
Theorems 3.1 and 3.2 resolve the computational complexities of all special cases

of our problem in which either all weights or all processing times are equal.

4. Heuristics. In this section, we present a heuristic approach to solving the
general problem 1//(

∑
wjEj +

∑
Db/B).

We first describe a list-scheduling algorithm for the problem with a fixed number
of batches, 1/B = U/(

∑
wjEj +

∑
Db/B).

Let LIST be a sequence of jobs and let RULE be a rule of assigning a job from
LIST to a batch. In a list-scheduling algorithm, jobs are considered in an order
determined by LIST . Each successive job is scheduled according to RULE. We con-
sider LIST ∈ {LWPT, SWPT, SPT, LPT, SW,LW}, where the jobs are numbered
so that

p1/w1 ≥ p2/w2 ≥ · · · ≥ pn/wn in LWPT,
p1/w1 ≤ p2/w2 ≤ · · · ≤ pn/wn in SWPT,

p1 ≥ p2 ≥ · · · ≥ pn in LPT,
p1 ≤ p2 ≤ · · · ≤ pn in SPT,
w1 ≥ w2 ≥ · · · ≥ wn in LW,
w1 ≤ w2 ≤ · · · ≤ wn in SW.

We use two types of RULE: RULE1 and RULE2. According to RULE1, a job
is assigned to the end of the earliest batch b with the minimal total processing time
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Table 2

Computational results for s = 500 and n = 100.

RULE, LIST p′ = 100 p′ = 100 p′ = 10 p′ = 10
w′ = 10 w′ = 1 w′ = 10 w′ = 1

RULE1, LWPT 30399.40 22561.75 17931.31∗ 7210.09
RULE1, SWPT 30194.13 23130.77 18563.15 7536.56
RULE1, LPT 30436.84 22486.16∗ 18000.67 7251.58
RULE1, SPT 30157.10∗ 23021.43 18502.26 7496.78
RULE1, LW 30281.10 23105.58 18487.39 7495.54
RULE1, SW 30311.46 22664.68 18011.39 7251.39
RULE2, LWPT 30399.40 22648.63 17934.77 7204.55∗

RULE2, SWPT 30194.13 23116.94 18557.74 7530.62
RULE2, LPT 30436.84 22641.48 18009.04 7252.37
RULE2, SPT 30157.10∗ 23021.43 18502.26 7489.33
RULE2, LW 30281.10 23089.33 18480.68 7487.63
RULE2, SW 30311.46 22669.87 18011.33 7258.79
EQUAL W AV G 30157.10 22423.06 18009.20 7245.77
EQUAL W MIN 30157.10 21824.43 17611.56 6958.70

Pb =
∑
j∈b pj . According to RULE2, a job is assigned to the end of the earliest

batch b with the minimal total weighted earliness Fb =
∑
j∈b wjEj . Values Pb or

Fb, b = 1, . . . , U , are stored in a heap. The heap can be initiated in O(U logU)
time and updated in O(logU) time. Therefore, our list-scheduling algorithm can be
implemented in O(U logU) time.

We apply the list-scheduling algorithm for all possible combinations of LIST and
RULE. Let LIST (U) be an algorithm which performs all twelve combinations and
chooses the best constructed schedule S(U) with the value F (S(U)) with respect to the
problem 1/B = U/(

∑
wjEj +

∑
Db/B). Our final algorithm H is to apply LIST (U)

for U = 1, . . . , n, and select the best schedule SH with the value

F (SH) = min{F (S(U))|U = 1, . . . , n}.

The complexity of the algorithm H is O(n2 logn).
In the following, we conduct computational experiments to test the proposed

heuristic algorithm. Because of the intractability of the general problem, it is hard to
derive exact solutions. Therefore, we make use of the polynomial algorithm designed
for the equal-weight case in the previous section.

In the experiments, four parameters (namely, set-up time (s), number of jobs (n),
job length (p′), and job weight (w′)), are taken into consideration, and two possible
values for each parameter will be set. There are a total of 16 combinations from

{s = 50 or 500} × {n = 20 or 100} × {p′ = 10 or 100} × {w′ = 1 or 10}.

Note the actual implication of p′ and w′. For a given p′ (w′), all processing times
(weights), pi (wi), are randomly drawn from the uniform distribution [p′ − 0.1p′, p′ +
0.1p′] ([w′− 0.1w′, w′+ 0.1w′]). For example, p′ = 100 means that all the job lengths,
pi, are randomly drawn from the uniform distribution [100 − 10, 100 + 10]. This
indicates a ten percent variation in processing times. Such an assumption is reasonable
in real-world applications because the processing times of jobs on a production line
often exhibit some degree of variation.

The platform of our experiments is a personal computer that contains an Intel
Pentium 75 processor and runs MS-DOS 6.2. All the programs are coded in Turbo
Pascal 6.0. Tables 2–5 display the numerical results. For each parameter combina-
tion, 12 objective values are listed for all possible RULE × LIST pairs. Besides, we
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Table 3

Numerical results for s = 500 and n = 20.

RULE, LIST p′ = 100 p′ = 100 p′ = 10 p′ = 10
w′ = 10 w′ = 1 w′ = 10 w′ = 1

RULE1, LWPT 6304.15 4807.89∗ 3824.19∗ 1671.08
RULE1, SWPT 6259.10 4922.49 3920.09 1715.72
RULE1, LPT 6308.85 4821.18 3853.32 1679.34
RULE1, SPT 6254.40∗ 4907.74 3871.92 1710.37
RULE1, LW 6286.15 4916.87 3906.86 1704.23
RULE1, SW 6278.30 4818.16 3836.68 1681.63
RULE2, LWPT 6304.15 4813.10 3826.13 1668.98∗

RULE2, SWPT 6259.10 4918.23 3920.24 1715.55
RULE2, LPT 6308.85 4834.14 3857.70 1679.16
RULE2, SPT 6254.40∗ 4907.74 3871.92 1700.69
RULE2, LW 6286.15 4910.27 3907.97 1709.12
RULE2, SW 6278.30 4819.40 3836.59 1682.32
EQUAL W AV G 6254.40 4782.91 3837.49 1672.71
EQUAL W MIN 6254.40 4659.33 3749.47 1634.29

Table 4

Numerical results for s = 50 and n = 100.

RULE, LIST p′ = 100 p′ = 100 p′ = 10 p′ = 10
w′ = 10 w′ = 1 w′ = 10 w′ = 1

RULE1, LWPT 7706.68 7609.11 3040.94 2244.61
RULE1, SWPT 7462.55 7374.40 3023.33 2310.07
RULE1, LPT 7742.37 7646.22 3046.20 2240.97∗

RULE1, SPT 7426.82∗ 7337.13∗ 3018.05∗ 2298.52
RULE1, LW 7574.22 7484.05 3033.05 2302.99
RULE1, SW 7587.10 7500.85 3031.20 2251.14
RULE2, LWPT 7706.68 7609.11 3040.94 2250.04
RULE2, SWPT 7462.55 7374.40 3023.33 2307.61
RULE2, LPT 7742.37 7646.22 3046.20 2253.24
RULE2, SPT 7426.82∗ 7337.13∗ 3018.05∗ 2298.52
RULE2, LW 7574.22 7484.05 3033.05 2302.79
RULE2, SW 7587.10 7500.85 3031.20 2253.51
EQUAL W AV G 7426.82 7337.13 3018.05 2230.09
EQUAL W MIN 7426.82 7337.13 3018.05 2169.22

Table 5

Numerical results for s = 50 and n = 20.

RULE, LIST p′ = 100 p′ = 100 p′ = 10 p′ = 10
w′ = 10 w′ = 1 w′ = 10 w′ = 1

RULE1, LWPT 1610.45 1569.60 630.01 473.78∗

RULE1, SWPT 1571.05 1544.70 626.09 487.67
RULE1, LPT 1619.95 1583.55 630.77 477.60
RULE1, SPT 1561.55∗ 1530.75∗ 625.34∗ 486.05
RULE1, LW 1594.45 1562.35 628.27 486.21
RULE1, SW 1589.95 1550.20 627.94 478.25
RULE2, LWPT 1610.45 1569.60 630.01 476.33
RULE2, SWPT 1571.05 1544.70 626.09 487.09
RULE2, LPT 1619.95 1583.55 630.77 475.46
RULE2, SPT 1561.55∗ 1530.75∗ 625.34∗ 486.05
RULE2, LW 1594.45 1562.35 628.27 487.23
RULE2, SW 1589.95 1550.20 627.94 478.58
EQUAL W AV G 1561.55 1530.75 625.34 472.97
EQUAL W MIN 1561.55 1530.75 625.34 463.17
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have two values that are categorized as EQUAL W AVG and EQUAL W MIN. The
EQUAL W AVG and EQUAL W MIN values are obtained by applying the O(n2)
algorithm for w =

∑n
i=1 wi and w = minni=1{wi}, respectively. For each column

of the table, the entries with an asterisk denote the objective value output by the
heuristic algorithm, H.

It is not hard to see that the EQUAL W MIN values serve as lower bounds for
H values. An analysis of Tables 2–5 shows that the results delivered by algorithm
H are quite close to that delivered by the polynomial algorithm. The largest relative
percentage deviation between H and EQUAL W MIN occurs when n = 100, s =
500, p′ = 10, and w′ = 10, and the value is around 3.61 percent, which is much smaller
than the assumed 10 percent deviation among the data instances. In other words,
the effectiveness of algorithm H in producing near-optimal solutions is convincingly
evident. Detailed observations further show some interesting properties:

1. When the set-up time, s, is relatively small, the impact of the weight, wi, is
alleviated. In Tables 4 and 5, the cases in which EQUAL W AVG = EQUAL W MIN
indicate that all batches contain exactly one job and that the effect of the weights is
null.

2. For most of the data instances (or columns), the minimal objective values for
H occur when using RULE1.

3. For a specific list-scheduling policy, the difference between the objective values
for RULE1 and RULE2 is small.

Finally, the above numerical results show no preference to any specific list-schedul-
ing policy. Therefore, we do not expect to obtain satisfactory solutions by simply
applying a specific combination of RULE×LIST . Another supporting argument for
employing algorithm H is that the running sessions take less than three seconds.

5. Conclusions. The problems 1//(
∑
wjEj +

∑
Db/B), 1/B ≥ U/(

∑
wjEj +∑

Db/B), 1/B ≤ U/(
∑
wjEj +

∑
Db/B), and 1/s = 0, B ≤ U/(

∑
wjEj +

∑
Db/B)

have been shown to be strongly NP -hard. The problems 1/B ≤ 2/(
∑
wjEj +∑

Db/B) and 1/s = 0, B ≤ 2/(
∑
wjEj +

∑
Db/B) have been proved to be ordi-

nary NP -hard. Algorithms with O(n2) running times have been derived for the cases
when all weights are equal or all processing times are equal. Thus, the computational
complexities of all special cases of the problem in which all weights or all processing
times are equal have been resolved. A dynamic programming algorithm has been
presented for the case with a limited number of batches. A heuristic approach has
been suggested for the general problem. The numerical results reveal the practical
significance of this algorithm in producing near-optimal solutions quickly.

An interesting problem for further research is one for which there is a natural
restriction that each batch can include no more than a given number of jobs. The
complexity aspects of this problem are yet to be studied. However, our dynamic
programming algorithm DP and heuristic algorithm H can easily be modified to
solve this problem. These algorithms can also be adopted for the problem in which,
besides the job weights, the batch weights are given and the total weighted batch
delivery time is included in the objective function.

Acknowledgments. The authors wish to thank the referees for their construc-
tive comments and helpful discussions of the presented model.
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Abstract. A class of production–distribution planning problems with nonstochastic uncertain
demands is modeled as a dynamic game between two players who control flows on a network with
node and arc capacity constraints. Simple conditions are derived for determining which player wins
the game. These conditions are then used to design a minimum cost network with the property
that its feasible control strategies are allowed to meet the demand without violating the capacity
constraints.
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1. Introduction. Many important problems concerning production, transporta-
tion, and distribution of goods can be addressed by network models in which nodes
represent storage capabilities and arcs represent production units or transportation
links. Basically, such problems consist in determining a strategy to decide arc flows in
order to ship the commodity from some nodes to other nodes of the network in order
to satisfy a certain demand. The literature on this subject is very extensive and we
refer the reader to several textbooks (among the most recent ones, see, for instance,
[1], [6], [12], [19], [20], and [28]).

In particular, dynamic network problems have received great attention. In this
case, flow values, storage levels, and demands are time-varying quantities. A typical
problem concerning this kind of model consists of planning the commodity flow and
storage at each time in order to minimize transportation and stocking costs. For
an extensive survey of these topics, see [2]. If the demand is known in the assigned
time horizon, the dynamic flow problem can be handled via the well-known time-
expanded network method (see, again, [2] and [31]). Unfortunately, the demand is
often unknown and this fact has led to the use of stochastic methods (see, for instance,
[5], [30]) to handle problems of this kind. However, the stochastic approach to the
control of dynamic networks requires stochastic information which can be unavailable
in some cases.

In this paper, uncertainties are modeled in a different way. Production and de-
mand are assumed to have a known range of allowed values, but no knowledge is
given on which allowed values will actually be taken. These unknown-but-bounded
specifications for uncertainties are quite realistic in several situations. In general,
upper and lower bounds for production and demand can be inferred from historical
data or decision makers’ experience much more easily and with much more confidence
than empirical probability distributions for the same quantities. Sometimes, they are
a consequence of a particular operational condition or a technological characteristic
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of production units. In other cases, these bounds are explicitly stipulated in supply
contracts. On the basis of this information, the problem is to find a flow assignment
strategy capable of meeting any allowed demand without incurring capacity and stor-
age constraint violations.

This problem can be formulated as a dynamic game between two players control-
ling flows on different arcs of a network. The first player represents the manager of
the system, who has the responsibility of complying with the supply, demand, and
system capacities. He is referred to as the controller. The second player represents the
demand and is referred to as such. Each of them has to decide, at each time instant,
the flow values on each of the arcs he controls (two parallel arcs are allowed between
each pair of nodes, each controlled by a different player). The goal of the first player
is to keep the stored amount of the commodity in the admissible range, assigning time
by time an admissible flow to each of his arcs, while his opponent has the malefic role
of pushing the system to a constraint violation. The first player starts the game. This
implies that, at each time, he has to decide his move without knowledge of the actual
choice of his opponent.

For this situation, two problems will be considered. The first is that of giving
a yes or no answer to the following question: does there exist a winning strategy
for the first player with assigned arc and storage capacity constraints? The solution
of this problem can be given following the approach proposed in [4], [7], [9], and
[13]. However, due to the particular system structure, the solution can be strongly
simplified in this case. Moreover, it will be shown that a winning strategy requires
solving an admissible flow problem on-line.

The second problem is a network design problem. Assume that the capacities
of the demand arcs are given. Then the problem is that of determining a minimum
cost network, that is, storage bounds and capacities for the controlled arcs, under
the condition that a winning strategy for the first player does exist. It will be shown
that this problem can be split into two independent subproblems, one consisting of
the minimization of the storage capacity cost, the other of the minimization of the
transportation capacity cost for the controlled arcs. While the former problem is easy
to solve, the latter one turns out to be NP-hard. However, it will be shown that,
although it can be formulated as a linear programming problem involving a number
of constraints which is exponential in the size of the network, this number can be
dramatically reduced a priori if the controlled network is weakly connected; i.e., the
difference between the number of arcs and the number of nodes of the graph is low.

The structure of the paper is as follows. In section 2, the two problems of interest
are formulated and discussed. The first of them is solved in section 3, and the second
is solved in section 5. The integer version of the latter problem is studied in section 6,
and an approximate solution method for it is proposed in section 7. Section 4 contains
some complexity results about the considered problems and section 8 presents an
illustrative example. Some concluding remarks are pointed out in section 9.

Literature review. To the best of the authors’ knowledge, the two problems ad-
dressed in this paper have never been considered before in the literature. In particular,
the way uncertainty is modeled appears to be original in the dynamic network envi-
ronment.

In the more general framework of the dynamic systems, the nonstochastic model
of uncertainty adopted here traces back to 1971 with the concept of “set constrained
disturbances,” which was developed in the seminal papers by Bertsekas and Rhodes
[7] and by Glover and Schweppe [13]. Further results in this more general area have
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been derived by Morris and Brown in 1976 [27], Gutman and Cwikel in 1986 [17],
Keerthi and Gilbert in 1987 [21], and, more recently, Blanchini and Ukovich in 1993
[8].

Besides this peculiar way of tackling uncertainty, another basic ingredient of this
paper are dynamic networks, that is, networks in which flows evolve with time. As
has been pointed out, the usual approach to dynamic network problems is by the so-
called time-expanded models [2]. Besides the fact of being rather cumbersome since
they require to duplicate the network of interest as many times as the time horizon
of the problem, time-expanded models are not suitable to tackle uncertainties such
as they are considered in this paper. Instead, the approach adopted here stems from
the concept of “target tube,” introduced for set constrained disturbances in the same
papers by Bertsekas and Rhodes and by Glover and Schweppe. Such a method, which
is amenable to basic concepts of dynamic programming (see, for instance, [5] again),
has been used in [9] for a problem similar to the first one of this paper, in which the
demand pattern evolves periodically through time but in a deterministic way. In this
sense, the first problem of this paper can be considered as an extension of the problem
considered in [9] to the case of unknown demand but with no periodic evolution.

The second problem of this paper (that is, the design problem) belongs to the
large class of the network design problems, which are widely studied in the literature.
For an extensive review, see [23]. The problem considered here is original as is the
approach proposed for it, which relies on the results derived for the first problem.

Practical applications. The practical interest for production–distribution systems
does not need to be emphasized: the relevant literature is very large and well docu-
mented (see, for example, [14]). Incidentally, it is worth noticing that our approach,
considering feedback control strategies, complies with the Just–In–Time philosophy
in production management systems (see, for instance, [16], [18]). Indeed, production-
replenishment orders are issued on the basis of available buffer/inventory levels.

It could be appropriate to briefly mention some examples of practical situations
in which our model, and in particular the way we consider demand uncertainty, could
be conveniently applied.

An interesting example of a possible practical application of the network design
problem we study in this paper is in negotiations with suppliers [34]. Consider the
case of a supply contract for the repeated delivery, on a long time horizon, of a
given quantity of a certain commodity. Each time, part of the demanded quantity is
requested at a certain delivery point and the rest at a different location. The splitting
ratio is unpredictable, so the supplier must always be ready to face any demand shared
between the two locations.

Clearly, such a condition requires some degree of flexibility for the supply sys-
tem. That is, appropriate stocks should be maintained at the delivery points, extra
total production capacity possibly should be provided (especially if production is per-
formed in situ at the delivery points), and, finally, the possibility of transshipments
of endproducts between the delivery points should be contemplated. Clearly, such
conditions all imply costs.

Now the question is how much to charge for such a costly flexibility in the supply
contract. In particular: can costs related to stock capacities be traded off with costs
related to production or transportation capacities? Does there exist a particular
distribution of the demand such that if capacities are provided to meet it, could any
other feasible demand split also be faced? Or would it be wiser to be ready to face
either of the two situations in which the whole demand concentrates on just one
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delivery point? A situation of this kind will be addressed in section 8.
Another possible practical application of the same model is to assess the cost of

the flexibility necessary to guarantee that lost sales are never incurred [34].
From the point of view of practical applications, it is also worth pointing out that

the demand model we adopt is convenient for dealing with product competition [26]
or product substitution phenomena: they easily can be dealt with by demand arcs
connecting the nodes associated with the competing products.

A quite different practical application of our models refers to human resource
management problems (see, for instance, [24]) and deals with formulating a sequen-
tial plan for allocating personnel to jobs and roles. In this case, job positions are
represented by nodes with given capacity limits. The uncontrolled arcs model the
autonomous evolution of a workforce (automatic promotions, retirements, change of
site, etc.), which may be unpredictable to some extent. Controlled arcs represent
personnel acquisition, development, and allocation activities. The problem consists
of determining bounds on personnel management activities that allow compensation
of the actual autonomous evolution of workforce availability.

2. Model and problem statement. Let G = (N,E) be an oriented multi-
graph, where the nodes of N represent warehouses in which a certain commodity can
be stored, and the arcs of E represent transportation links through which the com-
modity can be moved. The amount of commodity present in the ith node of N at the
time t is denoted by xi(t) and the corresponding vector x(t) is assumed to satisfy the
constraint

x ∈ X =

{
x ∈ <n : x− ≤ x ≤ x+,

n∑
i=1

xi = 0

}
,(1)

where x− and x+ are given vectors of <n. The reason why it is assumed that the sum
of all the components of x is 0 is that by possibly including the external environment
in the model by adding an auxiliary node and proper arcs between this node and the
original nodes of the network, the system can always be supposed to be isolated. This
means that the global amount of the commodity present in the system is constant
through time and, without restriction, this quantity may be assumed to be zero.

In this setting, a game between two players P and Q is considered. The set E
is partitioned into two subsets EP and EQ in such a way that at each time, player
P decides the flows u(t) of the arcs of EP and player Q decides the flows d(t) of the
arcs of EQ. Two parallel arcs between each pair of nodes are allowed; each one is
controlled by a different player. The flows u(t) and d(t) have to satisfy the following
constraints:

u(t) ∈ U = {u ∈ <p : u− ≤ u ≤ u+},(2)

d(t) ∈ D = {d ∈ <q : d− ≤ d ≤ d+},(3)

where p = |EP |, q = |EQ|, and u−, u+ ∈ <p, d−, d+ ∈ <q are assigned vectors. The
information about X, U , and D is known to each player.

The discrete-time dynamic model that describes the evolution of the system is

x(t+ 1) = x(t)− Pu(t)−Qd(t),(4)

where P and Q are, respectively, the incidence matrices of the subgraphs GP =
(N,EP) and GQ = (N,EQ) (that is, the (i, e) element of P and Q is +1 if the arc e
leaves node i and −1 if arc e enters node i and 0 otherwise).
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The following dynamic game is considered. For a certain initial distribution x(0)
of the commodity within the nodes at time t = 0, player P chooses a flow u(0)
according to (2) in the arcs of EP and player Q chooses a flow d(0) in the arcs of
EQ according to (3). These moves produce a new distribution x(1) of the commodity
according to (4). Then the two players choose new flows u(1) and d(1) in their feasible
ranges in order to produce x(2) and so on. The aim of player P is to assure that x(t)
is always feasible with respect to the constraints (1), while the effort of player Q is to
drive x(t) out of X.

The first problem considered in this paper is that of finding a winning feedback
strategy for player P, that is, a function Φ : X×N → U of the form Φ(x(t), t) = u(t)
which guarantees him to win the game.

Problem A. Given constraints (1), (2), and (3), determine (if it exists) a function
Φ : X × N → U and an initial condition set X0 ⊆ X such that for all x(0) ∈ X0

and for all d(t) ∈ D, t ≥ 0, the sequences x(t) and u(t) produced by (4) when u(t) =
Φ(x(t), t) are always feasible, in the sense that u(t) ∈ U and x(t) ∈ X.

A set X0 ⊆ X and a function Φ that solve Problem A will be said to be feasible
initial condition set and feasible (or winning) strategy, respectively. The assumption
that the strategy Φ does not depend on d is equivalent to the fact that, at each time,
Q moves after P. In other words, we are considering the “control plays first” game
in [7].

One easily realizes that a winning strategy for player P does exist if, roughly
speaking, the warehouses are sufficiently large and the constraints for U are not too
tight. Since in practice the boxes U and X are associated to arc capacity and ware-
house size, making them large enough implies a cost. This leads to a design problem
which aims at finding a minimum cost network for which a winning strategy for player
P does exist. The decision variables of such a problem are in a natural way the lower
and upper bounds x−, x+, u−, u+ that define the sets X and U in (1) and (2), re-
spectively. We assume that the construction costs of the production/transportation
lines are mutually independent functions. Moreover, in order to include in the model
possible feasibility constraints, we consider lower and upper bounds on each variable.
The design problem we consider can then be stated in the following form.

Problem B. Given an oriented multigraph G = (N,E) and a partition E = EP ∪
EQ of the arc set E, let x−L , x

−
U , x

+
L , x

+
U ∈ <n, u−L , u

−
U , u

+
L , u

+
U ∈ <p, and d−, d+ ∈ <q

be assigned vectors. Consider a cost function for the network GP = (N,EP) of the
form

J(x−, x+, u−, u+) = J1(x−, x+) + J2(u−, u+),(5)

where J1 and J2 are linear cost functions not decreasing in each component of −x−, x+

and −u−, u+, respectively.
Minimize J(x−, x+, u−, u+) under the condition that
(i) Problem A has a solution;
(ii) the constraints

x−L ≤ x− ≤ x
−
U , x+

L ≤ x+ ≤ x+
U , x+ − x− ≥ 0,(6)

u−L ≤ u− ≤ u
−
U , u+

L ≤ u+ ≤ u+
U , u+ − u− ≥ 0(7)

are satisfied.
Assuming that the cost functions J1 and J2 are nondecreasing with respect to the

components of −x−, x+ and −u−, u+ is a reasonable assumption since warehouses or
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production units with larger capacity usually imply larger costs. Note that whereas
Problem B is an optimization problem involving design costs associated to arc and
node capacities, Problem A is formulated as a mere feasibility problem, since it just
requires that conditions (1) and (2) are always satisfied, without considering opera-
tional costs associated to control strategies. In fact, in section 3 a solution X0 for
Problem A will be provided which is optimal in the sense that it contains all the
initial conditions in X for which a winning strategy for Player P exists (see Theo-
rem 3.1). Moreover, the solution provided for Problem A easily can be exploited to
find a strategy that on-line optimizes operational costs.

Problem B has a particular structure. With respect to the objective function and
constraints (6) and (7), the problem is separable in the x± and u± variables. However,
condition (i) does not show such a property. A basic result of this paper shows that
Problem B actually can be split into two independent problems, one concerning the
arc capacity and one concerning the storage capacity.

3. Solution of Problem A. In this section the conditions are investigated for
the existence of a strategy for player P which assures him to keep the system within
its constraints on an infinite horizon. To this aim the same approach is used as in
[7], [8], [9], and [13], where the more general case of linear discrete-time systems with
control and state constraints is considered.

Given two sets X,S ⊆ <n, the erosion of X with respect to S is defined as

XS = { x ∈ <n : x+ s ∈ X ∀s ∈ S };(8)

the opposite of X is defined as −X = { x ∈ <n : x = −y for some y ∈ X } and
the sum is defined as X + S = { z ∈ <n : z = x + s for some x ∈ X, s ∈ S}.
Moreover, a set of the form {y ∈ <n : y− ≤ y ≤ y+} for assigned y−, y+ ∈ <n is said
to be a box.

The following theorem provides necessary and sufficient conditions for the exis-
tence of a winning strategy for Player P. These conditions require (i) the existence
of feasible states that cannot be driven out of X by the disturbance in one step and
(ii) that each move of the disturbance can be counteracted by a move of player P.
Moreover, the theorem provides the description of the set of all the initial conditions
for which a winning strategy for Player P exists.

Theorem 3.1. Problem A has a solution if and only if the following two condi-
tions are satisfied:

X−QD 6= ∅,(9)

−QD ⊆ PU.(10)

Moreover, the set of all the initial conditions for which the game is favorable to player
P is given by

X0 = (X−QD + PU) ∩X,(11)

and any function Φ(x, t) such that

Φ(x, t) ∈ U,(12)

and

x− PΦ(x, t) ∈ X−QD for all x ∈ X0, t ≥ 0(13)
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is a strategy that solves Problem A.
Proof. The necessity of condition (9) follows by noticing that if X−QD is empty,

then for each x ∈ <n there exists d ∈ D such that x − Qd /∈ X. In particular, for
each x ∈ X and u ∈ U , x − Pu − Qd /∈ X for a suitable d ∈ D. The necessity of
condition (10) is also easy to prove. Indeed, let d∗ ∈ D such that −Qd∗ /∈ PU . Since
PU is a closed convex subset of <n, by the separation theorem (see [33]) there exists a
hyperplane in <n that strongly separates PU from −Qd∗; that is, there exist z ∈ <n
and ε > 0 such that −zQd∗ ≥ zPu+ ε for every u ∈ U . Then, if x0 ∈ X and we chose
d(t) = d∗ for every t ≥ 0, from (4) we obtain

x(t) = x0 −
t−1∑
i=0

(Pu(i) +Qd∗)

for each possible sequence {u(i)}t−1
i=0 such that u(i) ∈ U for all i, and thus

zx(t) = zx0 −
t−1∑
i=0

z(Pu(i) +Qd∗) ≥ zx0 + εt.

Since X is bounded, x(t) /∈ X for t sufficiently large.
Conditions (9) and (10) are also sufficient. First, they imply that the set X0

defined in (11) is not empty. Indeed, by (9), there exists x0 ∈ X−QD and, for each
d ∈ D, x0 − Qd ∈ X0 since x0 − Qd ∈ X−QD + PU by (10) and x0 − Qd ∈ X by
(8). Now, for each x(0) ∈ X0, there exists u(0) ∈ U such that x(0)−Pu(0) ∈ X−QD,
which implies x(1) = x(0) − Pu(0) − Qd(0) ∈ X for every d(0) ∈ D. By (10), for
each d(0) ∈ D, there exists u ∈ U such that Pu = −Qd(0). Therefore x(1) ∈ X0,
too. By reproducing the same argument for x(1), it may be shown that x0, and thus
all the points in X0, define initial conditions that solve Problem A. The set X0 is
the maximal subset of X with respect to this property since, for every x ∈ X \ X0,
x − Pu /∈ X−QD for every u ∈ U . The last statement of Theorem 3.1 follows in an
obvious way.

Note that the previous result holds in general for every system of the form (4)
if U and D are closed convex sets and P and Q are real matrices. However, all the
results which follow are consequences of the particular structure of the sets U and D,
which are boxes, and of the fact that P and Q are incidence matrices. Note also that
for the sake of generality, time-varying strategies Φ(x, t) have been considered, but
from the conditions (12) and (13), it follows that if Problem A has a solution, then a
time invariant strategy Φ(x) always exists. This function Φ does not have an explicit
expression but is defined in an implicit way as a function which associates to x any
one of the elements of the set

U(x) = {u ∈ U : −Pu ∈ Y (x)}(14)

where

Y (x)
.
= {−x}+X−QD.

Since, as will be shown in Lemma 3.5, the set Y (x) is the intersection of a box with
the hyperplane

∑n
i=1 xi = 0, it turns out that the problem of determining an element

in U(x) reduces to a feasible flow problem in the graph GP . If an operational cost
on the flow u is introduced, one has just to cope with a minimum cost flow problem,
which has to be solved on-line and for which efficient algorithms exist.
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We point out that the conditions for the existence of a winning strategy for player
P have a fundamental separation property as they are given by two separate conditions
(9) and (10), concerning the buffer capacities and the sets QD and PU . Moreover, it
turns out that the complexity of the strategy which solves the problem is an instance-
independent function of n and p, known a priori, and it requires algorithms whose
complexity is polynomial in n and p.

Remark 3.2. A singular property of these results is that they hold only for our
infinite-horizon game while they do not hold in general for the finite-horizon game.
In other words, suppose we have the problem of finding a strategy which meets the
constraints over an assigned horizon 0, 1, . . . ,K. Then, according to [7], we have to
construct a sequence of “feasibility sets” called the target tube. It turns out that these
sets are not boxes in general, even for the network case, and that the conditions for the
existence of a finite-horizon winning strategy do not have the separation property of
the infinite-horizon corresponding ones. Roughly speaking, the finite-horizon problem
is much more difficult than the infinite-horizon one. This is an unusual situation in
dynamic game theory (see, for instance, [3], [4]), where the infinite-horizon solution
is usually derived as the limit for K →∞ of the finite-horizon one.

Remark 3.3. There is another version of the game in which player Q starts the
game. In this case it is admitted that at each time instant, the controller knows the
level of the demand before making his decision. This assumption may be reasonable
in some cases. It easily can be proved that in this case the feasible initial condition
set is X0 = X, and Theorem 3.1 simply has to be modified by replacing condition (9)
with the condition that X is not empty. This version of the game can be handled in
a similar way as the original game, and it will not be further mentioned.

Theorem 3.1 says that in order to give a yes or no answer to the question “does
a strategy exist that solves Problem A,” one has just to check if the set X−QD is not
empty and if inclusion (10) holds. These conditions also have to be satisfied by every
solution of Problem B, so the next task will be that of expressing them in terms of
a minimal set of linear constraints in the variables u± and x± in order to reduce as
much as possible the complexity of Problems A and B.

As will be seen, checking if X−QD is not empty requires verifying whether or not
a box intersects a hyperplane and this task can be easily accomplished. On the other
hand, condition (10) requires checking the inclusion of the two polyhedra −QD and
PU . As will be explained in section 4, this problem is in fact an NP-hard problem,
despite the particular structure of the polyhedra involved. Nevertheless, the structure
of these sets allows us to rephrase condition (10) in a form which is convenient to solve
Problems A and B. The complexity of this solution method consistently lessens when
the controlled network has not too many arcs. These results rely on the particular
structure of the sets PU and QD. To present them, we first introduce some notations.

Let G = (N,E) be a directed graph with |N | = n and |E| = m. For each subset
S of N and for each vector x ∈ <n, x(S) =

∑
i∈S xi is the sum of the components

associated to all the nodes in S. We denote by δ(S) the cut corresponding to S, that
is, the subset of E whose arcs have one extremity in S and the other one in N \ S.
Evidently, δ(S) = δ(N \S). Let δ+(S) (δ−(S)) denote the set of arcs in E having the
initial (terminal) node in S and the terminal (initial) node inN\S. For a vector u ∈ <p
and an arc set F ⊆ E, let u(F ) =

∑
e∈F ue. When a flow capacity interval [u−e , u

+
e ]

is assigned to each arc of E, we call the quantity c(S) = u+(δ+(S))− u−(δ−(S)) the
capacity of the cut δ(S). It represents the maximum amount of positive flow that can
pass from S to N \ S, given the assigned arc capacity constraints.
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If we denote by δP(S) and δQ(S) the cuts defined by a subset S of N in the
graphs GP = (N,EP) and GQ = (N,EQ), respectively, then the vectors ξ, η, θ
∈ <2n−2 defined by

ξS = u+(δ+P (S))− u−(δ−P (S)),(15)

ηS = d+(δ+Q(S))− d−(δ−Q(S)),(16)

θS = d+(δ−Q(S))− d−(δ+Q(S))(17)

for each proper subset S of N have components ξS and ηS that represent the capacities
of δP(S) and δQ(S), respectively. Moreover, θS = ηN\S . Now, by the Gale–Hoffman
theorem (see, for instance, [32]), it holds that

PU = {x ∈ <n : x(S) ≤ ξS ∀S ⊂ N, x(N) = 0},(18)

QD = {x ∈ <n : x(S) ≤ ηS ∀S ⊂ N, x(N) = 0},(19)

and −QD = {x ∈ <n : x(S) ≤ θS ∀S ⊂ N, x(N) = 0}.(20)

The sets PU , QD, and X are all zero-base polyhedra. This means that they have the
form

B(f) = {x ∈ <n : x(S) ≤ f(S) ∀S ⊂ N, x(N) = 0},(21)

where f : 2N → < is a submodular function, that is, a function which satisfies the
condition

f(S ∪ T ) + f(S ∩ T ) ≤ f(S) + f(T ) ∀S, T ⊆ N.(22)

We also assume that f(∅) = 0 for every submodular function f .
The next proposition collects some properties of zero-base polyhedra that are

used in the following.
Proposition 3.4. Let f, g be two submodular functions and B(f), B(g) be the

corresponding zero-base polyhedra. Then the following properties hold:
(i) for each S ⊆ N , the inequality x(S) ≤ f(S) is tight in the sense that

maxx∈B(f) x(S) = f(S) (this also implies minx∈B(f) x(S) = −f(N \ S));
(ii) if f is an integer valued function, then the vertices of B(f) are integer vectors ;
(iii) f + g is a submodular function and B(f) +B(g) = B(f + g);
(iv) for each box X, B(f)∩X is a zero-base polyhedron and it has integer vertices

if both X and B(f) are integer polyhedra.
Proof. See [10] and [11].
In the next lemma a description of the set X−QD is given.
Lemma 3.5. The set X−QD has the form

X−QD = {x ∈ <n : x−i +θN\{i} ≤ xi ≤ x+
i −θ{i}, i = 1, 2, ..., n, x(N) = 0}.(23)

Such a set is not empty if and only if the following conditions are satisfied:

x−i + θN\{i} ≤ x+
i − θ{i} i = 1, 2, . . . , n,(24)

n∑
i=1

(x−i + θN\{i}) ≤ 0 ≤
n∑
i=1

(x+
i − θ{i}).(25)
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Proof. By (1), X = X∗ ∩ π where X∗ is the box defined by vectors x−, x+

and π = {x ∈ <n : x(N) = 0}. It is easy to verify that since −QD ⊆ π, X−QD =
X∗−QD ∩ π. Now

X∗−QD = {x ∈ <n : x−Qd ∈ X∗ ∀ d ∈ D},
= {x ∈ <n : x− +Qd ≤ x ≤ x+ +Qd ∀ d ∈ D},
= {x ∈ <n : x−i + max

d∈D
(Qd)i ≤ xi ≤ x+

i + min
d∈D

(Qd)i, 1 ≤ i ≤ n},

= {x ∈ <n : x−i + η{i} ≤ xi ≤ x+
i − ηN\{i}, 1 ≤ i ≤ n},

= {x ∈ <n : x−i + θN\{i} ≤ xi ≤ x+
i − θ{i}, 1 ≤ i ≤ n},

and thus X−QD has the form (23). It is immediate to see that X∗−QD ∩ π 6= ∅ implies
conditions (24) and (25). Sufficiency follows by noticing that if (25) is satisfied, then
minx∈X∗−QD x(N) ≤ 0 ≤ maxx∈X∗−QD x(N), and thus there exists x ∈ X∗−QD such that

x(N) = 0.
Note that since the set function h defined by h(S) =

∑
i∈S(x+

i − θ{i}) ∀S ⊂ N ,
h(N) = 0 is a submodular function and, as easily follows from (23), X−QD = B(h),
then X−QD is a zero-base polyhedron, too.

The next result specifies condition (10).
Lemma 3.6. The condition −QD ⊆ PU holds if and only if

θS ≤ ξS ∀ S ⊂ N.(26)

Proof. Sufficiency follows immediately from (18) and (20). To prove necessity, we
just have to consider point (i) of Proposition 3.4, according to which each inequality
in (18) and (20) is tight.

4. Complexity of Problems A and B. By Theorem 3.1 and Lemmas 3.5
and 3.6, in order to prove the existence of a solution for Problem A, one needs to
check conditions (24) and (25) (which assure that the set X−QD is not empty) and
conditions (26) (which guarantee that each element of the form −Qd, d ∈ D is also
an element of PU). The first part requires, besides elementary operations, evaluating
the function θ in the 2n sets of the form {i} and N \ {i} for each 1 ≤ i ≤ |N |.
On the other hand, despite the very simple form of conditions (26), it turns out that
verifying if −QD ⊆ PU requires checking as many as 2n − 2 constraints. One could
hope that, in view of the fact that the functions ξ and θ are in fact defined in terms
of the vectors u−, u+ ∈ Rp and d−, d+ ∈ Rq, respectively, and thus have a polynomial
representation with respect to the dimension of the problem, their comparison might
be accomplished in polynomial time. Unfortunately, this is not the case. McCormick
has indeed proved in [25] the following results.

Theorem 4.1. Let G = (N,E) be a complete directed graph (that is, (i, j) ∈ E
for each i, j ∈ N). Given two nonnegative functions ui : E → <, i = 1, 2, consider the
cut capacity functions f and g defined by u1 and u2, respectively. Then it is strongly
NP-complete to decide if B(f) ⊆ B(g) (network submodular containment problem).

The condition (10) for Problem A corresponds to the network submodular con-
tainment problem (NSCP), and thus Problem A is NP-complete, too. Its com-
plexity strongly affects the complexity of Problem B, since inequalities (26) also
appear as constraints in the formulation of the design problem. In fact, the arc-
related subproblems of Problems A and B correspond to the strong membership prob-
lem and the strong optimization problem, respectively, for the polyhedron given by
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{(u−, u+) : θS ≤ ξS(u−, u+) for all S ⊂ N}, where θ is an assigned cut capacity func-
tion. Then, by the previous result and Theorem 6.4.9 in [15], it immediately follows
that since NSCP is NP-complete, Problem B also cannot be solved in polynomial time
[25].

Corollary 4.2. There is no polynomial algorithm for Problem B unless P =
NP.

5. Minimal characterization of the polyhedron PU and solution of
Problem B. The results of the previous section leave no hope of solving Problems A
and B by a polynomial method. This is particularly awkward when large scale in-
stances are addressed, since the computational burden they involve may turn out to
be unrealistic. A first approach to overcome such a drawback is to try at least to
reduce as much as possible the number of inequalities in (26). It is easy to realize
that one can consider only those constraints that are nonredundant for the polyhedron
PU , that is, those which cannot be removed from (18) without modifying the set they
represent. In this section we look for the minimal description of the polyhedron PU .
An alternative approach to handling large scale instances of Problem B by providing
an approximate solution is proposed in section 7.

Now we study how the structure of the graph GP = (N,EP) reflects on the
minimal characterization of the polyhedron PU in terms of the inequalities x(S) ≤ ξS .

Definition 5.1. Given a graph G = (N,E), a cut δ(S) is said to be disconnecting
G if one of the two disjoint subgraphs GS = (S,ES) and GN\S = (N \ S,EN\S)
obtained by removing all the arcs of δ(S) is not connected. Otherwise, the cut is said
to be nondisconnecting.

Lemma 5.2. If the graph GP is connected and the set U is full dimensional (i.e.,
u−i < u+

i for all i), then
(i) the inequality x(S) ≤ ξS is nonredundant in (18) if and only if the cut δ(S) is

not disconnecting GP .
Moreover, if n = |N | and r = |EP | − n+ 1, then
(ii) for each nonredundant inequality x(S) ≤ ξS of PU the corresponding cut δ(S)

has at most r + 1 arcs;
(iii) the number of nonredundant inequalities of PU is bounded above by O(nr+1).
Proof. (i): For each S ⊂ N , the set EP can be split as EP = ES ∪ EN\S ∪ δ(S),

where ES and EN\S are the subsets of arcs having both extremities in S and N \ S,
respectively. In a similar way, the set U splits in U = US × UN\S × Uδ(S) and the
incidence matrix P of GP may be written (possibly by reordering the nodes) in the
form

P =

(
PS 0
0 PN\S

Pδ(S)

)
,

where the columns of PS , PN\S , and Pδ(S) represent the arcs of ES , EN\S , and δ(S),
respectively. Since GP is connected and U has full dimension, the polyhedron PU
has dimension n− 1. Let

FS = {x ∈ PU : x(S) = ξS}

be the face of PU defined by the inequality x(S) ≤ ξS . This constraint is nonredun-
dant for PU if and only if dim FS = dim PU − 1 = n − 2. The dimension of FS is
univocally determined by the rank of the incidence matrices PS and PN\S . Indeed,

let u0 ∈ Uδ(S) be the vector whose components are u0
j = u+

j if j ∈ δ+(S) and u0
j = u−j
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if j ∈ δ−(S). Immediately we see that for every u = (uS , uN\S , uδ(S)) ∈ U , the
condition Pu(S) = ξS holds if and only if uδ(S) = u0, and thus

FS =

{
x ∈ <n : x =

(
PS 0
0 PN\S

)(
uS
uN\S

)
+ Pδ(S)u

0 : uS ∈ US , uN\S ∈ UN\S
}
.

In particular, dim FS = rank PS + rank PN\S and thus dim FS = n− 2 if and only
if both of the graphs GS = (S,ES) and GN\S = (N \ S,EN\S) are connected.

(ii) Let x(S) ≤ ξS be a nonredundant inequality. Since by (i) the graphs GS and
GN\S are both connected, then both the conditions |ES | ≥ |S| − 1 and |EN\S | ≥
|N \ S| − 1 hold, so that δ(S) has at most |EP | − n+ 2 = r + 1 elements.

(iii) By (ii), the number of cuts corresponding to nonredundant inequalities is
trivially bounded above by the number of subsets of EP which have at most r + 1
elements. Since any cut is associated with the pair of constraints x(S) ≤ ξS and
x(N \ S) ≤ ξN\S , it is clear that the number of nonredundant inequalities of the
polyhedron PU cannot be larger than k(n, r), where k(n, r) is the polynomial function
in n of degree r + 1 given by

k(n, r) = 2

[(
n+ r − 1
r + 1

)
+

(
n+ r − 1

r

)
(27)

+

(
n+ r − 1
r − 1

)
+ · · ·+

(
n+ r − 1

1

)]
.

Remark 5.3. It is important to note that if U is not full dimensional, the “only
if” part of proposition (i) still holds; namely, x(S) ≤ ξS is redundant for PU if the
cut δ(S) is disconnecting GP .

Part (i) of Lemma 5.2 has been independently proved by Wallace and Wets in
[35]. However, the above proof seems simpler and it is reported here for sake of
completeness.

By Lemma 5.2, if the number of independent circuits r is fixed, then the number
of independent constraints in (18) is polynomial in n. In particular, it is linear when
the graph is a tree, which is a typical situation in distribution systems [29]. The
upper bound in (iii) is, in general, very conservative, and in almost every case the
number of nonredundant inequalities is much smaller and can be a priori determined
by performing a connectivity test on the subgraphs generated by each cut. However,
there exist families of graphs for which the given bound is tight, and thus it cannot
be improved.

Lemma 5.2 leads to the following corollary, which reduces the number of the
inequalities (26) that actually need to be verified.

Corollary 5.4. Let I be the subset of 2N defined by

I = {S ⊂ N : the cut δ(S) is nondisconnecting GP}.(28)

Under the hypotheses of Lemma 5.2, condition (10) is satisfied if and only if

θS ≤ ξS for all S ∈ I.(29)

Proof. Due to Lemma 3.6, it is sufficient to show that (29) implies (26). Let
conditions (29) hold and consider a disconnecting cut δ(S) of GP . By Lemma 5.2,
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x(S) ≤ ξS is a tight redundant constraint for PU . Then there exist S1, S2, ..., Sk ⊂ N ,
a vector z ∈ <k+, and w ∈ < such that x(Sj) = ξSj is a facet of PU for each 1 ≤ j ≤ k,

x(S) =
∑k
j=1 zjx(Sj) + wx(N) for all x ∈ <n, and ξS =

∑k
i=1 ziξSi . Since Sj ∈ I for

each j = 1, . . . , k and x(S) ≤ θ(S) is a tight constraint for −QD, we finally obtain

θS ≤
k∑
i=1

ziθSi ≤
k∑
i=1

ziξSi = ξS .

The next theorem summarizes the results of this section and gives a complete
solution for Problem B.

Theorem 5.5. For each instance of Problem B, let θ be the function defined in
(17), I the set introduced in (28), and P1 and P2 the polyhedra defined by

P1 = {(x−, x+) ∈ <2n satisfying (6), (24), and (25)},
P2 = {(u−, u+) ∈ <2p satisfying (7) and (29)}.

Problem B has a solution if and only if both P1 and P2 are not empty. In this
case, the solution may be found by solving the two independent programming problems
{min J1 : (x−, x+) ∈ P1} and {min J2 : (u−, u+) ∈ P2}, where the former one has
6n+ 2 linear constraints and the latter, besides conditions (7), has a number of linear
constraints that does not exceed the quantity k(n, r) introduced in (27).

Proof. The assertion follows from Theorem 3.1, Lemmas 3.5, 3.6, Corollary 5.4,
and Remark 5.3.

6. The integer game. In several practical problems, only integer quantities can
be considered. In view of the structure of equation (4), if the initial state x(0) is an
integer, then x(t) remains an integer for t ≥ 0 as long as u(t) and d(t) are integer
vectors. It is then natural to formulate an integer version for Problem A by requiring
that x(t), u(t), and d(t) can assume only integer values. In this case, it is obvious that
the bounds for U , X, and D are integers. Accordingly, a strategy Φ is said to be an
integer strategy if Φ : Zn → Zq. This version of the game is referred to as the integer
game and the original version of Problem A as the real game. The results obtained
in the previous sections allow us to prove the following theorem.

Theorem 6.1. Assume that the sets U , X, and D have integer vertices. Then
the integer game has a solution if and only if the real game formulated on the same
data has a solution. Moreover, in this case the feasible initial condition set for the
integer game is the set of all the integer points of the set X0 defined in (11), and an
integer strategy may be found by solving on-line a feasible flow problem.

Proof. Suppose that the real game has a solution, so that conditions (9) and
(10) are satisfied. Then, since the data are integers and, as outlined after Lemma
3.5, X−QD is a zero-base polyhedron, by (ii) in Proposition 3.4, X−QD has integer
vertices. Also, the polyhedron X0 defined in (11) is an integer zero-base polyhedron
as follows from Proposition 3.4, since X0 is the intersection of the sum of the two zero-
base polyhedra X−QD and PU with a box. Thus, there exist integer initial conditions
from which Player P wins the game. Each integer-feasible strategy requires choosing,
for an assigned integer state x0 ∈ X0, an element u in the set U(x) defined in (14).
A flow u belongs to U(x) if and only if it satisfies the capacity constraints defined by
U and produces a divergence vector Pu contained in Y (x) = X−QD + {−x0}, that is,
by (23), if and only if it satisfies the constraints

x−i + θN\{i} − (x0)i ≤ (Pu)i ≤ x+
i − θ{i} − (x0)i, i = 1, 2, ..., n, x(N) = 0,(30)
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u− ≤ u ≤ u+.(31)

Finding such a solution simply reduces to solving a feasible flow problem (see [32]).
Indeed, the integrality theorem for flows (see [32]) assures that when data are integers
and an admissible flow does exist, an integer-admissible flow exists, too. Moreover,
such an integer solution may be found by using common algorithms for network flow
problems.

Concerning Problem B, it easily follows from Lemma 3.5 that if the cost function
J1 is not decreasing in each component of −x− and x+ and all the data are integers,
then the optimal real solution has integer components x− and x+. It is interesting
to prove that the same property does not hold with respect to u+ and u− as the
following simple example shows.

1

2

3

4

6

5

[0, 1/2]

[-1, 1]

[-1/2, 3/2]

[0, 1/2]

[0, 1/2]

[-1/2, 0]

[-1, 1]

[-1/2, 3/2]

[-1, 1] [-1, 1]

[0, 1]

Fig. 1. The network structure for the example.

Example 6.2. Let us consider the network in Fig. 1, where the dotted arrows
represent the demand arcs and the solid arrows represent the controlled arcs. Near
each demand arc the range [d−e , d

+
e ] appears, in which the corresponding demand may

vary. The capacity intervals [u−e , u
+
e ] associated with each controlled arc represent

the optimal solution of Problem B with respect to the linear cost function defined
by J2(u−, u+) =

∑
e∈E ce(−u−e + u+

e ), where c(2,5) = c(3,4) = 6 and ce = 5 for
each e ∈ EP \ {(2, 5), (3, 4)}. The cost of this solution is 51. It is easy to see that
there cannot be any integer solution with the same cost. First, note that the cuts
δ+({1, 2, 5}) and δ+({1, 3, 4}) are disjoint and contain only arcs with cost capacity 5
and that the capacity of both of them must be at least 3 in every admissible solution.
This implies that any integer solution of cost 51 could use only one capacity unit of
capacity cost 6. But by deleting any one of the two arcs (2, 5) and (3, 4), we obtain
an instance of the problem whose optimum value is 55.

Although the solution of Problem B may not be integral, the following property
nevertheless holds.

Proposition 6.3. If Problem B with integer data is feasible, then it also admits
an integer-feasible solution.

Starting from a real optimal solution (u−, u+), an integer solution may be ob-
tained simply by setting ũ+

j = du+
j e and ũ−j = bu−j c. Obviously, this may not be the

optimal integer solution. For instance, in the previous example, this procedure leads
to a solution of cost 72, while the optimal integer solution uses only arcs of capacity
cost 5 and has value 55.
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7. Special cases and an approximate algorithm. In the previous sections
it has been shown that both Problems A and B can be split in two subproblems, one
concerning node capacities only and the other concerning arc capacities only. While
the former is easy to solve even under integrality conditions, the latter is an NP-hard
problem. We have already seen that for the families of graphs with a fixed number
of circuits, Problem B is polynomial. If the graph is a tree, the solution is extremely
simple and it is integral for the integer problem, as the following result shows.

Proposition 7.1. Let us consider an instance of Problem B with integer data. If
GP is a tree and Problem B has a solution, then it admits an integer optimal solution.

Proof. By Lemma 5.2, the only nonredundant constraints in the variables u± are
u+
j ≥ θS{j} and u−j ≤ −θN\S{j} , where Sj identifies the cut containing only the arc ej .

So, if Problem B is feasible, then the solution satisfying these constraints as equality
is optimal.

A further interesting question is to determine if there exists a “worst case” de-
mand, in the sense that it is sufficient to provide node and arc capacity to contrast it
in order to solve Problem B. This happens in the particular, but meaningful, case in
which all the demand arcs have a common final node and zero lower capacity. This
case represents the situation in which there is no product competition in the sense
that demands in different nodes are independent and all lead to the external node. In
this case, it is immediate to see that the worst case demand exists, and it is given by
di(t) = d+

i for all t. This is an interesting case because once such a worst case demand
has been identified, it suffices to solve a minimum cost flow problem to solve Problem
B, and therefore an integer optimal solution exists. However, a worst case demand
does not exist in general, as will be shown for the example of the next section.

Now we present a simple procedure to obtain an approximate solution for the
arc-related subproblem of the design Problem B when the cost function has the form
J2(u−, u+) =

∑
e∈EP c

+
e u

+
e − c−e u−e for assigned nonnegative costs c−, c+ ∈ <p and

there are not upper bounds on the variables −u−e and u+
e .

The main idea of the algorithm relies on the fact that any path P (i, j) between
two nodes i and j in the graph GP intersects every cut δ(S) such that i ∈ S and j /∈ S.
In order to find a feasible solution for Problem B, it is then sufficient to increase, for
each demand arc f = (k, l) with d−f ≤ 0 ≤ d+

f , the capacity of each directed arc of a

path P (l, k) from l to k by the amount d+
f and the capacity of each directed arc of

a path P (k, l) from k to l by the amount −d−f . In this way, the capacity of each cut

δ(S) such that k ∈ S and l /∈ S is increased by at least −d−f , and the capacity of the

cut δ(N \ S) is increased by at least d+
f . In the case d−f ≥ 0 (or d+

f ≤ 0), the demand
acts only in one direction. It is then sufficient to increase the capacity of the arcs in
P (l, k) (P (k, l)) of d+

f (−d−f ), that is, against the worst possible case. Since we look
for a low cost solution, it is natural to choose P (l, k) and P (k, l) as the shortest paths
with respect to the capacity costs. These remarks lead to the following algorithm.

Approximate Algorithm for Problem B.

1. For each arc e = (i, j) ∈ EP set
u−e := 0; u+

e := 0;
cij := c+e ; cji := c−e .

2. For all f = (k, l) ∈ EQ do
if d+

f > 0, find the shortest path P ∗(l, k) from l to k in GP with
respect to the costs cij ;
for all (i, j) ∈ P ∗(l, k) update:

u+
e := u+

e + d+
f if e = (i, j) ∈ EP ;
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Fig. 2. The network structure for the example.

u−e := u−e − d+
f if e = (j, i) ∈ EP ;

if d−f < 0, find the shortest path P ∗(k, l) from k to l in GP with
respect to the costs cij ;
for all (i, j) ∈ P ∗(k, l) update:

u+
e := u+

e − d−f if e = (i, j) ∈ EP ;

u−e := u−e + d−f if e = (j, i) ∈ EP ;
end do.

Arguing by induction, it easily can be seen that the solution (−u−, u+) corre-
sponding to each step of the procedure is an admissible solution for Problem B with
respect to the partial uncontrolled network whose arcs are the demand arcs already
processed. So the procedure ends after |EQ| steps giving an admissible solution for
Problem B. Its time complexity is |EQ|O(SPP ), where O(SPP ) denotes the running
time of any algorithm for the shortest path problem. We note that when all the data
of the problem are integers, this procedure finds in fact an integers solution. More-
over, since in a tree two nodes are connected exactly by one path, then when GP is a
tree, the algorithm gives the optimal integer solution (see also Proposition 7.1). For
the example of Fig. 1 this procedure finds the solution that uses only arcs of capacity
cost 5 and has value 55. This is indeed the optimal integer solution.

8. An example. In order to illustrate the results derived in the previous sec-
tions, we present a nontrivial example. Consider the network in Fig. 2 with 16 nodes,
27 controlled arcs, and 14 uncontrolled arcs.

For the node problem, we fix the lower capacity of all nodes to 0, with the excep-
tion of node 16 (the external environment), for which the upper capacity is fixed to 0.
We do not impose constraints on the upper capacities of the other nodes and assume
that there is no cost for the lower capacity of node 16. Then, for any nondecreas-
ing cost function J1, the optimal solution for the node problem is that reported in
Table 3.

Concerning the arc problem, we consider a cost of the form

J2(u+, u−) =
∑
e∈EP

αeu
+
e − βeu−e ,
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where the values of the coefficients αe and βe for each controlled arc e are shown in
Table 1. Finally, Table 2 contains departure and arrival nodes of the uncontrolled
arcs together with their lower and upper capacity.

Table 1

Data for the controlled arcs.

arc 1 2 3 4 5 6 7 8 9 10 11 12 13
dep. node 16 16 16 16 16 16 16 16 16 16 16 16 16
arr. node 1 2 3 4 5 6 7 8 9 10 11 12 15

αi 7 6 2 2 10 4 2 4 10 20 10 35 30
βi 2 2 2 2 2 5 10 3 10 13 10 20 17

arc 14 15 16 17 18 19 20 21 22 23 24 25 26 27
dep. node 5 2 3 3 8 4 4 5 6 1 2 10 11 14
arr. node 4 7 7 8 9 10 11 12 13 13 13 14 14 15

αi 7 15 1 15 4 1 14 2 8 18 4 12 11 2
βi 3 4 1 7 3 1 3 2 2 3 4 2 3 2

We assume that there are no bounds on the upper and lower capacities of each
controlled arc as well as for the upper capacities of the nodes. The number of con-
straints which define the polyhedron PU in (18) is 65535. However, if we apply the
necessary and sufficient conditions stated in Lemma 5.2 in order to eliminate redun-
dant constraints, we obtain that only 180 constraints are nonredundant. Then, in
order to find the solution of Problem B with respect to the given instance, we have to
solve a linear problem with 54 variables (the upper and the lower constraints of each
controlled arc) and 180 constraints. This can be done in a straightforward way. The
optimal solution is reported in Table 4 and has the cost Jopt2 = 958.

If we apply the approximated algorithm of section 7 to the same instance, we
have to solve a shortest path problem 28 times. The approximate solution it finds has
the cost Japr2 = 980, which is quite close to the optimal one (about 2 %).

We note that for the case of the example, there is not a “worst case” demand;
that is, there does not exist any d̄ ∈ D such that the optimal solution of the problem
can be obtained by replacing the constraint QD ⊆ PU with Qd̄ ∈ PU . This can be
shown by considering the uncontrolled arc d3. If we set d−3 = d+

3 = 4 and we solve the
corresponding problem, we achieve an optimal solution whose cost is J2 = 918. On
the other hand, if we fix d−3 = d+

3 = −4, we achieve an optimal cost of J2 = 902. By
convexity arguments, we deduce that the optimal solution of any problem obtained
by assigning to d3 a fixed value in [−4, 4] has a cost J∗ such that J∗ ≤ 918 < Jopt2 .

9. Conclusions. We have studied the problem of determining a feedback control
strategy for a class of single commodity production–distribution systems with non-
stochastic uncertain demands using a model expressed in terms of a dynamic game
on a network.

Conditions guaranteeing that a solution exists have been derived with the aim
of providing means that are convenient from a computational point of view. In this
sense, it has been shown how the topology of the network of interest does affect the
amount of computations required.

The results obtained for this feasibility problem have then been used to solve a
network design problem consisting of determining the minimum cost node and arc
capacities that guarantee that a feasible control strategy exists.
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Table 2

Data for the uncontrolled arcs.

arc 1 2 3 4 5 6 7 8 9 10 11 12 13 14
dep. node 6 5 4 9 10 14 11 12 1 1 2 7 13 6
arr. node 16 2 8 16 9 16 15 15 2 16 3 8 16 15

d−i -8 -7 -8 -2 -1 -2 0 0 -4 0 -5 -3 0 -4

d+
i 5 9 11 4 8 5 5 9 4 6 5 3 10 0

Table 3

The optimal values for the node problem.

Node 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

x+
i 14 34 10 19 16 17 6 25 15 9 5 9 10 7 18 ∞

Table 4

The optimal solution.

arc 1 2 3 4 5 6 7 8 9 10 11 12 13

u+
i 2 10 0 37 0 5 14 16 0 0 0 0 0

u−i -4 -10 0 -2 -16 -12 0 24 0 0 0 0 0

arc 14 15 16 17 18 19 20 21 22 23 24 25 26 27

u+
i 0 0 5 0 5 17 0 9 0 0 18 9 0 4

u−i -18 -16 -5 0 -10 -12 0 0 0 -8 0 -11 -5 -14

The integer version of the problem also has been considered, in which all the
variables have to assume integer values. It has been proved that if the data are
integers and the two considered problems have a solution, then integer solutions also
exist.
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Abstract. The trust region method has been proven to be very successful in both unconstrained
and constrained optimization. It requires the global minimum of a general quadratic function subject
to ellipsoid constraints. In this paper, we generalize the trust region subproblem by allowing two
general quadratic constraints. Conditions and properties of its solution are discussed.
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1. Introduction. Many trust region algorithms for constrained optimization re-
quire solving subproblems of the following form:

min{q(x) :‖ Dx ‖2≤ δ, ‖ ATx+ c ‖2≤ ξ, x ∈ <n},(1.1)

where q : <n → R is a quadratic model of the objective function in a neighborhood of
the current iterate, D is a positive definite scaling matrix, c ∈ <m is a vector whose
elements are the values of the constraints, AT ∈ <m×n is the Jacobian matrix of the
constraints computed at the current iterate, and the numbers δ and ξ are determined
by the trust region method (for example, see [1] and [11]). For unconstrained opti-
mization problems, the trust region subproblem is to minimize a quadratic function
in an ellipsoid, namely

min{q(x) :‖ Dx ‖2≤ δ, x ∈ <n}.(1.2)

Many results for problem (1.2) have been obtained, including Gay [4], Moré and
Sorensen [10], Mart́ınez [7], and Sorensen [12]. Most authors study the global mini-
mizer of (1.2), but Mart́ınez [7] also studies local minimizers of (1.2). One motivation
for studying nonglobal local minimizers is that a global minimizer of (1.1) at which
the constraint ||ATx+ c|| ≤ ξ is inactive must be a local minimizer of (1.2) (see [7]).

Problem (1.1) has also been studied by many researchers; for example, see Celis,
Dennis, and Tapia [1], Crouzeix, Mart́ınez, Legaz, and Seeger [2], Heinkenschloss [5],
Yuan [15], [16], Zhang [17], and the references therein. It is interesting to note that
unlike the case of one constraint, for the two constraint case it is possible that the
Hessian of the Lagrangian has negative eigenvalues, even when only one constraint is
active at the global minimizer. For details, see Yuan [15].

Several extensions of problem (1.1) are of interest. The simplest type is to consider
the problem

min{q(x) : c1(x) ≤ 0, c2(x) ≤ 0, x ∈ <n},(1.3)
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where q(x), c1(x), and c2(x) are quadratic functions. Several special cases of (1.3)
have been discussed in the literature. For example, Heinkenschloss [5] considered
the case that q(x), c1(x), c2(x) are all convex quadratics; Mart́ınez and Santos [8]
considered (1.3) with a general quadratic q(x) and c1, c2 strictly convex quadratics.
More can also be found in [15], [16], [17]. In this paper we consider the case where
q(x), c1(x), and c2(x) all are general quadratic functions. Our paper is motivated by
a recent work of Moré [9], in which he studied the problem of minimizing a quadratic
function subject to one general quadratic constraint which has the form

min{q(x) : c(x) ≤ 0, x ∈ <n},(1.4)

where q(x), c(x) are general quadratic functions. Stern and Wolkowicz [13] also studied
the above problem with a two-sided (upper and lower bound) quadratic constraint;
they also discussed the characterizations of optimality and gave some conditions for
the existence of solutions.

Our paper can be viewed as a generalization of Yuan [15] from convex constraints
to general constraints. Our results are also related to Mart́ınez [7], as his analysis on
nonglobal local minimizers of problem (1.2) are applicable to problem (1.1) when the
constraint ||ATx + c|| ≤ ξ is inactive at the solution. However, our results are more
general because we study general quadratic functions c1(x) and c2(x) while Mart́ınez
[7] and Yuan [15] require convex constraints.

Throughout this paper, we assume that the object function q(x) and the con-
strained functions c1(x) and c2(x) are all quadratic:

q(x) = γ + wTx+
1

2
xTQx,(1.5)

c1(x) = γ1 + wT1 x+
1

2
xTC1x,(1.6)

c2(x) = γ2 + wT2 x+
1

2
xTC2x,(1.7)

where γ, γ1, γ2 ∈ <, w,w1, w2 ∈ <n, and Q,C1, C2 are symmetric matrices in <n×n.
We also use the following notations:

E1 = {x : x ∈ <n, c1(x) ≤ 0},(1.8)

E2 = {x : x ∈ <n, c2(x) ≤ 0},(1.9)

E = E1 ∩ E2.(1.10)

Some of our results depend on the following conditions:

inf
x∈E1

{c2(x)} < 0 < sup
x∈E1

{c2(x)},(1.11)

inf
x∈E2

{c1(x)} < 0 < sup
x∈E2

{c1(x)},(1.12)

which can be viewed as a generalization of a condition given by Moré for one constraint
problem (see (2.3) below). The above conditions are not restrictive for problem (1.3).
In fact, if the left part of (1.11) is not true, it follows from Theorem 3.2 of [9] (given
as Theorem 2.3 below) that there exists λ ∈ <+ such that c2(x) +λc1(x) is equal to a
convex quadratic, which means that C2 + λC1 is positive semidefinite. Then problem
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(1.3) reduces to minimizing q(x) subject to c1(x) = 0 in the subspace NC2+λC1
. If the

right inequality of (1.11) fails, (1.3) reduces to the one constraint problem studied by
Moré [9]. Therefore, it is no loss of generality in assuming (1.11)–(1.12).

The paper is organized as follows. In the next section we state some known re-
sults which we will use repeatedly in the paper. In section 3, we give a condition that
ensures the existence of a global minimizer and derive some optimality conditions
for problem (1.3) when both constraints are active and the gradients are zeros at the
solution. In order to further our analysis, we also explore some relations between opti-
mality and certain definiteness of matrix pencils. In section 4, we consider optimality
for problem (1.3) when q(x), c1(x), and c2(x) are all general quadratics. Necessary
conditions for local minimizers and global minimizers are given. It is shown that the
Hessian of the Lagrangian at the solution has at most one negative eigenvalue if the
Jacobian of the constraints is not zero and that for some special cases it has no neg-
ative eigenvalue. These results are not trivial, as directly applying standard second
order necessary conditions can only show that the Hessian of the Lagrangian has at
most two negative eigenvalues. A few remarks are also made in last section.

2. Some important results. In this section we state some known results which
will be used in our analysis.

Theorem 2.1 (see Moré [9]). If A ∈ <n×n and C ∈ <n×n are symmetric matri-
ces, then A+ λC is positive definite for some λ ∈ < if and only if

w 6= 0, wTCw = 0 =⇒ wTAw > 0.(2.1)

Theorem 2.2 (see Moré [9]). Assume that A ∈ <n×n and C ∈ <n×n are sym-
metric matrices and that C is indefinite. Then

wTCw = 0 =⇒ wTAw ≥ 0(2.2)

if and only if A+ λC is positive semidefinite for some λ ∈ <.
Theorem 2.3 (see Moré [9]). Let q(x) and c(x) be quadratic functions defined

on <n. Assume that

inf
x∈<n

c(x) < 0 < sup
x∈<n

c(x)(2.3)

holds and that ∇2c 6= 0. A vector x∗ is a global minimizer of the problem

min{q(x) : c(x) = 0, x ∈ <n}(2.4)

if and only if c(x∗) = 0 and there is a multiplier λ∗ ∈ < such that the Kuhn–Tucker
condition

∇q(x∗) + λ∗∇c(x∗) = 0(2.5)

is satisfied with

∇2q(x∗) + λ∗∇2c(x∗)(2.6)

positive semidefinite.
Theorem 2.4 (see Yuan [15]). Let C,D ∈ <n×n be two symmetric matrices and

let A and B be two closed sets in <n such that A ∪B = <n. If we have

xTCx ≥ 0, x ∈ A, xTDx ≥ 0, x ∈ B,(2.7)

then there exists a t ∈ [0, 1] such that the matrix tC+(1−t)D is positive semidefinite.
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3. Optimality and matrices pencils. In this section, we first give a condition
which implies that the global minimum of problem (1.3) can be attained. Then, we
study a special case of (1.3) when both constraints are active and the Jacobian of the
constraints are zero at the solution.

Denote

S1 = {x : x ∈ <n, xTC1x ≤ 0},(3.1)

S2 = {x : x ∈ <n, xTC2x ≤ 0},(3.2)

S = S1 ∩ S2.(3.3)

Lemma 3.1. Assume that the feasible set (1.10) is nonempty ; if

x 6= 0, x ∈ S =⇒ xTQx > 0,(3.4)

then (1.3) has a global minimizer.
Proof. If problem (1.3) does not have a global minimizer, then there exists

{xk, k = 1, 2, ...} such that limk→∞ ||xk|| → ∞ and

q(xk) ≤ q(x1), c1(xk) ≤ 0; c2(xk) ≤ 0.(3.5)

Let dk = xk
‖xk‖ . Without loss of generality (w.l.o.g.), we assume that limk→∞ dk = d0.

It then follows from (1.5)–(1.7) and (3.5) that

d0
TQd0 ≤ 0, d0

TC1d0 ≤ 0, d0
TC2d0 ≤ 0,

which contradicts (3.4). Thus, the lemma is true.
It should be noted that (3.4) is not a necessary condition for problem (1.3) to have

a global minimizer. For example, let x = (x1, x2)T ∈ <2; we define q(x) = x2
1 − x2

2,
c1(x) = x2, and c2(x) = 1

2x1 − x2. This problem has a global minimizer (0, 0)T .
Obviously S = <2, but for x̄ = (0, 1)T ∈ S, x̄TQx̄ < 0 holds.

Lemma 3.1 indicates that there are connections between Q, C1, C2, and the global
minimizer of (1.3). Moré [9] and Stern and Wolkowicz [13] have derived relations
between matrix pencils and the optimization problem with one general quadratic
constraint. In the rest of this section, we will discuss the relation between matrix
pencils and a special case of problem (1.3) when both constraints are active and the
Jacobian of the constraints are zero at the solution.

Assume that x∗ is a local minimizer of problem (1.3) at which c1(x∗) = c2(x∗) = 0
and∇c1(x∗) = ∇c2(x∗) = 0. It is easy to see that the null vector 0 is a local minimizer
of the following problem:

min{q(x∗ + x) : x ∈ S},(3.6)

where S is defined by (3.3).
For any A which is an n× n symmetric matrix A ∈ <n×n, we define NA = {x :

xTAx = 0}. Denote F = NC1 ∩ NC2 . The following result is the first conclusion of
the main theorem of Uhlig [14].

Theorem 3.2. Assume that A,B ∈ <n×n and n ≥ 3; then, there exist α, β ∈ <
satisfying α2 +β2 > 0 such that αA+βB is positive definite if and only if NA∩NB =
{0}.

In what follows we state a result about the pair of matrices (C1, C2).
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Lemma 3.3. αC1 + βC2 is indefinite for any α, β ∈ < satisfying α2 + β2 > 0 if
and only if

inf
x∈NC1

{xTC2x} < 0 < sup
x∈NC1

{xTC2x},(3.7)

inf
x∈NC2

{xTC1x} < 0 < sup
x∈NC2

{xTC1x}.(3.8)

Proof. First suppose that (3.7)–(3.8) hold. For any α, β ∈ < satisfying α2 +β2 >
0, w.l.o.g. assume α > 0. It follows from (3.8) that

inf
x∈NC2

xT (αC1 + βC2)x < 0 < sup
x∈NC2

xT (αC1 + βC2)x,(3.9)

which shows that αC1 + βC2 is indefinite.
Now we assume that αC1 +βC2 is indefinite for any α, β ∈ < satisfying α2 +β2 >

0. If (3.7)–(3.8) is not true, there is no loss of generality in assuming that

inf
x∈NC1

xTC2x = 0.(3.10)

Our assumption that αC1 +βC2 is indefinite for any α, β ∈ <n satisfying α2 +β2 > 0
implies that C1 is indefinite; thus, it follows from (3.10) and Theorem 2.2 that there
exists λ ∈ < such that C2 + λC1 is positive semidefinite, which is a contradiction.
This completes our proof.

For the special problem (3.6), conditions (1.11) and (1.12) are equivalent to

inf
x∈S1

{xTC2x} < 0 < sup
x∈S1

{xTC2x},(3.11)

inf
x∈S2

{xTC1x} < 0 < sup
x∈S2

{xTC1x}.(3.12)

We see that our conditions (3.11)–(3.12) are strictly weaker than (3.7)–(3.8). If

C1 =

(
−1 0
0 1

)
, C2 =

(
1 0
0 −4

)
,(3.13)

then (3.11)–(3.12) are satisfied, but (3.7)–(3.8) fail.
One direct consequence of (3.11)–(3.12) is the following lemma.
Lemma 3.4. If (3.11)–(3.12) hold, then

span (S1 ∩ S2) = <n.(3.14)

Proof. By (3.11)–(3.12), both C1 and C2 are indefinite. If max(xTC1x, x
TC2x) ≥

0 for every x ∈ <n, it follows from Theorem 2.4 that there exists λ ∈ (0, 1) such that
C1 + λ(C1 − C2) is positive semidefinite, which implies

xTC2x ≥ 0 whenever xTC1x ≤ 0(3.15)

and

xTC1x ≥ 0 whenever xTC2x ≤ 0.(3.16)

Inequalities (3.15)–(3.16) contradict (3.11)–(3.12). Thus, there exists x̄ ∈ <n such
that

x̄TC1x̄ < 0, x̄TC2x̄ < 0.(3.17)
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Define

δ(x̄, ε) = {x : ‖ x− x̄ ‖≤ ε }.(3.18)

It follows from (3.17) and the continuity of quadratic functions that for sufficiently
small ε > 0,

x ∈ S1 ∩ S2 ∀ x ∈ δ(x̄, ε).(3.19)

The above relation implies (3.14). This proves our lemma.
The above lemma implies the following result.
Lemma 3.5. If (3.11)–(3.12) hold and if y∗ = 0 is a local minimizer of (3.6), then

∇q(x∗) = 0.
Proof. Because y∗ = 0 is a local minimizer of (3.6), it follows that

xT∇q(x∗) ≥ 0 ∀ x ∈ S1 ∩ S2.(3.20)

Due to S1 ∩ S2 = −(S1 ∩ S2), (3.20) implies that

xT∇q(x∗) = 0 ∀x ∈ S1 ∩ S2.(3.21)

It follows from (3.21) and (3.14) that ∇q(x∗) = 0.
Motivated by the results of Morè (see Theorems 2.1–2.3), one may guess that if

x∗ = 0 is a global minimizer of problem (3.6) and conditions (3.11)–(3.12) hold, then
there may exist α, β ∈ < such that Q+αC1 +βC2 is positive definite or semidefinite.
However, our next example shows that even when conditions (3.7)–(3.8) are true and
x∗ = 0 is a global minimizer of problem (3.6), Q + αC1 + βC2 may be indefinite for
any α, β ∈ <.

Example 1.

min{−(x2 + y2)/3 + y2 − x2 − 2xy : x2 − y2 ≤ 0, 2xy ≤ 0}.(3.22)

For this problem, we have

Q = −1

3

(
1 0
0 1

)
+

(
−1 0
0 1

)
−
(

0 1
1 0

)
,(3.23)

C1 =

(
1 0
0 −1

)
, C2 =

(
0 1
1 0

)
.(3.24)

It is easy to show that αC1 +βC2 is indefinite for any α, β ∈ < satisfying α2 +β2 > 0.
Thus, conditions (3.7)–(3.8) hold. One can also easily verify that x∗ = 0 is a unique
solution of problem (3.22). However, for any α, β ∈ <, it holds that Q+αC1 +βC2 =
− 1

3I + (α− 1)C1 + (β − 1)C2, which implies that Q+ αC1 + βC2 cannot be positive
definite or semidefinite.

To study the optimal conditions at a global minimizer of (3.6), we also need the
following result due to Hestenes and Mcshane [6].

Lemma 3.6. Let C1, C2 ∈ <n×n be symmetric matrices satisfying (3.7)–(3.8).
Let m(α, β) be the least eigenvalue of the matrix Q+ αC1 + βC2. Then, there exists
(α0, β0) ∈ <2 which maximizes the function m(α, β).

Our next result is a small modification of Lemma B in [6]. For completeness, we
rewrite it and give a detailed proof.
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Lemma 3.7. Assume the matrices C1 and C2 satisfying (3.7)–(3.8) and (α0, β0) ∈
<2 maximize the function m(α, β). Set m0 = m(α0, β0), with X as the subspace
spanned by all the eigenvectors of the matrix Q + α0C1 + β0C2 related to m0. Then
for any linear space L which contains X, there is no αC1+βC2 positive definite on L.

Proof. Assume there exists C̄ = αC1 + βC2 positive definite on L. Let K be
the unit sphere xTx = 1, and L1 is the set of points in L on K. Choose b > 0 such
that xT C̄x > b on L1, and let N̄ be a neighborhood of L1 related to K on which
xT C̄x > b, m1 is the minimum of xT (Q + α0C1 + β0C2)x on the closed set K − N̄ ;
then, m1 > m0. It follows that for a sufficiently small positive constant t one will
have

xT (Q+ α0C1 + β0C2 + tC̄)x > m0(3.25)

on K − N̄ . But,

xT (Q+ α0C1 + β0C2 + tC̄)x > m0 + tb(3.26)

on N̄ . Thus, it holds that m(α0 + tα, β0 + tβ) > m(α0, β0), which contradicts the
choice of (α0, β0). This proves the lemma.

Now we can give one of our main results in this section.
Theorem 3.8. If (3.7)–(3.8) hold and if y∗ = 0 is a local minimizer of problem

(3.6), then ∇q(x∗) = 0 and there exist α, β ∈ < such that Q+αC1 +βC2 has at most
two negative eigenvalues.

Proof. It follows from Lemma 3.5 that ∇q(x∗) = 0. Because ∇q(x∗) = 0 and the
optimality of y∗ = 0, we have that xTQx ≥ 0 for all x ∈ S.

If the theorem is not true, assume that for any α, β ∈ <, Q + αC1 + βC2 has
three or more negative eigenvalues. Let (α0, β0) maximize the function m(α, β), and
let L be the subspace spanned by the eigenvectors of the matrix Q + α0C1 + β0C2

corresponding to its negative eigenvalues. For example, L = span{x1, x2, . . . , xl :
(Q+ α0C1 + β0C2)xi = aixi, ai < 0, ‖xi‖2 = 1} and l = dim(L) ≥ 3 . It follows that
in L, we have

Q+ α0C1 + β0C2 =

l∑
i=1

aixix
T
i .(3.27)

If there exists x0 ∈ F 6= 0 in L, w.l.o.g. we assume that ‖x0‖2 = 1. Then, by the
definition of F , we get

xT0 (Q+ α0C1 + β0C2)x0 ≥ 0,(3.28)

which contradicts the definition of L. It follows that F ∩ L = {0}. However, since
l ≥ 3, it follows from Theorem 3.2 that there exist α, β ∈ < such that αC1 + βC2 is
positive definite on L, which contradicts Lemma 3.7.

In fact, under the conditions of Theorem 3.8, let α0 and β0 as defined in Lemma 3.6
and m0 = m(α, β) denote L1 as the subspace spanned by the eigenvectors of Q +
α0C1 + β0C2 related to m0. If m0 < 0, then by Theorem 3.8 we have dim(L1) < 3.
By Lemma 3.7, dim(L1) 6= 1; thus, it must hold that dim(L1) = 2. This can also
be verified by our Example 1, where Q + C1 + C2 = − 1

3I, m(1, 1) = − 1
3 . But for

any (α, β) ∈ <2, Q + αC1 + βC2 = − 1
3I + (α − 1)C1 + (β − 1)C2. If (α, β) 6= (1, 1),

then (α − 1)C1 + (β − 1)C2 is indefinite, which implies that the least eigenvalue of
Q+αC1+βC2 is less than − 1

3 . Thus, for Example 1, it holds that m0 = m(1, 1) = − 1
3 .
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Now we only consider the case m0 < 0 under the conditions of Theorem 3.8. Let
L1 be the subspace defined by L1 = {x ∈ <n : (Q+ α0C1 + β0C2)x = m0x}. It easy
to see that in L1, Qx = (−α0C1 − β0C2 +m0I)x. Thus, x∗ = 0 is a global minimizer
of the following problem:

min{xT (−α0C1 − β0C2 +m0I)x : xTC1x ≤ 0, xTC2x ≤ 0, x ∈ L1}.(3.29)

Since m0 < 0, xTC1x and xTC2x vanish simultaneously only at the point 0. By
Lemma 3.7, there is no α, β ∈ < such that αC1 + βC2 is positive definite. Thus, in
L1 we have

xTC1x 6= 0 ∀xTC2x = 0, x 6= 0(3.30)

and

xTC2x 6= 0 ∀xTC1x = 0, x 6= 0.(3.31)

If xTC1x > 0 for all xTC2x = 0, x 6= 0 ∈ L1, then it follows from Theorem 2.1 that
there exists λ ∈ < such that C1 + λC2 is positive definite, which is a contradiction.
Therefore, there exists x̄ ∈ L1 such that

x̄TC2x̄ = 0, x̄TC1x̄ ≤ 0.(3.32)

The fact that x̄T (−α0C1 + m0I)x̄ ≥ 0 implies that α0 > 0. Similarly, one can show
that β0 > 0.

If conditions (3.11)–(3.12) are true and (3.7)–(3.8) fail, then we have the following
result.

Theorem 3.9. If (3.11)–(3.12) hold and (3.7)–(3.8) fail and if y∗ = 0 is a local
minimizer of problem (3.6), then ∇q(x∗) = 0 and there exist λ1, λ2 ∈ < such that
Q+ λ1C1 + λ2C2 is positive semidefinite.

Proof. It follows from Lemma 3.5 that ∇q(x∗) = 0. Since conditions (3.7)–(3.8)
are not satisfied, it follows from Lemma 3.3 that there exist α, β ∈ < such that
α2 + β2 6= 0 and that αC1 + βC2 is positive semidefinite. Without loss of generality,
we assume that α 6= 0. Define λ = β/α. First we assume that α > 0, which implies
that C1 + λC2 is positive semidefinite. This leads to the following two cases: if λ > 0
then xTC1x ≤ 0 =⇒ xTC2x ≥ 0, which contradicts (3.11)–(3.12); if λ < 0 then
xTC1x ≤ 0 =⇒ xTC2x ≤ 0, which contradicts (3.11).

Now we assume that α < 0, which implies that C1 +λC2 is negative semidefinite.
If λ > 0 then xTC1x = 0 =⇒ xTC2x ≤ 0; y∗ = 0 is a local minimizer of problem
min{xTQx : xTC1x = 0, x ∈ <n}. Thus, our theorem follows from Theorem 2.2.
If λ ≤ 0 then xTC2x ≤ 0 =⇒ xTC1x ≤ 0, which contradicts (3.12). Therefore, the
theorem is proved.

If Ci is positive definite then we can choose the corresponding Lagrange multiplier
λi large enough so that Q+λiCi is positive definite. But in the case that C1 is positive
semidefinite and NC1

6= ∅, then even (3.11) holds, and there may be no λ1, λ2 ∈ < such
that Q + λ1C1 + λ2C2 is positive semidefinite. This can be verified by the following
example.

Q =

 1 1 0
1 1 1
0 1 0

 , C1 =

 0 0 0
0 0 0
0 0 1

 , C2 =

 1 0 0
0 −1 0
0 0 1

 .
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C1 is semidefinite and (3.11) holds; y∗ = 0 is a global minimizer of

min{xTQx : x ∈ S1 ∩ S2},(3.33)

but for any λ1, λ2 ∈ <, Q + λ1C1 + λ2C2 is not positive semidefinite. For the case
where C1, C2 are indefinite, if (3.11)–(3.12) do not hold, Theorem 3.9 may also fail.
For example,

Q =

 1 0 0
0 −1 0
0 0 −3

 , C1 =

 2 1 0
1 0 0
0 0 1

 , C2 =

 0 1 0
1 2 0
0 0 1

 .

Now we give a lemma which will be used in the next section.
Lemma 3.10. If C ∈ <n×n is a symmetric indefinite matrix, then span(NC) = <n.
Proof. Without loss of generality, we assume that

C = diag (α1, . . . , αI ;−β1, . . . ,−βJ ; 0, . . . , 0) ,(3.34)

where αi(i = 1, . . . , I) and βj(j = 1, . . . , J) are positive numbers and I ≥ 1, J ≥ 1.
It is easy to see that

βj
α1
e1 + eI+j ∈ NC (j = 1, . . . , J),(3.35)

ei −
αi
β1
eI+1 ∈ NC (i = 1, . . . , I),(3.36)

ek ∈ NC (k = I + J + 1, . . . , n),(3.37)

and these vectors are linearly independent. Thus, span(NC) = <n.
The following result is a direct consequence of Theorem 2.1.
Corollary 3.11. If y∗ = 0 is an isolated minimizer of the problem

min{xTQx+ gTx : xTCx = 0},(3.38)

then there exists λ ∈ < such that Q+ λC is positive definite.
Proof. For any nonzero x ∈ <n such that xTCx = 0, we have (−x)TC(−x) = 0;

thus, our assumption implies that

xTQx =
1

2
(xTQx+ gTx) +

1

2
(−xTQ(−x) + gT (−x)) > 0.(3.39)

Therefore, the corollary follows from Theorem 2.1.
Similarly, we can show the following theorem.
Theorem 3.12. If y∗ = 0 is an isolated minimizer of problem (3.6) and con-

ditions (3.7)–(3.8) fail, then there exist λ1, λ2 ∈ < such that Q + λ1C1 + λ2C2 is
positive definite.

Proof. For any feasible point x of (3.6), the point −x is also a feasible point.
Thus, y∗ = 0 is also an isolated local minimizer of (3.33). Therefore, we have that
xTQx > 0 for all nonzero x, which satisfies xTC1x = xTC2x = 0. Since conditions
(3.7)–(3.8) are not satisfied, w.l.o.g. we assume that (3.7) is not true. First, we assume
that

sup
x∈NC1

xTC2x = 0.(3.40)
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Thus, y∗ = 0 is also the unique global minimizer of

min{xTQx : xTC1x = 0}.(3.41)

It follows from Theorem 2.1 that there exists λ ∈ < such that Q + λC1 is positive
definite.

To complete our proof, we assume that

min
x∈NC1

xTC2x = 0.(3.42)

We consider three different cases: C1 is positive semidefinite, negative semidefinite,
or indefinite.

If C1 is positive semidefinite, then the feasible region {xTC1x ≤ 0} is the subspace
NC1

. Thus, the null vector 0 is an isolated local minimizer of

min{xTQx : xTC2x = 0, x ∈ NC1
},(3.43)

which shows that there exists µ ∈ < such that Q + µC2 is positive definite in NC1
.

Thus,

x 6= 0, xTC1x = 0 =⇒ xT (Q+ µC2)x > 0.(3.44)

Hence, there exists λ ∈ < such that Q+ µC2 + λC1 is positive definite.
If C1 is negative semidefinite, we have that

x 6= 0, xTC2x = 0 =⇒ xTQx > 0.(3.45)

Therefore, it follows from Theorem 2.1 that there exists µ ∈ < such that Q+ µC2 is
positive definite.

Finally, we consider if C1 is indefinite. It follows from (3.42) and Theorem 2.2
that there exists α ∈ < such that C2 + αC1 is positive semidefinite. Because y∗ = 0
is an isolated local minimizer of (3.6), we have for all x ∈ NC2+αC1

,

x 6= 0, xTC1x = 0 =⇒ xTQx > 0.(3.46)

Thus, it follows from Theorem 2.1 that there exists β ∈ < such that Q + βC1 is
positive definite in the subspace NC2+αC1

. Using Theorem 2.1 again, we can show
that there exists γ ∈ < such that Q+ βC1 + γ(C2 + αC1) is positive definite. Hence,
the theorem is true.

4. Optimal conditions. In this section we mainly give necessary conditions for
minimizers of problem (1.3). Necessary conditions for optimality are already given in
the previous section, when both constraints are active and gradients of the constraints
are zeros at the solution.

First, the following result is obvious.
Theorem 4.1. Assume that c1(x∗) < 0 and c2(x∗) < 0. x∗ is a local minimizer

of problem (1.3) if and only if ∇q(x∗) = 0 and Q is positive semidefinite.
Hence, in the following we assume that at least one of the constraints is active at

a minimizer.
If only one constraint is active at the global minimizer x∗, w.l.o.g. we assume that

c1(x∗) = 0, c2(x∗) < 0.(4.1)
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Theorem 4.2. Assume that (4.1) holds and that x∗ is a local minimizer of
problem (1.3). If ∇c1(x∗) 6= 0, then there exists λ1 ∈ <+ such that

∇q(x∗) + λ1 ∇c1(x∗) = 0(4.2)

holds and Q + λ1C1 has at most one negative eigenvalue. If ∇c1(x∗) = 0, then
∇q(x∗) = 0 and there exists λ1 ∈ <+ such that Q+ λ1C1 is positive semidefinite.

Proof. If ∇c1(x∗) 6= 0, (4.2) follows from the Kuhn–Tucker theory. It follows from
the second order necessary condition (see, for example, Fletcher [3]) that Q+λ1C1 is
positive semidefinite in the subspace

W = {d : ∇c1(x∗)
T
d = 0, d ∈ <n }.(4.3)

Therefore, Q+ λ1C1 has at most at most one negative eigenvalue.
Now we assume that ∇c1(x∗) = 0, since y∗ = 0 is a local minimizer of

min
d∈S1

q(x∗ + d).(4.4)

Thus, it follows that

dT∇q(x∗) = 0 ∀d ∈ NC1
.

The fact that ∇c1(x∗) = 0 and (1.12) imply that C1 is indefinite. Lemma 3.10
shows that span(NC1

) = <n, which gives dT∇q(x∗) = 0 for all d ∈ <n. Therefore,
∇q(x∗) = 0. This shows that (4.2) holds for all λ1 ∈ <. ∇q(x∗) = 0, Theorem 2.4,
and the fact that y∗ = 0 solves (4.4) imply that there exists λ1 ∈ <+ such that
Q+ λ1C1 is positive semidefinite.

Using the second order necessary conditions, it can be proven that the Hessian
of the Lagrangian has at most two negative eigenvalues if both constraints c1(x) ≤ 0
and c2(x) ≤ 0 are active at the solution.

For convex problems, Yuan [15] shows that the Hessian of the Lagrangian has
at most only one negative eigenvalue at a global minimizer. In the following, Yuan’s
results are extended to general cases. For the rest of this section we assume that x∗

is a global minimizer of problem (1.3) and both constraints are active at x∗, which
means that c1(x∗) = c2(x∗) = 0. First, we consider the case when ∇c1(x∗) and
∇c2(x∗) are linearly independent.

Theorem 4.3. If x∗ is a global minimizer of problem (1.3) and if ∇c1(x∗) and
∇c2(x∗) are linearly independent, then there exist λ1, λ2 ∈ <+ such that

∇q(x∗) + λ1∇c1(x∗) + λ2∇c2(x∗) = 0(4.5)

and Q+ λ1C1 + λ2C2 has at least n− 1 nonnegative eigenvalues.
Proof. Let λ1, λ2 ∈ <+ be the corresponding Lagrange multipliers H = Q +

λ1C1 + λ2C2. Then, by the second order necessary condition we know that

xTHx ≥ 0 ∀x ∈ <n, x ⊥ ∇c1(x∗), x ⊥ ∇c2(x∗).

If H has two negative eigenvalues, similar to Yuan [15], there exist e1, e2 ∈ <n such
that for all nonzero d ∈ span{e1, e2}, dTHd < 0. Because x∗ is the global minimizer,
(0, 0)T is the unique solution of

ĉ1(α, β) = c1(x∗ + αe1 + βe2) = 0, ĉ2(α, β) = c2(x∗ + αe1 + βe2) = 0,
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where (α, β) ∈ <2, x = x∗ + αe1 + βe2. So the curves ĉ1(α, β) = 0, ĉ2(α, β) = 0
meet only at (0, 0). Define F̄ as the set of all feasible points that are connected to
(0, 0); thus, the boundary of F̄ consists of two curves. One is ĉ1(α, β) = 0; the other
is ĉ2(α, β) = 0. Let the asymptotic direction of these two curves be d̄1, d̄2; then we
have

d̄1
T∇2ĉ1d̄1 = 0; d̄1

T∇2ĉ2d̄1 ≤ 0,(4.6)

d̄2
T∇2ĉ1d̄2 ≤ 0; d̄2

T∇2ĉ2d̄2 = 0.(4.7)

Due to the optimality of x∗, we know that

d̄1
T∇2q̂(x∗)d̄1 ≥ 0; d̄2

T∇2q̂(x∗)d̄2 ≥ 0,(4.8)

where q̂(α, β) = q(x∗+αe1 + βe2). Since dTHd < 0 for all nonzero d ∈ span{e1, e2},
it follows that

d̄1
T∇2ĉ2d̄1 < 0; d̄2

T∇2ĉ1d̄2 < 0.(4.9)

By considering a sequence of interior points of F̄ , one can see that for any direction
d between d̄1, d̄2,

dT∇2ĉ2d < 0; dT∇2ĉ1d < 0.(4.10)

Otherwise, assume there exists d ∈ int(K), dT∇2ĉ1d = 0; then, (α, β)∇2ĉ1(α, β)T

has a local maximum at d. Hence, ∇2ĉ1 is negative semidefinitive, which shows that
ĉ1(α, β) = 0 is a parabolic curve. Because the two curves have only one cross and
the asymptotic direction of a parabolic curve is the same one, we know that d̄1 is
parallel to d̄2, which contradicts (4.9). Hence, there exists a cone K whose boundary
direction is d̄1, d̄2, and for any interior direction of K, (4.10) holds. Now, for large
enough t > 0, −td is a feasible point. Because the two curves meet only at (0, 0),
−td 6∈ F̄ . Let the connected part of the feasible set which includes −td be F̂ ; then,
F̄ ∩ F̂ = φ. Because (0, 0) is the unique cross of two curves, the boundary of F̂
is defined by only one curve. Without loss of generality, assume that the boundary
is defined by ĉ1(α, β) = 0. Let the asymptotic directions of F̂ be d̂1, d̂2, and the
corresponding cone is K̂. Since (4.10) holds for all d̄ ∈ K, it holds that −K ⊂ K̂, so

−d̄2 ∈ K̂. Furthermore, for all d̂ ∈ K̂ we have

d̂T∇2ĉ2d̂ ≤ 0, d̂T∇2ĉ1d̂ ≤ 0.

One can also show that there exists no d̂ ∈ K̂ such that

d̂T∇2ĉ2d̂ = 0, d̂T∇2ĉ1d̂ = 0

and that

d̂1
T∇2ĉ1d̂1 = 0, d̂2

T∇2ĉ1d̂2 = 0,(4.11)

d̂1
T∇2ĉ2d̂1 < 0, d̂2

T∇2ĉ2d̂2 < 0.(4.12)

Hence, −d̄2 is an interior direction of K̂, which implies that ĉ2(α, β) = 0 is a parabolic
curve. This contradicts (4.9). So, H has at most one negative eigenvalue.



OPTIMALITY CONDITIONS 591

The condition that the Hessian of the Lagrangian has at most one negative eigen-
value is not a sufficient condition for x∗ being a local minimizer. For example, point
(1, 1, 0)T is a Kuhn–Tucker point of the following 3-dimensional problem:

min− 4y + (x− 1)2 + y2 − 10z2(4.13)

s.t. x2 + y2 + z2 ≤ 2,(4.14)

(x− 2)2 + y2 + z2 ≤ 2.(4.15)

It is easy to see that the Lagrange multipliers are (1, 1). The Hessian of the Lagrangian
is  6 0 0

0 6 0
0 0 −6

 ,

which has 2(= n − 1) positive eigenvalues. But one can easily show that the point
(1, 1, 0)T is not a local minimizer because the second order necessary condition is not
satisfied.

In the following we deal with the case when ∇c1(x∗) and ∇c2(x∗) are linearly
dependent. Because we have already studied the case when ∇c1(x∗) = ∇c2(x∗) = 0
in the previous section, we can assume that either ∇c1(x∗) or ∇c2(x∗) is not zero.
Without loss of generality, we assume that ∇c1(x∗) 6= 0 and ∇c2(x∗) = α∇c1(x∗) for
the rest of the section. First we discuss the case when α > 0.

Theorem 4.4. If x∗ is a global minimizer of problem (1.3) and if there exists
α > 0 such that ∇c2(x∗) = α∇c1(x∗) 6= 0, then there exist λ1, λ2 ∈ <+ such that
(4.5) holds and the matrix Q+ λ1C1 + λ2C2 is positive semidefinite.

Proof. Since ∇c2(x∗) = α∇c1(x∗) 6= 0 for some α > 0, the optimality of x∗

implies that dT∇q(x∗) ≥ 0 for all d such that dT∇c1(x∗) < 0. Therefore, there exists
β ≤ 0 such that ∇q(x∗) = β∇c1(x∗). If β < 0, there is no loss of generality in
assuming that ∇c1(x∗) = ∇c2(x∗) = −∇q(x∗) 6= 0. First, we show that

max(xT (Q+ C1)x, xT (Q+ C2)x) ≥ 0 ∀x ∈ <n.(4.16)

If it fails, there exists d̂ ∈ <n such that

d̂T∇c1(x∗) 6= 0, d̂T (Q+ C1)d̂ < 0, d̂T (Q+ C2)d̂ < 0.(4.17)

The fact that x∗ is a global minimizer of (1.3) and (4.17) imply that either d̂TC1d̂ or

d̂TC2d̂ is not zero. Thus, we can choose λ 6= 0 ∈ < so that

c1(x∗ + λd̂) = 0, c2(x∗ + λd̂) ≤ 0(4.18)

or

c1(x∗ + λd̂) ≤ 0, c2(x∗ + λd̂) = 0.(4.19)

Without loss of generality, we assume that (4.18) is true; it then follows that

q(x∗ + λd̂)− q(x∗) = λ2d̂T (Q+ C1)d̂ < 0,(4.20)

which is a contradiction. Thus, (4.16) holds. Hence, our theorem follows from (4.16)
and Theorem 2.4.
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If β = 0, (4.5) holds for λ1 = λ2 = 0. The optimality of x∗ implies that dTQd ≥ 0
for all d such that dT∇c1(x∗) < 0. Since span{d : dT∇c1(x∗) < 0} = <n, it follows
that Q is positive semidefinite.

In what follows we will consider the case when ∇c2(x∗) = α∇c1(x∗) for some
α ≤ 0.

Theorem 4.5. Assume that x∗ is a global minimizer of problem (1.3) and that
c1(x) and c2(x) satisfy (1.11)–(1.12). If ∇c1(x∗) 6= 0 and ∇c2(x∗) = α∇c1(x∗) for
some α ≤ 0 and ∇q(x∗) = γ∇c1(x∗), then there exist λ1, λ2 ∈ <+ so that (4.5) holds
and Q+ λ1C1 + λ2C2 is positive semidefinite.

Proof. First, we consider the case when ∇c2(x∗) = α∇c1(x∗) for some α < 0.
Without loss of generality, we assume that ∇c1(x∗) = −∇c2(x∗) 6= 0 and γ ≤ 0. Now
we show that

max(xT (Q− γC1)x, xT (C1 + C2)x) ≥ 0 ∀x ∈ <n.(4.21)

Otherwise, we can choose d̂ ∈ <n such that

d̂T∇c1(x∗) < 0, d̂T (Q− γC1)d̂ < 0, d̂T (C1 + C2)d̂ < 0.(4.22)

If d̂TC1d̂ = 0, then d̂TQd̂ < 0, d̂TC2d̂ < 0. We can let λ ∈ <+ sufficiently large so
that λd̂ is feasible and q(x∗+λd̂)− q(x∗) < 0, which is a contradiction. If d̂TC1d̂ 6= 0,
we can choose λ ∈ < so that

c1(x∗ + λd̂) = 0, c2(x∗ + λd̂) < 0.(4.23)

It follows that

(4.24)

q(x∗ + λd̂)− γc1(x∗ + λd̂)− q(x∗) = q(x∗ + λd̂)− q(x∗) = λ2d̂T (Q− γC1)d̂ < 0,

which is a contradiction. Thus, (4.21) holds. Since conditions (1.11)–(1.12) imply
that C1 + C2 cannot be positive semidefinite, our theorem follows from (4.21) and
Theorem 2.4.

Now we turn to the case when ∇c2(x∗) = 0. The assumptions in our theorem
imply that ∇q(x∗) = γ∇c1(x∗) for some γ ≤ 0. By a similar process, we can show
that

max(xT (Q− γC1)x, xTC2x) ≥ 0 ∀x ∈ <n,(4.25)

which means that our theorem still holds when ∇c2(x∗) = 0.
In the above two theorems, we have discussed optimal properties of the Hessian of

a generalized Lagrangian functions when ∇c1(x∗) and ∇c2(x∗) are linearly dependent
and ∇q(x∗) ∈ span{∇c1(x∗)}. But if ∇q(x∗) 6∈ span{∇c1(x∗)}, then the Kuhn–
Tucker theory and (4.5) fail. In this case, we need to assume that x∗ is a unique
solution to continue our analysis.

Theorem 4.6. Assume that x∗ is a unique global minimizer of problem (1.3) and
that c1(x) and c2(x) satisfy (1.11)–(1.12). If ∇c1(x∗) 6= 0 and ∇c2(x∗) = −α∇c1(x∗)
for some α ≥ 0 and if ∇q(x∗) and ∇c1(x∗) are linearly independent, then there exist
λ1, λ2 ∈ < such that Q+ λ1C1 + λ2C2 has at least n− 1 positive eigenvalues.

Proof. Let W be defined by (4.3). It follows from the definition of x∗ that y∗ = 0
is the unique solution of the following problem:

min{xTQx+ xT∇q(x∗) : xTC1x ≤ 0, xTC2x ≤ 0, x ∈W}.(4.26)
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We now show that

max(xTC1x, x
TC2x) ≥ 0 ∀x ∈W.(4.27)

Otherwise, there exists x ∈W such that

xTC1x < 0, xTC2x < 0.(4.28)

Without loss of generality, we assume that xT∇q(x∗) ≤ 0. Therefore, we can choose
sufficiently small ε > 0 such that

x̄T∇q(x∗) < 0, x̄TC1x̄ ≤ 0, x̄TC2x̄ ≤ 0, x̄ = x− ε∇q(x∗),(4.29)

which contradicts the basic assumptions of the theorem. Thus, (4.27) is true. It
follows from Theorem 3.12 that there exist λ1, λ2 ∈ < such that Q+ λ1C1 + λ2C2 is
positive definite in W . This proves our theorem.

5. Discussion. We have shown that the Hessian of the Lagrangian at the solu-
tion of problem (1.3) has at most only one negative eigenvalue if the Jacobian of the
constraints is not zero. For some special cases, it is shown that the Hessian is positive
semidefinite or definite. We have also derived some relations between matrix pencils
and optimality. The necessary conditions given in the paper are stronger than the
standard second order necessary condition, which says the Hessian is positive semidef-
inite in the null space of the constraint gradients. It is pointed out that the necessary
conditions obtained are not sufficient conditions for optimality. It is interesting to
investigate whether there are sufficient conditions that are weaker than the standard
second order sufficient condition, which requires the Hessian of the Lagrangian to be
positive definite at the null space of the constraint gradients. We believe that our
theoretical results will help us to understand problem (1.3) better; they also will be
useful for development of numerical algorithms for trust region subproblems.

Acknowledgment. We would like to thank Professor J.M. Mart́ınez and two
referees for their valuable comments.
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Abstract. We reformulate convex quadratic programs with simple bound constraints and
strictly convex quadratic programs as problems of unconstrained minimization of convex quadratic
splines. Therefore, any algorithm for finding a minimizer of a convex quadratic spline can be used
to solve these quadratic programming problems. In this paper, we propose a Newton method to find
a minimizer of a convex quadratic spline derived from the unconstrained reformulation of a strictly
convex quadratic programming problem. The Newton method is a “natural mixture” of a descent
method and an active-set method. Moreover, it is an iterative method, yet it terminates in finite
operations (in exact arithmetic).

Key words. convex quadratic programs, convex quadratic splines, active-set methods, Newton
methods, exact penalty functions

AMS subject classifications. Primary, 90C20; Secondary, 49M40

PII. S1052623493246045

1. Introduction. In this paper, we present new ideas and algorithms for solving
the convex quadratic programming problem

min

{
1

2
xTMx− bTx : l ≤ Ax ≤ u

}
,(1.1)

where M is an n × n symmetric positive semidefinite matrix, A is an m × n ma-
trix, b ∈ Rn (a vector of n components), and l, u ∈ Rm (vectors of m components).
Our approach is to reformulate (1.1) as an unconstrained minimization problem with
a convex quadratic spline (i.e., a differentiable convex piecewise quadratic function)
as the objective function and to solve the new unconstrained problem. The uncon-
strained reformulation is possible whenever M is nonsingular or A is a nonsingular
square matrix (m = n).

The main efforts in developing numerical algorithms for quadratic programs are
focused on the following three types of methods: active-set methods, matrix splitting
methods, and interior-point methods. Interior-point methods are particularly efficient
for solving linear programs, and efforts have been made to use interior-point methods
for solving quadratic programs (cf., [36], [37], [29], [44], [8], and references therein).
Matrix splitting methods contain a large class of algorithms for solving linear equa-
tions, quadratic programs, and linear complementarity problems [20], [28], [31], [32],
[33], [34]. Even though matrix splitting methods and interior-point methods for solv-
ing quadratic programs attracted much attention in recent years, active-set methods
are still the dominant approach in the development of software for quadratic pro-
grams (cf. [36]). Active-set methods solve a quadratic problem in finite steps through
pivoting and determination of “active sets,” if applicable (cf., for example, [39], [12],
[14], [41]). In general, active-set methods use an add-or-drop-one-constraint strategy
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in each iteration and are slow if the initial estimate of the active set is markedly dif-
ferent from the optimal one. For example, subroutine QPROG in the IMSL library
(cf. [18]) is Powell’s implementation [41] of Goldfarb and Idnani’s active-set method
[14] and is a stable and fairly efficient general purpose algorithm for solving strictly
convex quadratic programs. However, for problems with a large number of active con-
straints, QPROG is slow to find the solution because it starts with the unconstrained
minimizer of the objective function (i.e., its initial estimate of the active set is the
empty set). Two kinds of remedies have been proposed to improve the performance
of active-set methods: one is to find a good starting point [4] and another is to allow
the swapping of many constraints in each iteration [46], [35], [11].

In studying r-convex approximation problems [27], we have discovered the sim-
ple but subtle fact that the system of piecewise linear equations associated with the
Karush–Kuhn–Tucker conditions of (1.1) is a linear transformation of the gradient of
a convex quadratic spline function whenever M is nonsingular or A is a nonsingu-
lar square matrix (m = n). In particular, we have given an explicit unconstrained
reformulation of (1.1) when M (or A) is the identity matrix [27]. Under the ad-
ditional assumption that AAT (or M) is nonsingular, the objective function of the
unconstrained minimization problem is actually a strictly convex quadratic spline. In
this case, we can use a Newton method with line search to solve the unconstrained
minimization problem. The algorithm is a descent method that terminates in finite
operations (in exact arithmetic). The method was tested on r-convex approximation
problems, and the numerical results showed that the method is quite stable and ef-
ficient [27]. However, the disadvantage of our method is that it is too restrictive to
require the nonsingularity of both M and AAT . The objective of the present paper is
to design an algorithm that enjoys all the nice properties of the Newton method but
does not require the nonsingularity of AAT . Our new algorithm is a mixture of an
active-set method and a dual descent method, which has the following properties:

1. it terminates in a finite number of operations (in exact arithmetic);
2. as an active-set method, it requires no primal or dual feasibility;
3. as an active-set method, it allows the swapping of many constraints at each

iteration;
4. as a dual descent method, it can use any starting point;
5. as a dual descent method, it can easily recover from severe numerical errors

in computation.
Note that a reformulation of (1.1) as an unconstrained minimization problem is

not a new idea. One can use penalty functions to get unconstrained reformulations
of (1.1) (cf. [6]). However, the merit of our reformulation is that the new objective
function is a convex quadratic spline function on Rn or Rm. This facilitates various
unconstrained minimization techniques for solving the unconstrained reformulation of
(1.1).

In summary, our goal is to show that unconstrained reformulations of (1.1) lead
to development of new algorithms for solving (1.1). In section 2, we provide the
explicit unconstrained reformulations of (1.1) when M is nonsingular or A is a non-
singular square matrix. Section 3 contains two basic results about descent methods
for solving the problem of unconstrained minimization of a convex quadratic spline.
In section 4, we present our new algorithm, called QPspline, for solving (1.1) when
M is nonsingular and prove its finite termination property. Comparison of numerical
performance of QPspline and QPROG in the IMSL library is given in section 5, which
shows the potential of QPspline as a general purpose algorithm for solving strictly
convex quadratic programming problems. Finally, in section 6, we discuss advantages
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and disadvantages of QPspline and point out potential research directions.

For an index set J , xJ (or BJ) denotes the vector (or the matrix) consisting of
components (or rows) of x (or B) whose indices are in J . The transpose of a vector
x (or a matrix B) is written as xT (or BT ). The gradient of a function f on Rm is
denoted by f ′. For a vector x, (x)+ is the vector whose ith component is max{xi, 0}
and (x)ul is the vector whose ith component is max{min{xi, ui}, li}. A differentiable
function f on Rm is called a quadratic spline if f ′ is a piecewise linear mapping. That
is, f is a quadratic spline if and only if f is differentiable and there are finitely many
convex polyhedral subsets {Wi}ri=1 such that

⋃r
i=1Wi = Rm, and f is a quadratic

function on each Wi. We write x ≤ y if xi ≤ yi for all i. The 2-norm on Rn is defined
as ‖x‖ := (

∑n
i=1 x

2
i )

1
2 and the `∞ norm on Rn is defined as ‖x‖∞ := max1≤i≤n |xi|.

2. Unconstrained reformulations. In this section, we show that (1.1) can
be reformulated as an unconstrained minimization problem with a convex quadratic
spline function as the objective function whenever M is nonsingular or A is a
nonsingular square matrix (m = n). In order to provide a unified approach for our
reformulations, we first consider a special class of piecewise linear mappings that are
gradients of quadratic splines.

Lemma 2.1. Suppose that P,Q are s × s matrices, P is symmetric, β is any
constant, p, q ∈ Rs, and l, u are vectors of s components such that li ∈ [−∞,∞),
ui ∈ (−∞,∞], and li ≤ ui. Then γ(z) := Pz + p + βQT (Qz + q)ul is the gradient of
the quadratic spline

Γ(z) :=
1

2
zT (P+βQTQ)z+zT (p+βQT q)− β

2
‖(l−(Qz+q))+‖2−

β

2
‖((Qz+q)−u)+‖2.

Moreover, if both P and P+βQTQ are positive semidefinite, then Γ(z) is also convex.

Proof. Since (v)ul ≡ v + (l − v)+ − (v − u)+, we have

γ(z) = (P + βQTQ)z + (p+ βQT q) + βQT (l − (Qz + q))+ − βQT ((Qz + q)− u)+.

By d
dt (t)

2
+ = 2(t)+ and the chain rule, we know that γ(z) is the gradient of Γ(z).

Let S−1,i := (−∞, li], S0,i = [li, ui], and S1,i := [ui,∞). For τ := (τ1, . . . , τs)
with τi ∈ {−1, 0, 1} (i.e., τ ∈ {−1, 0, 1}s), define

Zτ := {z ∈ Rs : (Qz + q)i ∈ Sτi,i for 1 ≤ i ≤ s}.

Obviously,

Rs :=
⋃

τ∈{−1,0,1}s
Zτ .

For any τ , Zτ is a closed set that may be empty. If Zτ is not empty, then

γ(y)− γ(z) = (P + βQTΣτQ)(y − z) for y, z ∈ Zτ ,

where Στ is the diagonal matrix whose jth diagonal entry is 1 if τj = 0 and 0 if τj 6= 0.
Let y, z ∈ Rs. Then the intersection of the line segment [y, z] := {yθ := θz+ (1− θ)y :
0 ≤ θ ≤ 1} and each convex set Zτ is also a line segment if not empty. Therefore,
there exist 0 =: θ0 < θ1 < · · · < θr := 1 and τ i ∈ {−1, 0, 1}s for 1 ≤ i ≤ r such that
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[yθi−1
, yθi ] ⊂ Zτ i . Thus,

γ(y)− γ(z) =
r∑
i=1

(γ(yθi−1
)− γ(yθi))

=
r∑
i=1

(P + βQTΣτ iQ)(yθi−1
− yθi)

=
r∑
i=1

(θi − θi−1)(P + βQTΣτ iQ)(y − z).

Now suppose that both P and P + βQTQ are positive semidefinite. If β ≥ 0, (P +
βQTΣτ iQ) is positive semidefinite, since it is a summation of two positive semidefinite
matrices. If β < 0, then

vT (P + βQTΣτ iQ)v = vTPv + β
s∑
j=1

τi
j
=0

|(Qv)j |2

≥ vTPv + β‖Qv‖2 = vT (P + βQTQ)v ≥ 0,

where the last inequality follows from the positive semidefiniteness of P + βQTQ.
Therefore,

(y − z)T (γ(y)− γ(z)) =
r∑
i=1

(θi − θi−1)(y − z)T (P + βQTΣτ iQ)(y − z) ≥ 0.

That is, γ(z) is monotone. Hence, Γ(z) is convex (cf. [38]).
Remark. A special case of the above lemma was first given in [26].
It is well known that the Karush–Kuhn–Tucker conditions of (1.1) form a system

of piecewise linear equations. More generally, an affine variational inequality problem
is equivalent to a system of piecewise linear equations, even though the system of
piecewise linear equations involves a projection to a convex polyhedral set (cf. [7]
or Proposition 2.3 in [17]). A special case of the following explicit reformulation
of the Karush–Kuhn–Tucker conditions with an arbitrary positive constant α was
given in [27], which led to the reformulation of (1.1) (when M = I or A = I) as an
unconstrained minimization problem with a convex quadratic spline as the objective
function.

Lemma 2.2. Let α be a positive constant. Then x is a solution of (1.1) if and
only if there exists w ∈ Rm such that

Mx− b−ATw = 0, Ax = (Ax− αw)ul .(2.1)

Proof. It is well known from the Karush–Kuhn–Tucker conditions that x is a
solution of (1.1) if and only if there exists w ∈ Rm such that, for 1 ≤ i ≤ m,

Mx− b−ATw = 0,(2.2)

(Ax)i = li if wi > 0,

(Ax)i = ui if wi < 0,

li ≤ (Ax)i ≤ ui if wi = 0.

(2.3)
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Therefore, it suffices to show that the complementarity conditions in (2.3) are equiv-
alent to the system of piecewise linear equations: Ax = (Ax− αw)ul .

Obviously, (2.3) implies Ax = (Ax − αw)ul . Now, assume Ax = (Ax − αw)ul .
By the definition of (z)ul , Ax = (Ax − αw)ul implies l ≤ Ax ≤ u. Hence, (2.3)
holds for wi = 0. If wi > 0 and (Ax)i > li, then ((Ax − αw)ul )i < (Ax)i, which is
impossible. Thus, wi > 0 implies (Ax)i = li. Finally, wi < 0 and (Ax)i < ui imply
((Ax−αw)ul )i > (Ax)i, which contradicts the assumption that Ax = (Ax−αw)ul ; we
must have (Ax)i = ui when wi < 0.

Remark. In the above reformulation, we treat an equality constraint as a special
two-sided inequality constraint (with li = ui). This provides a unified treatment
of both inequality and equality constraints. The advantage is to avoid treating one
two-sided constraint as two one-sided constraints, since it unnecessarily increases the
dimension of the dual space. In the case that M is nonsingular, (1.1) is equivalent to
a problem of unconstrained minimization of Φ(w) (cf. Theorem 2.5) and one can see
that the increase of the dimension of w-space is undesirable.

The proof of Lemma (2.2) is still valid if we replace α by a diagonal matrix with
positive diagonal entries.

Proposition 2.3. Let D be a diagonal matrix with positive diagonal entries;
then, x is a solution of (1.1) if and only if there exists w ∈ Rm such that

Mx− b−ATw = 0, Ax = (Ax−Dw)ul .(2.4)

Proposition 2.3 is very similar to Mangasarian’s reformulation of linear comple-
mentarity problems (cf. Lemma 2.1 in [33]). Special cases of the above proposition
have been used and exploited by many people, for example, Moré and Toraldo [35],
Bertsekas [1], and Conn, Gould, and Toint [3].

Proposition 2.4. For any n×n matrix M and b, w = Mx−b ≥ 0, x ≥ 0, wTx =
0 if and only if x = (x−Dw)+ (i.e., x = (x−D(Mx− b))+).

When M is symmetric positive semidefinite, l = 0, u = +∞, and A = I, Proposi-
tions 2.3 and 2.4 are equivalent, since the complementarity conditions are the Karush–
Kuhn–Tucker conditions of (1.1). In this case, Proposition 2.3 and Lemma 2.2 are
due to Mangasarian.

The reason we prefer Lemma 2.2 to Proposition 2.3 is its simplicity. In the
following discussion, one can always replace α by D and get similar unconstrained
reformulations of (1.1) involving an arbitrary D.

Now, based on Lemmas 2.1 and 2.2, we can have two unconstrained reformulations
of (1.1), depending on whether M is nonsingular or A is a nonsingular square matrix.

First, suppose that M is nonsingular. Let x(w) := M−1(ATw + b). Then we
obtain the following equivalent system of (2.4):

Ax(w) = (Ax(w)− αw)ul ;

i.e.,

ϕ(w) := Ax(w)− (Ax(w)− αw)ul = 0.(2.5)

Let

B = αI −AM−1AT .

Then, AM−1AT = αI − B and Bϕ(w) = (αB − B2)w + BAM−1b − B(−Bw +
AM−1b)ul . Let P := αB−B2, Q = −B, p = BAM−1b, q = AM−1b, and β = 1. Then
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P+βQTQ = αB, p+βQT q = 0, c := l−q = l−AM−1b, and d := q−u = AM−1b−u.
By Lemma 2.1, Bϕ(w) is the gradient of the following quadratic spline function:

Φ(w) :=
α

2
wTBw − 1

2
‖(Bw + c)+‖2 −

1

2
‖(d−Bw)+‖2.(2.6)

That is, Φ′(w) = Bϕ(w).
If α > ‖AM−1AT ‖, where ‖AM−1AT ‖ is the spectral radius of AM−1AT , then

B is a symmetric positive definite matrix whose eigenvalues are in the interval (0, α].
Therefore, P = αB −B2 is symmetric positive semidefinite and P + βQTQ = (αB −
B2) + (−B)T (−B) = αB is positive definite. By Lemma 2.1, Φ(w) is a convex
quadratic spline. Therefore, ϕ(w∗) = 0 if and only if Bϕ(w∗) = 0, which is equivalent
to

Φ(w∗) = inf
w∈Rm

Φ(w).(2.7)

The above analysis leads to the following unconstrained reformulation of (1.1) with a
positive definite M .

Theorem 2.5. Suppose that M is a symmetric positive definite matrix and
α > ‖AM−1AT ‖. Then Φ(w) is a convex quadratic spline function. Moreover, x∗ is
the solution of (1.1) if and only if x∗ = M−1(ATw∗ + b), where w∗ is a solution of
(2.7) (or (2.5)).

If M is singular, then we cannot solve Mx− b−ATw = 0 for x. However, if A is
a nonsingular square matrix, then we can write w in terms of x as follows:

w = (AT )−1ATw = (AT )−1(Mx− b).(2.8)

Substituting (2.8) into the second equation in (2.4), we obtain

Ax = ((A− α(AT )−1M)x+ α(AT )−1b)ul .(2.9)

In this case, one cannot find a quadratic spline function whose gradient is a linear
transformation of Ax− ((A− α(AT )−1M)x+ α(AT )−1b)ul , due to the asymmetry of
A− α(AT )−1M . Fortunately, with the substitution y = Ax, we can rewrite (2.9) as

y = (Ey + q)ul ,(2.10)

where E := I−α(A−1)TMA−1 and q := α(AT )−1b. Note that y is a solution of (2.10)
if and only if x = A−1y is a solution of (2.9), which is equivalent to the fact that x
and w := (AT )−1(Mx− b) satisfy the Karush–Kuhn–Tucker conditions (2.4). Hence,
y is a solution of (2.10) if and only if x := A−1y solves (1.1).

Let ψ(y) := y − (Ey + q)ul . Then, Eψ(y) = Ey − E(Ey + q)ul . Let P ≡ Q := E
and β = −1. Then, by Lemma 2.1, Eψ(y) is the gradient of the following quadratic
spline:

Ψ(y) :=
1

2
yT (E − E2)y − yTEq +

1

2
‖(l − (Ey + q))+‖2 +

1

2
‖((Ey + q)− u)+‖2.

If 0 < α < ‖(A−1)TMA−1‖−1, then E is a symmetric positive definite matrix whose
eigenvalues are in the interval (0, 1]. Hence, P+βQTQ = E−E2 is symmetric positive
semidefinite. By Lemma 2.1, Ψ(y) is convex. In this case, ψ(y∗) = 0 if and only if
Eψ(y∗) = 0, which is equivalent to

Ψ(y∗) = inf
y∈Rn

Ψ(y).(2.11)
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The following unconstrained reformulation of (1.1) with a nonsingular A is the con-
sequence of the above discussions.

Theorem 2.6. Let A be a nonsingular square matrix (m = n) and 0 < α <
‖(A−1)TMA−1‖−1. Then Ψ(y) is a convex quadratic spline function. Moreover, x∗

is the solution of (1.1) if and only if y∗ = Ax∗ is a solution of (2.11) (or (2.10)).
Remark. Special cases of Theorems 2.5 and 2.6 were given in [27].
We would like to mention that, based on an `1 penalty function, Coleman and

Hulbert [2] reformulated (1.1) with l = −1, u = 1, A = I (the identity matrix), and a
positive definite M as an unconstrained minimization of a convex piecewise quadratic
function that is, in general, not differentiable. By using Glad and Polak’s multiplier
function [13] and a differentiable exact penalty function [6], Grippo and Lucidi [15],
[16] also derived an unconstrained reformulation of (1.1) when A = I and the feasible
region {x : l ≤ x ≤ u} is compact. The derived penalty function P (x, ε) is a compli-
cated piecewise rational function and is only continuously differentiable in a compact
neighborhood D of the feasible region. The penalty function P (x, ε) approaches∞ as
x moves toward the boundary of D because of barrier terms involved. The penalty
parameter ε has to be determined by maximization of some linear and nonlinear func-
tions. In contrast, our penalty function Ψ(x) for (1.1) is a convex quadratic spline
function when A = I. A parameter α involved in the definition of Ψ(x) easily can be
determined by the 2-norm of M . When M is positive definite, we actually reformulate
(1.1) as the unconstrained minimization of a convex quadratic spline function Φ(w) in
dual variables w. Again, a parameter α involved in the definition of Φ(w) easily can
be determined by the 2-norm of AM−1AT . Note that (as pointed out by Di Pillo and
Grippo), in practice, one could only choose a penalty parameter to get a differentiable
exact penalty function of a constrained minimization problem with reference to some
compact set [6]. However, for convex quadratic programs (1.1) with a positive definite
matrix M or a nonsingular square matrix A, we can have differentiable exact penalty
functions on either Rm or Rn.

3. Unconstrained minimization of convex quadratic splines. Due to our
reformulations given in the previous section, it is natural to study the theory of
unconstrained minimization of convex quadratic splines. Consider the following un-
constrained minimization of a convex quadratic spline f(w):

−∞ < fmin := min
w∈Rm

f(w).(3.1)

Let W ∗ be the solution set of (3.1). That is, W ∗ := {w ∈ Rm : f(w) = fmin}. Here we
establish two basic results (Lemmas 3.3 and 3.7) about descent methods for solving
(3.1). Suppose that we generate a descent sequence {wk} (i.e., f(wk) ≥ f(wk+1)).
The first basic result (Lemma 3.3) shows that if there exists a subsequence {kj}
such that limj→∞ ‖f ′(wkj )‖ = 0, then limk→∞ f(wk) = fmin (i.e., {wk} is a weakly
convergent sequence). This provides a lot of flexibility to design a descent method
that will generate a weakly convergent sequence. For example, we can generate a
weakly convergent descent sequence {wk} freely as long as there is a subsequence
{kj} such that ‖f ′(wkj )‖ ≤ γ(f(wkj ) − f(wkj+1)). A weakly convergent sequence
actually allows us to identify (3.1) with a feasibility problem. To be more specific, let
{Wi}s1 be a collection of polyhedral subsets of Rm such that Rm =

⋃s
i=1Wi and f(w)

is a quadratic function on eachWi. Such Wi’s can be determined by the representation
of f(w) (cf. Ψ(y) and Φ(w) in section 2). We say that Wi is a solution region if Wi

contains a solution of (3.1). If wk is in a solution region Wi, then (3.1) is equivalent
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to the following feasibility problem:

Aiw − bi = 0, w ∈Wi,(3.2)

where f ′(w) = Aiw− bi on Wi. It turns out (cf. Lemma 3.7) that, for k large enough,
wk will always be in a solution region, provided that limk→∞ f(wk) = fmin. This
allows us to design descent methods for solving (2.7) that terminate in finite iterations.
One way to design such a method is to generate a good approximate solution wk+1

of the feasibility problem (3.2) if wk is in Wi and, best of all, to generate a solution
of (3.2) whenever it is solvable. The design of Algorithm 4.1 is motivated by the
ideas illustrated in Lemmas 3.3 and 3.7. Not surprisingly, Lemmas 3.3 and 3.7 will
be crucial in the proof of finite termination of Algorithm 4.1.

In order to derive that the gradients of iterates {xk} generated by a descent
method converge to 0 (i.e., limk→∞ ‖f ′(xk)‖ = 0), one needs an estimate of ‖f ′(xk)‖
in terms of (f(xk)− f(xk+1)). The following inequality (3.3) provides a means to do
so. The inequality was implicitly used in proving Wolfe’s weak convergence result on
descent methods for any unconstrained minimization problem [45]. However, if h(w)
is not convex, then the same inequality requires an additional assumption h(w) ≥
h(w + tz)− δtzTh′(w) with a fixed positive constant δ (cf. pp. 118–121 in [5]).

Lemma 3.1. Suppose that h(w) is a convex function, its gradient h′(w) is Lips-
chitz continuous, and 0 < β < 1. Then, there exists a positive constant γ (depending
only on h and β) such that(

zTh′(w)

‖z‖

)2

≤ γ(h(w)− h(w + tz)),(3.3)

whenever t > 0 and 0 ≥ zTh′(w + tz) ≥ β · zTh′(w).
Proof. Since h(w + θz) is a convex function of θ, the derivative g(θ) := d

dθh(w +
θz) = zTh′(w + θz) is a nondecreasing function of θ. By the intermediate value
theorem, there exists a positive constant t̂ ≤ t such that g(t̂) = β · zTh′(w). Since
g(θ) ≤ g(t̂) ≤ g(τ) ≤ 0 for 0 ≤ θ ≤ t̂ ≤ τ ≤ t,

h(w+tz) = h(w)+

∫ t

0

g(θ)dθ ≤ h(w)+

∫ t̂

0

g(θ)dθ ≤ h(w)+g(t̂)t̂ = h(w)+β · t̂zTh′(w).

(3.4)
Rewrite (3.4) as follows:

0 ≤ −zTh′(w) ≤ 1

βt̂
(h(w)− h(w + tz)).(3.5)

Moreover, we have

−(1− β)zTh′(w) = zTh′(w + t̂z)− zTh′(w) ≤ λt̂‖z‖2,(3.6)

where the first equality follows from the definition of t̂ and the second inequality is
the consequence of the Cauchy–Schwarz inequality and the Lipschitz continuity of h′

(with the Lipschitz constant λ). Since t̂ > 0, by (3.5) and (3.6) we obtain(
zTh′(w)

‖z‖

)2

=
(−zTh′(w))(−zTh′(w))

‖z‖2

≤
(

1

βt̂
(h(w)− h(w + tz))

)(
λ

1− β t̂‖z‖
2

)
1

‖z‖2

=
βλ

1− β (h(w)− h(w + tz)).
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To prove the first basic lemma in this section, we also need the following error
estimate for approximate solutions of a piecewise linear equation, which is a conse-
quence of the upper Lipschitz continuity of a polyhedral mapping proved by Robinson
[42].

Lemma 3.2 (Robinson’s theorem [42]). Let g(w) be a piecewise linear mapping
and let Y ∗ := {w : g(w) = 0} 6= ∅. Then there exist positive constants ε and λ such
that

dist(w, Y ∗) := inf
w∗∈Y ∗

‖w − w∗‖ ≤ λ‖g(w)‖ for ‖g(w)‖ ≤ ε.

Lemma 3.3. Suppose that f(wk+1) ≤ f(wk) for k = 0, 1, . . .. If there exists a
subsequence {kj} such that limj→∞ ‖f ′(wkj )‖ = 0, then limk→∞ f(wk) = fmin.

Proof. Let W ∗ := {w ∈ Rm : f ′(w) = 0}. Since the gradient f ′(w) of a quadratic
spline is a piecewise linear mapping, limj→∞ dist(wkj ,W ∗) = 0 by Lemma 3.2. Let
ŵkj ∈W ∗ be such that dist(wkj ,W ∗) = ‖wkj − ŵkj‖. Since f is convex, f(w) = fmin

if and only if f ′(w) = 0. Thus, f(ŵkj ) = fmin. By the mean value theorem, there
exists 0 < θj < 1 such that

f(wkj )− fmin = f(wkj )− f(ŵkj )

= (wkj − ŵkj )T f ′(ŵkj + θj(w
kj − ŵkj ))

= (wkj − ŵkj )T (f ′(ŵkj + θj(w
kj − ŵkj ))− f ′(ŵkj ))

≤ λ‖wkj − ŵkj‖2,

(3.7)

where the last equality follows from f ′(ŵkj ) = 0 and the last inequality is the conse-
quence of the Cauchy–Schwartz inequality and the Lipschitz continuity of the piece-
wise linear mapping f ′(w) (with the Lipschitz constant λ). By (3.7), {f(wk)} has a
subsequence converging to fmin; hence, limk→∞ f(wk) = fmin.

The next lemma shows one way to generate a weakly convergent descent sequence.
Lemma 3.4. Suppose that f(wk+1) ≤ f(wk) for k = 0, 1, . . ., and D is a collection

of finitely many positive definite matrices. If there are infinitely many k’s such that

(wk+1−wk)T f ′(wk+1) = 0 and wk+1 = wk−tkDkf ′(wk) for Dk ∈ D, tk > 0,(3.8)

then limk→∞ f(wk) = fmin.
Proof. Note that the first equality in (3.8) is an exact line-search condition.

Applying Lemma 3.1 with w = wk, t = tk, and z = −Dkf ′(wk), we obtain that there
exists a positive constant γ (depending only on f) such that if (3.8) holds, then(

(Dkf ′(wk))T f ′(wk)

‖Dkf ′(wk)‖

)2

≤ γ(f(wk)− f(wk+1)).(3.9)

Since D contains only finitely many positive definite matrices, there exists a positive
constant δ such that

δ‖v‖2 ≤ vTDv and ‖Dv‖ ≤ 1

δ
‖v‖ for D ∈ D, v ∈ Rm.

Thus,

‖Dkf ′(wk)‖ ≤ 1

δ
‖f ′(wk)‖ and (Dkf ′(wk))T f ′(wk) = (f ′(wk))TDkf ′(wk) ≥ δ‖f ′(wk)‖2.

(3.10)
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It follows from (3.9) and (3.10) that if (3.8) holds, then

‖f ′(wk)‖2 ≤ γ

δ4 (f(wk)− f(wk+1)).(3.11)

Let {kj} be a subsequence such that (3.8) holds for k = kj , j = 1, 2, . . .. Since {f(wk)}
is a nonincreasing sequence bounded below, it converges; limk→∞(f(wk)−f(wk+1)) =
0. By (3.11), limj→∞ ‖f ′(wkj )‖ = 0. By Lemma 3.3, limk→∞ f(wk) = fmin.

In order to prove the second basic lemma, we need the following Frank–Wolfe
theorem about the existence of a solution of a quadratic program and an error estimate
of feasible solutions of a convex piecewise quadratic program by Li.

Lemma 3.5 (Frank–Wolfe theorem [10]). If a quadratic function g(w) is bounded
below on a nonempty polyhedron W in Rm, then g(w) attains its infimum on W . That
is, if infw∈W g(w) > −∞, then there exists w∗ ∈W such that g(w∗) = infw∈W g(w).

Lemma 3.6 (see Li [19]). Let g(w) be a convex quadratic spline on a polyhedron
W in Rm and Y ∗ := {w ∈ W : g(w) = gmin} with gmin := minw∈W g(w) > −∞.
Then there exists a positive constant λ such that

dist(w, Y ∗) ≤ λ
(

(g(w)− gmin) + (g(w)− gmin)
1
2

)
for w ∈W.

Lemma 3.7. Suppose that {Wi}s1 are a collection of polyhedral subsets of Rm such
that f(w) is a quadratic function on each Wi. If limk→∞ f(wk) = fmin, then there
exists k∗ ≥ 1 such that wk ∈Wi implies Wi ∩W ∗ 6= ∅ for k ≥ k∗.

Proof. Since W ∗ × Wi is a closed convex polyhedral set, by Lemma 3.5 there
exists (w∗, wi) ∈W ∗ ×Wi such that

εi := ‖w∗ − wi‖ = inf
(z∗,z)∈W∗×Wi

‖z − z∗‖.(3.12)

Let ε := min{εi : εi > 0} > 0. Since f(w) is a convex quadratic spline, by Lemma 3.6
there exists a positive constant λ such that

dist(w,W ∗) ≤ λ
(

(f(w)− fmin) + (f(w)− fmin)
1
2

)
for w ∈ Rm.(3.13)

Since limk→∞(f(wk)− fmin) = 0, there exists k∗ such that

(f(wk)− fmin) + (f(wk)− fmin)
1
2 <

ε

λ
for k ≥ k∗.(3.14)

We claim that Wi ∩W ∗ 6= ∅ if wk ∈Wi and k ≥ k∗.
In fact, by (3.13) and (3.14),

dist(wk,W ∗) ≤ λ
(

(f(wk)− fmin) + (f(wk)− fmin)
1
2

)
< ε for k ≥ k∗.

Since wk ∈Wi, by the definition of ε we must have εi = 0; i.e., Wi ∩W ∗ 6= ∅.
4. An algorithm for strictly convex quadratic programs. In this sec-

tion we propose a new algorithm, called QPspline, for solving (1.1) when M is
nonsingular. The algorithm is based on the reformulation (2.5) of (1.1). The main
features of QPspline are outlined in the introduction. The real advantage of QPspline
is its flexibility. Even though we have very limited numerical tests on its performance,
its potential seems to be greater than we expected. The algorithm is a mixture of
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an active-set method and a dual descent method which are tied together in a natural
way, due to the reformulation 2.5 of (1.1). It is essentially an iterative method, yet it
terminates in finite operations (in exact arithmetic).

Algorithm 4.1 (QPspline) is a Newton method with exact line search for uncon-
strained minimization of spline function Φ(w). Due to possible singularity of the
Hessian of Φ(w), we have to make some technical modifications for the computation
of a Newton direction. Lemma 4.2 shows that Algorithm 4.1 is a well-defined descent
method for unconstrained minimization of Φ(w). The proof of finite termination of
Algorithm 4.1 is quite complicated. Our proof is based on the fact that Algorithm
4.1 is implicitly an active-set method. Lemma 4.3 reveals a feature of Algorithm 4.1
as an active-set method. However, this feature appears only if a linear system for the
computation of a Newton direction is consistent. Lemma 4.4 ensures the consistency
of this linear system once the current iterate is in a polyhedral region containing a
dual solution of (1.1). Theorem 4.5 combines these results with the convergence re-
sults for unconstrained minimization of a convex quadratic spline given in section 3
to establish the finite termination of Algorithm 4.1.

Algorithm 4.1 (QPspline). Let B = αI − AM−1AT with α > ‖AM−1AT ‖,
x(w) = M−1(ATw + b), and ϕ(w) and Φ(w) be defined as in (2.5) and (2.6), respec-
tively. For any w, define

Jl ≡ Jl(w) := {i : (Ax(w)− αw)i < li},
Ju ≡ Ju(w) := {i : (Ax(w)− αw)i > ui}.

(4.1)

For any index set J , DJ denotes the diagonal matrix such that the jth diagonal entry
is 1 for j ∈ J and 0 otherwise.

(0) Let w be any given starting point.
(1) If ϕ(w) = 0, then x := M−1(ATw+ b) is the solution and stop; otherwise, let

ai = li for i ∈ Jl and ai = ui for i ∈ Ju.
(2) Let J be a subset of S := Jl ∪ Ju such that AJ is row independent and AJ

has the same rank as AS.
(3) Let ŵ ∈ Rm be such that ŵj = 0 for j 6∈ J and ŵJ = (AJM

−1ATJ )−1(aJ −
AJM

−1b).
(4) If ASx(ŵ) = aS, then compute t̂ > 0 such that (ŵ−w)TBϕ(w+ t̂(ŵ−w)) = 0,

set t := min{t̂, 1}, update w := w + t(ŵ − w), and go to step (1).
(5) Compute the dual descent direction z = −(αI −DJB)−1ϕ(w).
(7) Find a stepsize t > 0 such that zTBϕ(w + tz) = 0.
(8) Update w := w + tz and go to step (1).
Remark. The name QPspline for this algorithm was suggested by Michael Saun-

ders to emphasize solving a Quadratic Program by using a spline merit/penalty
function.

The index set S is treated as the current active set with active constraints ASx =
aS . Thus, when ASx = aS is consistent, we solve the corresponding quadratic program
with equality constraints ASx = aS . It turns out that the solution is x(ŵ) (cf. Lemma
4.3). Moreover, (ŵ−w) is a descent direction for Φ at w (cf. Lemmas 4.3 and 4.2 (4)).
However, we do not force the next iterate to be ŵ. Instead, we rely on the line search
procedure to decide whether ŵ is a good candidate as the next iterate. If t̂ ≥ 1, then
Φ(w+θ(ŵ−w)) is a monotone decreasing function for 0 ≤ θ ≤ 1, t = 1, and w := ŵ is
the next iterate; otherwise, we would rather use the line minimizer w+ t̂(ŵ−w) as the
next iterate. However, due to linear dependence of the rows of AS , ASx = aS might
not be consistent. This tells us that the current iterate w is not in a solution region.
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Therefore, instead of trying to find a solution in the current iteration, we reduce the
value of the objective function Φ as much as possible. Since we do not know whether
(ŵ − w) is a descent direction or not, we generate a descent direction z (cf. Lemma
4.2 (4)), which is very easy to compute based on a factorization of AJM

−1ATJ (cf.
Lemma 4.2 (1)). Therefore, even though ASx(ŵ) 6= aS , we only need to deal with one
matrix AJM

−1ATJ for the linear systems involved. Also, due to the simple structure
of Φ(w), we can use a linear time algorithm to solve the line search problem (cf. [27],
[40]).

In the case that A is row independent, J is always the same as S and we can skip
steps (2)–(4). This is a Newton method with line search proposed by the authors [27].
For A = ∇r (the rth divided difference matrix), M = I (the n × n identity matrix)
and nr ≤ 109, the Newton method exhibited the finite termination feature. When
r = 2, l = 0, and u = ∞, we were able to produce a fairly accurate solution of the
convex regression problem with n up to 2000, even though ∇r is ill conditioned with
condition number about nr [27].

The following lemma clarifies some technical aspects of Algorithm 4.1, such as
the nonsingularity of αI − DJB, the descent direction z, and the relation between
AJM

−1ATJ and αI −DJB.
Lemma 4.2. Let J be a subset of {i}m1 and Jc := {i}m1 \ J .

1. For any given w, (αI −DJB)z = ϕ(w) if and only if zi = 1
αϕ(w)i for i 6∈ J

and

(AJM
−1ATJ )zJ = ϕ(w)J −

1

α
(AJM

−1ATJc)ϕ(w)Jc .

2. The matrix (αI − DJB) is a nonsingular matrix if and only if AJ is row
independent.

3. The matrix (αB − BDJB) is always positive semidefinite. If AJ is row
independent, then (αB −BDJB) and (αB −BDJB)−1 are positive definite.

4. If (αI −DJB)z = −ϕ(w), then either zTΦ′(w) < 0 or Φ′(w) = 0.
Proof. By the definition of DJ , we have (αI −DJB)J = AJM

−1AT and (αI −
DJB)Jc = αIJc . Therefore, (αI −DJB)z = v if and only if zi = 1

αvi for i 6∈ J and

AJM
−1AT z = vJ .(4.2)

Substitute zJc = 1
αvJc into (4.2); we then have

AJM
−1ATJ zJ = vJ −

1

α
AJM

−1ATJcvJc .(4.3)

Statement (1) follows from (4.3). Note that (αI −DJB) is nonsingular if and only if
the above system has a unique solution for any v, which is equivalent to the nonsin-
gularity of AJM

−1ATJ . However, AJM
−1ATJ is nonsingular if and only if AJ is row

independent. This proves statement (2).
For any v ∈ Rm,

vT (αB −BDJB)v = αvTBv− vTBDJBv ≥ αvTBv− vTBBv = vT (αB −B2)v ≥ 0,

since (αB − B2) is a positive semidefinite matrix (cf. the paragraph before Theorem
2.5). That is, (αB−BDJB) is symmetric positive semidefinite. If AJ is row indepen-
dent, then B(αI−DJB) is also nonsingular (cf. Lemma 4.2 (2)) and B(αI−DJB) is
actually positive definite. Therefore, (αB − BDJB)−1 is also positive definite. This
proves statement (3).
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Finally, by the definition of z, we have

Φ′(w) = Bϕ(w) = −B(αI −DJB)z = −(αB −BDJB)z.

Since (αB −BDJB) is positive semidefinite (cf. statement (2)), we have

zTΦ′(w) = −zT (αB −BDJB)z ≤ 0.

If zTΦ′(w) = 0, then Φ′(w) = −(αB −BDJB)z = 0.
The next lemma shows that, whenever ASx = aS is consistent, x(ŵ) is actually the

solution of the corresponding quadratic problem with equality constraints ASx = aS .
Moreover, along with Lemma 4.2 (4), it proves that (ŵ−w) is also a descent direction.

Lemma 4.3. For any w, let ŵ, S, and aS be given as in Algorithm 4.1. Sup-
pose that ASx = aS is consistent. Then (αI − DSB)(w − ŵ) = ϕ(w), and x∗ :=
M−1(AT ŵ+ b) is the solution of the following strictly convex quadratic program with
equality constraints:

min
x

1

2
xTMx− bTx subject to ASx = aS .(4.4)

Proof. Since ASx = aS is consistent, M−1(ATSyS + b) is the solution of (4.4) if
and only if

ASM
−1(ATSyS + b) = aS .(4.5)

Since J ⊂ S and AJ has the same row rank as AS , yS is a solution of (4.5) if and
only if

AJM
−1(ATSyS + b) = aJ .(4.6)

By the definition of ŵ, ŵS is a solution of (4.6); hence, x∗ := M−1(AT ŵ + b) =
M−1(ATS ŵS + b) is the solution of (4.4). Moreover,

ASM
−1(ATS ŵS + b) = aS .(4.7)

Let z := w − ŵ. By the definition of S and ϕ(w), ϕ(w)i = αwi for i 6∈ S and
ϕ(w)i = (ASx(w)− aS)i for i ∈ S. Hence, zi = 1

αϕ(w)i for i 6∈ S. By (4.7),

(ASM
−1ATS )zS = (ASM

−1ATS )wS − (ASM
−1ATS )ŵS

= (ASM
−1ATS )wS − aS + (ASM

−1)b

= ASM
−1(ATw + b)− aS − (ASM

−1ATSc)wSc

= ϕ(w)S −
1

α
(ASM

−1ATSc)ϕ(w)Sc .

By Lemma 4.2 (1), (αI −DSB)z = ϕ(w).
One might wonder why we wish to generate ŵ such that x(ŵ) is the solution of

(4.4). The answer is very simple: eventually, x(ŵ) is actually the solution of (1.1).
Lemma 4.4. If limk→∞ Φ(wk) = Φmin, then there exists an integer k∗ ≥ 1 such

that x∗ is the solution of (1.1) for k ≥ k∗ if and only if x∗ is the solution of the
following strictly convex quadratic program with equality constraints:

min
1

2
xTMx− bTx subject to ASkx = ak,(4.8)
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where aki = li for i ∈ Jkl , aki = ui for i ∈ Jku , and Sk := Jkl ∪ Jku with

Jkl := {i : (Ax(wk)− αwk)i < li},
Jku := {i : (Ax(wk)− αwk)i > ui}.

Proof. Let S−1,i := (−∞, li], S0,i := [li, ui], and S1,i := [ui,∞). For τ :=
(τ1, . . . , τm) with τi ∈ {−1, 0, 1}, define

Wτ := {w ∈ Rm : (Ax(wk)− αwk)i ∈ Sτi,i for 1 ≤ i ≤ s}.

Then, ϕ(w) is an affine mapping on Wτ for each τ . Recall that Φ′(w) = Bϕ(w) and
Φ(w) is a convex quadratic function on each Wτ . By Lemma 3.7, there exists an
integer k∗ such that Wτ ∩W ∗ 6= ∅ if wk ∈Wτ and k ≥ k∗.

For k ≥ k∗, let τki = −1 if i ∈ Jkl , τki = 1 if i ∈ Jku , and τki = 0 otherwise; then
wk ∈ Wτk . Let ŵk ∈ Wτk ∩W ∗. Then, x(ŵk) := M−1(AT ŵk + b) is the solution of
(1.1) and ϕ(ŵk) = 0, which is equivalent to

Ax(ŵk) = (Ax(ŵk)− αŵk)ul .(4.9)

Since ŵk ∈ Wτ , li ≤ (Ax(ŵk) − αŵk)i ≤ ui for i 6∈ Jkl ∪ Jku . By (4.9), we obtain
ŵki = 0 for i 6∈ (Jkl ∪ Jku). Moreover, if i ∈ Jkl , then

(Ax(ŵk)− αŵk)i ≤ li,

which implies (Ax(ŵk))i = li. When i ∈ Jku , we have

(Ax(ŵk)− αŵk)i ≥ ui,

which implies (Ax(ŵk))i = ui. Therefore, ASkx(ŵk) = ak and x(ŵk) = M−1(ATSk ŵ
k
Sk+

b). That is, x(ŵk) is also the solution of (4.8).
Now, we are ready to prove the finite termination of Algorithm 4.1.
Theorem 4.5. If M is positive definite and l ≤ Ax ≤ u has a feasible solution,

then Algorithm 4.1 produces the solution of (1.1) in finitely many operations (with
exact arithmetic).

Proof. By Lemmas 4.2 and 4.3, we know that (αI −DJB)−1ϕ(w) is well defined
and z (or (ŵ − w)) is a descent direction for Φ at w. Therefore, Algorithm 4.1 is a
descent method for solving (2.7).

Let tk, Jk, wk, zk, Sk, ak, and ŵk denote t, J, w, z, S, a, and ŵ, respectively,
produced by Algorithm 4.1 in the kth iteration.

We prove the finite termination of Algorithm 4.1 by contradiction. Here is an out-
line of the essential steps in our proof. The first step is to show that limk→∞ Φ(wk) =
Φmin. This follows from Lemma 3.4 if infinitely many iterates are generated by
wk+1 = wk + tkz

k. The problem occurs if wk+1 := wk + tk(ŵk − wk) for k large
enough. In this case, the restriction of step size tk seems to be crucial, because it
actually generates a bounded sequence {wk}. The boundedness of {wk} allows us to
prove limk→∞ ‖Φ′(wk)‖ = 0. By Lemma 3.3, we know that {wk} is a weakly con-
vergent sequence (i.e., limk→∞ Φ(wk) = Φmin). Therefore, by Lemmas 4.3 and 4.4,
x(ŵk) is the solution of (1.1) for k large enough. This indicates that Algorithm 4.1
should find a solution of (2.7) when k is large enough. The second step is to verify
that wk+1 := wk + tk(ŵk − wk) does generate a solution of (2.7) when k is large
enough.
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Now assume the contrary, that Algorithm 4.1 generates an infinite sequence
{wk}∞1 .

Claim 1. limk→∞ Φ(wk) = Φmin.
First, assume that there exists k0 such that wk+1 = wk + tk(ŵk−wk) for k ≥ k0.

Since there are only finitely many choices of ak and Jk, there are finitely many distinct
ŵk’s. Therefore, there exists a positive constant λ such that ‖ŵk‖ ≤ λ. Hence,

‖wk+1‖ = ‖(1− tk)wk + tkŵ
k‖ ≤ (1− tk)‖wk‖+ tkλ ≤ max{‖wk‖, λ},

which implies

‖wk‖ ≤ max{‖wk0‖, λ} for k ≥ k0.(4.10)

If (ŵk − wk)TΦ′(wk+1) ≥ 1
2 (ŵk − wk)TΦ′(wk), by Lemma 3.1 there exists a positive

constant γ such that(
(ŵk − wk)TΦ′(wk)

‖ŵk − wk‖

)2

≤ γ(Φ(wk)− Φ(wk+1)).(4.11)

Since {‖ŵk−wk‖} is a bounded sequence (cf. (4.10)), there exists a positive constant
κ such that ‖ŵk−wk‖ ≤ κ. This, along with (4.11), establishes the following estimate
of (wk − ŵk)TΦ′(wk):

(wk − ŵk)TΦ′(wk) ≤ (
√
γκ)
√

Φ(wk)− Φ(wk+1).(4.12)

If (ŵk − wk)TΦ′(wk+1) < 1
2 (ŵk − wk)TΦ′(wk) < 0, then tk = 1 and

g(θ) := (ŵk − wk)TΦ′(wk + θ(ŵk − wk)) <
1

2
(ŵk − wk)TΦ′(wk) for 0 ≤ θ ≤ 1,

since g(θ) is a monotone function of θ. By the mean value theorem, there exists
0 < θk < 1 such that

Φ(wk)− Φ(wk+1) = −g(θk) > −1

2
(ŵk − wk)TΦ′(wk) =

1

2
(wk − ŵk)TΦ′(wk).(4.13)

Since (αI − DSkB)(wk − ŵk) = ϕ(wk) (cf. Lemma 4.3) and Bϕ(wk) = Φ′(wk), we
have

(αB −BDSkB)(wk − ŵk) = Bϕ(wk) = Φ′(wk).(4.14)

It follows from (4.12), (4.13), and (4.14) that for k ≥ k0,

(wk − ŵk)T (αB −BDSkB)(wk − ŵk)

≤ (2 +
√
γκ)

(√
Φ(wk)− Φ(wk+1) + (Φ(wk)− Φ(wk+1))

)
.

Since (αB −BDSkB) is symmetric positive semidefinite,

yT (αB −BDSkB)y ≥ δk‖(αB −BDSkB)y‖2 for y ∈ Rm,(4.15)
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where δk ≤ ‖αB−BDSkB‖−1 (cf. Lemma 3.1 in [30]). For easy reference, we include

the proof here. For a symmetric positive semidefinite matrix Q, let Q
1
2 denote the

square root of Q. Then,

‖Qy‖2 = (Q
1
2 y)TQ(Q

1
2 y) ≤ ‖Q‖‖Q 1

2 y‖2 = ‖Q‖ · (yTQy).

Since there are only finitely many distinct Sk, we can choose δk ≡ δ > 0 such that
(4.15) holds for all k. Thus, for k ≥ k0,

‖Φ′(wk)‖2 = ‖(αB −BDSkB)(wk − ŵk)‖2

≤ 1

δ
(wk − ŵk)T (αB −BDSkB)(wk − ŵk)

≤ 1

δ
(2 +

√
γκ)

(√
Φ(wk)− Φ(wk+1) + (Φ(wk)− Φ(wk+1))

)
.

Since limk→∞(Φ(wk) − Φ(wk+1)) = 0, we obtain limk→∞ ‖Φ′(wk)‖ = 0. By Lemma
3.3, we have limk→∞ Φ(wk) = Φmin.

If there is no k0 such that wk+1 = wk + tk(ŵk −wk) for k ≥ k0, then there exists
a subsequence {kj} such that wk+1 = wk + tkz

k for k = kj , j = 1, 2, . . .. By the

definition of Φ(w), Φ′(w) = Bϕ(w). By Lemma 4.2, αI −DJkB is nonsingular and

(αB − BDJkB)−1 is positive definite. Since there are only finitely many different

Jk’s, (wk+1 − wk)TΦ′(wk+1) = 0, and zk = −(αB − BDJkB)−1Φ′(wk), it follows
from Lemma 3.4 that limk→∞ Φ(wk) = Φmin. This proves Claim 1.

By Claim 1 and Lemma 4.4, there exists an integer k∗ such that x∗ is the solution
of (1.1) for k ≥ k∗ if and only if x∗ is the solution of the following strictly convex
quadratic program with equality constraints:

min
x

1

2
xTMx− bTx subject to ASkx = ak.(4.16)

In particular, ASkx = ak is consistent. By Lemma 4.3, ASkx(ŵk) = ak and wk+1 =
wk + tk(ŵk − wk) for k ≥ k∗. Moreover, x(ŵk) is the solution of (4.16) for k ≥ k∗;
hence, x(ŵk) = x∗ for k ≥ k∗, where x∗ is the solution of (1.1).

Now, let k ≥ k∗. Since wk+1 = (1− tk)wk + tkŵ
k, we obtain, for i 6∈ Sk, that

(Ax(wk+1)− αwk+1)i = (1− tk)(Ax(wk)− αwk)i + tk(Ax(ŵk)− αŵk)i

= (1− tk)(Ax(wk)− αwk)i + tk(Ax(ŵk))i.
(4.17)

By the definition of Sk, li ≤ (Ax(wk) − αwk)i ≤ ui for i 6∈ Sk. Since l ≤ Ax(ŵk) =
Ax∗ ≤ u and 0 ≤ tk ≤ 1 (cf. step (4) in Algorithm 4.1) by (4.17) we have

li ≤ (Ax(wk+1)− αwk+1)i ≤ ui for i 6∈ Sk.

Therefore, Sk+1 ⊂ Sk for k ≥ k∗, and there exists k0 such that Sk = Sk0 =: S for
k ≥ k0. For i ∈ S,

(ak+1)i = (Ax(ŵk+1))i = (Ax∗)i = (Ax(ŵk))i = (ak)i =: ai.

Therefore, ((Ax(wk)−αwk)ul )i = ai for i ∈ S and k ≥ k0. Since ((Ax(wk)−αwk)ul )i =
(Ax(wk)− αwk)i for i 6∈ S, we have, for k ≥ k0, that

ϕ(wk)i = (αwk)i for i 6∈ S,
ϕ(wk)i = (Ax(wk))i − ai for i ∈ S.

(4.18)
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Let C = αI −DSB and a be the extension of aS in Rm with ai = 0 for i 6∈ S. Then,
ϕ(wk) = Cwk + a for k ≥ k0.

Now let k = k0. If tk = 1, wk+1 = ŵk. Since ŵi = 0 for i 6∈ S and (Ax(ŵk))i = ai
for i ∈ S, ϕ(wk+1) = 0 by (4.18), and Algorithm 4.1 should terminate after (k + 1)
iterations. Therefore, 0 < tk < 1 and (wk − wk+1)TBϕ(wk+1) = 0. Thus,

tk(wk − ŵk)TBC(wk − ŵk) = (wk − wk+1)TB(ϕ(wk) + a− Cŵk)

= (wk − wk+1)TBϕ(wk)

= (wk − wk+1)TB(ϕ(wk)− ϕ(wk+1))

= (wk − wk+1)TB((Cwk + a)− (Cwk+1 + a))

= (wk − wk+1)TBC(wk − wk+1)

= t2k(wk − ŵk)TBC(wk − ŵk),

where the second equality follows from (Cŵk)i = 0 for i 6∈ S and also (Cŵk)i =
(Ax(ŵk))i = ai for i ∈ S; the third is due to the choice of tk: (ŵk−wk)TBϕ(wk+1) =
0, and the remaining ones are easy consequences of wk+1 = wk + tk(ŵk − wk) and
ϕ(wk) = Cwk − a. Since 0 < tk < 1, the above identity implies (wk − ŵk)TBC(wk −
ŵk) = 0. Since BC is symmetric positive semidefinite (cf. Lemma 4.2 (3)), BC(wk −
ŵk) = 0. By (4.14), Bϕ(wk) = 0, and Algorithm 4.1 should again terminate after k
iterations. This completes the proof of Theorem 4.5.

Remark. Since there is no dual feasibility requirement, x(ŵk) = x∗ does not
necessarily imply that ŵk is a solution of (2.7) (i.e., ϕ(ŵk) = 0). Even when there
exists ŵ such that ŵi = 0 for i 6∈ Sk and ϕ(ŵ) = 0, we do not know how to choose
Jk such that ϕ(ŵk) = 0. Fortunately, the above proof shows that the algorithm
has a mechanism to prevent the “wrong indices” from entering the current active
set Sk. In order to understand this mechanism, let us explore more carefully what
happens when wk+1 = wk + tk(ŵk − wk) and x(ŵk) = x∗. If there exists ŵ such
that ŵi = 0 for i 6∈ Sk and ϕ(ŵ) = 0, then ASkx(ŵk) = ASkx

∗ = ak. Therefore,
ASkx(ŵk) = ak indicates that a suitable choice of Jk might yield a solution for the
equation ϕ(w) = 0. However, due to redundancy in ASkx = ak, the algorithm might
choose Jk that produces ŵk with ϕ(wk+1) 6= 0. A natural recovery procedure is
to drop some redundant constraints whose indices are in Sk. This is automatically
done through the dual descent method. Note that the proof of Theorem 4.5 shows
that Sk+1 ⊂ Sk. If Sk = Sk+1 and ak = ak+1, the proof of Theorem 4.5 yields
ϕ(wk+1) = 0. Therefore, we have either Sk+1 6= Sk or ak 6= ak+1. If Sk+1 6= Sk,
then some constraints whose indices are in Sk will not be treated as the current
active constraints in the next iteration. Therefore, there is less chance of choosing
“wrong indices” in the next iteration. However, if Sk = Sk+1 but ak+1 6= ak, then
the algorithm accomplishes nothing in terms of identifying active constraints. Our
proof shows that this can only happen if wk is still far away from the solution set.
Since the descent method guarantees that limk→∞ dist(wk,W ∗) = 0, we can not have
Sk = Sk+1 and ak+1 6= ak for k large enough. In summary, the algorithm first
identifies a set of active constraints by reducing the distance from the current iterate
to the solution set and then starts dropping redundant constraints until a dual solution
is found.

5. Numerical results. Reformulations of convex quadratic programs as prob-
lems of unconstrained minimization of convex quadratic splines allow one to develop
new efficient algorithms for solving the original quadratic programs. In this section
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we provide numerical evidence for such a statement by comparing QPspline with
QPROG (an active-set method) in the IMSL library [18]. The numerical experiments
are done with respect to the following two classes of quadratic programs: strictly
convex quadratic programs with simple bound constraints (which are generated as in
[35]) and least-squares problems with linearly independent two-sided inequality con-
straints, which are generated by a variation of Moré and Toraldo’s method [35]. The
results for quadratic programs with simple bound constraints are included in Tables
1–3 and the results for least-squares problems are included in Tables 4–6. We com-
pare two performance measures: accuracy (the maximum deviation from the exact
solution) and efficiency (CPU time in seconds).

All numerical results were done in double precision on an IBM RS 6000/590
computer running IBM AIX Version 3.2 (UNIX System V) operating system.

We used a straightforward implementation of QPspline for solving the least-
squares problems, where the systems of equations with matrices AJM

−1ATJ were
solved by a Cholesky factorization. The code is a slight modification of the code
written for the algorithm for solving the convex regression problem (cf. [27]). For
strictly convex quadratic programs with simple bound constraints, we used a straight-
forward implementation of the Newton method for finding the minimizer of Ψ(y) with
(y = x), where the Newton direction was also computed by a Cholesky factorization.
There is no special measure being taken to deal with possible ill-conditioning of linear
systems when we solve for Newton directions. For quadratic problems with simple
bound constraints we start with the unconstrained minimizer of the objective func-
tion, while we start with w = 0 for least-squares problems. In other words, we use
the same initial guess as QPROG. We stop the algorithm when ‖y − (Ey + q)ul ‖∞ or
‖Ax(w)− (Ax(w)− αw)ul ‖∞ is less than 10−10.

Sometimes, we might get a negative stepsize tk that could be the result of errors
in the computation of either the Newton direction or the stepsize. If the computed
stepsize is wrong but the Newton direction is accurate, which happens quite often
when the current iterate is very close to the exact solution, then we could get the
exact solution by replacing tk by 1. This strategy has proven to be very effective in
finding the exact solutions of our test problems (cf. [27]). However, if the computed
Newton direction is actually an ascending direction due to a nearly singular matrix
AJM

−1ATJ , then replacing tk by 1 will produce an iterate that might be far away
from the exact solution. As a consequence, the algorithm has to use more iterations
to get an iterate that is close to the exact solution again. This is the reason why we
see a surge in CPU time for solving some test problems.

For the randomly generated problems with 100 variables, our algorithm is sig-
nificantly faster than QPROG and is almost as accurate as QPROG. Note that, for
very ill-conditioned problems (with condition number 109–1012), a solution produced
by QPROG might have 2–3 more accurate decimal places than a solution found by
QPspline. We believe that this is the effect of a numerical error caused by the Cholesky
factorization of a very ill-conditioned positive definite matrix. However, the worst
maximum deviation of our solutions from the exact optimal solutions is 10−3, which
is comparable with the worst maximum deviation of QPROG’s solutions from the
exact optimal solutions, 10−4.

It is important to note that QPROG becomes slower in finding the solution
when the number of active constraints increases from 10 to 90 (cf. Tables 1–3), while
QPspline is not sensitive to the number of active constraints. In fact, in most cases,
QPspline takes less time to find the solution when the number of active constraints is



A NEW ALGORITHM FOR QUADRATIC PROGRAMS 613

Table 1

Number of Variables Active Constraints
100 10

Accuracy CPU Time
Newton IMSL Newton IMSL Condition Degeneracy

.57E−13 .16E−13 0.02 0.05 103 10−3

.21E−12 .12E−13 0.02 0.17 103 10−6

.12E−12 .16E−13 0.01 0.25 103 10−9

.87E−13 .26E−13 0.02 0.06 103 10−12

.20E−12 .83E−14 0.03 0.15 106 10−3

.35E−13 .30E−14 0.02 0.25 106 10−6

.64E−13 .46E−14 0.03 0.05 106 10−9

.13E−12 .15E−13 0.03 0.20 106 10−12

.54E−13 .53E−15 0.02 0.27 109 10−3

.16E−12 .19E−13 0.05 0.07 109 10−6

.17E−12 .53E−14 0.05 0.16 109 10−9

.23E−13 .16E−14 0.02 0.25 109 10−12

.86E−10 .42E−11 0.02 0.17 1012 10−3

.11E−09 .21E−10 0.03 0.23 1012 10−6

.26E−11 .27E−13 0.03 0.34 1012 10−9

.62E−10 .44E−11 0.04 0.15 1012 10−12

Table 2

Number of Variables Active Constraints
100 50

Accuracy CPU Time
Newton IMSL Newton IMSL Condition Degeneracy

.53E−10 .96E−12 0.04 0.21 103 10−3

.51E−10 .30E−11 0.01 0.32 103 10−6

.98E−10 .63E−11 0.15 0.14 103 10−9

.98E−10 .14E−11 0.08 0.22 103 10−12

.53E−10 .16E−11 0.03 0.31 106 10−3

.26E−09 .87E−11 0.05 0.13 106 10−6

.16E−09 .59E−11 0.07 0.24 106 10−9

.18E−10 .98E−12 0.02 0.34 106 10−12

.43E−07 .19E−08 0.02 0.22 109 10−3

.13E−07 .50E−08 0.06 0.22 109 10−6

.42E−07 .18E−10 0.05 0.50 109 10−9

.76E−07 .11E−08 0.05 0.36 109 10−12

.39E−07 .56E−08 0.05 0.27 1012 10−3

.10E−06 .52E−09 0.06 0.36 1012 10−6

.87E−07 .33E−08 0.05 0.32 1012 10−9

.19E−06 .23E−08 0.09 0.31 1012 10−12

90 than when it is 50 (cf. Tables 2 and 3).
In the remainder of this section, we describe how the test problems and the entries

in the tables are generated. One can find some missing technical details in [35].
First consider the following strictly convex quadratic program with simple bound

constraints:

min
x∈Rn

1

2
xTMx− bTx subject to l ≤ x ≤ u.(5.1)

Our test problems are generated in the same way as described in [35]. The test results
are included in Tables 1–3. (See Tables 10–12 in [35] for numerical results of Moré
and Toraldo’s active-set method on an Alliant FX/8.)

The positive definite matrix M = Y DY , where Y is a randomly generated orthog-
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Table 3

Number of Variables Active Constraints
100 90

Accuracy CPU Time
Newton IMSL Newton IMSL Condition Degeneracy

.10E−09 .26E−11 0.05 0.37 103 10−3

.42E−07 .95E−08 0.02 0.21 103 10−6

.14E−06 .57E−08 0.08 0.40 103 10−9

.36E−09 .20E−10 0.05 0.39 103 10−12

.30E−04 .34E−05 0.01 0.38 106 10−3

.56E−04 .11E−05 0.08 0.37 106 10−6

.38E−05 .74E−08 0.05 0.34 106 10−9

.92E−04 .53E−05 0.08 0.18 106 10−12

.14E−03 .22E−05 0.09 0.34 109 10−3

.14E−08 .46E−10 0.07 0.56 109 10−6

.94E−04 .33E−06 0.10 0.36 109 10−9

.76E−04 .15E−05 0.12 0.33 109 10−12

.45E−04 .11E−05 0.05 0.58 1012 10−3

.61E−04 .19E−05 0.03 0.26 1012 10−6

.48E−04 .12E−04 0.10 0.39 1012 10−9

.91E−05 .46E−07 0.04 0.35 1012 10−12

onal Householder matrix and the matrix D is a diagonal matrix whose ith component
di is defined by

log di =

(
i− 1

n− 1

)
· ncond, i = 1, . . . , n.(5.2)

Note that the condition number of M is 10ncond, which is listed in the tables under
“Condition.” The exact solution x∗ is generated with components randomly in the
interval (−1, 1). For a given number nax of active constraints, we randomly generate
a subset J of {1, . . . , n} with nax indices.

For the active set J , we use a parameter ndeg to generate the Lagrange multiplier
y:

|yi| = 10−µi·ndeg, i ∈ J,

where µi is randomly generated in the interval (0,1). We list 10−ndeg in the tables
under “Degeneracy,” which shows the amount of “numerical degeneracy” of a problem.
For all the test problems, the number of variables n = 100.

With randomly generated M,x∗, y and the active set J , we define b = Mx∗ − y
and

li = −1, ui = 1, yi = 0, i 6∈ J

and

li = x∗i , ui = 1, yi > 0

or

li = −1, ui = x∗i , yi < 0.

The accuracy is measured by the `∞ norm of x̄−x∗, ‖x̄−x∗‖∞, where x̄ is a solution
generated either by QPspline or QPROG in the IMSL library.
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Table 4

Number of Variables Condition Number Degeneracy

100 103 10−3

Accuracy CPU Time Constraints
Newton IMSL Newton IMSL Total Active
.11E−13 .66E−14 0.00 0.04 10 5
.24E−13 .70E−14 0.00 0.04 10 10
.84E−13 .24E−13 0.01 0.07 50 25
.42E−13 .28E−13 0.03 0.13 50 50
.59E−13 .44E−14 0.05 0.14 90 45
.11E−12 .17E−13 0.11 0.23 90 90

Table 5

Number of Variables Condition Number Degeneracy

100 106 10−6

Accuracy CPU Time Constraints
Newton IMSL Newton IMSL Total Active
.11E−07 .17E−11 0.01 0.03 10 5
.11E−10 .99E−11 0.00 0.04 10 10
.16E−05 .64E−11 0.01 0.08 50 25
.51E−10 .11E−10 0.02 0.13 50 50
.45E−06 .16E−10 0.03 0.15 90 45
.41E−06 .81E−11 0.20 0.23 90 90

The next set of test problems is the following least-squares problem with two-sided
inequality constraints:

min
x∈Rn

1

2
‖x− b‖22 subject to l ≤ Ax ≤ u,

where A is an m× n matrix with rank m. We use a variation of Moré and Toraldo’s
method to generate test problems. As before, we choose n = 100, which is the number
of variables listed in Tables 4–6. We choose m = 10, 50, and 90, which are listed under
“Total Constraints” in Tables 4–6.

For given m and n, we randomly generate two orthogonal Householder matrices
U and V of dimensions m×m and n× n, respectively, as in [35]. Then we randomly
generate an m× n matrix D whose entries are zeros (except for the diagonal entries
that are generated by (5.2)). The constraint matrix A := UDV . Note that the
condition number of A is 10ncond, which is listed in the tables under “Condition
Number.”

Similarly, for a given number nax, we randomly generate a subset J of {1, . . . ,m}
with nax indices. The exact solution x∗ and its Lagrange multiplier y are generated
as before. Here, we choose ndeg ≡ ncond. The amount of degeneracy, 10−ncond, is
listed under “Degeneracy.”

Then we define d = x∗ +AT y and

li = −2|(Ax∗)i|, ui = 2|(Ax∗)i|, yi = 0, i 6∈ J,

and

li = (Ax∗)i, ui = 2|(Ax∗)i|, yi > 0,

or

li = −2|(Ax∗)i|, ui = (Ax∗)i, yi < 0.
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Table 6

Number of Variables Condition Number Degeneracy

100 109 10−9

Accuracy CPU Time Constraints
Newton IMSL Newton IMSL Total Active
.79E−10 .16E−09 0.00 0.03 10 5
.77E−10 .16E−09 0.01 0.04 10 10
.66E−06 .11E−09 0.01 0.07 50 25
.34E−07 .68E−09 0.01 0.16 50 50
.13E−06 .14E−08 0.03 0.15 90 45
.10E−06 .32E−08 0.06 0.23 90 90

The accuracy is measured by ‖x̄− x∗‖∞ as before.

6. Comments. Our main purpose is to establish simple and practical uncon-
strained reformulations of convex quadratic programs. In [27], we proposed a Newton
method with line search for solving strictly convex quadratic programs with linearly
independent constraints. The Newton method is an iterative method but terminates
in a finite number of iterations. In this case, one would expect that the Newton
method finds the unique minimizer of the strictly convex quadratic spline Φ(w) in
a finite number of iterations, since the Newton method automatically identifies the
unique minimizer of Φ(w) in the next iteration once the current iterate is in a solution
region [27]. Without the assumption of linear independence of constraints, Φ(w) is
not strictly convex and the Hessian of Φ(w) (if it exists) might be singular. A fun-
damental question related to unconstrained minimization of Φ(w) is whether or not
one can design a finite algorithm to find a minimizer of Φ(w). The main purpose of
QPspline is to provide a positive answer to this question. Based on sections 3 and 4,
one might be able to design a descent method that finds a minimizer of any convex
quadratic spline, which is bounded below on Rm, in a finite number of iterations.

The proposed algorithm, QPspline, has a flavor of interior-point methods for
solving linear programs, which have two phases: (1) reduction of a merit function (or
a potential function) and (2) projection of the current iterate to the nearest vertex
of the feasible region. Without steps (3) and (4), QPspline is a descent method that
reduces the value of the merit function Φ(w). Steps (3) and (4) are the projection
process to find a solution of (1.1). As mentioned before, we can find the descent
direction and the projection by factorizing one nonsingular matrix AJM

−1ATJ .
The most significant feature of QPspline is that there is no requirement on feasi-

bility. Note that QPspline is based on the dual unconstrained reformulation of (1.1)
and that there is no primal or dual feasibility requirement. This has a great advantage
in practical implementations of QPspline. For example, we can use any algorithm for
finding a “good” approximate solution of (2.5) and use the approximate solution as
the starting point of QPspline. In this way, we can first find a cheap approximate
solution near the solution region and then use QPspline to obtain an exact solution
in a few iterations. In particular, in the early stages of the computations we could
skip steps (2) through (5) and simply compute the descent direction z = −ϕ(w) to
get the next iterate. Once the current w is “close” enough to the solution region, we
can start to use the Newton directions to get an exact solution.

Note that it is very easy to design linearly convergent descent algorithms to
find a minimizer of the convex quadratic spline function Φ(w), even if the set of all
minimizers of Φ(w) is unbounded [21]. We can also use conjugate-gradient methods
to find an approximate solution for the minimization of Φ(w) [22]. Another simple
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approach is to use the proximal-point algorithm [43] to find an approximate minimizer
of the convex quadratic spline Φ(w). Here, for each subproblem, we only need to
find the unique minimizer of a strictly convex quadratic spline, which easily can be
computed by a Newton method [27] or a conjugate-gradient method [22].

Given the absence of any feasibility requirement, QPspline is ideal for solving
a sequence of closely related strictly convex quadratic programs where a solution of
the current quadratic program can be used as a good initial guess of the next one
(cf. [25]). For example, suppose that we have two quadratic programs (1.1) with
M = M i, A = Ai, l = li, and u = ui for i = 1, 2. Let xi and yi be primal and dual
solutions, respectively. If M2, A2, l2, u2 are very close to M1, A1, l1, u1, respectively,
then we could expect that (x2, y2) is very close to (x1, y1). Therefore, if we start
QPspline at y1, then the algorithm should find y2 in a few iterations. Note that all
classical active-set methods require either primal or dual feasibility and, in general,
one cannot directly use x1 or y1 as a starting point to find x2 or y2. This makes
QPspline an ideal subroutine for sequential programming techniques (cf. [9]).

The unconstrained reformulations of quadratic programs given in this paper are
closely related to augmented Lagrangian functions. Through augmented Lagrangian
functions, we can get similar unconstrained reformulations for more general quadratic
programs (cf. [23], [24]).

Our numerical results (cf. Tables 1–6) indicate that Newton methods for solv-
ing quadratic programs through their unconstrained reformulations are faster than
QPROG (an active-set method) when applied to the two classes of randomly gener-
ated test problems in section 5. (Note that only for the third test problem listed in
Table 2 is QPROG a little faster than QPspline.) However, the current implementa-
tion of QPspline is not as accurate as QPROG when the computation of a Newton
direction involves a nearly singular matrix AJM

−1ATJ . The key issue of improving the
performance of QPspline seems to be an intelligent choice of J . One simple remedy
is to adopt Goldfarb and Idnani’s strategy of selecting indices of “most violated con-
straints” among S with some singularity detection mechanism in the computation of
a Newton direction. We should continue to study strategies for computing a Newton
direction stably and efficiently. For large-scale problems especially, it is undesirable to
solve a system of equations with matrix AJM

−1ATJ by a direct matrix factorization
in each iteration. An important implementation issue is whether or not matrix up-
dating techniques can be used to find the Newton direction that requires the solution
of systems of equations with matrices AJM

−1ATJ .

To conclude, it should be observed that QPspline has a flaw: lack of finite ter-
mination when the quadratic programming problem has no feasible solution. We do
not know whether or not it is possible to incorporate a strategy into Algorithm 4.1
for the detection of infeasible problems.
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Abstract. In this work we present an infeasible-interior-point algorithm which is based on a
method for the general nonlinear programming problem to solve linear complementarity problems.
For this algorithm, we prove global convergence from any strictly positive starting point, under
minor assumptions. Numerical results are reported which demonstrate very good computational
performance on large-scale linear complementarity problems.
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1. Introduction. The linear complementarity problem (LCP) determines a vec-
tor pair (x, z) satisfying

Mx− c = z,

xTz = 0,(1)

(x, z) ≥ 0,

where x, z, c ∈ <n and M ∈ <n × <n. LCPs arise in many areas, such as quadratic
programming, bimatrix games, variational inequalities, and economic equilibria prob-
lems, and they have been the subject of much research interest. A number of direct as
well as iterative methods have been proposed for their solution. The book by Cottle,
Pang, and Stone [1] is a good reference for pivoting methods developed to solve LCPs.
Another important class of methods used to tackle LCPs are the interior-point and
infeasible-interior-point methods, which were first designed to solve linear programs
(see [9], [14], [19]). Most of these methods were developed to solve monotone LCPs,
i.e., problems in which the matrix M is positive semidefinite (see, for example, [25],
[27]). However, much recent research has been devoted to interior-point methods for
nonmonotone LCPs (see [10], [13], [18], [20], [21], [26]).

The method presented in this paper is an infeasible-interior-point method devel-
oped for solving the general nonmonotone LCP, and it is a modification of a method
devised by El-Bakry et al. [4] to solve the general nonlinear programming problem.

Before presenting the algorithm, it is instructive to see how the logarithmic-barrier
method can be applied to problem (1) and provide the basis for the algorithm.

Problem (1) can be formulated as the minimization problem

minimize xTz
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subject to Mx− z = c,(2)

(x, z) ≥ 0.

Applying the logarithmic-barrier method to (2) yields

minimize xTz − µ
∑

log(xi) − µ
∑

log(zi)

subject toMx− z = c,(3)

(x, z) ≥ 0,

and if we denote by L(x, z, λ, µ) the Lagrangian for (3), we have that

L(x, z, λ, µ) = xTz − µ
∑

log(xi)− µ
∑

log(zi)− λT(Mx− z − c).(4)

The first-order conditions for (4) yield the system of nonlinear equations

z − µX−1e−MTλ = 0,(5)

x− µZ−1e+ λ = 0,(6)

Mx− z = c,(7)

which, with some manipulation and assuming that the matrix XMT + Z is nonsin-
gular, reduces to the system

F (x, z) =

[
Mx− z − c

XZe

]
=

[
0
µe

]
,(8)

where X = diag(xi) , Z = diag(zi), and e is a vector of all ones. Sufficient conditions
for the matrix XMT + Z to be nonsingular can be found in [1].

The paper is organized as follows. In section 2 we give a thorough description
of the algorithm. In section 3 we prove global convergence of our algorithm under
only two assumptions, namely, that the matrix XM+Z remains nonsingular at every
iteration and the matrix M satisfies that if |xik| → +∞ for i ∈ J ⊂ {1, 2, . . . , n}, then
there exists a j ∈ J such that |[Mxk]j | → +∞ also. The second assumption is used to
guarantee that the iterates remain bounded. In section 4 we present numerical results
on several problems found in the literature. Some randomly generated single com-
modity spatial equilibrium problems were also considered. Finally, section 5 contains
some concluding remarks and comments.

Throughout this paper, subscripts were used to denote iterations on scalars and
superscripts to denote iterations on vectors and matrices. We write e for the vector
of all ones, 0 for the vector of all zeros, and I for the identity matrix of suitable
dimension. Unless otherwise stated, the symbol ‖ · ‖ denotes the Euclidean norm of
a vector.

2. The algorithm. The algorithm moves from the current estimate vk = (xk, zk)
to the solution of (1) to a new estimate vk+1 = (xk+1, zk+1) by

xk+1 = xk + αk∆xk,

zk+1 = zk + αk∆zk,(9)
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where ∆xk, ∆zk, solve the system

M∆xk −∆zk = c−Mxk + zk,(10)

Zk∆xk +Xk∆zk = µke−XkZke.(11)

Multiplying (10) by Xk and adding it to (11) yields

∆xk = (XkM + Zk)−1(Xkc−XkMxk + µke),

∆zk = M∆xk +Mxk − zk − c.(12)

It is easy to check that system (12) is the result of applying one Newton step to
the system of equations (8), and thus the method belongs to the general framework
of centered and damped Newton methods. For any Xk and Zk with strictly positive
elements, if the matrix (XkM+Zk) were to be factored it would have the same sparsity
pattern as M, assuming that the diagonal entries of M are nonzero. Therefore, sparse
LU factorizations can be utilized when M is sparse.

To start the algorithm, a strictly positive starting point (x0, z0) is required. Then,
by controlling the step length αk, the algorithm generates strictly positive iterates in
every step.

The algorithm moves from iterate to iterate seeking to minimize the merit function

φ(v) = φ(x, z) = { ‖XZe‖2 + ‖Mx− z − c‖2 }1/2 = ‖F (x, z)‖(13)

and terminates when φ(x, z) ≤ ε for some predetermined ε.
In order to fully describe a step between successive iterates of the algorithm, we

need to say how µk and αk are selected. Regarding µk, we adopted a typical selection
(see, for example, [25] and [27]), which has proven to be good for both practical and
theoretical purposes, namely,

µk = σk
xk

T
zk

n
, σk ∈ (0, 1).(14)

To specify the selection of αk, we introduce the following quantities:

τ1 =
min x0

i z
0
i

x0T z0

n

,(15)

τ2 =
x0T z0

‖Mx0 − z0 − c‖ ,(16)

and the functions (see [4])

f I(α) = min xi
k+1zi

k+1 − γτ1
xk+1T zk+1

n
,(17)

f II(α) = xk+1T zk+1 − γτ2‖Mxk+1 − zk+1 − c‖,(18)

where γ ∈ (0, 1). First, we find α̂k to be the largest number ∈ (0, 1] for which

f I(α) ≥ 0 and f II(α) ≥ 0 ∀α ∈ (0, α̂k] ⊂ (0, 1](19)

and then perform backtracking on the merit function to find αk. Specifically,

αk = ρtα̂k,
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where t is the smallest nonnegative integer such that αk satisfies

φ(vk+1) ≤ φ(vk) + αkβ∇φ(vk)T∆vk ,(20)

where β ∈ (0, 1/2] and ρ ∈ (0, 1) .
Clearly, the way α̂k is selected in (19) guarantees that (xk+1, zk+1) > 0, and

therefore no further conditions on αk need be imposed. For a proof of the existence
of α̂k, see [27] and [28].

It is not hard to show (see [27]) that the following is true:

Mxk+1 − zk+1 − c = (1− αk)(Mxk − zk − c) = νk+1(Mx0 − z0 − c),(21)

where ν0 = 1 and

νk+1 = (1− αk)νk =
k∏
j=0

(1− αj) > 0.

Hence, condition f II(α) ≥ 0 is equivalent to

xk+1T zk+1 ≥ γ(1− αk)νkx
0T z0,

which is the same condition as the one used by Zhang in [27], but Zhang requires
γ = 1. The function in (17) is a piecewise quadratic, and the resulting condition is
commonly used in interior-point methods as a centering condition that prevents the
iterates from approaching zero prematurely. Since γ can be chosen to be very small,
our requirement for centrality is mild. The function in (18) is a quadratic, and it is
used to ensure that feasibility is given a higher priority than complementarity (see
also [25] and [27]). The complete algorithm is presented in Figure 1.

3. Proof of convergence. In this section we prove that the method presented
in this paper is globally convergent. Specifically, starting from any strictly positive
point (x0, z0), the algorithm will converge to a solution of the LCP provided that a
solution exists and under the assumptions that the matrix XkM + Zk which is used
in the calculation of the new pair of iterates (xk+1, zk+1) stays nonsingular at every
step and that the matrix M satisfies that if |xik| → +∞ for i ∈ J ⊂ {1, 2, . . . , n},
then there exists a j ∈ J such that |[Mxk]j | → +∞ also. This latter assumption is
used to guarantee that the iterates remain bounded. Computational experience with
infeasible LCPs revealed that in such instances the matrix XkM+Zk became singular
and, consequently, ‖∆vk‖∞ became arbitrarily large, the sequence of steplengths {ak}
tended to zero rapidly, and the algorithm halted.

The proof of convergence of the algorithm is a modification of the proof given by
El-Bakry et al. in [4] for the general nonlinear programming problem. We first show
that the perturbed Newton direction ∆vk generated by the algorithm is a descent
direction for the merit function defined in (13). As was pointed out earlier (see (8),
(10), and (11)), the search direction satisfies

∆vk = F ′(vk)
−1

[−F (vk) + µkê] ,(22)

where ê is the vector (0, e)
T
. The gradient of the merit function is

∇φ(vk) =
1

‖F (vk)‖F
′(vk)

T
F (vk).
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Let k = 0
Choose v0 = (x0, z0) > 0, ρ ∈ (0, 1), β ∈ (0, 1/2], γ ∈ (0, 1),
and compute φ(x0, z0).

1. If φk ≤ ε STOP

(xk, zk) is an approximate solution to the LCP .

2. Choose σk ∈ (0, 1), let µk = σk
xk

T
zk
n , and find

∆vk = (∆xk , ∆zk) from (12).

3. Compute αk as described in (19) and (20).

If αk ≤ 10−10 STOP

4. Find (xk+1, zk+1) by

xk+1 = xk + αk∆xk ,
zk+1 = zk + αk∆zk .

5. Set k = k + 1 and return to 1.

Fig. 1. Infeasible-interior-point method.

Hence,

∇φ(vk)
T

∆vk =
1

‖F (vk)‖F (vk)
T
F ′(vk)F ′(vk)

−1
[−F (vk) + µkê]

=
1

‖F (vk)‖ (−‖F (vk)‖2 + µkx
kT zk)

= −
(
‖F (vk)‖ − µk

xk
T
zk

‖F (vk)‖

)

= −
(
φ(vk)− µk

xk
T
zk

φ(vk)

)
.

Since µk = σk
xk

T
zk
n ,

µkx
kT zk = σk

(xk
T
zk)

2

n
= σk

(
‖XkZke‖1√

n

)2

≤ σk‖XkZke‖2 ≤ σk‖F (vk)‖2 = σkφ(vk)
2
.

Therefore,

∇φ(vk)
T

∆vk ≤ −φ(vk)(1− σk) ≤ 0.
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Moreover, from the backtracking line search performed on the merit function (see
(20)), we have that

φ(vk+1) ≤ [1− αkβ(1− σk)]φ(vk),(23)

where β ∈ (0, 1/2].
The sequence

{
φ(vk)

}
is monotone nonincreasing and bounded from below; thus

it is convergent. Furthermore, (23) asserts that
{
φ(vk)

}
converges to zero Q-linearly

if {αk} is bounded away from zero and {σk} is bounded away from one.
Following the notation used by El-Bakry et al. in [4], let us define for any given

ε > 0 , and for a fixed γ ∈ (0, 1) , the set

Ω(ε) ≡
{

(x, z) : ε ≤ φ(x, z) ≤ φ0 ,
min xizi
xTz/n

≥ γτ1 ,
xTz

‖Mx− z − c‖ ≥ γτ2

}
.

For this set the following observations are in order:
1. Ω(ε) is a closed set.
2. In Ω(ε) where ε > 0, all components of XZe are bounded above and away

from zero, and, consequently, xT z is bounded above and away from zero.
3. The sequence {(xk, zk)} generated by the algorithm satisfies

{
(xk, zk)

}
⊂

Ω(0).
To prove the convergence of the algorithm, we will make the following assump-

tions.
Assumption 1. The matrix (XkM + Zk) is invertible for any pair of iterates

(xk, zk) such that (xk, zk) ∈ Ω(ε), with ε > 0.
Note that in section 1, when we applied the logarithmic-barrier method to obtain

system 8, we assumed that the matrix XMT +Z is nonsingular. However, it is obvious
that det(XMT +Z) 6= 0 is equivalent to det (XM +Z) 6= 0, so Assumption 1 is also
sufficient for the purposes of section 1.

Remark. The common assumption of many authors, namely, the positive semidef-
initeness of the matrix M , guarantees that our assumption will be true. However, we
do not require M to be positive semidefinite. Our algorithm has performed well on
LCPs with nonsymmetric indefinite matrices. The next lemma actually shows that
assuming that XM +Z is nonsingular is equivalent to requiring that M belong in the
P0-class of matrices, which is larger than the class of positive semidefinite matrices.
By definition, a matrix M belongs in the P0 -class if and only if all its principal minors
are nonnegative.

Lemma 1. The matrix XM +Z is nonsingular for any diagonal matrices X and
Z with strictly positive elements if and only if M is a P0-matrix.

Proof. It is easy to show that for any strictly positive X and Z the following is
true:

(XM + Z) nonsingular ⇔
(
−M I
Z X

)
nonsingular .(24)

Moreover, Kojima et al. have shown in [10] that it also holds that(
−M I
Z X

)
nonsingular ⇔M ∈ P0.(25)

Hence, from (24) and (25) it directly follows that

(XM + Z) nonsingular ⇔M ∈ P0.
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The P0-class includes many important matrices such as positive semidefinite ma-
trices, P -matrices, P∗-matrices, etc. (see [10]) that give rise to interesting and difficult-
to-solve complementarity problems. Moreover, for the LCPs with P0-matrices, it is
not true that if the problem is strictly feasible then it has a solution. This holds for
LCPs with P∗-matrices. An example of an infeasible P0-matrix LCP is studied in
section 4.

We wish to emphasize here that our algorithm only requires that the matrix
XkM +Zk be nonsingular for Xk, Zk diagonal matrices containing the iterates {(xk,
zk)}, and it was actually successfully tested on matrices with no special structure of
any kind.

In addition to Assumption 1, we need to make the following assumption in order
to guarantee that the iterates generated by the algorithm remain bounded.

Assumption 2. Let J = {i : |xik| → +∞ as k → +∞}, J ⊂ {1, 2, . . . , n}. Then
there exists j ∈ J such that |[M(xk)]j | → +∞.

Assumption 2 is sufficient to guarantee that the sequence {xk} generated by the
algorithm is bounded, and, consequently, the merit function φ(x, z) has bounded level
sets. This will become clear by the following two lemmas.

Lemma 2. If ‖xk‖∞ ≤ ω1 for ω1 > 0 sufficiently large, then ∃ ω2 > 0 3
‖zk‖∞ ≤ ω2 . Consequently, ∃ ω > 0 such that

‖(xk, zk)‖∞ ≤ ω.

Proof. The boundedness of {xk} implies that there exists K1 ≥ 0 such that the
sequence {‖Mxk − c‖} is bounded above by K1. Then,

‖zk‖ ≤ ‖Mxk − c− zk‖+ ‖Mxk − c‖ ≤ φ0 +K1 = ω2.

Moreover, ‖(xk, zk)‖∞ ≤ max{ω1, ω2} = ω.

Lemma 3. The set

S ≡ {(x, z) : ε ≤ φ(x, z) ≤ φ0} = {(x, z) : ε ≤ {‖XZe‖2 + ‖Mx− c− z‖2}1/2 ≤ φ0}

is bounded. Moreover, the generated sequence of iterates {(xk, zk)} is bounded and the
set Ω(ε) is bounded.

Proof. From Lemma 2 it is clear that we only need to show that the sequence
{xk} remains bounded. Assume on the contrary that ‖xk‖ → ∞ and let J = {i :
{xik} is unbounded}. From Assumption 2 we have that ∃ i ∈ J such that |[M(xk)]i| →
+∞. Furthermore, for this i we must have that zi

k → 0, since otherwise xi
kzi
k → ∞

and ‖XkZke‖2 →∞. But if xi
k → +∞ and zi

k → 0, then ‖[Mxk]i − ci − zik‖ → +∞
and ‖Mxk − c− zk‖ 2 → +∞. Hence, {xk} remains bounded, and from Lemma 2 the
sequence {(xk, zk)} is bounded.

Another condition sufficient to guaranteeing that the generated sequence of it-
erates is bounded is the assumption that the matrix M is a P -matrix; i.e., all its
principal minors are positive. For a P -matrix it holds that there exists a constant
γ(M) > 0 such that

max
1≤i≤n

yi[My]i ≥ c‖y‖
2 ∀x, y ∈ Rn.
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Using this property, it can be shown that Assumption 2 is satisfied (see [8]). Imposing
such a condition on the matrix M is quite restrictive. It is known that an LCP with a
P -matrix has a unique solution for every c ∈ Rn. Note, however, that this condition is
only sufficient to guarantee the boundedness and is not necessary. The algorithm was
actually successfully tested on problems with matrices that do not have the P -matrix
property.

Alternatively, we can assume that M is positive semidefinite. Actually, positive
semidefiniteness of the matrix could be replaced for the purpose of boundedness by
the weaker assumption

(x− x̂)
T

(z − ẑ) ≥ 0 ∀(x, z) and∀(x̂, ŷ) such that Mx− c = z and Mx̂− c = ẑ.

The sequence {(xk, zk)} can be proven to be bounded again in this case (see [28]).
To prove convergence, we first show that the direction ∆vk generated by the

algorithm is uniformly bounded over the set Ω(ε).

Lemma 4. If {vk} =
{

(xk, zk)
}
∈ Ω(ε) with ε > 0, then

{
[F ′(vk)]

−1}
is bounded

and, furthermore, the Newton direction ∆vk is uniformly bounded over the set Ω(ε).
Proof. F (vk) = F (xk, zk) is given by

F (x, z) =

[
Mx− z − c

XZe

]
and, hence,

F ′(x, z) =

[
M −I
Z X

]
.

It then easily can be verified that

[F ′(vk)]
−1

= [F ′(xk, zk)]
−1

=

[
(Zk +XkM)

−1
Xk (Zk +XkM)

−1

M(Zk +XkM)
−1
Xk−I M(Zk +XkM)

−1

]
.(26)

From the assumption on the matrixXkM+Zk and the fact that the iterates {(xk, zk)}
remain bounded in Ω(ε), it follows that [F ′(vk)]

−1
is well defined and bounded over

the set Ω(ε), since every component involved in the right-hand side of (26) is well
defined and bounded. Consequently, the search direction ∆vk, defined by (22), is a
continuous function of the location vk = (xk, zk) and therefore also will be bounded
in Ω(ε).

In the next lemma we show that as long as the sequence vk satisfies vk ∈ Ω(ε)
for any given ε > 0, then the sequence of steplengths {α̂k} defined by (19) is bounded
away from zero.

Lemma 5. If {(xk, zk)} ⊂ Ω(ε) and {σk} is bounded away from zero, then {α̂k}
is bounded away from 0.

Proof. Let

αi = max
α∈[0,1]

{α : f i(ά) ≥ 0 for all ά ≤ α}, i = I, II.(27)

Then, clearly,

α̂k = min{αI , αII},
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and to prove the lemma, it suffices to show that both αI andαII are bounded away
from zero. We have

f I(α) = min(xi
k + α∆xi

k)(zi
k + α∆zi

k)− γτ1
(xk + α∆xk)

T
(zk + α∆zk)

n

= (1− α)

(
xi
kzi

k − γτ1
xk

T
zk

n

)
︸ ︷︷ ︸

≥0

+(1− γτ1)µkα

+

(
∆xi

k∆zi
k − γτ1

∆xk
T

∆zk

n

)
α2

≥ (1− γτ1)µkα−
∥∥∥∥∥∆xi

k∆zi
k − γτ1

∆xk
T

∆zk

n

∥∥∥∥∥α2

≥ (1− γτ1)µkα−B1α
2,

where B1 is a positive constant that satisfies∥∥∥∥∥∆xi
k∆zi

k − γτ1
∆xk

T
∆zk

n

∥∥∥∥∥ ≤ B1.

Such a constant will exist, since ∆xk,∆zk are bounded in Ω(ε) (see Lemma 4). Thus,
from the definition of αI (see (27)), we clearly have

αI ≥ (1− γτ1)µk
B1

.(28)

Similarly,

f II(α) = (xk + α∆xk)
T

(zk + α∆zk)− γτ2‖M(xk + α∆xk)− (zk + α∆zk)− c‖

= (xk + α∆xk)
T

(zk + α∆zk)− γτ2(1− α)‖Mxk − zk − c‖

= (1− α) (xk
T
zk − γτ2‖Mxk − zk − c‖)︸ ︷︷ ︸

≥0

+nµkα+ ∆xk
T

∆zkα2

≥ nµkα− ‖∆xk
T

∆zk‖α2

≥ nµkα−B2α
2,

where B2 is a positive constant such that

‖∆xkT∆zk‖ ≤ B2.

Using (27), we conclude that

αII ≥ nµk
B2

.(29)

If σk is bounded away from zero, then µk = σk
xk

T
zk
n is bounded below in Ω(ε), and

it follows from (28) and (29) that αI , αII are both bounded below and, moreover,
that the sequence α̂k, k = 1, . . . is bounded below in Ω(ε).
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We can now prove the main convergence result, namely, that the sequence gener-
ated by the algorithm is globally convergent if Assumptions 1 and 2 hold.

Theorem 1. Let the sequence {vk} be generated by the algorithm displayed in
Figure 1. Then for any ε > 0 and {σk} ⊂ (0, 1) bounded away from zero and one,

∃ k∗ 3 φ(vk) ≤ ε ∀k > k∗,(30)

i.e., φ(vk) converges to zero.
Proof. We have already seen that the sequence {φ(vk)} is convergent. To prove

the theorem, let us suppose that (30) is not true; i.e.,

∃ ε̂ > 0 3 φ(vk) > ε̂ ∀k.(31)

Then, {vk} ⊂ Ω(ε̂).
If in infinitely many iterations αk = α̂k , i.e., backtracking is not invoked, then

from the inequality

φ(vk+1)

φ(vk)
≤ 1− α̂kβ(1− σk)

and since α̂k are bounded away from zero (see Lemma 5), it follows that the cor-
responding subsequence converges to zero Q-linearly, which contradicts (31). Now
assume that αk < α̂k in infinitely many iterations. In this case, the backtracking line
search used in the algorithm produces a subsequence for which

∇φ(vk)
T

∆vk

‖∆vk‖ =

−
(
φ(vk)− µk x

kT zk

φ(vk)

)
‖∆vk‖ → 0 .(32)

A proof of this result can be found in [3].
Since ‖∆vk‖ is bounded above in Ω(ε̂) (see Lemma 4), (32) implies

φ(vk)− µk
xk

T
zk

φ(vk)
→ 0 .

However,

(1− σk)φ(vk) ≤ φ(vk)− µk
xk

T
zk

φ(vk)
,

therefore, it must hold that φ(vk) → 0 because σk is bounded away from one. This
again contradicts (31). Thus, (30) must be true, and this proves the theorem.

To establish the convergence result presented in this section we need to guarantee
that the sequence of iterates {xk} remains bounded. Assumption 2 was used for this
purpose. If we drop the boundedness requirement on the iterates, it is easy to modify
the theorem and show that in this case the sequence of iterates either converges to a
solution of the LCP or becomes unbounded, i.e., ‖xk‖ → +∞ as k → +∞.

Kojima, Noma, and Yoshise [11] have actually proved that for the general non-
linear monotone complementarity problem and for a generic interior-point method
satisfying certain conditions, three cases may occur. Either the sequence of iterates
will converge to a solution of the complementarity problem in a finite number of steps,
or it will converge to an approximately feasible point that is not complementary and
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from which a solution of the complementarity problem can be found in a finite number
of steps, or, finally, there exists a region which contains no solution of the comple-
mentarity problem. Their theorem follows. Note that we only state the result here.
The conditions that the algorithmic mapping should satisfy can be found in the above
reference and are all met by our algorithm.

Let ε be any small positive number and M be any positive number. Then there
exists a finite number p such that one of the following holds:

• xpT zp < ε and ‖zp −Mxp + c‖ < ε.
• z0 −Mx0 + c 6= 0 and ‖zp −Mxp + c‖ < ε.

• z0 −Mx0 + c 6= 0, ‖zp −Mxp + c‖ > ε, and νpr
Txp − (xP )

T
zp ≥ νpM.

In this case the region T (M) = {v = (x, z) ∈ R+
n ×R+

n : rTx <M} contains
no solution of the LCP.

Here r = z0 −Mx0 + c, and

ν0 =

{
1 if r 6= 0,
0 if r = 0,

νk+1 = (1− ak)νk, k = 1, 2, . . . .

Note that from relation (21) we have that

(zk −Mxk + c) = νk(z0 −Mx0 + c) = νkr.

As Kojima, Noma, and Yoshise pointed out in [11], any given bounded subset of
R++

2 is contained by the set T (M) if M is sufficiently large.
This result is actually consistent with our theorem. As we have already noted,

under the positive semidefiniteness assumption it can be shown that both Assumptions
1 and 2 hold, and thus the algorithm will converge provided that a solution exists.

4. Computational experience. All the experiments presented in this section
were performed on a SPARCstation 5 with 32 Mbytes RAM, and the codes were
written in FORTRAN 77.

As we pointed out in section 2, when M is sparse, sparse LU factorization methods
can be utilized. For the examples demonstrated in this section, the package Y12 from
NETLIB was used interchangeably with the package UMFPACK [2] for nonsymmetric
matrices.

4.1. Selection of parameters. In choosing the algorithmic parameters, we fol-
lowed the suggestions of El-Bakry et al. [4]. We select σk as

σk = min{η1, η2xk
T
zk},

where η1 = .02 and η2 = 1 . Clearly, σk is bounded away from one and in Ω(ε), ε > 0,
it is also bounded away from zero.

In [4] it was suggested that γ ≥ 1/2 , but our experience revealed that the algo-
rithm performed better with a smaller γ . Theoretically, γ can be chosen to be very
small as long as it is independent of n. In the numerical examples presented in this
section, we took γ = 6× 10−5. For the backtracking line search we used ρ = 0.5 and
β = 10−4.

The stopping criterion was

φ(xk, zk) ≤ ε = 10−8 .
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To start the algorithm, we used (x0, z0) with elements

xi
0 = zi

0 = β ∀i = 1, . . . , n,

where β > 0 is arbitrarily chosen. For the purpose of comparison, results are provided
with β = 1, 10, 100, and 1000 for most test problems. Although this choice of (x0, z0)
may seem simplistic, it proved to work well in practice.

A strategy suggested by Fernandes, Júdice, and Patŕicio in [5] was also imple-
mented and tested on some of the problems. With this strategy, the starting point is
found as

xi
0 = β,

zi
0 = ‖Mx− c‖∞ , i = 1, . . . , n,(33)

where β is a small integer (1 ≤ β ≤ 5).
The differences observed when applying the method on the same problem with

various starting points suggest that the selection of the starting point is important
for the algorithm, and a general algorithm remains for further study.

4.2. Numerical results. The algorithm was tested on a number of problems
found in the literature including both small- and large-scale LCPs. Some results with
randomly generated single commodity spatial economic equilibrium problems are also
provided. In all instances the algorithm performed extremely well and proved to be
insensitive to the dimension of the problem. Two small infeasible problems are also
included to demonstrate the behavior of the algorithm in such cases.

The first two problems were taken from Hock and Schittkowski [7] and were cited
by Shanno in [22]. The matrix M , the vector c, and the solution x∗ for each one of
these problems are given next.

Problem I.

M =


2 1 1 1
1 2 0 1
1 0 1 2
−1 −1 −2 0

 ,

c = (8, 6, 4, −3)
T
.

The solution of this LCP is x∗ = (2.5, 0.5, 0, 2.5).

Problem II.

M =



1 0 −0.5 0 1 3 0
0 0.5 0 0 2 1 −1

−0.5 0 1 0.5 1 2 −4
0 0 0.5 0.5 1 −1 0
−1 −2 −1 −1 0 0 0
−3 −1 −2 1 0 0 0

0 1 4 0 0 0 0


,
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c = (1, 3, −1, 1, −5, −4, 1.5)
T
.

The solution of this LCP is x∗ = (0.09, 2.36, 0, 0.18, 0.9, 0, 0).
Problem III. This problem was taken from [15] and also appeared in [22]. Its

matrix M and vector c are

M =


0 0 2 2 1
0 0 1 2 2
1 2 0 0 0
3 1 0 0 0
2 3 0 0 0

 ,

c = (1, 1, 1, 1, 1)
T
.

The solution of this LCP satisfies x∗ = (α, β, 0, 0.5, 0), where indeterminacy gives
different α and β (satisfying 3α+ β − 1 = 0 ) for different starting points.

The results for these three problems with four different starting points are pre-
sented in Table 1.

Table 1

Problems I, II, III: Iterations of the algorithm.

Starting point Problem I Problem II Problem III

xi
0 = zi

0 = 1 7 10 6
xi

0 = zi
0 = 10 8 12 9

xi
0 = zi

0 = 100 11 15 13
xi

0 = zi
0 = 1000 12 15 12

Problem IV. This test problem was taken from [6] and has also been cited in [22]
and [5]. The matrix M of the problem satisfies M = LLT , where L is a dense lower
triangular matrix with diagonal elements equal to one and off-diagonal elements equal
to two. Thus, M is as follows:

M =


1 2 2 · · · 2
2 5 6 · · · 6
2 6 9 · · · 10
...

...
...

. . .
...

2 6 10 · · · 4(n− 1) + 1

 ,

c = (1, . . . , 1)
T
.

The solution of the problem is x∗ = (1, 0, . . . , 0) .
Although it is difficult to compare different algorithms fairly, our algorithm per-

formed better, in terms of the number of iterations it took to converge, than the
predictor–corrector algorithm implemented and tested on the same problem in [5].
Table 2 illustrates the performance of the algorithm for four values of the dimension
n with seven different starting points.

Clearly, the performance of the method does not appear to depend on the di-
mension of the LCP. Fernandes, Júdice, and Patŕicio pointed out in [5] that their
computational experiments revealed that block pivoting algorithms do not share this
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Table 2

Problem IV: Iterations of the algorithm.

Dimension
Starting point 50 100 200 300

xi
0 = zi

0 = 1 5 5 5 5
xi

0 = zi
0 = 10 10 10 10 10

xi
0 = zi

0 = 100 13 14 14 14
xi

0 = zi
0 = 1000 17 17 18 18

xi
0 = 1, zi

0 = ‖Mx0 − c‖∞ 19 19 19 19
xi

0 = 4, zi
0 = ‖Mx0 − c‖∞ 21 21 21 21

xi
0 = 5, zi

0 = ‖Mx0 − c‖∞ 22 22 22 22

property. On all problems tested, however, it appears to be a property of this algo-
rithm.

Problem V. This problem was taken from [1]. M is the upper triangular matrix

M =


1 2 2 · · · 2
0 1 2 · · · 2
0 0 1 · · · 2
...

...
...

. . .
...

0 0 0 · · · 2

 ,

c = (1, . . . , 1)
T
.

The solution of the problem is x∗ = (0, 0, . . . , 1) .
We tested the algorithm with four different starting points. The results in number

of iterations for three different values of the dimension n are illustrated in Table 3.

Table 3

Problem V: Iterations of the algorithm.

Dimension
Starting point 10 100 200

xi
0 = zi

0 = 1 4 4 4
xi

0 = zi
0 = 10 9 9 9

xi
0 = zi

0 = 100 12 12 12
xi

0 = zi
0 = 1000 15 15 15

Problem VI. Here we considered two LCPs taken from [1]. The matrix M for both
of the LCPs is simply the transpose of the matrix we had in the previous problem,
but the vectors c are quite different this time.

M =


1 0 0 · · · 0
2 1 0 · · · 0
2 2 1 · · · 0
...

...
...

. . .
...

2 2 2 · · · 1

 .

For the first problem we have that the vector c has elements

ci =
n∑
j=i

2j ,
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and the solution of the problem is

x∗ =

 n∑
j=1

2j , 0, . . . , 0

 ,

while in the second problem c satisfies

ci =
n∑

j=n+1−i
2j ,

and the solution of the resulting LCP is

x∗ = (2n, 0, . . . , 0) .

Scaling was required for these problems because of the large values of the elements of

c. Therefore, for these two experiments we took xi
0 = zi

0 = max (1,
‖c‖2
n ).

Table 4 displays the performance of the algorithm on both problems for n = 20.

Table 4

Problem VI: Iterations of the algorithm.

c Iterations

ci =
∑n
j=i 2j 15

ci =
∑n
j=n+1−i 2j 19

Problem VII. This problem was taken from [5]. Both degenerate and nonde-
generate problems were constructed sharing the same pentadiagonal matrix M with
elements

mi,i = 6,(34)

mi,i−1 = mi−1,i = −4,

mi,i−2 = mi−2,i = 1.

For the nondegenerate problem, the vector c was constructed as in [5] in such a way
that the solution x∗ of the resulting LCP satisfies

xi
∗ = 1, zi

∗ = 0, i = 1, . . . ,
n

2
,

xi
∗ = 0, zi

∗ = 1, i =
n

2
+ 1, . . . , n.

The degenerate problem was constructed so that its solution satisfies

xi
∗ = zi

∗ = 0, i = 1, . . . ,
n

8
,

xi
∗ = 1, zi

∗ = 0, i =
n

8
+ 1, . . . ,

n

2
,

xi
∗ = 0, zi

∗ = 1, i =
n

2
+ 1, . . . , n.

Table 5 displays the performance of our algorithm on both types of problems
for four different values of n. For the starting point we used xi

0 = 4 and zi
0 =
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‖Mx− c‖∞ . Results for n = 500 using a number of other starting points are also
provided in Table 6.

This experience suggests that degeneracy has some but not great influence on our
method. Compared to the results reported in [5] on the nondegenerate problem, our
algorithm took fewer iterations to converge.

Table 5

Problem VII: Iterations of the algorithm.

Dimension nondegenerate degenerate
100 10 17
200 11 18
500 11 18
1000 11 18

Table 6

Problem VII: Iterations of the algorithm (n = 500).

Starting point nondegenerate degenerate

xi
0 = zi

0 = 1 6 16
xi

0 = zi
0 = 10 14 18

xi
0 = zi

0 = 100 21 24
xi

0 = zi
0 = 1000 28 32

Problem VIII. This problem was also taken from [5] and is based on the same
pentadiagonal matrix given by (34). Nondegenerate LCPs were generated as before
with matrices of the form

M + λkI,

where λk, k = 1, . . . , 5 is a set of positive real numbers such that M + λ1I is strictly
diagonally dominant and

λk+1 =
λk
10t

, k = 1, . . . , 4 , λ1 = 10

for t = 2.
The performance of the algorithm with starting point xi

0 = 4 and zi
0 = ‖Mx− c‖∞

is illustrated in Table 7.

Table 7

Problem VIII: Iterations of the algorithm.

λk Iterations
10 11

1.0E − 01 9
1.0E − 03 10
1.0E − 05 11
1.0E − 07 11

Problem IX. Next, we tested our algorithm on large-scale LCPs with matrices
that arise in the solution of the Laplace equation

∂2u(x, y)

∂x2
+
∂2u(x, y)

∂y2
= 0
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on the rectangle [0, b] × [0, d], with b and d positive real numbers, by finite differences.
This problem was taken from [5], and as it is described there,M is an (m − 1)(t −
1)× (m− 1)(t− 1) matrix of the form

M =


B −Im−1 0 · · · 0

−Im−1 B −Im−1 · · · 0
0 −Im−1 B · · · 0
...

...
...

. . .
...

0 0 0 · · · B

 ,

where B is an (m− 1)× (m− 1) tridiagonal matrix with elements

bi,i = 2

[(
bt

dm

)2

+ 1

]
, bi−1,i = bi,i+1 = −

(
bt

dm

)2

,

and Im−1 is the identity matrix of dimension (m− 1). The vector c was constructed
so that the resulting LCPs have nondegenerate solutions with elements

xi
∗ = 1, zi

∗ = 0, i = 1, . . . ,
n

2
,

xi
∗ = 0, zi

∗ = 1, i =
n

2
+ 1, . . . , n.

Table 8 displays the performance of the algorithm for four dimensions n , and
four different starting points. These results confirm once more that increasing the
dimension of the problem does not have a negative effect on the performance of the
algorithm.

Table 8

Problem IX: Iterations of the algorithm.

xi
0 = 1 xi

0 = 10 xi
0 = 100 xi

0 = 4
b d m t Dimension zi

0 = 1 zi
0 = 10 zi

0 = 100 zi
0 = ‖Mx0 − c‖∞

100 1 101 31 3000 5 10 15 13
1 100 101 31 3000 5 10 15 13
1 1 101 31 3000 5 10 15 13
1 1 401 16 6000 5 10 15 13
1 1 501 21 10000 5 10 15 13
1 1 501 31 15000 5 10 15 13

Problem X. This is a large-scale single commodity spatial equilibrium problem
whose formulation as an LCP is fully described in [16] and [17]. The problem is to
find the desired equilibrium prices pi, the net import yi , and the trade flow xij from
region i to region j which satisfy for all regions i, j = 1, . . . , N the following system
of equations:

αi − biyi = pi,
n∑
j=1

xji −
n∑
j=1

xij = yi,
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Table 9

Problem X: Iterations of the algorithm.

xi
0 = 1 xi

0 = 10 xi
0 = 100

N Dimension |H| zi
0 = 1 zi

0 = 10 zi
0 = 100

25 147 20 19 21
50 423 16 15 18

pi + cij − pj ≥ 0,

xij ≥ 0,

xij(pi + cij − pj) = 0.

As pointed out by Portugal and Júdice in [17], an important characteristic of this
model is its network structure. The model can be represented by a directed graph
where the node i represents the region i and the directed arc (i, j) represents the
connection from region i to region j. The problem may be formulated as an LCP
whose matrix M and vector c satisfy

M = GTBG, c = −(GTα+ c),

where G is the N × |H| node-arc incidence matrix related to the flow conservation
equations in the graph Ψ = (N,H) with H = {(i, j) : ai − aj + cij > 0}. GTBG is a
singular symmetric positive semidefinite matrix of order |H|, where |H| represents the
number of edges in the set H. To generate the instances used to test our algorithm,
we used the technique suggested in [17]. Namely, we generated the αi’s and bi’s
to be random numbers in the interval [0, 100] and the cij ’s to be random numbers
in the interval [0, 80] that satisfy the triangular inequality cij + cjk ≥ cik for all
i, j, k = 1, . . . , N .

Table 9 illustrates the performance of the algorithm for two values of n with three
different starting points.

Table 10

Problem XI: Iterations of the algorithm.

Starting point Iterations

xi
0 = zi

0 = 1 –
xi

0 = zi
0 = .1 17

xi
0 = zi

0 = 30 31
xi

0 = zi
0 = 50 29

xi
0 = zi

0 = 100 34

Problem XI. Next we tested the algorithm on a 63-variable problem generated
by linearizing a nonlinear complementarity problem. This is a problem of finding
economic equilibria in a model of duopoly (see [12]) and is studied extensively in
[23]. We generated our test problems by linearizing around different points, and then
we attempted to solve the resulting LCPs as individual problems. These problems
are difficult to solve because their matrices are nonsymmetric and indefinite. Theo-
retically, our algorithm is well defined as long as Z + XM is nonsingular, and this
experience shows that it works for problems of this sort.

Table 10 illustrates the performance of the algorithm on four instances of the
problem. The values of x0 given in the table represent the point around which the



638 EVANGELIA M. SIMANTIRAKI AND DAVID F. SHANNO

linearization was done. Moreover, the same x0 was used as the starting point. In
all cases, we took xi

0 = zi
0 ∀ i = 1, . . . , n. In one of these instances the algorithm

did not converge. After 14 iterations, αk was below 10−10 , implying that the LCP
generated is probably infeasible.

Problem XII. Next we tested our algorithm on an infeasible 2 × 2 problem with
matrix

M =

(
−2 −3
−1 4

)
,

and

c = (2, 1)
T
.

In this case, the sequence of αk converged to zero quickly and the algorithm stopped.
Specifically, after nine iterations the algorithm terminated with αk = 2.411 × 10−13.
This happened because the matrix XkM+Zk became more and more nearly singular.
As a result, the vector of directions ∆vk started to diverge. Since the iterates (xk, zk)
are bounded in Ω(ε) the steplength αk was driven to zero.

Problem XIII. Finally, we tested our algorithm on one more infeasible 2×2 problem
taken from [10]. For this problem,

M =

(
1 0
1 0

)
,

and

c = (1, 1)
T
.

This time, αk dropped to 2.6×10−10 in seven iterations and the algorithm was stuck.
This LCP has the characteristic that its matrix belongs in the P0-class; thus,

XkM +Zk is nonsingular for every (xk, zk) > 0. Nevertheless, it is easy to check that
the problem has no solution. The algorithm was stuck because z2

k was being driven
to zero which makes the matrix become singular in the limit.

5. Conclusions. In this paper, we presented an infeasible-interior-point algo-
rithm with backtracking line search to solve the LCP. Convergence of this algorithm
with an `2-norm was proven in section 3 under two assumptions, i.e., that the matrix
XM +Z used in the generation of the moving direction remains nonsingular at every
step and that the matrix M satisfies that if |xik| → +∞ for i ∈ J ⊂ {1, 2, . . . , n}, then
there exists a j ∈ J such that also |[Mxk]j | → +∞.

Computational experience revealed that when the problem is infeasible, the ma-
trix XM + Z becomes singular and at least one element of the direction vector ∆v
becomes arbitrarily large. As a result, the steps αk tend rapidly to zero (see also
[24]). Interestingly, the condition that drives them to zero is the centering condition
rather than the feasibility condition. Actually, both the condition that ensures that
feasibility is given a higher priority than complementarity and the backtracking line
search are rarely invoked by the algorithm in practice.

Our method is not restricted to P∗-matrices, unlike most algorithms for non-
monotone LCPs documented in the literature. No particularly strong requirements
were imposed on matrix M. This is important since such requirements are often not
satisfied in applications of LCPs.
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Even though our convergence result does not exclude the possibility that the
algorithm will terminate without a solution when a solution exists, the method was
remarkably successful on all the problems tested. The numerical results presented in
section 4 prove that the dimension of the problem has no effect on the performance
of the algorithm. Moreover, degeneracy did not appear to have any significant effect
even though it is known to cause difficulties in general. What appears to influence
performance is the starting point. Trying different starting points can result, in some
cases, in significant changes in the performance of the algorithm. Unfortunately,
none of the strategies we tried proved to be successful independent of the problem.
Actually, simply setting xi

0 = zi
0 = β , β > 0, worked better in certain cases than

the more sophisticated strategy that involves the calculation of the max-norm. We
believe that further research should be directed to finding “good” starting points for
the algorithm.
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Abstract. It is well known that the duality theory for linear programming (LP) is powerful
and elegant and lies behind algorithms such as simplex and interior-point methods. However, the
standard Lagrangian for nonlinear programs requires constraint qualifications to avoid duality gaps.

Semidefinite linear programming (SDP) is a generalization of LP where the nonnegativity con-
straints are replaced by a semidefiniteness constraint on the matrix variables. There are many
applications, e.g., in systems and control theory and combinatorial optimization. However, the La-
grangian dual for SDP can have a duality gap.

We discuss the relationships among various duals and give a unified treatment for strong duality
in semidefinite programming. These duals guarantee strong duality, i.e., a zero duality gap and dual
attainment. This paper is motivated by the recent paper by Ramana where one of these duals is
introduced.
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1. Introduction.

1.1. Semidefinite programming (SDP). We study strong duality theorems
for the semidefinite linear programming problem

(P)
p∗ = sup ctx

subject to Ax � b
x ∈ <m,

where c, x ∈ <m; b = Q0 ∈ Sn, the space of symmetric n × n matrices; the linear
operator Ax =

∑m
i=1 xiQi for Qi ∈ Sn, i = 1, . . . ,m; and � denotes the Löwner

partial order, i.e., X � (≺) Y means Y −X is positive semidefinite (positive definite).
We let P denote the cone of semidefinite matrices. By a cone we mean a convex
cone, i.e., a set K satisfying K + K ⊂ K and λK ⊂ K for all λ ≥ 0. We consider
the space of symmetric matrices, Sn, as a vector space with the trace inner product
〈U,X〉 := traceUX. (Over the space of n × n matrices, 〈U,X〉 := trace (U tX).) The

corresponding norm is the Frobenius matrix norm ||X|| =
√

traceX2.
We let F denote the feasible set of (P), and we assume that the optimal value p∗

is finite. (This implies that the feasible set F 6= ∅.)
1.2. Background.

1.2.1. Cone of semidefinite matrices. The cone of positive semidefinite ma-
trices has been studied extensively for both its importance and geometric elegance.
Positive definite matrices arise naturally in many areas, including differential equa-
tions, statistics, and systems and control theory. The cone P induces a partial order
on Sn called the Löwner partial order. Various monotonicity results were studied
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with respect to this partial order [28, 29]. An early paper in this area is the one by
Bohnenblust [9]. Optimization problems over cones of matrices are also discussed in
the monograph by Berman [8].

More recently, we have seen a strong renewed interest in semidefinite program-
ming. This is due to new applications in engineering (e.g., Ben-Tal and Nemirovskii
[7], Boyd et al. [14], and Vandenberghe and Boyd [36]) and combinatorial optimiza-
tion (e.g., Alizadeh [1], Goemans and Williamson [19], Lovász and Schrijver [27],
Nesterov and Nemirovskii [30], Delorme and Poljak [15], and Helmberg et al. [22]).
Other applications of SDP arise from the study of correlation matrices in statistics,
e.g., Pukelsheim [31]; matrix completion problems, see [20, 5, 24]; and multiquadratic
programs, e.g., [32].

Nesterov and Nemirovskii’s book provides a unifying framework for polynomial-
time interior-point algorithms in convex programming (which includes SDP). Cur-
rently, interior-point algorithms seem to be the best algorithms (from both theoreti-
cal and practical viewpoints) for solving SDP problems, e.g., [36]. An infeasible-start
interior-point algorithm was presented in Freund [17]. Complexity of the algorithm
depends on the distances (in a norm induced by the initial solution) of the initial solu-
tion to the sets of approximately feasible and approximately optimal solutions, where
approximate feasibility and optimality are defined in terms of given tolerances. The
algorithm does not assume that the zero duality gap (or even feasibility) is attainable.
Indeed, for the case when the given problem exhibits a finite nonzero duality gap, we
can ask for a tolerance in the duality gap that is not attainable (for such a tolerance,
the distance from the set of approximately optimal solutions would be infinite for
any starting point). This illustrates some of the difficulties encountered with nonzero
duality gaps. Our goal here is to study and unify the ways in which a dual problem
can be modified to ensure a zero duality gap at optimality.

1.2.2. Early duality results. Extensions of finite linear programming duality
to infinite dimensions and/or to optimization problems over cones have been studied
in the literature. We do not give a comprehensive survey, but we mention several
early results.

In [16], Duffin studies infinite linear programs, i.e., programs for which there are
an infinite number of constraints and/or an infinite number of variables. Also studied
in [16] is the notion of optimization with respect to a partial order induced by a cone.
Duality theory is also central in the related notion of continuous programming, e.g.,
[25, 26, 34], which is closely tied in with infinite programming. A major question
is the formulation of duals that close the duality gap. Infinite dimensional linear
programming is also studied in the books by Glashoff and Gustafson [18] and Anderson
and Nash [2].

More recently, duals that guarantee strong duality for general abstract convex
programs have been given in [13, 12, 11, 10]. The special case of a linear program
with cone constraints is treated in [38].

1.3. Outline. This paper is motivated by the recent paper of Ramana [33]. A
dual program, called an extended Lagrange–Slater dual program and denoted (ELSD),
is presented therein. Strong duality holds for this dual and, in addition, it can be
written down in polynomial time. Previous work on general (convex) cone constrained
programs [13, 38, 11, 10] also presented dual programs for which strong duality holds.
The results were based on regularization and on finding the so-called minimal cone
of the program (P). We denote these duals by (DRP). A procedure for defining the
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minimal cone was presented in [11]. This procedure started with an initial feasible
point and reduced the program, in a finite number of steps, to a regularized program.

The main result in this paper is to show that the extended Lagrange dual program
(ELSD) is equivalent to the regularized dual (DRP). This equivalence is in the sense
that the constraints and the set of Lagrange multipliers are the same. The difference
in the duals is the fact that the feasible set of Lagrange multipliers, denoted (Pf )+, is
expressed implicitly in (ELSD) as the solution of m systems of constraints included in
the dual, whereas it is defined explicitly in (DRP) as the output of the separate pro-
cedure mentioned above. This separate procedure finds the minimal cone by solving
a system of constraints equivalent to that in (ELSD). Also presented is an extended
dual of the dual; i.e., this closes the duality gap from the dual side.

The fact that the two duals (ELSD) and (DRP) are found using different tech-
niques and then result in being equivalent is more than a coincidence. In fact, we
show that such duals are uniquely identified in a certain sense.

In section 2 we discuss the geometry of the cone of semidefinite matrices. In
particular, we present old and new results on the faces of this cone. Lemmas 2.1
and 2.2 provide a description of the faces and characterization of the cases in which
the sum of the positive semidefinite cone and a subspace is closed. The two strong
duality schemes are outlined in section 3. The relationships between the duals is
presented in section 4. We include the results on the extended Lagrange–Slater dual
of the Lagrangian dual of (P). In section 5, we present a homogenized program which is
equivalent to SDP and provides a different view of optimality conditions. We conclude
with some remarks on perturbations of SDP and computational complexity issues.

2. Geometry of the SDP cone. We now outline several known and some new
results on the geometry of the cone P. More details can be found in [3, 4]. For an
introduction to the geometry of convex sets, see Rockafellar [35].

The cone K ⊂ T is a face of the cone T , denoted K < T , if

x, y ∈ T, x+ y ∈ K ⇒ x, y ∈ K.(2.1)

The faces of P have a very special structure. Each face, K < P, is characterized by
a unique subspace, S ⊂ <n :

K = {X ∈ P : N (X) ⊃ S}.

Moreover,

relint (K) = {X ∈ P : N (X) = S}.

The complementary (or conjugate) face of K is Kc = K⊥ ∩ P and

Kc = {X ∈ P : N (X) ⊃ S⊥}.(2.2)

Moreover,

relint (Kc) = {X ∈ P : N (X) = S⊥}.

Equivalent characterizations for K and Kc are given in (2.6) and (2.7).
Two additional facts about the faces of the cone P are as follows:
(i) Each face K (respectively, Kc) is exposed; i.e., it is equal to the intersection

of P with a supporting hyperplane; the supporting hyperplane corresponds to any
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X ∈ relint (Kc) (respectively, relint (K)). Also, complementary faces are orthogonal
and satisfy XY = 0 for all X ∈ K,Y ∈ Kc.

(ii) The cone P is projectionally exposed (see [11]); i.e., every face of P is the image
of P under some projection. In fact, if Q ∈ Sn is the projection onto the subspace S,
the null space of matrices in relint (K), then the face K satisfies

K = (I −Q)P(I −Q).

The minimal cone of (P) is defined as

Pf = ∩{K < P : K ⊃ (b−A(F ))},(2.3)

i.e., the minimal cone is the intersection of all faces of P containing the feasible slacks.
The following lemma shows that we can express the orthogonal complement of

a face completely in terms of a system of semidefinite inequalities. The semidefinite
inequalities are based on the data of the original problem. The description is made
possible by using a semidefinite completion problem.

Lemma 2.1. Suppose that C is a convex cone and C ⊂ P. Let

K := {W +W t : U �WW t for some U ∈ C}.

Then

((F(C))c)⊥ = K

=

{
W +W t :

[
I W t

W U

]
� 0 for some U ∈ C

}
.(2.4)

Proof. Suppose that W + W t ∈ K, i.e., U � WW t for some U ∈ C. Since
xt(U −WW t)x ≥ 0 for all x, we get N (U) ⊂ N (W t). Equivalently, R(U) ⊃ R(W ).
Since UU † is the orthogonal projection onto the range of U , where U† denotes the
Moore–Penrose generalized inverse of U , we conclude that W = UU†W. We have
shown that

U �WW t ⇒W = UH for some H.(2.5)

(See, e.g., [33].) Therefore, traceWV = 0 for all V ∈ (F(C))c, i.e., W + W t ∈
((F(C))c)⊥. To prove the converse inclusion, suppose that V ∈ ((F(C))c)⊥ and U ∈
C ∩ relint (F(C)). Let U be orthogonally diagonalized by Q = [Q1, Q2] :

U = QDiag (d1 0)Qt, QtQ = I,

with Q1, n×r, d1 > 0. Therefore, the minimal face can be written using block matrices
as follows:

F(C) = {Q1BQ
t
1 : B � 0, B ∈ Sr}

=

{
Q

[
B 0
0 0

]
Qt : B � 0, B ∈ Sr

}
(2.6)

and

(F(C))c = {Q2BQ
t
2 : B � 0, B ∈ Sn−r}

=

{
Q

[
0 0
0 B

]
Qt : B � 0, B ∈ Sn−r

}
.

(2.7)
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This implies that V in ((F(C))c)⊥ can be written in terms of blocks as

V = Q

([
.5T C
0 0

]
+

[
.5T 0
Ct 0

])
Qt.

We then have

X = Q

([
T 2 + CCt 0

0 0

])
Qt � αU

for sufficiently large α, i.e., V + V t ∈ K.
The alternate expression for K in (2.4) follows from the Schur complement.
Now, we note the following interesting and surprising closure property of the faces

of P. This is surprising because it is not true in general that the sum of a cone and
a subspace is closed.

Lemma 2.2. Suppose that the face K satisfies

{0} 6= K<P, K 6= P.

Then

P +K⊥ = P + spanKc;(2.8)

P + spanK is not closed.(2.9)

Proof. Since spanKc ⊂ K⊥, we get

P +K⊥ ⊃ P + spanKc.

From the characterization of faces in [3, 4], there exists a subspace S ⊂ <n, with
dimension k, such that

K = {X � 0 : N (X) ⊃ S}.

After applying an orthogonal transformation to <n, we can assume that S is the span
of the first k unit vectors. Therefore, X ∈ K has a k × k zero block, i.e.,

X =

[
0k 0
0 X̄

]
.

Moreover, for X in the relative interior of K, we have X̄ � 0. This implies that

K⊥ =

{
Y : Y =

[
C D
Dt 0

]
, C ∈ Sk, D ∈Mk,n−k

}
.

Now suppose that we are given Tn ∈ K⊥, Pn ∈ P, n = 1, 2, . . . and the sequence

Tn + Pn → L =

[
L1 L2

Lt2 L3

]
.

Comparing the corresponding bottom right blocks, we see that necessarily L3 � 0.
Therefore,

L =

[
L1 L2

Lt2 0

]
+

[
0 0
0 L3

]
,
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i.e., L ∈ K⊥ + P. This proves that P +K⊥ is closed, i.e.,

P +K⊥ ⊃ P + spanKc.

To prove the converse inclusion, suppose that

W ∈ (P +K⊥) \ (P + spanKc).

Then there exists a separating hyperplane, i.e., there exists Φ such that

trace ΦW < 0 ≤ trace Φ(P + w) ∀P ∈ P, w ∈ spanKc.(2.10)

This implies that Φ � 0 and Φ ∈ (Kc)⊥. But then trace ΦW = trace ΦP + trace Φw,
with P ∈ P, w ∈ K⊥. From Lemma 2.1 and (2.5) we get that w = UH + HtU for
some U ∈ Kc, so trace Φw = 0. This implies that trace ΦW = trace ΦP ≥ 0, which
contradicts (2.10). This completes the proof of (2.8).

Now suppose that X ∈ relint (K) and X = QDQt, Q = [Q1, Q2] , QQt = I,
is an orthogonal diagonalization of X with the columns of Q1 spanning N (X) and
the columns of Q2 spanning R(X). Then K = {Q2BQ

t
2 : B � 0} , and spanK =

{Q2BQ
t
2 : B ∈ S} . Now let B � 0, T � 0, and n = 1, 2, . . . . Choose T, L so that

[Q1 Q2]

[
1
nT L
Lt nB

] [
Qt1
Qt2

]
∈ P.

But

[Q1 Q2]

[
0 0
0 −nB

] [
Qt1
Qt2

]
∈ spanK.

However, the limit of the sum of the two sequences is

[Q1 Q2]

[
0 L
Lt 0

] [
Qt1
Qt2

]
,

which is not in the sum (P + spanK).
Corollary 2.1.

(Pf )+ = P+ + (Pf )⊥ = P + (Pf )⊥ = P + span (Pf )c.

Proof. From the definition of a face and the closure condition above, we get

(Pf )+ = (P ∩ Pf )+

= (P ∩ span (Pf ))+

= P+ + (Pf )⊥.

3. Duality schemes.

3.1. Lagrangian duality. The Lagrangian for (P) is

L(x, U) = ctx+ traceU(b−Ax).

Consider the max-min problem

p∗ = max
x

min
U�0

L(x, U).
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The inner minimization problem has the hidden constraint Ax � b; i.e., the minimiza-
tion problem is unbounded otherwise. Once this hidden constraint is added to the
outer maximization problem, the minimization problem has optimum U = 0. There-
fore we see that this max-min problem is equivalent to the primal (P). This illustrates
that we have the correct constraint on the dual variable U . (See, for instance, the
arguments in Duffin [16] and Alizadeh [1].)

The Lagrangian dual to (P) is obtained by reversing the max-min to a min-max
and rewriting the Lagrangian, i.e.,

p∗ ≤ d∗ = min
U�0

max
x

{
L(x, U) = trace bU + xt(c−A∗U)

}
.

Here A∗ denotes the adjoint of the linear operator A, i.e.,

(A∗U)i = traceQiU.(3.1)

The inner maximization now has the hidden constraint c − A∗U = 0. Once this
hidden constraint is added to the outer minimization problem, the inner maximization
has optimum x = 0. Therefore, we see that this min-max problem is equivalent to the
following dual program:

(D)
d∗ = min trace bU

subject to A∗U = c
U � 0.

3.1.1. Linear programming special case. We note that the SDP pair (P)
and (D) look exactly like LP duals but with ≥ replaced by � . In fact, if the adjoint
operator A∗ includes constraints that force U to be diagonal, then we see that LP is
a special case of SDP.

Now suppose that we consider (P) and (D) as LPs, i.e., suppose that we replace
� with ≥ . Then the operator A is an n×m matrix, and U ∈ <n. In this special case
(since we assumed that the primal feasible set is nonempty), we always have strong
duality, i.e., p∗ = d∗ and d∗ is attained. Moreover, we can have more than one dual of
(P). Let P= denote the set of indices of the rows of A corresponding to the implicit
equality constraints, i.e.,

P= := {i : x ∈ F implies Ai:x = bi},
where Ai: denotes the ith row of A. Then we can consider the equality constraints
Ai:x = bi for any subset of P=, without changing (P). This is equivalent to allowing
the dual variables Ui, i ∈ P=, to be free rather than nonnegative. Thus we see that
we can have different duals for (P) while maintaining strong duality. In fact, there
are an infinite number of duals, since the space of dual variables can be any set which
includes the nonnegative orthant and restricts Ui ≥ 0, i /∈ P=.

It is clearly better to have a smaller set of dual variables. In fact, in the case
of LP discussed above, if some of the inactive constraints at the optimum can be
identified, then we can restrict the corresponding dual variables to be 0. This is
equivalent to ignoring the inactive constraints. Of course, we do not in general know
which constraints will be active at the optimum.

Having more than one dual program occurs because there is no strictly feasible
solution for (P). We see below that a similar phenomenon occurs for (P) in the SDP
case but with the additional complication of possible loss of strong duality. In addition,
the semidefinite constraint is not as simple as the nonnegativity constraint in LP. The
question arises whether or not we get the same dual if we treat the semidefinite
constraint U � 0 as a functional constraint using the smallest eigenvalue of U .
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3.2. Strong duality and regularization. If a constraint qualification, denoted
CQ (see section 5), holds for P, then we have strong duality for the Lagrange dual
program; i.e., p∗ = d∗ and d∗ is attained. The usual CQ is Slater’s condition: there
exists x̂ such that (b−Ax̂) ∈ intP. Examples where p∗ < d∗ and/or one of d∗, p∗ is not
attained have appeared in the literature; see, e.g., [17]. One can close the duality gap
by using the minimal cone of P. Therefore, an equivalent program is the regularized
primal program; see [11, 38]:

(RP)
p∗ = max ctx

subject to Ax �Pf b
x ∈ <m.

Moreover, by the definition of faces, there exists x̂ such that (b − Ax̂) ∈ relint (Pf ).
Therefore, the generalized Slater’s constraint qualification holds; i.e., strong duality
holds for this program. (This is proved in detail in [11, 38].) Thus, the following is a
dual program for (P) for which strong duality holds:

(DRP)
p∗ = min trace bU

subject to A∗U = c
U �(Pf )+ 0,

where the polar cone

(Pf )+ := {U : traceUP ≥ 0 ∀P ∈ Pf}.

One can also close the duality gap from the dual side. Let FD denote the feasible
set of (D). The minimal cone of (D) is defined as

PfD = ∩{K : K < P,K ⊃ FD}.(3.2)

Therefore, an equivalent program is the regularized dual program

(RD)

d∗ = min trace bU
subject to A∗U = c

U �Pf
D

0.

Strong duality holds for this program. We therefore get the following strong dual of
(D).

(DRD)

d∗ = max ctx
subject to Ax �(Pf

D
)+ b

x ∈ <m.

The above presents two pairs of symmetric dual programs: (RP) and (DRP);
(RD) and (DRD). The following theorem states that these dual pairs have all the
nice properties of dual pairs in ordinary linear programming, i.e., [38, Theorem 4.1].
(Part 3 of Theorem 3.1 modifies and corrects the statement in [3.8].) This extends
the duality results over polyhedral cones presented in [6].

Theorem 3.1. Consider the paired regularized programs (RP) and (DRP ).
1. If one of the problems is inconsistent, then the other is inconsistent or un-

bounded.
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2. Let the two problems be consistent, and let x0 be a feasible solution for (P) and
U0 be a feasible solution for (DRP). Then

ctx0 ≤ trace bU0.

3. If both (RP) and (DRP) are consistent, then their optimal values are equal
and (DRP) has an optimal solution.

4. Let x0 and U0 be feasible solutions of (RP) and (DRP), respectively. Then x0

and U0 are optimal if and only if

traceU0(b−Ax0) = 0

and if and only if

U0(b−Ax0) = 0.

5. The vector x0 ∈ <m and matrix U ∈ Sn are optimal solutions of (RP) and
(DRP), respectively, if and only if (x0, U0) is a saddle point of the Lagrangian L(x, U)
for all (x,U) in <m × (Pf )+. Then,

L(x0, U0) = ctx0 = trace bU0.

3.3. Extended duals. The above dual program (DRP) uses the minimal cone
explicitly. In [33], the extended Lagrange–Slater dual program, (ELSD), is proposed.
First define the following sets:

Ck = {(Ui,Wi)
k
i=1 : A∗(Ui +Wi−1) = 0, trace b(Ui +Wi−1) = 0,

Ui �WiW
t
i ∀i = 1, . . . , k,W0 = 0},

Uk = {Uk : (Ui,Wi)
k
i=1 ∈ Ck},(3.3)

Wk = {Wk : (Ui,Wi)
k
i=1 ∈ Ck}.

Note that Schur complements imply that

Ui �WiW
t
i ⇐⇒

[
I W t

i

Wi Ui

]
� 0.

In [33] it is shown that strong duality holds for the following (ELSD) dual of (P):

(ELSD)

p∗ = min trace b(U +W )
subject to A∗(U +W ) = c

W ∈ Wm

U � 0.

The advantage for this dual is that it is stated completely in terms of the data of the
original program, whereas (DRP) uses the minimal cone explicitly. Moreover, the size
of (ELSD) is bounded by a polynomial function of the size of the input problem (P).

At a first glance, the duals (DRP) and (ELSD) appear very different. This is
especially true in light of the fact that the matrices W do not have to be symmetric.
However, the adjoint operator A∗ involves traces which are unchanged by taking
the symmetric part of the matrices. Therefore, we can replace W by W + W t or,
equivalently, replace Wm by Ws

m. We show below that after this change, the two
duals are actually the same, i.e., P +W = (Pf )+, where

W =WS
m = {W +W t : W ∈ Wm}.
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4. Relationship between duals.

4.1. Duals of (P). We now show the relationships between the above two strong
dual programs.

The algorithm to find the minimal cone is based on [11, Lemma 7.1], which we
now phrase for our specific problem (P). We include a proof for completeness.

Lemma 4.1. Suppose Pf < K < P. For every solution U of the system

A∗U = 0, U �K+ 0, traceUb = 0,(4.1)

we have

the minimal cone Pf ⊂ {U}⊥ ∩K < K.(4.2)

Proof. Since traceU(Ax − b) = 0 for all x, we get (A(F ) − b) ⊂ {U}⊥, i.e.,
Pf ⊂ {U}⊥. Also, the fact that {U}⊥∩K is a face of K follows from U �K+ 0.

The result in [11, Lemma 7.1] is for more general convex, vector valued functions.
However, the linearity of (P) means that it is equivalent to our statement above.

We now use the algorithm for finding Pf (presented in [11]) to show the relation
between the two duals of (P). We see that each step of the algorithm finds a smaller
dimensional face Pk which contains the minimal cone Pf . We show that

P+
k = P +Ws

k , Ws
k = (Pk)⊥.

There is one difference with the algorithm discussed here and the one from [11]; here
we find the points in the relative interior of the complementary faces, rather than
an arbitrary point (which may be on the boundary). This guarantees the immediate
correspondence with the dual (ELSD).

Step 1
Define P0 := P and note that, since W0 = 0 in (3.3),

U1 := {U � 0 : A∗U = 0, traceUb = 0}.

Choose Û1 ∈ relint (U1). (If Û1 = 0, then Slater’s condition holds for (P) and
we STOP.) Further, let

P1 := (F(U1))c (= {Û1}⊥ ∩ P0 < P0).

We can now define the following equivalent program to (P) and its Lagrangian
dual.

(RP1)
p∗ = max ctx

s.t. Ax �P1
b

x ∈ <m.

(DRP1)
d∗1 = min trace bU

s.t. A∗U = c
U �(P1)+ 0.

Note that p∗ ≤ d∗1 ≤ d∗. From Corollary 2.1 and Lemma 2.1 we conclude that

(P1)+ = (P ∩ P1)+ = P + (P1)⊥
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so that

(P1)+ = P + ((F(U1))c)⊥, (P1)⊥ =WS
1 .

Therefore, we get the following equivalent program to (DRP1).

(ELSD1)

d∗1 = min trace b(U + (W +W t))
s.t. A∗(U + (W +W t)) = c

A∗U1 = 0, traceU1b = 0

U � 0,

[
I W t

W U1

]
� 0.

Step 2
We can now apply the same procedure to the program (RP1). Since WS

1 =
(P1)⊥, we get

U2 := {U � 0 : (U + V ) �(P1)+ 0, A∗(U + V ) = 0, trace (U + V )b = 0}.

Choose Û2 ∈ relint (U2). (If Û2 = 0, then the generalized Slater’s condition
holds for (RP1) and we STOP.)

P2 := (F(U2))c (= {Û2}⊥ ∩ P1 < P1).

We get a new equivalent program to (P) and its Lagrangian dual.

(RP2)
p∗ = max ctx

s.t. Ax �P2
b

x ∈ <m.

(DRP2)
d∗2 = min trace bU

s.t. A∗U = c
U �(P2)+ 0.

We now have p∗ ≤ d∗2 ≤ d∗1 ≤ d∗. From Corollary 2.1 and Lemma 2.1 we
conclude that

(P2)+ = (P ∩ P2)+ = P + (P2)⊥

and

(P2)+ = P + ((F(U2))c)⊥, (P2)⊥ =WS
2 .

Therefore, we get the following equivalent program to (DRP2).

(ELSD2)

d∗2 = min trace b(U + (W +W t))
s.t. A∗(U + (W +W t)) = c

A∗U1 = 0, traceU1b = 0
A∗(U2 + (W1 +W t

1)) = 0,
trace (U2 + (W1 +W t

1))b = 0

U � 0,

[
I W t

1

W1 U1

]
� 0[

I W t

W U2

]
� 0.
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. . . Step k . . .
The remaining steps of the algorithm and the regularization are similar, and we

see that after k ≤ min{m,n} steps we obtain the equivalence of (RP) with (RPk),
and (ELSD) with (ELSDk). The following theorem clarifies some of the relationships
between the various sets.

Theorem 4.1. For some k ≤ min{m,n}, we have

F(Uk) = (Pk)c, and U1 ⊂ U2 ⊂ · · · ⊂ Uk = · · · = Um = (Pf )c.(4.3)

Ws
k = (Pk)⊥ = ((F(Uk))c)⊥, WS

1 ⊂ · · · ⊂ WS
k = · · · =WS

m = (Pf )⊥.(4.4)

Proof. The nesting is clear from the definitions and is discussed in [33, Lemma 3]
(for Wk). Moreover, in [33, Lemma 2] it is shown that for k ∈ {1, 2, . . . ,m},

(b−Ax)U = 0 and (b−Ax)W = 0 ∀x ∈ F,U ∈ Uk,W ∈ Wk.

Therefore, the inclusions in (Pf )c, (Pf )⊥ follow. Equality follows from the dimension
of the feasible set, F ⊂ <m, and a partial converse of Lemma 4.1; i.e., if Uck 6= Pf ,
then the system (4.1), with U 6= 0, is consistent. See [11, Corollary 7.1].

4.2. Duals of (D). Similar results can be obtained for the dual of (D); i.e.,
we can use the minimal cone to close the duality gap and we can get an explicit
representation for the minimal cone. The extended Lagrange–Slater dual of the dual
(D) is

(ELSDD)
d∗ = max trace ctx

subject to A(x+ (Z + Zt)) � b
Z ∈ Zm,

for Zm to be derived below.
We can reformulate the dual (D) to the form of (P), i.e., define the cone

S = <m × P, (S+ = {0}m × P)

and the constraint operator G : <m × Sn → Sn

G

(
x
V

)
:= Ax+ V, G∗U =

(
A∗U
U

)
.

The dual (D) is equivalent to

(ED)
d∗ = min trace bU

subject to G∗U �S+

(
c
0

)
.

We have the following equivalence to Lemma 4.1.
Lemma 4.2. Suppose SfD < K < S+. The system

φ =

(
x
Ax

)
�K+ 0, tracextc = 0(4.5)
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is consistent only if

the minimal cone SfD ⊂ ({φ}⊥ ∩K)< K.(4.6)

Proof. Suppose that φ is found from (4.5) and U ∈ FD. Now〈
φ,G∗U −

(
c
0

)〉
= xt(A∗U − c) + traceU(Ax)

= −xtc+ traceU(Ax−Ax) = 0,

since xtc = 0. We get G(FD)−(
c
0

) ⊂ φ⊥, i.e., the minimal cone SfD ⊂ {φ}⊥. Finally,

the fact that {φ}⊥ ∩K is a face of K follows from φ ∈ K+; i.e., {φ}⊥ is a supporting
hyperplane containing Sf .

The faces of S and S+ directly correspond to faces of P.
Lemma 4.3.

1. If D ⊂ S+, then F(D) = 0×K, where K < P.
2. If D ⊂ S, then F(D) = <m ×K, where K < P.

Proof. The statements follow from the definitions.
We also need a result similar to Lemma 2.1.
Lemma 4.4. Suppose that D is a convex cone and D ⊂ S. Let

K :=

{(
x

W +W t

)
: x ∈ <m, U �WW t for some

(
y
U

)
∈ D

}
.

Then

K = ((F(D))c)⊥

=

{(
x

W +W t

)
:

[
I W t

W U

]
� 0 for some

(
y
U

)
∈ D

}
.

Proof. The proof is very similar to the proof of Lemma 2.1. The difference is
that we have to account for the cone S+ being the direct sum 0m × P. We include
the details for completeness.

Suppose that (
x

W + W t ) ∈ K, i.e., U � WW t for some (
y
U

) ∈ D. Then there

exists a matrix H such that W = UH; see (2.5). Therefore, traceWV = 0 for all

(
0
V

) ∈ (F(D))c ⊂ S+; i.e.,(
x

W +W t

)
∈ ((F(D))c)⊥.

To prove the converse, suppose that (
x
V

) ∈ ((F(D))c)⊥ and (
y
U

) ∈ D ∩
relint (F(D)). Let U be orthogonally diagonalized by Q = [Q1Q2]:

U = QtDiag (d1 0)Q, QtQ = I,

with Q1, n× r, d1 > 0. Therefore,

F(D) =

{(
x

Q1BQ
t
1

)
: B � 0, B ∈ Sr, x ∈ <m

}
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and

(F(D))c =

{(
0

Q2BQ
t
2

)
: B � 0, B ∈ Sn−r, 0 ∈ {0}m

}
.

Now (
x
V

)
∈ ((F(D))c)⊥

implies that

0 = traceV Q2BQ
t
2 = traceQt2V Q2B ∀B � 0,

i.e.,

Qt2V Q2 = 0.

This implies that Q2Q
t
2V Q2Q

t
2 = 0 as well. Note that Q2Q

t
2 is the orthogonal projec-

tion onto N (U). Therefore, the nonzero eigenvalues of V correspond to eigenvectors
in the eigenspace formed from the column space of Q1. Since the same must be true
for V V t, this implies that αU � V V t for some α > 0 large enough; i.e., V ∈ K.

Now define the following sets:

Dk = {(Vi, Zi)ki=1 : Axi + (Zi−1 + Zti−1) � 0, xtic = 0,

Vi = Axi, Vi � ZiZti ∀i = 1, . . . , k, Z0 = 0}
Vk = {Vk : (Vi, Zi)

k
i=1 ∈ Dk}

Zk = {Zk : (Vi, Zi)
k
i=1 ∈ Dk}.

The extended Lagrange–Slater dual of the dual (D) can now be stated.

(ELSDD)
d∗ = max trace ctx

subject to A(x+ (Z + Zt)) � b
Z ∈ Zm.

Step 1
Define T0 := S+ and P0 := P and note that, since Z0 = 0,

V1 :=

{
Ax : φ =

(
x
Ax

)
, φ �T+

0
0, xtc = 0

}
= {V : V = Ax � 0, xtc = 0}.

Choose V̂1 ∈ relint (V1). (If V̂1 = 0, then the generalized Slater’s condition
holds for (ED) and we STOP.) Further, let

T1 := (F(V1))c (= {V̂1}⊥ ∩ T0 < T0).

Therefore,

T1 = {0}m × P1,

thus defining the face P1 < P0.
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We can now define the following equivalent program to (ED) and its La-
grangian dual.

(RED1)

d∗ = min trace bU
s.t. A∗U = c

U �P1
0

or G∗U �T1

(
c
0

)
.

(DRED1)

p∗1 = max ctx
subject to Ax �(P1)+ b

x ∈ <m
or Gφ =T+

1
b, φ �T+

1
0.

Note that p∗ ≤ p∗1 ≤ d∗. From Corollary 2.1 we conclude that

(P1)+ = (P ∩ P1)+ = P + (P1)⊥

so that

(T1)+ = S + ((F(V1))
c
)
⊥
.

Therefore, Lemma 4.4 yields the following equivalent SDP to (DRED1).

(ELSDD1)

p∗1 = max ctx
s.t. Ax+ (Z + Zt) � b

Ay � 0, cty = 0[
I Zt

Z Ay

]
� 0.

Step 2
We can now apply the same procedure to the program (RED1).

V2 :=

{
Ax : φ =

(
x
Ax

)
, φ �T+

1
0, xtc = 0

}
= {V : V = Ax �P1 0, xtc = 0}.

Choose V̂2 ∈ relint (V2). (If V̂2 = 0, then the generalized Slater’s condition
holds for (DRP1) and we STOP.) Let

T2 := (F(V2))
c

(= {V̂2}⊥ ∩ T1 < T1).

We get a new equivalent program to (D) and its Lagrangian dual.

(RED2)

d∗ = min trace bU
s.t. A∗U = c

U �P2 0

or G∗U �T2

(
c
0

)
.

(DRED2)

p∗2 = max ctx
subject to Ax �(P2)+ b

x ∈ <m
or Gφ =T+

2
b, φ �T+

2
0.
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We now have p∗ ≤ p∗1 ≤ p∗2 ≤ d∗. From Corollary 2.1 we get

(P2)+ = (P ∩ P2)+ = P + (P2)⊥

so that

(T2)+ = S + ((F(V2))c)⊥.

Therefore, Lemma 4.4 yields the following equivalent SDP to (DRP2).

(ELSDD2)

p∗2 = max ctx
s.t. Ax+ (Z + Zt) � b

Ay + (Z + Zt) � 0, cty = 0[
I Zt

Z Ay

]
� 0

Ay1 + (Z1 + Zt1) � 0, cty = 0[
I Zt1
Z1 Ay1

]
� 0.

. . . Step k . . .

5. Homogenization. In section 3.1.1, we have shown that an ordinary linear
programming problem can have an infinite number of dual programs for which strong
duality holds. This includes the standard Lagrangian dual. However, this is not the
case for SDP. First, the standard Lagrangian dual can result in a duality gap; see [33,
Example 1]. Moreover, the duality gap may be 0, but the dual may not be attained,
see [33, Example 5].

However, we have seen that the two equivalent duals (DRP) and (ELSD) both
provide a zero duality gap and dual attainment, i.e., strong duality. Since LP is a
special case of SDP (<n+ arises as the direct sum of n 1 × 1 semidefinite cones), we
conclude that there are examples of SDP where there are many duals for which strong
duality holds. A natural question to ask is whether there is any type of uniqueness
for the strong duals, and, among the strong duals, what is the “strongest”; i.e., which
is the “closest” to the standard Lagrangian dual.

Therefore, we now look at general optimality conditions for (P). We do this by
using the homogenized semidefinite program (assume the optimal objective function
value p∗ is known):

(HP)

0 = max ctx+ t(−p∗) (= 〈a,w〉)
subject to Ax+ t(−b) + Z = 0 (Bw = 0)

w ∈ K = <m ×<+ × P

w =

 x
t
Z

 .

The above defines the vector a, the linear operator B, and the convex cone K. Let
FH denote the feasible set, i.e.,

FH = N (B) ∩K,

where N denotes null space.
Note that if t = 0 in a feasible solution of (HP), then B(αw) = 0 for all α ∈ <,

and

w =

(
x
0
Z

)
.
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Therefore, ctx > 0 implies that p∗ =∞ (since there exists x such that Ax � 0, ctx > 0
implies (P) is unbounded). If t > 0 in a feasible solution of (HP), then

w =

(
1
t
x

1
1
t
Z

)
is feasible, which implies that ctx+ t(−p∗) ≤ 0. Therefore,

Bw = 0, w ∈ K implies 〈a,w〉 ≤ 0.(5.1)

This shows that 0 is in fact the optimal value of (HP), and (HP) is an equivalent
problem to (P).

One advantage of (HP) is that we know a feasible solution, namely, the origin.
Recall the polar of a set C:

C+ = {φ : 〈φ, c〉 ≥ 0∀c ∈ C}.

With this definition, the optimality conditions for (HP) are simply that the negative
of the gradient of the objective function is in the polar of the feasible set; i.e., from
(5.1) we conclude that

a =

 c
−p
0

 ∈ −(N (B) ∩K)+

 optimality
conditions

for HP

 .(5.2)

This yields the asymptotic optimality conditions (up to closure): c
−p
0

 ∈ −(R(B∗) +K+),(5.3)

where the adjoint operator

B∗U =

 A∗U
−trace bU

U


and the polar cone

K+ = {0} × <+ × P.

We have used the fact that the polar of the intersection of sets is the closure of the
sum of the polars of the sets and that P is self-polar; i.e., P = P+. Note that if
the closure in (5.3) is not needed, then these optimality conditions, along with weak
duality for (P) and (D), p ≤ trace bU, yield optimality conditions for (P); i.e., (5.3)
with closure is equivalent to c

−p
0

 =

 A∗U
−trace bU

U

−
 0

α
V

 dual feasibility
strong duality
dual feasibility

(5.4)

for some α ≥ 0, V � 0. This yields the optimality conditions for (P):

A∗U = c, U � 0(dual feasibility),

p = trace bU (strong duality).
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(Note that strong duality is equivalent to complementary slackness.) We have proved
the following.

Theorem 5.1. p ∈ < is the optimal value of (P) if and only if (5.3) holds.
Moreover, suppose that (5.3) holds but c

−p
0

 /∈ R(B∗)−K+.(5.5)

Then p is still the optimal value of (P), but either there is a duality gap or the dual
(D) is unattained ; i.e., strong duality fails for (P) and (D).

The above theorem provides a way of generating examples where strong duality
fails; i.e., we need to find examples where the right-hand side of (5.5) is not closed,
and then we can pick a vector that is in the closure but not the preclosure.

There are many conditions, called constraint qualifications, that guarantee the
closure condition in (5.3). In fact, this closure has been referred to as a weakest
constraint qualification, [21, 37]. As an example of a closure condition, see, e.g., [23,
pp. 104–105]. If C,D are closed convex sets and the intersection of their recession
cones is {0}, then D − C is closed. (Here the recession cone of a convex set C is the
set of all points x such that x + C ⊂ C.) Therefore, for a subspace V and a convex
cone K,

V ∩K = {0} implies V +K is closed.

In our case, several conditions for the closure (constraint qualifications) are given in
[13, Theorem 3.1]. For example, the cone generated by the set FH −K is the whole
space or Slater’s condition

∃x̂ ∈ F such that Ax̂ ≺ b.

One approach to guarantee the closure condition is to find sets, T , to add to
attain the closure. Equivalently, find sets, C, C+ = T , to intersect with K to attain
the closure so that

(N (B) ∩K)+ = (N (B) ∩ (K ∩ C))+ = R(B∗) +K+ + C+.(5.6)

On the other hand, note that the following is always true:

(N (B) ∩ (K ∩ C))+ = R(B∗) +K+ + C+.

There are some trivial choices for the set, e.g., C = N (B)∩K. Another choice would
be (N (B) ∩K)f .

The above translates into choosing sets that contain the minimal cone Pf . Since
we want a small set of dual multipliers, we would like to find large sets that contain Pf
but for which the above closure conditions hold. Some SDPs can be decomposed into
parts, a linear part and a nonlinear part. Multipliers for the linear part correspond
to linear programming; i.e., we choose the standard set of multipliers. However, we
cannot choose a smaller set than (Pf )+ for the nonlinear part. (For a similar result,
see, for instance, Boyd et al. [14, pp. 31–32].)

Suppose both problems (P) and (D) have feasible solutions (so that if there is a
duality gap then it is finite). Consider the set

Z = {Z ∈ P : Z = b−Ax for some x ∈ <m}.
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If Z ∩ int(P) 6= ∅ then we have an interior point and strong duality holds for the
Lagrangian dual. Otherwise, Z ⊂ ∂P. In particular, there exists a permutation
matrix P and a block diagonal matrix structure in Sn such that Z ∈ Z implies that
P Z PT is a block diagonal matrix which lies in the subspace defined by the block
diagonal structure. We pick P such that each of the blocks has one of the following
properties:
• Type I blocks: Block i is an LP (that is, the block matrix is a diagonal matrix).

In this case strong duality holds for many duals including the Lagrangian dual.
• Type II blocks: Block i is not an LP, but (5.3) holds and (5.5) does not hold.

In this case strong duality holds for many duals including the Lagrangian dual.
• Type III blocks: Block i is not an LP, but conditions (5.3) and (5.5) both hold.

In this case, we can find linear objective functions for which (D) is feasible but strong
duality does not hold for the Lagrangian dual.

In the case where the objective function is separable with respect to this partition,
the duality for Type I and Type II blocks is well understood. For Type III blocks we
showed that as long as (5.3) and (5.5) hold, there will be objective functions for which
(D) is feasible, yet strong duality does not hold for (P) and (D). The reader may find
it useful to generate examples by taking direct sums of examples from Freund [17]
and Ramana [32].

Finally, we make some remarks about the ramifications of these results. We
assumed throughout that (P) is feasible. Under this assumption, (ELSD) is feasible if
and only if p∗ < +∞. If we also assume that p∗ < +∞, then we have d∗ = p∗ (here,
d∗ is the optimal value of (ELSD)) and d∗ is attained. We showed that in the dual
problem (ELSD), the set Wm is precisely the subspace (Pf )⊥. Let us consider the
following family of problems parameterized by M > 0:

(P̃M)

sup ctx
subject to Ax � b

A∗(I)tx ≤M − trace (b)
x ∈ <m,

(ELSD̃M)

min trace b(U +W ) + (M − trace (b))z
subject to A∗(U +W )− zA∗(I) = c

W ∈ Wm = (Pf )⊥

U � 0, z ≥ 0.

Proposition 5.1. Suppose (P) is feasible and p∗ < +∞. Then there exists a
feasible solution (Ũ , W̃ , z̃) of (ELSD̃M) such that Ũ � 0, z̃ > 0. Moreover, for a
given M , there exist optimal solutions of (P) with trace (b − Ax) ≤ M if and only if
there exist optimal solutions of (P̃M) and every optimal solution of (P̃M) is an optimal
solution of (P).

Proof. We apply the strong duality theorem to the pair (P) and (ELSD) to
establish the existence of (Ū , W̄ ) such that A∗(Ū + W̄ ) = c, W̄ ∈ Wm, and Ū � 0.
Now, defining Ũ := Ū + I, W̃ := W̄ , z̃ := 1, we see that the first part of the
proposition is proved. The second part of the proposition easily follows from the
definition of (P̃M).

6. Conclusion. In this paper we have studied dual programs that guarantee
strong duality for SDP. In particular, we have seen the relationships that exist between
(DRP) (the dual of the regularized primal program (RP)) and (ELSD) (the extended
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Lagrange–Slater dual). (DRP) uses the minimal cone Pf which, in general, cannot
be computed exactly. (ELSD) shows that a regularized dual can be written down
explicitly.

The pair (P) and (D) are the usual pair of dual programs used in SDP. This
yields primal–dual interior-point methods when both programs satisfy the Slater CQ,
i.e., strict feasibility. However, there are classes of problems where the CQ fails; see
e.g., [39]. These problems arise from relaxations of 0,1 combinatorial optimization
problems with linear constraints. In fact, for these problems, the Slater CQ fails for
the primal while it is satisfied for the dual. Therefore, in theory, there is no duality
gap between (P) and (D).

However, one can question whether (D) is still the true dual of (P) in this case. It
is true that perturbations in b will yield the dual value d∗ as the perturbations go to
0 when we can guarantee that we maintain the semidefinite constraint exactly. If we
could do this, then we could solve any SDP independent of any regularity condition;
i.e., we would only have to solve a perturbed dual to get the optimum value of the
primal. However, the key here is that we cannot maintain the semidefinite constraint
exactly; i.e., (D) is not a true dual of (P) in this case. It is the dual with respect to
perturbations in the equality constraint Ax+Z = b but not if we allow perturbations
in the constraint Z � 0 as well (i.e., not if we replace Z � 0 by a nonnegativity
constraint on the smallest eigenvalue λmin(Z) ≥ 0).

Unlike LP, the solutions and optimal values of SDP may be doubly exponential
rational numbers or even irrational. Note that the optimal value being doubly expo-
nential means that the size (the number of bits required to express the value in binary)
is an exponential function of the size of the input problem (P). However, in some cases
it may be possible to find, a priori, upper bounds on the sizes of some primal and
dual optimal solutions. Alizadeh [1] suggests that it may even be possible to bound
the feasible solution sets of (P) and (D) a priori. Nevertheless, this is impossible even
for an LP. For if the feasible region of (P) is bounded then the feasible region of (D)
is unbounded and vice versa. Hence, one cannot hope to solve an SDP to exact op-
timality or, for that matter, find feasible solutions of semidefinite inequality systems
in polynomial time. However, a challenging open problem is to determine if a given
rational semidefinite system has a solution. This problem is called the semidefinite
feasibility problem (SDFP). In [33] it was shown, by using (ELSD), that SDFP is not
NP-complete unless NP=Co-NP.

It may be interesting to try to interpret the significance of (ELSD) in terms of
the computational complexity of solving SDPs which do not satisfy the Slater CQ.
We do have a dual program, (ELSD), that can be written down in polynomial time.
However, we still do not know how to solve (P) and (ELSD) in polynomial time by a
symmetric, primal–dual interior-point algorithm.
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Brunswick, NJ, 1995.
[34] T. W. Reiland, Optimality conditions and duality in continuous programming. ii. The linear

problem revisited, J. Math. Anal. Appl., 77 (1980), pp.329–343.
[35] R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, NJ, 1970.
[36] L. Vandenberghe and S. Boyd, Semidefinite programming, SIAM Rev., 38 (1996), pp. 49–95.
[37] H. Wolkowicz, Geometry of optimality conditions and constraint qualifications: The convex

case, Math. Programming, 19 (1980), pp. 32–60.
[38] H. Wolkowicz, Some applications of optimization in matrix theory, Linear Algebra Appl., 40

(1981), pp. 101–118.
[39] Q. Zhao, S. Karisch, F. Rendl, and H. Wolkowicz, Semidefinite Programming Relaxations

for the Quadratic Assignment Problem, Research report, University of Waterloo, Waterloo,
Ontario, Canada, 1995.



PRIMAL–DUAL PATH-FOLLOWING ALGORITHMS FOR
SEMIDEFINITE PROGRAMMING∗

RENATO D. C. MONTEIRO†

SIAM J. OPTIM. c© 1997 Society for Industrial and Applied Mathematics
Vol. 7, No. 3, pp. 663–678, August 1997 005

Abstract. This paper deals with a class of primal–dual interior-point algorithms for semidef-
inite programming (SDP) which was recently introduced by Kojima, Shindoh, and Hara [SIAM J.
Optim., 7 (1997), pp. 86–125]. These authors proposed a family of primal-dual search directions
that generalizes the one used in algorithms for linear programming based on the scaling matrix
X1/2S−1/2. They study three primal–dual algorithms based on this family of search directions: a
short-step path-following method, a feasible potential-reduction method, and an infeasible potential-
reduction method. However, they were not able to provide an algorithm which generalizes the
long-step path-following algorithm introduced by Kojima, Mizuno, and Yoshise [Progress in Math-
ematical Programming: Interior Point and Related Methods, N. Megiddor, ed., Springer-Verlag,
Berlin, New York, 1989, pp. 29–47]. In this paper, we characterize two search directions within their
family as being (unique) solutions of systems of linear equations in symmetric variables. Based on
this characterization, we present a simplified polynomial convergence proof for one of their short-step
path-following algorithms and, for the first time, a polynomially convergent long-step path-following
algorithm for SDP which requires an extra

√
n factor in its iteration-complexity order as compared

to its linear programming counterpart, where n is the number of rows (or columns) of the matrices
involved.
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1. Introduction. This paper studies primal–dual path-following algorithms for
semidefinite programming (SDP) based on a search direction that has been proposed
by Kojima, Shindoh, and Hara [11] as a natural extension of the one used in algorithms
for linear programming based on the scaling matrix X1/2S−1/2. The first primal–dual
algorithm for linear programming (LP) to use this scaling matrix was presented by
Kojima, Mizuno, and Yoshise [10] and is referred in here to as the long-step path-
following method. Another variant independently developed by Kojima, Mizuno, and
Yoshise [9] and Monteiro and Adler [12, 13], referred to here as the short-step path-
following method, improves the worst-case iteration complexity of the algorithm of [10]
by a factor of

√
n by generating iterates in a narrower neighborhood of the central

path.
Several authors have discussed generalizations of interior-point algorithms for lin-

ear programming to the context of SDP. The landmark work in this direction is due
to Nesterov and Nemirovskii [14, 15], where a general approach for using interior-
point methods for solving convex programs is proposed based on the notion of self-
concordant functions. (See their book [17] for a comprehensive treatment of this
subject.) They show that the problem of minimizing a linear function over a convex
set K can be solved in “polynomial time” as long as a self-concordant barrier function
for K is known. In particular, Nesterov and Nemirovskii show that linear programs,
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convex quadratic programs with convex quadratic constraints, and semidefinite pro-
grams all have explicit and easily computable self-concordant functions and hence can
be solved in “polynomial time.” Subsequently, Alizadeh [2] extends in a direct way
Ye’s projective potential-reduction algorithm (see [21]) for LP to the context of SDP
and argues that many known interior-point LP algorithms can also be transformed
into an algorithm for SDP in a mechanical way. Since then, several authors have
proposed interior-point algorithms for solving SDP problems, including Helmberg et
al. [5], Jarre [8], Kojima, Shindoh, and Hara [11], Nesterov and Nemirovskii [16],
Nesterov and Todd [19, 18] and Vandenberghe and Boyd [20].

Among the above works, Kojima, Shindoh, and Hara [11] and Nesterov and Todd
[18] present some algorithms which extend the primal–dual methods for linear pro-
gramming based on the scaling X1/2S−1/2. In particular, they both provide short-step
path-following methods for SDP which generalize the algorithm in [9, 12, 13]; how-
ever, no extensions of the long-step path-following algorithm in [10] are provided. In
fact, Kojima, Shindoh, and Hara mention in section 9 of [11] that they encountered
difficulty in providing such an extension.

In this paper, by characterizing two of the search directions introduced in [11] as
solutions of systems of linear equations in symmetric variables, we present a simplified
polynomial convergence proof for a short-step path-following algorithm in [11] and for
the first time, a polynomially convergent long-step path-following algorithm for SDP.
We show that the long-step method requires O(n3/2 log(t0ε−1)) iterations to generate
a feasible solution with objective function within ε of the optimal value when initialized
at an interior feasible point whose duality gap is t0. Hence, the algorithm of [10] when
extended to SDP has its iteration-complexity increased by a factor of

√
n.

This paper is organized as follows. In section 2, we describe the generic primal–
dual algorithm for SDP which will be the subject of our study in this paper. Section
3 contains some matrix results that are frequently used in our presentation. Section
4 discusses the short-step path-following method for SDP while section 5 discusses its
long-step counterpart.

1.1. Notation and terminology. The following notation is used throughout
the paper. The superscript T denotes transpose. <p, <p+, and <p++ denote the p-
dimensional Euclidean space, the nonnegative orthant of <p, and the positive orthant
of <p, respectively. The ith component of a vector u ∈ <p is denoted by ui. The
set of all p × q matrices with real entries is denoted by <p×q. The (i, j)th entry of
a matrix Q ∈ <p×q is denoted by Qij . The set of all symmetric p × p matrices is
denoted by S(p) or, simply, by S when the dimension p is clear from the context.
For Q ∈ S, Q � 0 (Q � 0) means Q is positive (negative) semidefinite and Q � 0
(Q ≺ 0) means Q is positive (negative) definite. The trace of a matrix Q ∈ <p×p
is denoted by Tr Q ≡

∑n
i=1Qii. The eigenvalues of Q ∈ S(p) are denoted by λi(Q),

i = 1, . . . , p, and its smallest and largest eigenvalues are denoted by λmin(Q) and
λmax(Q), respectively. Given P and Q in <p×q, the inner product between them is
defined as P • Q ≡ Tr PTQ =

∑n
i=1,j=1 PijQij . Given u and v in <p, u ≤ v means

ui ≤ vi for every i = 1, . . . , p. The Euclidean norm and its associated operator norm
are both denoted by ‖ · ‖; hence, ‖Q‖ ≡ max‖u‖=1 ‖Qu‖ for any Q ∈ <p×p. The

Frobenius norm of Q ∈ <p×p is ‖Q‖F ≡ (Q • Q)1/2. S+ and S++ denote the set of
all matrices in S which are positive semidefinite and positive definite, respectively.

Finally, S(p)
⊥ , or simply S⊥ when p is understood from the context, denote the set of

all skew-symmetric matrices in <p×p. Since S(p) + S(p)
⊥ = <p×p and U • V = 0 for
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every U ∈ S(p) and V ∈ S(p)
⊥ , it follows that S(p)

⊥ is the orthogonal complement of
S(p) with respect to the inner product •.

2. The primal–dual algorithm and some technical results. In this section
we describe the generic primal–dual algorithm which will be the subject of our study
in this paper. We then show that the search direction used by the generic algorithm
is a particular one from the family of the search directions introduced in the revised
version of [11]. We end the section by giving some basic results about the generic
algorithm.

This paper studies primal–dual path-following algorithms for solving the semidef-
inite programming problem (SDP)

(P ) min{C •X : Ai •X = bi, i = 1, . . . ,m, X � 0}(1)

and its associated dual SDP

(D) max

{
bT y :

m∑
i=1

yiAi + S = C, S � 0

}
,(2)

where C ∈ <n×n, Ai ∈ <n×n, i = 1, . . . ,m, and b = (b1, . . . , bm)T ∈ <m are the data,

and X ∈ S(n)
+ and (S, y) ∈ S(n)

+ ×<m are the primal and dual variables, respectively.
We assume without loss of generality that the matrices C and Ai, i = 1, . . . ,m, are
symmetric (otherwise, replace C by (C + CT )/2 and Ai by (Ai +ATi )/2).

The set of interior feasible solutions of (1) and (2) are

F 0(P ) ≡ {X ∈ S : Ai •X = bi, i = 1, . . . ,m, X � 0},

F 0(D) ≡
{

(S, y) ∈ S × <m :
m∑
i=1

yiAi + S = C, S � 0

}
,

respectively. Throughout this paper, we assume that F 0(P ) × F 0(D) 6= ∅. Under
this assumption, it is well known that both (1) and (2) have optimal solutions X∗

and (S∗, y∗) such that C •X∗ = bT y∗ (that is, the optimal values of (1) and (2) are
equal). This last condition alternatively can be expressed as X∗ • S∗ = 0, since for
feasible solutions X and (S, y) for (1) and (2) there hold C •X − bT y = (

∑n
i=1 yiAi +

S) •X − bT y = X • S +
∑n
i=1 yi(Ai •X)− bT y = X • S +

∑n
i=1 yibi − bT y = X • S.

For simplicity, we will also assume that the matrices Ai, i = 1, . . . ,m are linearly
independent.

We next outline a generic interior-point primal–dual algorithm for solving the
pair of SDPs (1) and (2) which was introduced in [11]. The system of linear equations
defining the search direction in the following algorithm is actually different from the
one used in [11], but the resulting search direction is the same as will be shown in
Lemma 2.1.

Generic primal–dual Algorithm.

Step 0. Let X0 ∈ F 0(P ) and (S0, y0) ∈ F 0(D) be given and set k = 0.

Step 1. Let X = Xk, (S, y) = (Sk, yk) and µ = (X • S)/n;

Step 2. Choose a centrality parameter σ = σk ∈ [0, 1] and set
H ≡ (σµI −X1/2SX1/2);

Step 3. Compute the search direction (∆X,∆S,∆y) ∈ S × S × <m
by solving the following system of linear equations:
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X−1/2(X∆S + ∆XS)X1/2 +X1/2(∆SX + S∆X)X−1/2 = 2H,(3)

Ai •∆X = 0, for all i = 1, . . . ,m,(4)
m∑
i=1

∆yiAi + ∆S = 0;(5)

Step 4. Choose a step-size α = αk ≥ 0 such that X̂ ≡ X + α∆X ∈ S++,

and (Ŝ, ŷ) ≡ (S, y) + α(∆S,∆y) ∈ S++ ×<m;

Step 5. Let Xk+1 = X̂, (Sk+1, yk+1) = (Ŝ, ŷ), replace k by k + 1,
and go to step (1).

End
In what follows, we show that the search direction used by the generic algorithm

is a particular one from the family of the search directions introduced in the revised
version of [11]. We first describe this family of search directions. Given a fixed
t ∈ [0, 1], Kojima et al. show that the system of linear equations consisting of (4), (5),
and the equation

X(∆S + tW ) + (∆X + (1− t)W )S = σµI −XS,(6)

has a unique solution (∆X(t),∆S(t),∆y(t),W (t)) ∈ S × S ×<m ×S⊥ (see Theorem
4.2 of [11]). The search direction for their algorithm is (∆X(t),∆S(t),∆y(t)) for some
fixed t ∈ [0, 1]. (They have in fact introduced a larger family of search directions but
this one suffices for the purpose of our discussion.) The following result shows that
system (4), (5), and (6) with t = 1 determines exactly the same direction as system
(3)–(5) does; that is, (∆X(1),∆S(1),∆y(1)) = (∆X,∆S,∆y).

Lemma 2.1. (∆X(1),∆S(1),∆y(1)) is the unique solution of the system (3)–(5).
Proof. Let (∆̂X, ∆̂S, ∆̂y, Ŵ ) ≡ (∆X(1),∆S(1),∆y(1),W (1)). We first show that

(∆̂X, ∆̂S, ∆̂y) is a solution of (3)–(5). It suffices to show that (∆̂X, ∆̂S, ∆̂y) satisfies
(3). Indeed, by definition, (∆̂X, ∆̂S, ∆̂y) satisfies (6) with t = 1. After multiplying
this relation on the left by X−1/2 and on right by X1/2, we obtain

X1/2(∆̂S + Ŵ )X1/2 +X−1/2∆̂XSX1/2 = σµI −X1/2SX1/2.

Hence, the sum of the symmetric parts of the two terms on the left-hand side is equal
to the right-hand side. This fact together with the fact that Ŵ + ŴT = 0 imply

2
(
σµI −X1/2SX1/2

)
= X1/2(2∆̂S + Ŵ + ŴT )X1/2 +X−1/2∆̂XSX1/2 +X1/2S∆̂XX−1/2

= 2X1/2∆̂SX1/2 +X−1/2∆̂XSX1/2 +X1/2S∆̂XX−1/2

= X−1/2(X∆̂S + ∆̂XS)X1/2 +X1/2(∆̂SX + S∆̂X)X−1/2.

That is, (∆̂X, ∆̂S, ∆̂y) satisfies (3). To show that (∆̂X, ∆̂S, ∆̂y) is the only solu-
tion of (3)–(5), assume that (∆X,∆S,∆y) is an arbitrary solution of (3)–(5) and let
E ≡ X−1/2(X∆S + ∆XS)X1/2. Then, by (3) we have E + ET = 2H, and hence
W ≡ X−1/2(H − E)X−1/2 = X−1/2(ET − E)X−1/2/2 is skew symmetric. A sim-
ple algebraic manipulation shows that (∆X,∆S,∆y,W ) satisfies (6) with t = 1 and,
hence, that it is a solution of the system defined by (4), (5), and (6) with t = 1.
Since (∆̂X, ∆̂S, ∆̂y, Ŵ ) is the unique solution of this system in S ×S ×<m×S⊥, we
conclude that (∆X,∆S,∆y,W ) = (∆̂X, ∆̂S, ∆̂y, Ŵ ).
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In a similar vein, it is possible to characterize (∆X(0),∆S(0),∆y(0)) as the
unique solution in S × S × <m of the system of linear equations consisting of (4),
(5), and the equation

S1/2(X∆S + ∆XS)S−1/2 + S−1/2(∆SX + S∆X)S1/2 = 2(σµI − S1/2XS1/2).(7)

Results analogous to the ones proved in this paper easily can be obtained with respect
to path-following algorithms based on this search direction.

It should be noted that the two systems of linear equations (3)–(5) and (3), (4),
(7) were introduced for the first time in a preliminary version of this paper. The
result stated in Lemma 2.1 was subsequently pointed out by Masakazu Kojima to
the author in a personal communication. The present version of this paper is essen-
tially a modification of the previous version which takes into account this important
observation.

From the discussion above, we see that both directions (∆X(0),∆S(0),∆y(0))
and (∆X(1),∆S(1),∆y(1)) are solutions of systems of linear equations in symmetric
matrices, a property which is also shared by the NT-direction introduced by Nesterov
and Todd [18], namely, the unique solution (∆X,∆S,∆y) of (4), (5), and the equation

(X1/2SX1/2)1/2X−1/2∆XX−1/2(X1/2SX1/2)1/2

+X1/2∆SX1/2 = σµI −X1/2SX1/2.(8)

But unlike the NT-direction, computing the directions (∆X(t),∆S(t),∆y(t)) do not
require computation of matrix square roots, which is certainly an advantage from the
computational point of view.

Another primal–dual search direction which has been considered by a few authors
(see, for example, Adler and Alizadeh [1] and Alizadeh, Haeberly, and Overton [3]) is
the one that is the solution of the linear system consisting of (4), (5), and the equation

X∆S + ∆SX + S∆X + ∆XS = 2σµI −XS − SX.(9)

At the time of this writing, no polynomial convergence has been proven for an algo-
rithm based on this direction.

We end this section by stating the following straightforward result regarding the
generic algorithm.

Lemma 2.2. Let X ∈ F 0(P ) and (S, y) ∈ F 0(D) be given and suppose that
(∆X,∆S,∆y) is a solution of (3)–(5) for some H ∈ <n×n. Then, the following
statements hold:

(a) ∆S •∆X = 0,
(b) X •∆S + S •∆X = Tr H,
(c) if H = σµI −X1/2SX1/2 where σ ∈ < and µ ≡ (X • S)/n, then

(X + α∆X) • (S + α∆S) = (1− α+ ασ)(X • S) ∀α ∈ <.

Proof. Using (4) and (5), we obtain

∆S •∆X = −
(

n∑
i=1

∆yiAi

)
•∆X = −

n∑
i=1

∆yi(Ai •∆X) = 0,

and hence (a) follows. In view of (3), we have

2 Tr H = Tr X−1/2(X∆S + ∆XS)X1/2 + Tr X1/2(∆SX + S∆X)X−1/2

= Tr (X∆S + ∆XS) + Tr (∆SX + S∆X)

= 2 Tr (X∆S + S∆X) = 2(X •∆S + S •∆X),
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and hence (b) follows. Using statements (a) and (b) and the fact that H = σµI −
X1/2SX1/2 and Tr (X1/2SX1/2) = X • S = nµ, we obtain

(X + α∆X) • (S + α∆S) = X • S + α(X •∆S + S •∆X) + α2(∆X •∆S)

= X • S + αTr
(
σµI −X1/2SX1/2

)
= X • S + α (σnµ−X • S)

= (1− α+ ασ)(X • S)

for every α ∈ <. Hence, (c) holds.

3. Some technical results about matrices. This section states some inequal-
ities about matrices which play an important role in the convergence analysis of the
algorithms presented in sections 4 and 5.

In the next result, we collect some useful facts about symmetric matrices. For its
proof, we refer the reader to Golub and Van Loan [4] or Horn and Johnson [6].

Lemma 3.1. For any E ∈ S(p), we have

λmax(E) = max
‖u‖=1

uTEu,(10)

λmin(E) = min
‖u‖=1

uTEu,(11)

‖E‖ = max
i=1,...,p

|λi(E)|,(12)

‖E‖2F =

p∑
i=1

[λi(E)]2.(13)

The following result about general matrices is also useful.
Lemma 3.2. For any W ∈ <p×p, the following relations hold:

max
i=1,...,n

Re[λi(W )] ≤ 1

2
λmax(W +WT ),(14)

min
i=1,...,n

Re[λi(W )] ≥ 1

2
λmin(W +WT ),(15)

p∑
i=1

|λi(W )|2 ≤ ‖W‖2F = ‖WT ‖2F ,(16)

λmax(WTW ) = ‖WTW‖ = ‖W‖2 = ‖WT ‖2.(17)

Proof. Inequality (14) is stated as an exercise in Horn and Johnson; see [7], page
187, exercise 20. Inequality (15) follows from (14) applied to the matrix −W . For a
proof of (16) and (17), see Golub and Van Loan [4], pages 58 and 336.

As a consequence of Lemma 3.2, we obtain the following result.
Lemma 3.3. Suppose that W ∈ <p×p is a nonsingular matrix. Then, for any

E ∈ S(p), we have

λmax(E) ≤ 1

2
λmax

(
WEW−1 + (WEW−1)T

)
,(18)

λmin(E) ≥ 1

2
λmin

(
WEW−1 + (WEW−1)T

)
,(19)

‖E‖ ≤ 1

2
‖WEW−1 + (WEW−1)T ‖,(20)
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‖E‖F ≤
1

2
‖WEW−1 + (WEW−1)T ‖F .(21)

Proof. Using (14), we obtain

λmax(E) = λmax(WEW−1) ≤ 1

2
λmax

(
WEW−1 + (WEW−1)T

)
for every E ∈ <p×p, and hence (18) follows. Inequality (19) is proved in a similar way
by using (15). Inequality (20) follows from (18), (19), and (12). To prove (21), we
use (13) and (16) to get

‖E‖2F =

p∑
i=1

[λi(E)]2 =

p∑
i=1

[λi(WEW−1)]2 ≤ ‖WEW−1‖2F .

Hence, we obtain

4 ‖E‖2F ≤ 2 ‖WEW−1‖2F + 2‖E‖2F = 2 ‖WEW−1‖2F + 2 Tr E2

= 2 ‖WEW−1‖2F + 2 Tr WE2W−1 = 2 ‖WEW−1‖2F + 2 Tr (WEW−1)2

= ‖WEW−1 + (WEW−1)T ‖2F ,

which clearly implies (21).
We observe that (20) is not needed in our presentation, but it could be useful

in proving polynomial convergence of other primal–dual variants not studied in this
paper. The other inequalities in Lemma 3.3 play a crucial role in the analysis of the
short-step and the long-step path-following methods of sections 4 and 5, respectively.

4. Short-step path-following primal–dual algorithm. As mentioned pre-
viously, Kojima, Shindoh, and Hara [11] have studied a short-step path-following
algorithm based on the search direction (∆X(t),∆S(t),∆y(t)) for any t ∈ [0, 1] (see
(6)). In this section, we give a simplified polynomial convergence proof of their short-
step path-following algorithm based on the search direction (∆X(1),∆S(1),∆y(1))
or, equivalently, the one determined by (3)–(5). It is a straightforward task to carry
out a similar analysis with respect to the search direction (∆X(0),∆S(0),∆y(0)).

The short-step path-following algorithm generates iterates in the following (nar-
row) neighborhood of the central path:

NF (γ) ≡ {(X,S, y) ∈ F 0(P )× F 0(D) : ‖X1/2SX1/2 − µI‖F ≤ γµ}

=

{
(X,S, y) ∈ F 0(P )× F 0(D) :

(
n∑
i=1

(λi(XS)− µ)2

)1/2

≤ γµ
}
,

where µ ≡ (X •S)/n and γ is a constant such that 0 < γ < 1. This neighborhood is a
natural extension of the one used by the short-step path-following algorithm studied
in [9, 12, 13]. The algorithm, which is a special case of the generic algorithm discussed
in section 2, selects the sequence of step-sizes {αk} and centrality parameters {σk}
according to the following rule.

Short-step method. For all k ≥ 0, let αk = 1 and σk ≡ 1−δ/
√
n, where δ > 0

is a constant which is specified in Theorem 4.1 below.
The following result analyzes the behavior of one iteration of the short-step path-

following method. Its proof will be given at the end of this section.
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Theorem 4.1. Let γ ∈ (0, 1) and δ ∈ [0, n1/2) be constants satisfying

γ2 + δ2

2(1− γ)2(1− δ/
√
n)
≤ γ, γ ≤ 1

2
.(22)

Suppose that (X,S, y) ∈ NF (γ) and let (∆X,∆S,∆y) denote the solution of (3)–(5)
with H = σµI −X1/2SX1/2 and σ = 1− δ/

√
n. Then,

(a) (X̂, Ŝ, ŷ) ≡ (X + ∆X,S + ∆S, y + ∆y) ∈ NF (γ);
(b) X̂ • Ŝ = (1− δ/

√
n)(X • S).

An example of constants γ and δ satisfying the conditions stated in Theorem 4.1
is γ = δ = 0.3. As an immediate consequence, we obtain the following result for the
short-step path-following method.

Corollary 4.2. Let γ and δ be as in Theorem 4.1 and let (X0, S0, y0) ∈ NF (γ)
be given. Then the short-step path-following method generates a sequence of points
{(Xk, Sk, yk)} ⊂ NF (γ) such that Xk • Sk ≤ (1 − δ/

√
n)k(X0 • S0) for all k ≥ 0.

Moreover, given a tolerance ε > 0, the short-step path-following method computes an
iterate (Xk, Sk, yk) satisfying Xk • Sk ≤ ε in at most

√
nδ−1 log[ε−1(X0 • S0)] =

O(
√
n log[ε−1(X0 • S0)]) iterations.
We now turn our efforts towards proving Theorem 4.1.
Lemma 4.3. Suppose that X ∈ F 0(P ), (S, y) ∈ F 0(D), and let (∆X,∆S,∆y)

denote the solution of (3)–(5) with H ≡ σµI −X1/2SX1/2. For any α ∈ <, let

(X(α), S(α), y(α)) ≡ (X,S, y) + α(∆X,∆S,∆y),(23)

µ(α) ≡ (X(α) • S(α))/n,(24)

Q(α) ≡ X−1/2[X(α)S(α)− µ(α)I]X1/2.(25)

Then,

Q(α) +Q(α)T = 2(1− α)(X1/2SX1/2 − µI)

+ α2
[
X−1/2∆X∆SX1/2 +X1/2∆S∆XX−1/2

]
.(26)

Proof. Let α ∈ < be given. By Lemma 2.2(c), we have µ(α) = (1 − α + σα)µ.
Hence, we obtain

X(α)S(α)− µ(α)I = (X + α∆X)(S + α∆S)− (1− α+ ασ)µI

= (1− α)(XS − µI) + α(XS − σµI)

+ α(X∆S + ∆XS) + α2∆X∆S.

This relation, together with (3), implies

Q(α) +Q(α)T = 2(1− α)(X1/2SX1/2 − µI) + 2α(X1/2SX1/2 − σµI)

+ α
[
X−1/2(X∆S + ∆XS)X1/2 +X1/2(S∆X + ∆SX)X−1/2

]
+ α2(X−1/2∆X∆SX1/2 +X1/2∆S∆XX−1/2)

= 2(1− α)(X1/2SX1/2 − µI)

+ α2(X−1/2∆X∆SX1/2 +X1/2∆S∆XX−1/2).

The following lemma bounds the size of the scaled directions X−1/2∆XX−1/2

and X1/2∆SX1/2 for points (X,S, y) ∈ F 0(P ) × F 0(D), which are “well centered.”
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Alternative bounds on the size of these quantities which are valid for any (X,S, y) ∈
F 0(P )× F 0(D) are given in Lemma 5.6, but the proof of the result below is consid-
erably simpler than that of Lemma 5.6. The following inequality involving norms is
used in the proof of the lemma below and in other places in our presentation: for any
A1, A2 ∈ <n×n, we have ‖A1A2‖F ≤ ‖A1‖ ‖A2‖F and ‖A1A2‖F ≤ ‖A1‖F ‖A2‖ (see
exercise 20 of section 5.6 of [6]).

Lemma 4.4. Let X ∈ F 0(P ) and (S, y) ∈ F 0(D) be such that ‖X1/2SX1/2 −
νI‖ ≤ νγ for some γ ∈ [0, 1) and ν > 0. Suppose that (∆X,∆S,∆y) ∈ <n×n×<n×n×
<m is a solution of (3)–(5) for some H ∈ <n×n and let δx ≡ ν‖X−1/2∆XX−1/2‖F
and δs ≡ ‖X1/2∆SX1/2‖F . Then,

δxδs ≤
1

2

(
δ2x + δ2s

)
≤ ‖H‖2F

2(1− γ)2
.

Proof. Using (3) and simple algebraic manipulation, we obtain

H = X1/2∆SX1/2 + νX−1/2∆XX−1/2 +
1

2
X−1/2∆XX−1/2(X1/2SX1/2 − νI)

+
1

2
(X1/2SX1/2 − νI)X−1/2∆XX−1/2,

from which it follows that

‖H‖F ≥ ‖X1/2∆SX1/2 + νX−1/2∆XX−1/2‖F
− ‖X1/2SX1/2 − νI‖ ‖X−1/2∆XX−1/2‖F

≥
(
‖X1/2∆SX1/2‖2F + ν2‖X−1/2∆XX−1/2‖2F

)1/2

− (γν)(δx/ν)

=
√
δ2x + δ2s − γδx ≥ (1− γ)

√
δ2x + δ2s ,

where the second inequality follows from the assumption that ‖X1/2SX1/2−νI‖ ≤ νγ
and the fact that (X−1/2∆XX−1/2)• (X1/2∆SX1/2) = ∆X •∆S = 0, due to Lemma
2.2(a). The result now follows trivially from the last inequality.

We are now ready to prove Theorem 4.1.
Proof of Theorem 4.1. Statement (b) is an immediate consequence of Lemma

2.2(c) with α = 1 and the fact that σ = (1− δ/
√
n). Hence,

µ̂ ≡ (X̂ • Ŝ)/n = (1− δ/
√
n)µ.(27)

Using the fact that (X1/2SX1/2−µI)•I = 0, (X,S, y) ∈ NF (γ), and σ = (1−δ/
√
n),

we obtain

‖σµI −X1/2SX1/2‖2F = ‖(σ − 1)µI‖2F + ‖µI −X1/2SX1/2‖2F
≤ {(1− σ)2n+ γ2}µ2 = (δ2 + γ2)µ2.(28)

Since ‖X1/2SX1/2 − µI‖ ≤ γµ, it follows from Lemma 4.4 with ν = µ and H =
σµI −X1/2SX1/2 that

‖X−1/2∆XX−1/2‖F ≤
‖σµI −X1/2SX1/2‖F

(1− γ)µ
(29)

and

‖X−1/2∆XX−1/2‖F ‖X1/2∆SX1/2‖F ≤
‖σµI −X1/2SX1/2‖2F

2(1− γ)2µ
.(30)
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Let Q̂ ≡ Q(1) = X−1/2(X̂Ŝ − µ̂I)X1/2. Using (26) with α = 1, (30), (28), (22), and
(27), we obtain

1

2
‖Q̂+ Q̂T ‖F =

1

2
‖X−1/2∆X∆SX1/2 +X1/2∆S∆XX−1/2‖F(31)

≤ ‖X−1/2∆X∆SX1/2‖F
≤ ‖X−1/2∆XX−1/2‖F ‖X1/2∆SX1/2‖F(32)

≤ ‖σµI −X
1/2SX1/2‖2F

2(1− γ)2µ
≤ (γ2 + δ2)µ

2(1− γ)2
(33)

≤ γ(1− δ/
√
n)µ = γµ̂.(34)

Using (29), (28), and (22), we obtain

‖X−1/2∆XX−1/2‖F ≤
‖σµI −X1/2SX1/2‖F

µ(1− γ)
≤ (δ2 + γ2)1/2

1− γ
≤
[
2γ(1− δ/

√
n)
]1/2

< 1.

It is easy to see that the last relation implies that I + X−1/2∆XX−1/2 � 0 and,
hence, X̂ ≡ X + ∆X = X1/2(I + X−1/2∆XX−1/2)X1/2 � 0. In particular, X̂1/2

exists. Applying Lemma 3.3 with E = X̂1/2ŜX̂1/2 − µ̂I and W = X−1/2X̂1/2 and
noting that Q̂ = WEW−1, we conclude that

‖X̂1/2ŜX̂1/2 − µ̂I‖F ≤
1

2
‖Q̂+ Q̂T ‖F ≤ γµ̂,(35)

where the last inequality is due to (34). This implies that λmin(X̂1/2ŜX̂1/2) ≥ (1 −
γ)µ̂ > 0, and hence X̂1/2ŜX̂1/2 � 0. Thus, Ŝ � 0. Using (4), (5), and the fact that
(X,S, y) ∈ F 0(P )× F 0(D), it is now easy to see that (X̂, Ŝ, ŷ) ∈ F 0(P )× F 0(D). In
view of (35), we conclude that (X̂, Ŝ, ŷ) ∈ NF (γ).

5. Long-step path-following algorithm. In this section, we present a long-
step path-following algorithm whose iterates lie within a larger conical neighborhood
of the central path. The algorithm extends the long-step primal–dual path-following
method of Kojima, Mizuno, and Yoshise [10] for solving linear programming problems.
We show that the algorithm finds an approximate strictly feasible point (Xk, Sk, yk)
satisfying Xk •Sk ≤ ε within O(n3/2 log(ε−1(X0 •S0))) iterations, therefore requiring
an extra

√
n factor compared to the complexity of the algorithm in [10].

To describe the algorithm, we need to introduce the following neighborhood of
the central path: for γ ∈ [0, 1) and Γ ≥ 0, let

N (γ,Γ) ≡
{

(X,S, y) ∈ F 0(P )× F 0(D) :
(1− γ)µ ≤ λi(XS) ≤ (1 + Γ)µ
for all i = 1, . . . , n

}
and

N (γ,∞) ≡
{

(X,S, y) ∈ F 0(P )× F 0(D) : λmin(XS) ≥ (1− γ)µ
}
,

where µ ≡ (X • S)/n. Clearly, N (γ,Γ) ⊂ N (γ,∞). We will describe the long-step
path-following algorithm in terms of the neighborhood N (γ,Γ) with 0 ≤ Γ <∞. The
following straightforward result shows that the corresponding algorithm based on the
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neighborhood N (γ,∞) is a special case of the algorithm described in terms of N (γ,Γ)
for specific values of Γ.

Lemma 5.1. For any Γ ≥ (n− 1)γ and γ ∈ [0, 1), we have N (γ,∞) = N (γ,Γ).
Proof. Let (X,S, y) ∈ N (γ,∞) be given and λ1 ≤ · · · ≤ λn denote the eigenvalues

of XS. We know that λ1 + · · ·+ λn = X • S = nµ. Hence, we have

λmax(XS) = λn = nµ− (λ1 + · · ·+ λn−1) ≤ nµ− (n− 1)(1− γ)µ

= [1 + (n− 1)γ]µ ≤ (1 + Γ)µ,

and hence, (X,S, y) ∈ N (γ,Γ).
We next describe the path-following algorithm studied in this section. Since the

algorithm is a special case of the generic algorithm of section 2, it is enough to specify
the choices of the sequence of step-sizes {αk} and centrality parameters {σk}. Fix
γ ∈ (0, 1), Γ ≥ γ, σ̄ ∈ (0, 1), and, for all k ≥ 0, let (∆Xk,∆Sk,∆yk) denote the
solution of (3)–(5) with (X,S) = (Xk, Sk) and H = σkµkI − (Xk)1/2Sk(Xk)1/2,
where µk ≡ (Xk • Sk)/n.

Long-step path-following method. For all k ≥ 0, let σk = σ̄ and

αk = max

{
α ∈ [0, 1] :

(Xk, Sk, yk) + α′(∆Xk,∆Sk,∆yk) ∈ N (γ,Γ)
for all α′ ∈ [0, α]

}
.(36)

The following result describes the behavior of one iteration of the long-step path-
following method. Its proof will be given at the end of the section after we have stated
and proved several preliminary lemmas.

Theorem 5.2. Suppose that (X,S, y) ∈ N (γ,Γ) for some constants γ ∈ [0, 1)
and Γ ≥ γ, and let (∆X,∆S,∆y) denote the solution of (3)–(5) with H = σµI −
X1/2SX1/2 and σ ∈ [0, 1]. Let

α̃ ≡ σγ(1− γ)1/2

n(1 + Γ)1/2

(
(1− σ)2 +

γσ2

1− γ

)−1

.(37)

Then, for any α ∈ [0, α̃], we have
(a) (X(α), S(α), y(α)) ≡ (X + α∆X,S + α∆S, y + α∆y) ∈ N (γ,Γ);
(b) X(α) • S(α) = (1− α+ ασ)(X • S).
As an immediate consequence of Theorem 5.2, we obtain the following convergence

result for the long-step path-following method.
Corollary 5.3. The sequence of iterates {(Xk, Sk, yk)} ⊂ N (γ,Γ) generated

by the long-step path-following algorithm satisfies Xk •Sk ≤ (1− τ̄)k(X0 •S0) for all
k ≥ 0, where

τ̄ ≡ σ̄(1− σ̄)γ(1− γ)1/2

n(1 + Γ)1/2

(
(1− σ̄)2 +

γσ̄2

1− γ

)−1

.

Moreover, given a tolerance ε > 0, the long-step path-following method computes an
iterate satisfying Xk •Sk ≤ ε in at most τ̄−1 log[ε−1(X0•S0)] = O(nΓ1/2 log[ε−1(X0•
S0)]) iterations.

Proof. It follows from Theorem 5.2, relation (36), and the fact that σk = σ̄
that αk ≥ τ̄ /(1 − σ̄) for all k ≥ 0. In view of Theorem 5.2(b), we conclude that
Xk+1 • Sk+1 = [1− (1− σ̄)αk](Xk • Sk) ≤ (1− τ̄)(Xk • Sk) for all k ≥ 0. Hence, the
first part of the corollary follows. The second part of the result follows from the first
part and some standard arguments.
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It follows from Corollary 5.3 that if the size of the quantity

max{γ−1, (1− γ)−1, σ−1, (1− σ)−1}

is independent of n then the long-step path-following algorithm finds an ε-approximate
solution in O(nΓ1/2 log[ε−1(X0 •S0)]) iterations. In view of Lemma 5.1, we conclude
that this number of iterations is equal to O(n3/2 log[ε−1(X0•S0)]) when the algorithm
uses the neighborhood N (γ,∞) = N (γ, (n− 1)γ).

We now turn our efforts towards proving Theorem 5.2.
Lemma 5.4. Suppose that (X,S, y) ∈ N (γ,Γ) for some γ ≥ 0 and Γ ≥ 0 and

let (∆X,∆S,∆y) denote the solution of (3)–(5) with H = σµI − X1/2SX1/2 and
σ ∈ [0, 1]. Let µ(α) and Q(α) be defined as in (24) and (25) for any α ∈ <. Then,

− γ µ(α) ≤ 1

2
λmin

(
Q(α) +Q(α)T

)
≤ 1

2
λmax

(
Q(α) +Q(α)T

)
≤ Γµ(α)(38)

for any α ∈ [0, ᾱ], where

ᾱ ≡ min

{
1,

σµmin{γ,Γ}
‖X−1/2∆X∆SX1/2‖

}
.(39)

Proof. Let α ∈ [0, ᾱ] be given. By Lemma 2.2(c), we have µ(α) = (1− α+ σα)µ.
This relation, (12), (26), and the fact that λmax(X1/2SX1/2−µI) ≤ Γµ, 0 ≤ α ≤ ᾱ ≤
1 and λmax(·) is a homogeneous convex function on the space of symmetric matrices
imply that

1

2
λmax

(
Q(α) +Q(α)T

)
≤ (1− α)λmax(X1/2SX1/2 − µI)

+
1

2
α2λmax(X−1/2∆X∆SX1/2 +X1/2∆S∆XX−1/2)

≤ (1− α)Γµ+
1

2
α2‖X−1/2∆X∆SX1/2 +X1/2∆S∆XX−1/2‖

≤ Γµ(α)− ασΓµ+ α2‖X−1/2∆X∆SX1/2‖

≤ Γµ(α)− α
(
σΓµ− ᾱ‖X−1/2∆X∆SX1/2‖

)
≤ Γµ(α),

where the last inequality is due to (39). Working with the function λmin(·), which
is homogeneous and concave over the space of symmetric matrices, and using (12),
(26), (39), and the fact that λmin(X1/2SX1/2 − µI) ≥ −γµ, 0 ≤ α ≤ ᾱ ≤ 1 and
µ(α) = (1− α+ σα)µ, we obtain

1

2
λmin

(
Q(α) +Q(α)T

)
≥ (1− α)λmin(X1/2SX1/2 − µI)

+
1

2
α2λmin(X−1/2∆X∆SX1/2 +X1/2∆S∆XX−1/2)

≥ −(1− α)γµ− 1

2
α2‖X−1/2∆X∆SX1/2 +X1/2∆S∆XX−1/2‖

≥ −γµ(α) + ασγµ− α2‖X−1/2∆X∆SX1/2‖

≥ −γµ(α) + α
(
σγµ− ᾱ‖X−1/2∆X∆SX1/2‖

)
≥ −γµ(α).
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We have thus shown that (38) holds.
Lemma 5.5. Suppose that (X,S, y) ∈ N (γ,Γ) for some γ ∈ [0, 1) and Γ ≥ 0

and let (∆X,∆S,∆y) denote the solution of (3)–(5) with H = σµI − X1/2SX1/2

and σ ∈ [0, 1]. Let (X(α), S(α), y(α)) be defined as in (23) for any α ∈ <. Then,
(X(α), S(α), y(α)) ∈ N (γ,Γ) for any α ∈ [0, α̂), where

α̂ ≡ min

{
1,

1

‖X−1/2∆XX−1/2‖ ,
σµmin{γ,Γ}

‖X−1/2∆X∆SX1/2‖

}
.(40)

Proof. Fix some α ∈ [0, α̂). We first show that X(α) ∈ F 0(P ). Indeed, using (4)
and the fact that X is strictly feasible, we easily see that Ai • X(α) = bi for every
i = 1, . . . ,m. By (40) and the fact that α < α̂, we have α‖X−1/2∆XX−1/2‖ < 1,
which in turn implies that I + αX−1/2∆XX−1/2 � 0. Thus, X(α) ≡ X + α∆X =
X1/2(I + αX−1/2∆XX−1/2)X1/2 � 0. Hence, X(α) ∈ F 0(P ).

Let µ(α) and Q(α) be defined as in (24) and (25) and let W (α) ≡ X−1/2[X(α)]1/2

and E(α) ≡ [X(α)]1/2S(α)[X(α)]1/2 − µ(α)I. Clearly, W (α) is nonsingular and
W (α)E(α)W (α)−1 = Q(α). In view of Lemma 3.3, we conclude that

1

2
λmin

(
Q(α) +Q(α)T

)
≤ λmin(E(α)) ≤ λmax(E(α)) ≤ 1

2
λmax

(
Q(α) +Q(α)T

)
.

Using this relation, Lemma 5.4, and the fact that α̂ ≤ ᾱ, we conclude that

−γµ(α) ≤ λmin(E(α)) ≤ λmax(E(α)) ≤ Γµ(α).

To conclude the proof, it remains to show that (S(α), y(α)) ∈ F 0(D). Indeed, the
first inequality of the last relation, the definition of E(α), and the assumption that
γ < 1 imply that

λmin

(
[X(α)]1/2S(α)[X(α)]1/2

)
≥ (1− γ)µ(α) > 0.

Hence, [X(α)]1/2S(α)[X(α)]1/2 � 0, which in turn implies that S(α) � 0. Using
both (5) and the fact that (S, y) is strictly feasible, we easily see that

∑n
i=1 yi(α)Ai+

S(α) = C. Hence, (S(α), y(α)) ∈ F 0(D). We have thus shown that (X(α), S(α), y(α))
∈ N (γ,Γ).

We now state the following result due to Kojima, Shindoh, and Hara [11].
Lemma 5.6. Suppose that X ∈ F 0(P ), (S, y) ∈ F 0(D) and let (∆X,∆S,∆y)

denote the solution of (3)–(5) with H ≡ σµI −X1/2SX1/2. Then,

‖X−1/2∆XS1/2‖F ≤
√
µ ‖σR−T −R‖F ,(41)

‖X−1/2∆XX−1/2‖F ≤ ‖R−1‖ ‖σR−T −R‖F ,(42)

‖S−1/2∆SS−1/2‖F ≤ ‖R−1‖ ‖σR−T −R‖F ,(43)

‖S−1/2∆SX1/2‖F ≤
√
µ ‖R‖ ‖R−1‖ ‖σR−T −R‖F ,(44)

where R ≡ µ−1/2X1/2S1/2.
Proof. Using the definition of R and standard norm inequalities, it is easy to see

that (41) implies (42) and that (43) implies (44). In view of Lemma 2.1, there exists
W ∈ S⊥ such that (∆X,∆S,∆y,W ) is a solution of the system consisting of (4), (5),
and the equation X(∆S +W ) + ∆XS = σµI −XS. In view of Corollary 7.7 of [11],
we conclude that

‖X1/2(∆S+W )S−1/2‖F ≤ ‖σµX−1/2S−1/2−X1/2S1/2‖F =
√
µ‖σR−T−R‖F(45)
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and

‖X−1/2∆XS1/2‖F ≤ ‖σµX−1/2S−1/2 −X1/2S1/2‖F =
√
µ‖σR−T −R‖F ,

which shows (41). It remains to show (43). Indeed, relation (45) and the definition
of R imply that

‖S−1/2(∆S +W )S−1/2‖F ≤ ‖S−1/2X−1/2‖ ‖X1/2(∆S +W )S−1/2‖F
≤ ‖R−1‖ ‖σR−T −R‖F .

Let E ≡ S−1/2(∆S + W )S−1/2. Using the fact that (E + ET )/2 = S−1/2∆SS−1/2

and ‖(ET + E)/2‖F ≤ ‖E‖F with the above inequality, we obtain (43).
Lemma 5.7. Let R be a nonsingular matrix such that ‖R‖F =

√
n. Then, for

any σ ∈ <, we have

‖σR−T −R‖2 ≤ n(1− 2σ + σ2‖R−1‖2).

Proof. Using (17), we obtain

Tr (RTR)−1 =

n∑
i=1

λi
(
(RTR)−1

)
≤ nλmax

(
R−1R−T

)
= n‖R−1‖2.(46)

This relation together with the assumption that ‖R‖2F = n imply

‖R− σR−T ‖2F = Tr
(
RT − σR−1

) (
R− σR−T

)
= Tr

(
RTR− 2σI + σ2(RTR)−1

)
= ‖R‖2F − 2σn+ σ2Tr (RTR)−1

≤ n(1− 2σ + σ2‖R−1‖2).

We are now ready to prove Theorem 5.2.
Proof of Theorem 5.2. In view of Lemma 5.5, it is sufficient to show that

α̃ ≤ min

{
1,

1

‖X−1/2∆XX−1/2‖ ,
σµγ

‖X−1/2∆X∆SX1/2‖

}
,(47)

where α̃ is defined in (37). Indeed, using (17), the definition of R, and the fact that
(1− γ)µ ≤ λmin(XS) ≤ λmax(XS) ≤ (1 + Γ)µ, we have

‖R‖2 = λmax(RTR) =
λmax(S1/2XS1/2)

µ
=
λmax(XS)

µ
≤ (1 + Γ)(48)

and

‖R−1‖2 =
1

λmin(RTR)
=

µ

λmin(S1/2XS1/2)
=

µ

λmin(XS)
≤ 1

(1− γ)
.(49)

By (49) and Lemma 5.7(a), we have

‖σR−T −R‖2F ≤
(

1− 2σ +
σ2

1− γ

)
n =

(
(1− σ)2 +

γσ2

1− γ

)
n.(50)
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Using (41), (44), (48), (49), (50), and (37), we obtain

α̃‖X−1/2∆X∆SX1/2‖ ≤ α̃‖X−1/2∆XS1/2‖F ‖S−1/2∆SX1/2‖F
≤ α̃

[√
µ ‖σR−T −R‖F

] [√
µ ‖R‖ ‖R−1‖ ‖σR−T −R‖F

]
≤ α̃µ‖R‖ ‖R−1‖ ‖σR−T −R‖2F

≤ α̃µ (1 + Γ)1/2

(1− γ)1/2

(
(1− σ)2 +

γσ2

1− γ

)
n = σγµ.

Moreover, using (42), (49), (50), and (37), we obtain

α̃‖X−1/2∆XX−1/2‖ ≤ α̃ ‖R−1‖ ‖σR−T −R‖F

≤ α̃ 1

(1− γ)1/2

(
(1− σ)2 +

γσ2

1− γ

)1/2

n1/2

=
σγ

(1 + Γ)1/2n1/2

(
(1− σ)2 +

γσ2

1− γ

)−1/2

≤ σγ

(1 + Γ)1/2n1/2

(1− γ)1/2

γ1/2σ

=
γ1/2(1− γ)1/2

(1 + Γ)1/2n1/2
< 1.

It is also easy to see that α̃ ≤ 1. We have thus shown that (47) holds.

6. Concluding remarks. In this paper, we have provided results which make
the task of extending polynomially convergent primal–dual path-following algorithms
to SDP a routine exercise. We have illustrated these results for two well-known feasible
interior-point path-following algorithms: a short-step and a long-step method. The
author believes that similar techniques can be used to extend other polynomially
convergent feasible or infeasible interior-point path-following methods to the context
of SDP.

Acknowledgment. The author has mistakenly claimed in a previous version of
this manuscript that the search direction determined by systems (3), (4), and (5)
(respectively, (7)) was new. The author thanks Prof. Masakazu Kojima for kindly
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of search directions introduced in [11]. The author also thanks Prof. Yin Zhang for
pointing out an error in the statement of Lemma 3.2 in a previous version of this
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Abstract. The purpose of this work is to carry out a systematic study of a special class of
convex functions defined over the space Sn of symmetric matrices of order n×n. The functions under
consideration (Φ : Sn → R∪ {+∞}) are spectrally defined in the sense that the value Φ(A) depends
only on the spectrum {λ1(A), . . . , λn(A)} of the matrix A ∈ Sn. Fenchel–Legendre conjugation, first-
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1. Introduction. This work deals with a special class of functions (Φ : Sn →
R ∪ {+∞}) defined over the space Sn of n× n real symmetric matrices.

Definition 1.1. Φ : Sn → R ∪ {+∞} is said to be spectrally defined if there is
a symmetric function f : Rn → R ∪ {+∞} such that

Φ(A) = Φf (A) := f(λ(A)) for all A ∈ Sn,

where λ(A) := (λ1(A), . . . , λn(A))T is the vector of eigenvalues of A in nondecreasing
order.

Recall that a function f over Rn is said to be symmetric if f(Πx) = f(x) for all
n × n permutation matrix Π. It is not difficult to prove that Φ is spectrally defined
if and only if Φ is orthonormal invariant in the sense that

Φ(UTAU) = Φ(A) for all U ∈ On,

where On denotes the set of orthonormal matrices of order n × n. The symmetric
function f appearing in Definition 1.1 is necessarily unique. In fact, it is given by

f(x) = Φ(diagx) for all x ∈ Rn,

where diagx stands for the diagonal matrix whose entries on the diagonal are the
components of x.

Spectrally defined functions arise in various areas of applied mathematics: op-
timality criteria in experimental design theory [27], [15], barrier functions in matrix
optimization [23], [17], matrix updates in quasi-Newton methods [10], [34], potential
energy densities for isotropic elastic materials [8, Section 2.3], etc. Some standard
examples are shown below.

Example 1.1. Consider the function A ∈ Sn 7→ Φ(A) = log(tr eA), where “tr”
stands for the trace operator. Φ is spectrally defined in terms of the symmetric
function

x ∈ Rn 7→ f(x) = log(ex1 + · · ·+ exn).
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Example 1.2. The largest eigenvalue function A ∈ Sn 7→ Φ(A) = λmax(A) is
spectrally defined. In this case,

f(x) = max{x1, . . . , xn} for all x ∈ Rn.

Example 1.3. The function

A ∈ Sn 7→ Φ(A) =

{
tr A−1 if A is positive definite,
+∞ otherwise

arises in the theory of optimal experimental design [27]. Φ is spectrally defined in
terms of

x ∈ Rn 7→ f(x) =

{
1
x1

+ · · ·+ 1
xn

if x1 > 0, . . . , xn > 0,

+∞ otherwise.

From the point of view of convex analysis, most of the interesting properties of
Φf can be derived directly from those of f . For instance, Lewis [17] recently ob-
tained an expression for the conjugate of Φf in terms of the conjugate of f . Lewis’s
formula is an elegant and powerful result that has a large number of applications.
For example, it is used in [17] to express the subdifferential of Φf in terms of the
subdifferential of f . The purpose of our work is to complement Lewis’s paper by
deepening the analysis of spectrally defined functions. More precisely, we explore this
class of functions in connection with the following concepts: Legendre–Fenchel conju-
gation, first- and second-order subdifferentiability, regularization, unconstrained min-
imization, diagonal-constrained minimization, good asymptotic behavior, recession
analysis, degree of pointedness, and barrier functions.

Most of the spectrally defined functions arising in the literature are associated to
symmetric functions that are proper convex lower semicontinuous. This is the case in
Examples 1.1–1.3. For notational convenience, we write

f ∈ E(Rn)
def⇔

{
f : Rn → R ∪ {+∞} is a symmetric proper
convex lower-semicontinuous function.

For a matrix A ∈ Sn, we use the standard notation

A > 0 if A is positive definite,
A ≥ 0 if A is positive semidefinite.

Most of our results remain valid, with obvious changes, for functions defined on
the bigger linear space of Hermitian n× n complex matrices.

2. Fenchel–Legendre conjugation. Recall that the Fenchel–Legendre conju-
gate Φ∗ of the function Φ : Sn → R ∪ {+∞} is defined by

Φ∗(B) := sup
A∈Sn

{〈A,B〉 − Φ(A)} for all B ∈ Sn,(2.1)

where 〈·, ·〉 stands for the usual inner product in the space Sn, i.e.,

〈A,B〉 = tr(AB) for all A,B ∈ Sn.

The conjugate function Φ∗ provides very valuable information on the function Φ it-
self. Computing the conjugate Φ∗f of a spectrally defined function Φf can be quite
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a cumbersome task. If one uses the definition (2.1), then one has to solve a maxi-
mization problem over a space of symmetric matrices. As indicated by Lewis [17], the
computation of Φ∗f can be carried out by evaluating the conjugate

y ∈ Rn 7→ f∗(y) := sup
x∈Rn

{〈x, y〉 − f(x)}

of f : Rn → R ∪ {+∞}. The symbol 〈·, ·〉 refers this time to the usual inner product
in the space Rn.

Theorem 2.1 (see [17, Theorem 2.6]). Let f ∈ E(Rn). Then, Φ∗f is spectrally
defined in terms of the symmetric function f∗. In short,

Φ∗f = Φf∗ .

Proof. Our proof is different from that in [17, Theorem 2.6]. Take any B ∈ Sn
and write

Φ∗f (B) = sup
A∈Sn

{〈A,B〉 − Φf (A)}

= sup
A∈Sn

{〈UTAU, diagλ(B)〉 − Φf (A)},

where U is an n× n orthonormal matrix such that UTBU = diagλ(B). Since

Φf (A) = Φf (UTAU),

one gets

Φ∗f (B) = sup
A∈Sn

{〈A, diagλ(B)〉 − Φf (A)}

or, equivalently,

Φ∗f (B) = sup{〈Q(diagx)QT , diagλ(B)〉 − f(x) : Q ∈ On, x ∈ Rn}.

By choosing Q as the identity matrix, one gets (in particular)

Φ∗f (B) ≥ sup
x∈Rn

{〈x, λ(B)〉 − f(x)} = f∗ (λ(B)).

To prove that Φ∗f (B) ≤ f∗(λ(B)), it suffices to combine the Young–Fenchel inequality

f∗(λ(B)) + f(λ(A)) ≥ 〈λ(A), λ(B)〉,

and the well-known trace inequality

〈λ(A), λ(B)〉 ≥ 〈A,B〉 (cf. [33], [17]).

Remark. A result somehow related to Theorem 2.1 can be found in Barbara
and Crouzeix [4, Theorem 5.1]. Theorem 2.1 remains true if one drops the convexity
and/or the lower semicontinuity of f .

As a way of illustrating Theorem 2.1, consider the following examples.
Example 2.1. In the context of the theory of optimal experimental design, the

function

A ∈ Sn 7→ Φ(A) =

{
λmax(A−1) if A > 0,

+∞ otherwise
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is known as the E-optimality criterion [27]. This function is spectrally defined in
terms of

x ∈ Rn 7→ f(x) =

 max

{
1

x1
, . . . ,

1

xn

}
if x1 > 0, . . . , xn > 0,

+∞ otherwise.

As a matter of calculus one gets

f∗(y) =

{
−2[−(y1 + · · ·+ yn)]1/2 if y1 ≤ 0, . . . , yn ≤ 0,

+∞ otherwise

and, consequently,

Φ∗(B) =

{
−2[tr(−B)]1/2 if −B ≥ 0,

+∞ otherwise .

The above expression is obtained in [15, Corollary 6.4] by using a rather cumbersome
method.

Example 2.2. The spectral radius of a matrix A ∈ Sn is the number

Φ(A) = max{λmax(A),−λmin(A)}.

Φ : Sn → R is spectrally defined in terms of the symmetric function f = ‖ · ‖∞. Since
f∗ = ‖ · ‖1, one has

Φ∗(B) = |λ1(B)|+ · · ·+ |λn(B)| for all B ∈ Sn.

As an immediate consequence of Theorem 2.1 one has the following corollaries.
Corollary 2.2 (see [17, Corollary 2.7]). If f ∈ E(Rn), then Φf is proper convex

lower semicontinuous.
Corollary 2.3. If f ∈ E (Rn), then

Φ∗f (B) + Φf (A) ≥ 〈λ(A), λ(B)〉 for all A,B ∈ Sn.

Corollary 2.4. If Φ is spectrally defined, then

(Φ ◦ diag)∗(y) = Φ∗(diagy) for all y ∈ Rn.

3. Subdifferentiability. The effective domain of Φ : Sn → R∪{+∞} is defined
as the set

dom Φ := {A ∈ Sn : Φ(A) < +∞}.

The subdifferential at A ∈ dom Φ is by definition

∂Φ(A) := {B ∈ Sn : Φ(A′) ≥ Φ(A) + 〈A′ −A,B〉 for all A′ ∈ Sn}
= {B ∈ Sn : Φ∗(B) + Φ(A)− 〈A,B〉 = 0}.

When Φ is a convex function, the set ∂Φ(A) reflects the first-order behavior of Φ
around A. Higher-order information on Φ can be obtained from the set

∂εΦ(A) := {B ∈ Sn : Φ(A′) ≥ Φ(A) + 〈A′ −A,B〉 − ε for all A′ ∈ Sn}
= {B ∈ Sn : Φ∗(B) + Φ(A)− 〈A,B〉 ≤ ε},



CONVEX ANALYSIS OF SPECTRAL FUNCTIONS 683

which is known as the ε-subdifferential of Φ at A. For ε > 0, the set ∂εΦ(A) is an
enlargement of ∂Φ(A). In fact, one has

∂Φ(A) =
⋂
ε>0

∂εΦ(A) = ∂0Φ(A).

The following calculus rule serves to check whether or not a given matrix B ∈ Sn
belongs to ∂εΦf (A).

Theorem 3.1. Let f ∈ E(Rn) and ε ≥ 0. Then, B ∈ ∂εΦf (A) if and only if α := ε+ 〈A,B〉 − 〈λ(A), λ(B)〉 ≥ 0,

λ(B) ∈ ∂αf(λ(A)).
(3.1)

Proof. According to Theorem 2.1, the condition

Φ∗f (B) + Φf (A)− 〈A,B〉 ≤ ε

is equivalent to

f∗(λ(B)) + f(λ(A))− 〈A,B〉 ≤ ε.

However, this can be written in the form

f∗(λ(B)) + f(λ(A))− 〈λ(A), λ(B)〉 ≤ ε+ 〈A,B〉 − 〈λ(A), λ(B)〉.(3.2)

To complete the proof, it suffices to observe that the term on the left-hand side of
(3.2) is nonnegative.

Corollary 3.2. Let f ∈ E(Rn) and ε ≥ 0. If B ∈ ∂εΦf (A), then

UTBU ∈ ∂εΦf (UTAU) for all U ∈ On.

Proof. It suffices to observe that

λ(UTAU) = λ(A), λ(UTBU) = λ(B),

and

〈UTAU,UTBU〉 = 〈A,B〉.

The reverse implication in Corollary 3.2 is obviously true. Thus, if A = UDUT

is a polar decomposition of A, then one has

∂εΦf (A) = {UCUT : C ∈ ∂εΦf (D)}.

In other words, when it comes to computing the set ∂εΦf (A), one can always assume
that A is a diagonal matrix.

Another important consequence of Theorem 3.1 is a result due to Lewis [17,
Theorem 3.2].

Corollary 3.3. Let f ∈ E(Rn). Then B ∈ ∂Φf (A) if and only if{
〈λ(A), λ(B)〉 = 〈A,B〉,
λ(B) ∈ ∂f(λ(A)).

(3.3)
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Proof. Set ε = 0 in Theorem 3.1. Also remember that

〈λ(A), λ(B)〉 ≥ 〈A,B〉 whenever A,B ∈ Sn.

Remark. Corollary 3.3 can be used, in particular, to discuss the differentiability of
Φf (see [19]). As mentioned in [17, Theorem 2.2], the equality 〈λ(A), λ(B)〉 = 〈A,B〉
occurs if and only if there exists an orthonormal matrix V such that

V TAV = diagλ(A) and V TBV = diagλ(B).

The next example shows how Corollary 3.3 works in practice.
Example 3.1. Let Φ be the spectrally defined function introduced in Example 2.1.

Let A ∈ Sn be a positive definite matrix whose smallest eigenvalue has multiplicity
p ∈ {1, . . . , n}, i.e.,

0 < λ1(A) = · · · = λp(A) < λp+1(A) ≤ · · · ≤ λn(A).

A standard calculus rule on the subdifferential of a maximum function yields here the
estimate

∂f(λ(A)) = convex hull of

{
−
[

1

λ1(A)

]2

e1, . . . ,−
[

1

λ1(A)

]2

ep

}
,

where e1, . . . , ep are the p first canonical unit vectors in Rn. Thus, λ(B) ∈ ∂f(λ(A))
if and only if 

λ1(B) ≤ 0, . . . , λp(B) ≤ 0,

λ1(B) + · · ·+ λp(B) = −
[

1

λ1(A)

]2

,

λp+1(B) = · · · = λn(B) = 0.

(3.4)

In view of (3.4), the condition 〈λ(A), λ(B)〉 = 〈A,B〉 takes the form

〈A,B〉 = −1/λ1(A).(3.5)

According to Corollary 3.3, conditions (3.4)–(3.5) are necessary and sufficient for
B ∈ Sn to be in ∂Φ(A). This is consistent with the estimate

∂Φ(A) = −
[
λmax(A−1)

]2
∂λmax(A−1)

given in [15, Corollary 6.5].

4. Unconstrained minimization. Another consequence of Theorem 2.1 is that
the matrix optimization problem

Minimize {Φf (A) : A ∈ Sn}(4.1)

is equivalent to the simpler problem

Minimize {f(x) : x ∈ Rn}.(4.2)

First of all, one has the following proposition.
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Proposition 4.1. Let f ∈ E (Rn). Then

inf
A∈Sn

Φf (A) = inf
x∈Rn

f(x).

Proof. Observe that

inf
A∈Sn

Φf (A) = −Φ∗f (0) = −f∗(0) = inf
x∈Rn

f(x).

Also, the solutions of (4.1) and (4.2) are related to each other. Denote by

ε-argmin Φ := {A ∈ Sn : Φ(A)− ε ≤ inf Φ}

the set of ε-minima of the function Φ : Sn → R ∪ {+∞}. For ε = 0, one simply has

argmin Φ := {A ∈ Sn : Φ(A) = inf Φ}.

Proposition 4.2. Let f ∈ E(Rn) and ε ≥ 0. Then

A ∈ ε-argmin Φf ⇔ λ(A) ∈ ε-argmin f.

In particular, Φf admits a minimum if and only if f admits a minimum.
Proof. It is immediate from Proposition 4.1.
The results of this section are evident even without Theorem 2.1. They follow

from the elementary observation that, for any x ∈ Rn, there exists a permutation
matrix P such that Px = λ(diag x), whence f(Rn) = Φf (Sn) for any symmetric
function f .

5. Diagonal-constrained minimization. Given a vector x ∈ Rn, consider the
diagonal-constrained minimization problem

v(x) := inf
A∈Sn

{Φ(A) : Aii = xi for all i = 1, . . . , n}.(5.1)

This type of problem arises in a natural way in the context of matrix optimization.
An interesting application can be found in a paper by Fletcher [9], in which Φ(A) is
defined as the sum of the m largest eigenvalues of A (with 1 ≤ m ≤ n).

The following result can be seen as an extension of [9, Lemma A.3]. However, our
proof is completely different.

Proposition 5.1. Let Φ be spectrally defined in terms of a given f ∈ E(Rn).
Then,

(a) the optimal-value function v coincides with f ;
(b) if x ∈ dom f, then A0 = diagx is a solution to (5.1).
Proof. The adjoint diag∗ : Sn → Rn of the linear mapping diag : Rn → Sn is

given by

diag∗A = (A11, . . . , Ann)T for all A ∈ Sn.

Thus, the infimal-value function

x ∈ Rn 7→ v(x) := inf
A∈Sn

{Φ(A) : diag∗A = x}

is just the image of Φ under diag∗ [26, p. 38]. By applying [26, Theorem 16.3] and
Corollary 2.4, one obtains

v∗ = Φ∗ ◦ diag = (Φ ◦ diag)∗.
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By taking conjugates again, one gets

v∗∗ = (Φ ◦ diag)∗∗ = Φ ◦ diag.

The last equality is due to the fact that f = Φ◦diag is a convex lower-semicontinuous
function. Hence,

Φ(diagx) = f(x) = v∗∗(x) ≤ v(x) ≤ Φ(diagx).

This completes the proof of the proposition.
Corollary 5.2. Let f ∈ E(Rn) be continuous at x ∈ dom f . Then, ∂Φf (diagx)

contains a diagonal matrix, and

(5.2) y ∈ ∂f(x)⇐⇒ diag y ∈ ∂Φf (diag x).

Proof. Since the matrix A0 = diagx is a solution to the convex minimization
problem

min
A∈Sn

{Φf (A) : diag∗A = x},

it satisfies the first-order optimality condition{
diag∗A0 = x,
∂Φf (A0) intersects {diagy : y ∈ Rn}.

These conditions are derived by applying [26, Theorem 28.3] to the Lagrangian func-
tion

(A, y) ∈ Sn ×Rn 7→ L(A, y) = Φf (A) + 〈y, x− diag∗A〉.

This proves that there exists a vector y ∈ Rn (of Lagrange multipliers) such that
diagy ∈ ∂Φf (diagx). Formula (5.2) follows by applying Proposition 5.1 and a general
rule on the subdifferential of an optimal-value function like v. Formula (5.2) can also
be derived from Corollary 3.3.

6. Regularization. A standard way to regularize a function Φ : Sn → R∪{+∞}
is by taking its infimal-convolution

C ∈ Sn 7→ [Φ2G](C) := inf
A∈Sn

{Φ(C −A) +G(A)}

with respect to a “kernel” function G : Sn → R ∪ {+∞}. The properties imposed on
the kernel G depend essentially on the type of regularity for Φ2G that one wishes to
achieve. As a common practice, one supposes that G is at least inf compact, in the
sense that

G(A)→ +∞ as ‖A‖ → ∞.

Among the most typical examples one has the Moreau–Yosida kernel of index α > 0
(cf. [3])

G1(A) :=
1

2α
‖A‖2,
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the Baire–Wijsman kernel of index α > 0 (cf. [12], [5])

G2(A) := α‖A‖,

and the rolling ball kernel of index α > 0 (cf. [31])

G3(A) :=

{
−[α2 − ‖A‖2]1/2 if ‖A‖ ≤ α,
+∞ otherwise.

It turns out that the above three kernels are spectrally defined if the matrix norm || · ||
is induced by the inner product. The underlying functions g1, g2, g3 ∈ E(Rn) are, of
course, immediate to identify.

The following theorem is a general result concerning the regularization of spec-
trally defined functions. It has been obtained independently by A. Lewis in his recent
work [21].

Theorem 6.1. Let f ∈ E(Rn). If g ∈ E(Rn) is inf-compact, then Φg is inf-
compact, and the infimal-convolution Φf2Φg is spectrally defined in terms of f2g ∈
E(Rn). In short,

Φf2Φg = Φf2g.

Proof. The inf-compacity of g allows us to write (see [16, Section 7])

f2g = (f∗ + g∗)∗.

This proves that f2g ∈ E(Rn). That Φg is inf-compact follows from the chain of
implications

‖A‖ → ∞⇒ ‖λ(A)‖ → ∞⇒ g(λ(A))→ +∞.

Finally, by applying Theorem 2.1, one gets

Φf2Φg = (Φ∗f + Φ∗g)
∗ = (Φf∗ + Φg∗)

∗ = (Φf∗+g∗)
∗ = Φ(f∗+g∗)∗ = Φf2g.

This completes the proof of the theorem.

7. Good asymptotic behavior. The concept of good asymptotic behavior
plays an important role in the design of algorithms for the minimization of a func-
tion whose level sets are not necessarily bounded. This concept has been introduced
recently by Auslender and Crouzeix [1].

Definition 7.1. The function Φ : Sn → R ∪ {+∞} is said to have good asymp-
totic behavior if

{(Ak, Bk)}k∈N ⊂ Gr ∂Φ
Bk → 0

}
⇒ Φ(Ak)→ inf Φ.

More details on this notion can be found in the original work [1]; see also Auslender,
Cominetti, and Crouzeix [2]. The notation Gr ∂Φ in Definition 7.1 refers to the graph
of the set-valued mapping ∂Φ : Sn → Sn.

The purpose of this section is to prove the following result.
Theorem 7.1. Φf : Sn → R ∪ {+∞} has good asymptotic behavior if and only

if the function f ∈ E(Rn) does also.
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Proof. Suppose that f has good asymptotic behavior. Consider any sequence
{(Ak, Bk)}k∈N ⊂ Gr ∂Φf such that Bk → 0. Since Bk ∈ ∂Φf (Ak), one has

λ(Bk) ∈ ∂f(λ(Ak)).

This and the condition λ(Bk)→ 0 yield

f(λ(Ak))→ inf f

or, equivalently,

Φf (Ak)→ inf Φf .

Conversely, suppose Φf has good asymptotic behavior, and let {(xk, yk)}k∈N ⊂ Gr∂f
be any sequence such that yk → 0. According to Lemma A (cf. Appendix), one has

ỹk ∈ ∂f(x̃k) for all k ∈ N,

where z̃ ∈ Rn is the vector obtained from z ∈ Rn after rearranging the components
in a nondecreasing order. Now, define

Ak = diagx̃k and Bk = diagỹk.

In this case,

λ(Bk) ∈ ∂f(λ(Ak))

and

〈λ(Ak), λ(Bk)〉 = 〈Ak, Bk〉 = 〈x̃k, ỹk〉.

According to Corollary 3.3, one obtains

Bk ∈ ∂Φf (Ak) for all k ∈ N.

Since yk → 0, one has Bk → 0 and

Φf (Ak)→ inf Φf .

Thus, it suffices to apply Proposition 4.1 and observe that

Φf (Ak) = f(λ(Ak)) = f(x̃k) = f(xk).

Most of the interesting spectrally defined functions do have good asymptotic
behavior. Theorem 7.1 can be used to check that the functions mentioned in all the
previous examples belong to this category.

8. Recession analysis. Recall that if Φ : Sn → R ∪ {+∞} is proper convex
lower semicontinuous, then its recession function Φ∞ : Sn → R ∪ {+∞} is given by

Φ∞(D) := sup
t>0

Φ(A+ tD)− Φ(A)

t
for all D ∈ Sn,

where A is any matrix in dom Φ. An equivalent expression for Φ∞ is simply (cf. [26,
p. 116])

Φ∞(D) = sup
B∈dom Φ∗

〈B,D〉 for all D ∈ Sn.



CONVEX ANALYSIS OF SPECTRAL FUNCTIONS 689

The above characterization applies also to a function defined over Rn. If f belongs
to E(Rn), then so does f∞. Moreover, we have the following theorem.

Theorem 8.1. Let f ∈ E(Rn). Then the recession function of the spectrally
defined function Φf is given by

(Φf )∞ = Φf∞ .

Proof. Take any D ∈ Sn. Then,

(Φf )∞(D) = sup
B∈ dom Φ∗

f

〈B,D〉 = sup
B∈ dom Φ∗

f

〈UTBU, diagλ(D)〉,

with U ∈ On such that UTDU = diagλ(D). But Theorem 2.1 allows us to write

dom Φ∗f = {Q(diagy)QT : Q ∈ On, y ∈ dom f∗}.

Thus,

(Φf )∞(D) = sup
Q∈On

y∈ dom f∗

〈UTQ(diagy)QTU, diagλ(D)〉.

The choice Q = U yields in particular

(Φf )∞(D) ≥ sup
y∈dom f∗

〈y, λ(D)〉 = f∞(λ(D)).

The proof of the reverse inequality is as follows. Let {u1, . . . , un} and {q1, . . . , qn} be
the columns of U and Q, respectively. As a matter of calculus, one has

〈UTQ(diagy)QTU, diagλ(D)〉 = 〈y,MQλ(D)〉 for all Q ∈ On,

with

[MQ]ij = 〈qi, uj〉2 for i, j = 1, . . . , n.

Hence,

(Φf )∞(D) = sup
Q∈On

y∈dom f∗

〈y,MQλ(D)〉.

Since MQ is a double stochastic matrix for all Q ∈ On and every such matrix can be
written as a convex combination of permutation matrices [7], one obtains

(Φf )∞(D) ≤ sup

{〈
y,

(
m∑
`=1

α`Π`

)
λ(D)

〉
: y ∈ dom f∗, α` ≥ 0,

m∑
`=1

α` = 1

}
,

where {Π`}m`=1 is the collection of all permutation matrices of order n × n. But, for
all y ∈ dom f∗ and ` ∈ {1, . . . ,m}, one has

〈y,Π`λ(D)〉 ≤ f∞(Π`λ(D)) = f∞(λ(D)).

This yields the reverse inequality (Φf )∞(D) ≤ f∞(λ(D)).
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Remark. If dom f intersects {ke : k ∈ R}, with e = (1, . . . , 1)T , then the proof of
Theorem 8.1 becomes much shorter. Indeed, dom Φf contains a multiple kIn of the
identity matrix In, and

(Φf )∞(D) = sup
t>0

f(λ(kIn + tD))− f(λ(kIn))

t

= sup
t>0

f(ke+ tλ(D))− f(ke)

t

= f∞(λ(D)).

The next example serves to illustrate the use of Theorem 8.1.
Example 8.1. The function A ∈ Sn 7→ Φ(A) = tr eA is spectrally defined in terms

of x ∈ Rn 7→ f(x) = ex1 + · · ·+ exn . Since

f∞(d) =

{
0 if d ∈ Rn−,
+∞ otherwise ,

one has

Φ∞(D) =

{
0 if −D ≥ 0,
+∞ otherwise .

9. Barrier functions. Consider the problem of minimizing a function ν : Sn →
R ∪ {+∞} over some closed set P ⊂ Sn. Since ν is allowed to have the value +∞,
the minimization problem

Minimize {ν(A) : A ∈ P}(9.1)

includes implicitly the constraint A ∈ dom ν. Suppose this constraint is easy to
handle, so that the main computational difficulty lies in the treatment of the constraint
A ∈ P .

The barrier method for problem (9.1) consists of solving the “unconstrained”
programs

Minimize {ν(A) + ckΦ(A) : A ∈ Sn},

where {ck}k∈N is a sequence of positive numbers decreasing to zero, and Φ : Sn →
R ∪ {+∞} is a barrier function for the set P . The precise meaning of this concept is
as follows.

Definition 9.1. Let P ⊂ Sn be a closed set whose interior int P is nonempty.
Let the boundary of P be denoted by bd P . Φ : Sn → R∪{+∞} is said to be a barrier
function for P if

(i) int P ⊂ dom Φ,
(ii) for all A0 ∈ bd P, lim

A→A0

A∈ int P

Φ(A) = +∞.

A question of practical interest asks how we should construct barrier functions for
different types of sets in Sn. In connection with this question, one has the following
result.

Theorem 9.1. Suppose K ⊂ Rn is a closed set whose interior intersects the cone
{x ∈ Rn : x1 ≤ · · · ≤ xn}. Let the set

P := {A ∈ Sn : λ(A) ∈ K}
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be such that

bd P = {A ∈ Sn : λ(A) ∈ bd K}.(9.2)

Under these assumptions, if f ∈ E(Rn) is a barrier function for K, then Φf is a
barrier function for P .

Proof. Hypothesis (9.2) is equivalent to the condition

int P = {A ∈ Sn : λ(A) ∈ int K}.

Since int K ⊂ dom f , it follows that int P ⊂ dom Φf . To check condition (ii) in
Definition 9.1, take any A0 ∈ bd P . If {Ak}k∈N ⊂ int P converges to A0, then
{λ(Ak)}k∈N ⊂ int K converges to λ(A0) ∈ bd K. Since f is a barrier function for
K, it follows that

Φf (Ak) = f(λ(Ak))→ +∞.

This shows that Φf is a barrier function for P .
Remark. Theorem 9.1 is reminiscent of a somehow related result by Barbara and

Crouzeix [4, Theorem 10.1]. However, we work with a different concept of barrier
function.

Example 9.1. A typical barrier function which fits into the framework of Theorem
9.1 is

A ∈ Sn 7→ Φ(A) =

{
− log det A if A > 0,
+∞ otherwise .

This corresponds to the case K = Rn+, P = {A ∈ Sn : A ≥ 0}, and

x ∈ Rn 7→ f(x) =

 −
n∑
i=1

log xi if x1 > 0, . . . , xn > 0,

+∞ otherwise.

10. Degree of pointedness. It is known that if Φ : Sn → R∪{+∞} is a proper
convex lower-semicontinuous function, then

epi Φ∞ := {(A,α) ∈ Sn ×R : Φ∞(A) ≤ α}

is a closed convex cone in the space Sn ×R. The set

`(epi Φ∞) = epi Φ∞ ∩ − epi Φ∞

is the largest subspace of Sn×R which is contained in epi Φ∞. Following the author’s
previous work [32], we refer to the number

p[Φ] := dim Sn − dim `( epi Φ∞)

as the degree of pointedness of Φ. If p[Φ] = dim Sn, then Φ is said to be pointed.
According to this definition, Φ is pointed if and only if epi Φ∞ is a pointed cone. This
particular case has been considered by Benoist and Hiriart-Urruty [6, Definition 2.3].
For a function f defined over the Euclidean space Rn, one has, of course,

p[f ] = dim Rn − dim `(epif∞).
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A detailed discussion on the concept of pointedness can be found in [32]. The theorem
recorded below deals with the degree of pointedness of a spectrally defined function.
The dimension of a nonempty convex set is defined as the dimension of its affine hull
(cf. [26, p. 12]).

Theorem 10.1. Let f ∈ E(Rn) and denote by

lin f := {d ∈ Rn : f∞(d) = −f∞(−d)}

its lineality space [26, p. 70]. Then, the degree of pointedness of Φf admits the
following two characterizations:

p[Φf ] = dim Sn − dim {D ∈ Sn : λ(D) ∈ lin f}
= dim {B ∈ Sn : λ(B) ∈ dom f∗}.

In particular, Φf is pointed if and only if f is pointed.
Proof. As mentioned in [32], the space `(epi(Φf )∞) has the same dimension as

lin Φf = {D ∈ Sn : (Φf )∞(D) = −(Φf )∞(−D)}.

But, according to Theorem 8.1, one can write

lin Φf = {D ∈ Sn : Φf∞(D) = −Φf∞(−D)}
= {D ∈ Sn : f∞(λ(D)) = −f∞(λ(−D))}.

By taking into account the symmetry of f∞, one gets, finally,

lin Φf = {D ∈ Sn : λ(D) ∈ lin f}.

This proves the first characterization that has been given for the number p[Φf ]. The
second formula follows from Theorem 2.1 and the fact that (see [32, Theorem 1])

p[Φf ] = dim(dom. Φ∗f ).

Finally, the spectrally defined function Φf is pointed if and only if lin Φf is a zero-
dimensional space in Sn, i.e.,

{D ∈ Sn : λ(D) ∈ lin f} = {0}.

However, the above equality amounts to saying that lin f = {0} ⊂ Rn; i.e., f is
pointed.

Example 10.1. The variance of the matrix A ∈ Sn is the number

Φ(A) =
1

n
‖A‖2 −

(
tr A

n

)2

,

where ‖ · ‖ is the norm associated to the inner product 〈·, ·〉. Φ is spectrally defined
in terms of

x ∈ Rn 7→ f(x) =
1

n
‖x‖2 −

(
〈e, x〉
n

)2

,

where e = (1, . . . , 1)T . Since

f∞(d) =

{
0 if d1 = · · · = dn,
+∞ otherwise ,
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one has lin f = {ke : k ∈ R}. Thus,

{D ∈ Sn : λ(D) ∈ lin f} = {kIn : k ∈ R}

is a one-dimensional subspace of Sn. This means that

p[Φ] = dim Sn − 1 = (n2 + n− 2)/2.

This number is obtained also as the dimension of

dom Φ∗ = {B ∈ Sn : λ(B) ∈ dom f∗}
= {B ∈ Sn : tr B = 0}.

11. Second-order subdifferentiability. Second-order information on the be-
havior of the proper convex lower-semicontinuous function Φ : Sn → R ∪ {+∞} is
captured by the second-order subdifferential mapping ∂2Φ : Sn×Sn → Sn. Following
our previous work [30], we denote by

∂2
εΦ(A,B) :=

∂εΦ(A)−B√
2ε

the so-called ε-second-order subdifferential of Φ at (A,B) ∈ Gr ∂Φ. In this section
we are interested in the second-order subdifferential

∂2Φ(A,B) := lim
ε→0+

∂2
εΦ(A,B),(11.1)

where the limit is understood in the sense of Kuratowski–Painlevé. An equivalent
expression for ∂2Φ(A,B) in terms of Rockafellar’s second-order epiderivative concept
can be found in [30, Theorem 3.1] or [24, Theorem 1.1]. For the sake of convenience,
we split (11.1) into the upper- and lower-limits ∂

2
Φ(A,B) = lim sup

ε→0+

∂2
εΦ(A,B),

∂2Φ(A,B) = lim inf
ε→0+

∂2
εΦ(A,B).

(11.2)

If Φ is spectrally defined in terms of f ∈ E(Rn), then it is possible to obtain

estimates for ∂
2
Φ and ∂2Φ in terms of ∂

2
f and ∂2f , respectively. The next theorem

is a result in that direction.
Recall that each eigenvalue function A ∈ Sn 7→ λi(A) is directionally differen-

tiable. Formulas for computing the directional derivative

H ∈ Sn 7→ λ′i(A;H) := lim
t→0+

λi(A+ tH)− λi(A)

t

can be found in works by Overton and Womersley [25] and Hiriart-Urruty and Ye [14,
Theorem 3.12]. So, in principle, the computation of the vector

λ′(A;H) := (λ′1(A;H), . . . , λ′n(A;H))T

does not constitute a major difficulty.
Theorem 11.1. Let f ∈ E(Rn) and B ∈ ∂Φf (A). Then

∂2Φf (A,B) ⊂ {C ∈ Sn : λ′(B;C) ∈ ∂2f(λ(A), λ(B))}.
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Proof. Let C ∈ ∂2Φf (A,B), and take any sequence {εk}k∈N → 0+. Thus, there
is a sequence {Ck}k∈N ⊂ Sn which converges to C and is such that

Ck ∈ ∂2
εk

Φf (A,B) for all k ∈ N

or, equivalently,

B +
√

2εkCk ∈ ∂εkΦ(A).

According to Theorem 3.1, the above inclusion can be expressed in the form{
αk := εk + 〈A,B +

√
2εkCk〉 − 〈λ(A), λ(B +

√
2εkCk)〉 ≥ 0,

λ(B +
√

2εkCk) ∈ ∂αkf(λ(A)).

Since αk ≤ εk, one gets, in particular,

λ(B +
√

2εkCk) ∈ ∂εkf(λ(A))

or, equivalently,

zk :=
λ(B +

√
2εkCk)− λ(B)√

2εk
∈ ∂2

εk
f(λ(A), λ(B)).

Now, it suffices to observe that {zk}k∈N converges to λ′(B;C).
Similarly, one has the following theorem.
Theorem 11.2. Let f ∈ E(Rn) and B ∈ ∂Φf (A). Then

∂
2
Φf (A,B) ⊂ {C ∈ Sn : λ′(B;C) ∈ ∂2

f(λ(A), λ(B))}.

Proof. The proof is analogous to the proof of Theorem 11.1.
In most cases in practice, the lower limit ∂2f(λ(A), λ(B)) coincides with the upper

limit ∂
2
f(λ(A), λ(B)). The common limit ∂2f(λ(A), λ(B)) can be computed by using

calculus rules found in [13], [28], [29]. For instance, if f is twice differentiable at λ(A),
then λ(B) is necessarily equal to the gradient 5f(λ(A)), and

∂2f(λ(A), λ(B)) = {z ∈ Rn : 〈z, h〉 ≤ [〈h,52f(λ(A))h〉]1/2 for all h ∈ Rn}

is an ellipsoid associated to the Hessian matrix 52f(λ(A)).
It must be mentioned, however, that the spectral function Φf does not inherit

the smoothness of f . This is due to the fact that the matrix A may have repeated
eigenvalues. Whether or not it is possible to write the converse inclusions in Theorems
11.1 and 11.2 is a matter which requires further investigation.

Appendix. We record below a general property concerning the ε-subdifferential
of a symmetric function.

Lemma A. Let f ∈ E(Rn) and ε ≥ 0. Then, for all (x, y) ∈ Rn × Rn, one has
the implication

y ∈ ∂εf(x)⇒ ỹ ∈ ∂εf(x̃),

where z̃ ∈ Rn has the same components as z ∈ Rn but in a nondecreasing order.
Proof. Suppose y ∈ ∂εf(x), i.e.,

f∗(y) + f(x) ≤ 〈y, x〉+ ε.
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Let P and Q be n× n permutation matrices such that

x = Px̃ and y = Qỹ.

Hence,

f∗(Qỹ) + f(Px̃) ≤ 〈ỹ, QTPx̃〉+ ε.

Since f and f∗ are symmetric, one has

f∗(ỹ) + f(x̃) ≤ 〈ỹ, QTPx̃〉+ ε.

Since QTP is a permutation matrix, one can apply [11, Theorem 368] (see also [17,
Lemma 2.1]) to obtain

〈ỹ, QTPx̃〉 ≤ 〈ỹ, x̃〉.

In this way one gets, finally,

f∗(ỹ) + f(x̃) ≤ 〈ỹ, x̃〉+ ε.
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Abstract. We consider the analytic center cutting plane (or column generation) algorithm for
solving general convex problems defined by a separation oracle. The oracle is called at an approximate
analytic center of a polytope which contains the solution set and is given by the intersection of the
linear inequalities previously generated from the oracle. If the approximate center is not in the
solution set, separating hyperplanes will be placed through the approximate center, and a new
approximate analytic center will be found for the shrunken polytope. In this paper, we consider
using approximate weighted analytic centers in the cutting plane method and show that the method,
with multiple cuts added in each step, has a complexity of O(ηm2/ε2), where η is the maximum
number of cuts that can be added in each step and m is the dimension of the problem.

Key words. convex feasibility problem, analytic center, potential reduction, column generation,
cutting planes
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1. Introduction. Consider the problem of finding a point in a convex set Γ,
where Γ ⊂ Rm is contained in the m-dimensional cube Ω0 = {y ∈ Rm : 0 ≤ y ≤ e} =
[0, 1]m. Suppose Γ has a nonempty interior and contains a full dimensional closed
ball with an ε (< 1

2 ) radius. The set Γ is defined implicitly by a separating oracle,
which for every ȳ ∈ Rm either answers ȳ ∈ Γ or generates a separating hyperplane
{y ∈ Rm : aT y ≤ aT ȳ} ⊃ Γ. Without loss of generality, we assume that a is
normalized so that ‖a‖ = 1.

A popular method for solving the above convex feasibility problem is the analytic
center cutting plane or column generation algorithm, which, in practice, has demon-
strated superior performance (see [4, 5, 6] and references therein). Roughly speaking,
the algorithm starts with Ω0 as an initial polytope that contains Γ. Then, in each step
the oracle is called at an approximate analytic center of the containing polytope given
by the intersection of the linear inequalities previously generated from the oracle. If
the center is not in Γ yet, separating hyperplanes will be placed through the center to
further trim down the containing polytope. A new approximate center is computed
for the shrunken polytope and the process is continued.

Several complexity results have been established for this cutting plane algorithm
when one cut is used in each step; see Atkinson and Vaidya [2], Goffin, Luo, and Ye
[6], Nesterov [7], and Altman and Kiwiel [1]. In practice, adding multiple cuts is a key
to the algorithm’s performance (see [4, 5]); unfortunately, this also presents technical
difficulties in analyzing all cutting plane methods (including the ellipsoid method).
Among the issues to be resolved are (i) how “close” does each approximate analytic
center have to be from the exact center, (ii) can we still in O(1) Newton iterations
obtain a new approximate center after multiple cuts are added in each step, and (iii)
how many steps are needed for the algorithm to find an ε-feasible solution? Recently,
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Ye [10] analyzed the complexity of the algorithm when multiple cuts are added in each
step (at the exact analytic center), and he obtained a bound of O(η2m2/ε2) on the
total number of Newton iterations needed to find an ε-feasible solution. Here η is the
maximum number of cuts that can be added in each step and m is the dimension of
the problem. In this paper, we consider using approximate-weighted analytic centers
in the cutting plane method and show that the method, with multiple cuts added in
each step, has an improved complexity of O(ηm2/ε2). Moreover, η need not be smaller
than m as was stipulated in [10]. Also, our analysis shows that a new approximate
analytic center can still be obtained in O(1) Newton iterations, just like the cutting
plane method which uses a single cut in each step [6].

2. Preliminaries. Let Ω be a (bounded) polytope in Rm defined by n (> m)
linear inequalities, i.e.,

Ω = {y ∈ Rm : c−AT y ≥ 0}.

Recall that for y in the interior of Ω and for some weight vector w > 0, the potential
function is defined as

φ(y) :=
n∑
j=1

wj log sj ,

where

s = c−AT y.

The gradient and the Hessian of φ(y) are given by

∇φ(y) = −
n∑
j=1

wj
sj

= −AS−1w

and

H = −∇2φ(y) =
n∑
j=1

wjaja
T
j

s2
j

= AWS−2AT .

Here and throughout this paper, we shall use the convention that the capitalized
letters W , S, etc. will denote the diagonal matrices whose (j, j)th entry is equal to
wj , sj , respectively. The max-potential of Ω is defined as

P (Ω) := max
y∈Ω

φ(y),

and the point at which this maximum is attained is called the w-analytic center of Ω
(see [8]).

We shall consider a scaled version of s. Specifically, we let

dj =
cj − aTj y√

wj
=

sj√
wj
, j = 1, . . . , n,

so that

D = diag(d1, . . . , dn) = W−1/2S.
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Also, let

θ = (
√
w1, . . . ,

√
wn)T .

It is easy to see that the gradient and the Hessian of φ(y) can be written as

∇φ = −AD−1θ

and

H = AD−2AT .

Consider the following normalized gradient vector of φ at y:

∆s(y) = D−1AT (AD−2AT )−1∇φ(y) = −D−1AT (AD−2AT )−1AD−1θ

and

δ(y) = ‖∆s(y)‖ = ‖D−1AT (AD−2AT )−1AD−1θ‖,

or

δ(y)2 = θTD−1AT (AD−2AT )−1AD−1θ

= (∇φ)TH−1∇φ.

Note that the matrix H is symmetric positive semidefinite. Thus, this quantity δ(y)
is a norm of the gradient vector ∇φ. Let

x(y) = D−1(I −D−1AT (AD−2AT )−1AD−1)θ.

It can be checked that

∆s(y) = Dx(y)− θ and δ(y) = ‖Dx(y)− θ‖.

Clearly, if ∆s(y) = 0, then we have Sx(y) = w, implying that y is the w-analytic
center of Ω.

The following results are well known; see Atkinson [3, pp. 19–30].
Lemma 2.1. Let (y, s) be an interior point in Ω and let ȳ be the w-analytic center

of Ω.
(i)If µ ≤ 0.16 and δ(y) ≤

√
2µ, then∣∣∣∣∣aTj (y − ȳ)

aTj y − cj

∣∣∣∣∣ ≤ √µ
and

1

2
(1−√µ)2δ(y)2 ≤ φ(ȳ)− φ(y) ≤ 1

2
(1 +

√
µ)2δ(y)2.

(ii)If ν ≤ 0.008 and φ(ȳ)− φ(y) ≤ ν, then

1

2
(1− 5

√
ν)2δ(y)2 ≤ φ(ȳ)− φ(y) ≤ 1

2
(1 + 5

√
ν)2δ(y)2.
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(iii) Suppose φ(ȳ) − φ(y) ≤ 0.008. Define ∆(y) = ∇2φ(y)−1∇φ(y) and let y+ =
y + 0.75∆(y). Then

φ(ȳ)− φ(y+) ≤ 0.68(φ(ȳ)− φ(y)).

The next lemma is crucial to the convergence analysis to be given later.
Lemma 2.2. Suppose µ ≤ 0.16 and δ(y) ≤

√
2µ. Then

‖D̄−1s− θ‖ =

 n∑
j=1

wj(sj/s̄j − 1)2

1/2

≤
(

1 +
√
µ

1−√µ

)
δ(y),

where s̄ and D̄ are computed at the w-weighted analytic center ȳ.
Proof. By part (i) of Lemma 2.1, we have∣∣∣∣∣aTj (y − ȳ)

aTj y − cj

∣∣∣∣∣ ≤ √µ.
Then it follows that

1

1 +
√
µ
≤
aTj y − cj
aTj ȳ − cj

≤ 1

1−√µ.

This further implies that

1

1 +
√
µ
≤
aTj y

′ − cj
aTj ȳ − cj

≤ 1

1−√µ(2.1)

for any y′ lying in the line segment joining y and ȳ.
Since ∇φ(ȳ) = 0, it follows from Taylor expansion that

φ(ȳ)− φ(y) = −1

2
(y − ȳ)T∇2φ(y′)(y − ȳ)

for some y′ in the line segment joining y and ȳ. By estimate (2.1), we have

−∇2φ(y′) = AW (S′)−2AT ≥ (1−√µ)2AWS̄−2AT .

It then follows that

φ(ȳ)− φ(y) ≥ 1

2
(1−√µ)2(y − ȳ)TAWS̄−2AT (y − ȳ)

=
1

2
(1−√µ)2

n∑
j=1

wj(sj/s̄j − 1)2.

Combining this with Lemma 2.1 (i) yields

1

2
(1 +

√
µ)2δ(y)2 ≥ 1

2
(1−√µ)2

n∑
j=1

wj(sj/s̄j − 1)2,

which implies the desired result.
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Finally, we establish an important lemma which will be used later to bound the
potential reduction process. This lemma is an extension of a result by Ye [9] who
considered the special case of w = e.

Lemma 2.3. Let w ∈ Rn be a positive weight vector such that

n∑
j=1

wj = k, wmin := min
j
wj ≤ 1,(2.2)

where k ≥ 1 is a positive scalar. Suppose α∗ is a maximizer of the following maxi-
mization problem:

maximize f(α) = ‖W 1/2(α− e)‖
n∏
j=1

α
wj
j

subject to wTα = k, α > 0.

(2.3)

Then, f(α∗) ≤ γ1/
√
wmin, where γ1 is an absolute constant.

Proof. For convenience, we consider the maximization problem

maximize f2(α) =
(∑n

j=1 wj(αj − 1)2
)∏n

j=1 α
2wj
j

subject to wTα = k, α > 0.
(2.4)

Notice that

n∑
j=1

wj(αj − 1)2 =

n∑
j=1

wjα
2
j − 2

n∑
j=1

wjαj +

n∑
j=1

wj

=
n∑
j=1

wjα
2
j − 2k + k

=
n∑
j=1

wjα
2
j − k.

Taking the logarithm of f2(α), the maximization problem (2.4) can be written equiv-
alently as

maximize log f2(α) = log

 n∑
j=1

wjα
2
j − k

+
n∑
j=1

2wj logαj

subject to wTα = k, α > 0.

(2.5)

The Kuhn–Tucker condition for (2.5) is, after simplification, given by

αj
ρ

+
1

αj
= τ ∀j,(2.6)

n∑
j=1

wjα
2
j − k = ρ,

n∑
j=1

wjαj = k,
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where τ is some dual multiplier. The quadratic equation (2.6) shows that the variables
αj can only take on two possible values, say, β and β̃, with ββ̃ = ρ. Let J denote the

set of indices j such that αj = β and J̃ denote its complement in {1, . . . , n}. Thus,

αj = β̃ for j ∈ J̃ . Let us denote wJ =
∑
j∈J wj and, likewise, wJ̃ =

∑
j∈J̃ wj . Then

the above Kuhn–Tucker conditions can be further simplified as

β

ρ
+

1

β
= τ,(2.7)

β̃

ρ
+

1

β̃
= τ,(2.8)

wJβ
2 + wJ̃ β̃

2 − k = ββ̃,(2.9)

wJβ + wJ̃ β̃ = k.(2.10)

Let us evaluate the objective value at any point α satisfying (2.7)–(2.10):

log f2(α) = log
(
wJβ

2 + wJ̃ β̃
2 − k

)
+ 2wJ log β + 2wJ̃ log β̃

= log
(
ββ̃
)

+ 2wJ log β + 2wJ̃ log β̃

= (2wJ + 1) log β + (2wJ̃ + 1) log β̃

= (2wJ + 1) log

(
wJβ

2wJ + 1

)
+ (2wJ̃ + 1) log

(
wJ̃ β̃

2wJ̃ + 1

)

−(2wJ + 1) log

(
wJ

2wJ + 1

)
− (2wJ̃ + 1) log

(
wJ̃

2wJ̃ + 1

)
.

Since (2wJ + 1) + (2wJ̃ + 1) = 2k + 2, it follows from (2.10) and the concavity of log
that

log f2(α) ≤ (2k + 2) log
k

2k + 2

−(2wJ + 1) log

(
wJ

2wJ + 1

)
− (2wJ̃ + 1) log

(
wJ̃

2wJ̃ + 1

)
.

Recall that wJ + wJ̃ = k and J is a subset of {1, . . . , n}; it follows from elementary
calculus that

(2wJ + 1) log

(
wJ

2wJ + 1

)
+ (2wJ̃ + 1) log

(
wJ̃

2wJ̃ + 1

)
attains its minimum with wJ̃ = wmin. With such a choice of J̃ (which is a singleton),
we have

log f2(α) ≤ (2k + 2) log
2k

2k + 2
− (2wJ + 1) log

(
2wJ

2wJ + 1

)
−(2k + 2) log 2 + (2wJ + 1) log 2− (2wmin + 1) log

(
wmin

2wmin + 1

)
= (2k + 2) log

2k

2k + 2
− (2wJ + 1) log

(
2wJ

2wJ + 1

)
−(2wmin + 1) log 2− (2wmin + 1) log

(
wmin

2wmin + 1

)
,
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where we have used wJ + wmin = k in the last step. Since wmin ≤ min{wJ , 1} and
wJ ≥ k/2 ≥ 1/2, we can see that the first three terms in the right-hand side of the
above inequality are bounded for all k; the last term is of order logwmin. Therefore,
there exists a γ1 > 0 such that

log f2(α) ≤ 2 log γ1 − logwmin,

implying f(α) ≤ γ1/
√
wmin. This completes the proof.

3. Max-potential reduction. Let

Ω = {y ∈ Rm : c−AT y ≥ 0},

defined by n (> m) linear inequalities, be bounded and have a nonempty interior. Let
the w-analytic center of Ω be ȳ. Define

s̄ = c−AT ȳ, d̄ = S̄θ.

Suppose we have an approximate w-center yk in the sense

δ(yk) ≤
√

2µ with µ ≤ 0.16.(3.1)

Let us place η ≥ 1 cuts at yk, that is, add η new inequalities aTn+iy ≤ aTn+iy
k +

βrn+i, i = 1, . . . , η, to Ω, and consider the new set

Ω+ = {y : AT y ≤ c, aTn+iy ≤ cn+i, i = 1, . . . , η},

where

cn+i := aTn+iy
k + βrn+i(3.2)

with β > 0 a constant (to be determined later, see Theorem 6.2) and

rn+i =
√
aTn+i(A(Dk)−2AT )−1an+i, i = 1, . . . , η.

Again, we assume

‖an+i‖ = 1, i = 1, . . . , η.

Define wn+i = 1/η for i = 1, . . . , η and let

P (Ω+) = max
y∈Ω+

n+η∑
j=1

wj log(c−AT y)j .

Also, we denote

r̄n+i =
√
aTn+i(AD̄

−2AT )−1an+i, i = 1, . . . , η.

Then we have the following result, which is an extension of Theorem 2 of Ye [9].
Theorem 3.1. Suppose w ∈ Rn is a positive weight vector satisfying (2.2) and

define wn+i = 1/η for i = 1, . . . , η. Let yk be an approximate center as defined by
(3.1) and let y+ be the w-analytic center of Ω+ and

s+
j = (c−AT y+)j , s+

n+i = aTn+iy
k − aTn+iy

+ + βrn+i,
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where j = 1, . . . , n and i = 1, . . . , η. Then,

P (Ω+) =

n+η∑
j=1

wj log s+
j ≤ P (Ω) +

1

η

η∑
j=1

log(r̄n+i) + log

(
γ1√
wmin

+ γ2 +
5

3
β

)
,

where wmin := minj wj ≤ 1, and γ1, γ2 are some absolute constants independent of
w, n or k.

Proof. Note that for i = 1, . . . , η we have

s+
n+i = aTn+i(y

k − y+) + βrn+i

= aTn+i(AD̄
−2AT )−1(AD̄−2AT )(yk − y+) + βrn+i

= aTn+i(AD̄
−2AT )−1AD̄−2(AT yk −AT y+) + βrn+i

= aTn+i(AD̄
−2AT )−1AD̄−2(−c+AT yk + c−AT y+) + βrn+i

= aTn+i(AD̄
−2AT )−1AD̄−2(s+ − s̄+ s̄− sk) + βrn+i

= aTn+i(AD̄
−2AT )−1AD̄−1(D̄−1s+ − θ + θ − D̄−1sk) + βrn+i

≤ ‖aTn+i(AD̄
−2AT )−1AD̄−1‖

(
‖D̄−1s+ − θ‖+ ‖D̄−1sk − θ‖

)
+ βrn+i

= r̄n+i

(
‖D̄−1s+ − θ‖+ ‖D̄−1sk − θ‖

)
+ βrn+i.

We shall bound rn+i and ‖D̄−1sk − θ‖ separately. First, by Lemma 2.1 (i), we
have ∣∣∣∣∣aTj (yk − ȳ)

aTj y
k − cj

∣∣∣∣∣ ≤ √µ,
which further implies

1−√µ ≤
∣∣∣∣∣ aTj ȳ − cjaTj y

k − cj

∣∣∣∣∣ ≤ 1 +
√
µ.

Consequently, we obtain

rn+i =
√
aTn+i(AW (Sk)−2AT )−1an+i

≤ 1

1−√µ

√
aTn+i(AW (S̄)−2AT )−1an+i

=
r̄n+i

1−√µ

≤ 5

3
r̄n+i, i = 1, . . . , η.(3.3)

On the other hand, since δ(yk) ≤
√

2µ with µ ≤ 0.16, we have from Lemma 2.2 that

‖D̄−1sk − θ‖ ≤
(

1 +
√
µ

1−√µ

)
δ(yk) ≤ 0.528.

Thus, we obtain

s+
n+i ≤ r̄n+i

(
‖D̄−1s+ − θ‖+ 0.528 +

5

3
β

)
, i = 1, . . . , η.
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Consider the following:

expP (Ω+)

(
∏η

1 r̄n+i)1/η expP (Ω)
=

η∏
i=1

(
s+
n+i

r̄n+i

)1/η n∏
j=1

(
s+
j

s̄j

)wj

≤
(
‖W 1/2(S̄−1s+ − e)‖+ 0.528 +

5

3
β

) n∏
j=1

(
s+
j

s̄j

)wj
.(3.4)

Note also that we have

wT S̄−1s+ = k.

This can be seen as follows:

wT S̄−1s+ = wT X̄Ws+

= wT X̄W (c−AT y+)

= wT X̄Wc

= wT X̄W (c−AT ȳ)

= wT X̄W s̄

= wT e = k.

Let α = S̄−1s+ ∈ Rn. Then, to bound the quantity of (3.3), we face the following
maximization problem:

maximize f(α) =

(
‖W 1/2(α− e)‖+ 0.528 +

5

3
β

) n∏
j=1

α
wj
j

subject to wTα = k, α > 0.

By Lemma 2.3 and by

n∏
j=1

α
wj
j ≤

(
w1α1 + · · ·+ wnαn

k

)k
= 1,

this maximum value is bounded above by

γ1√
wmin

+ 0.528 +
5

3
β,

where γ1 is a constant independent of w, n, or k. Thus, we have established

expP (Ω+)

(
∏η

1 r̄n+i)1/η expP (Ω)
≤ γ1√

wmin
+ 0.528 +

5

3
β.

Setting γ2 = 0.528 and taking logarithm completes the proof of the theorem. 2

4. The weighted analytic center cutting plane algorithm with multiple
cuts. Recall that Ω0 = {y ∈ Rm : 0 ≤ y ≤ e}. Suppose there exists an oracle
which for every z ∈ Rm either returns z ∈ Γ or generates separating hyperplanes,
{y : aTi y ≤ aTi z} ⊃ Γ, with ‖ai‖ = 1. The weighted analytic center cutting plane
algorithm is as follows:
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• Step 0 (Initialization)
Fix a constant β > 0 and let

A0 = (I,−I) ∈ Rm×2m,

c0 =

(
e
0

)
∈ R2m,

y0 =
1

2
e ∈ Rm,

s0 = c0 − (A0)T y0 =
1

2
e ∈ R2m,

x0 = 2e ∈ R2m

and

k = 0, w0 = e ∈ R2m and n0 = 0.

• Step 1 (Checking for Termination/Generating Cuts)
Let yk be an approximate analytic center of Ωk = {y ∈ Rm : ck − (Ak)T y ≥
0}, sk = ck − (Ak)T yk > 0 such that δ(yk) < 0.06. Query the oracle to see
if yk ∈ Γ or not.
If yes, stop; otherwise generate hyperplanes, i = 1, . . . , ηk, {y : aTnk+iy ≤
aTnk+iy

k + βrnk+i} ⊃ Γ with ‖ank+i‖ = 1, where

rnk+i =
√
aTnk+i(A

kW k(Sk)−2(Ak)T )−1ank+i

and sk = ck − (Ak)T yk. Let

Ωk+1 = {y ∈ Rm : ck+1 − (Ak+1)T y ≥ 0}

where

Ak+1 =
(
Ak, ank+1, . . . , ank+ηk

)
and

ck+1 =


ck

aTnk+1y
k + βrnk+1

...
aTnk+ηk

yk + βrnk+ηk

 .(4.1)
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• Step 2 (Recentering)
Define

wk+1 =


wk
1
ηk
...
1
ηk


and

φk+1(y) =

nk+ηk∑
j=1

wk+1
j log sk+1

j (y)

with sk+1(y) = ck+1 − (Ak+1)T y. Take dual Newton iterations

y+ := y + 0.75(∇2φk+1(y))−1∇φk+1(y)(4.2)

starting from yk, until a new approximate analytic center yk+1 is obtained
with δ(yk+1) < 0.06. Set nk+1 = nk + ηk, k := k + 1, and return to Step 1.

The selection of the parameter β > 0 is usually done by the user. Its choice will
affect the number of total cuts used by the algorithm as well as the number of Newton
iterations (4.2) required to compute a new approximate analytic center in Step 2 of
the algorithm. Theorem 6.2 gives one particular choice of β which ensures that seven
Newton iterations are sufficient in the recentering step of the algorithm.

5. Bound on the total number of steps. Let {yk} be a sequence generated
by the analytic center cutting plane method described in the previous section. We
shall establish an upper bound for the total number of steps needed for the algorithm
to find a solution in Γ. Throughout, we assume that the maximum number of planes
that can enter at each step is bounded by η (≥ 1).

We first make two simple observations. First, since wkj = 1/ηi for some i, we have

1/
√

wk
min ≤

√
η. Second, since δ(yk) ≤

√
2µ with µ ≤ 0.16, it follows from Lemma

2.1 (i) (and using an argument similar to the one used for proving (3.3)) that

r̄nk+i ≤ (1 +
√
µ)rnk+i ≤ 1.4rnk+i.

With these two observations, Theorem 3.1 implies that the following relations, pro-
vided that termination has not occurred, hold for all k ≥ 0:

Γ ⊃ Ωk(5.1)

and

P (Ωk+1) ≤ P (Ωk) +
1

ηk

ηk∑
i=1

log(rnk+i) + log

(
γ1
√
η + γ2 +

7

3
β

)
,(5.2)

where γ1 and γ2 are some absolute constants independent of w, η, or k. (γ1, γ2 can
be chosen to be 1.4 times the respective constants in Theorem 3.1.)

We need several lemmas to bound P (Ωk).
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Lemma 5.1 (see [6]). For all k ≥ 0,

P (Ωk) ≥ (2m+ k) log ε.

Proof. From (5.1), Γ ⊂ Ωk. Thus, Ωk contains a full dimensional ball with radius
ε. Let the center of this ball be ȳ; then ck − (Ak)T ȳ ≥ εe. Thus,

P (Ωk) =

2m+nk∑
j=1

wkj log(ck − (Ak)T yk)j

≥
2m+nk∑
j=1

wk log(ck − (Ak)T ȳ)j

≥
2m+nk∑
j=1

wkj log ε = (2m+ k) log ε,

as desired.
Lemma 5.2. Let s = ck − (Ak)T y ≥ 0 for any y ∈ Ωk. Then

1. 0 ≤ sj ≤ 1, j = 1, . . . , 2m,
2. 0 ≤ sj ≤

√
m+ β, j = 2m+ 1, . . . , nk.

Proof. The proof closely resembles the one in [6]. By feasibility, we have s ≥ 0,
so we only need to argue the upper bounds. For j = 1, . . . ,m, sj = 1 − yj ; since
0 ≤ yj ≤ 1, it follows that 0 ≤ sj ≤ 1. Similarly, for j = m + 1, . . . , 2m, sj = yj−m;
since 0 ≤ yj−m ≤ 1, we get 0 ≤ sj ≤ 1. For j = 2m + 1, . . . , nk, it follows from the
updating rule (4.1) that

sj = ckj − aTj y
= aTj y

` + βrn`+i − aTj y
≤ ‖aj‖ · ‖y` − y‖+ βrn`+i

≤ ‖y` − y‖+ βrn`+i (by ‖aj‖ = 1)

≤
√
m+ βrn`+i

for some y` ∈ Ω0 and some 1 ≤ i ≤ η`, where 0 ≤ ` < k. Note that the last inequality
is due to the fact that for all pairs y`, y ∈ Ω0,

−e ≤ y` − y ≤ e.

It remains to bound the term rn`+i. Recall that

A`(S`)−2W `(A`)T = (Y `)−2 + (I − Y `)−2 +

n∑̀
j=2m+1

w`j
aja

T
j

(s`j)
2

� (Y `)−2 + (I − Y `)−2

� 8I,

where the notation U � V means U − V is positive semidefinite. Therefore, we have

rn`+i =
√
aTn`+i(A

`(S`)−2W `(A`)T )−1an`+i ≤
1

2
√

2
.
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This implies that

sj ≤
√
m+ βrn`+i ≤

√
m+ β,

which completes the proof.
Lemma 5.3. Let B0 = 8I and

Bk+1 = Bk +
1

(
√
m+ β)2ηk

ηk∑
i=1

ank+ia
T
nk+i.

Then

Ak(Sk)−2W k(Ak)T � Bk.

That is,

Ak(Sk)−2W k(Ak)T −Bk

is positive semidefinite.
Proof. Let Y k = diag(yk). Then

Ak(Sk)−2W k(Ak)T = (Y k)−2 + (I − Y k)−2 +

nk∑
j=2m+1

wkj
aja

T
j

(skj )2

� (Y k)−2 + (I − Y k)−2 +
1

(
√
m+ β)2

nk∑
j=2m+1

wkj aja
T
j (by Lemma 5.2)

� 8I +
1

(
√
m+ β)2

nk∑
j=2m+1

wkj aja
T
j (as 0 ≤ yk ≤ e)

= Bk.

This completes the proof of the lemma.
The above lemma leads to the following lemma.
Lemma 5.4. Let yk be the analytic center yk of Ωk, sk = ck − (Ak)T yk, and

(ωnk+i)
2 = aTnk+i(B

k)−1ank+i for i = 1, . . . , ηk. Then, for i = 1, . . . , ηk,

(ωnk+i)
2 ≥ aTnk+i(A

k(Sk)−2W k(Ak)T )−1ank+i = (rnk+i)
2.(5.3)

This lemma implies that any upper bound on the sequence {ω2
j } will lead to the

same bound on the sequence {r2
j}. The following lemma is the key to establish our

main result; its proof is modelled after that of Ye [10, Lemma 3.5].
Lemma 5.5. For all k ≥ 1, there holds

nk+1∑
j=2m+1

wk+1
j (ωj)

2 ≤ 18m(
√
m+ β)2

15
log

(
1 +

k + 1

8m(
√
m+ β)2

)
.

Proof. Notice that

detBk+1 = det

(
Bk +

1

ηkm

ηk∑
i=1

ank+ia
T
nk+i

)

=

(
1 +

ω2

ηk(
√
m+ β)2

)
det

(
Bk +

1

ηk(
√
m+ β)2

ηk∑
i=2

ank+ia
T
nk+i

)
,
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where

ω2 = aTnk+1

(
Bk +

1

ηk(
√
m+ β)2

ηk∑
i=2

ank+ia
T
nk+i

)−1

ank+1.

Clearly,

ω2 ≤ aTnk+1(Bk)−1ank+1 = (ωnk+1)2.

On the other hand, consider the matrix

I +
1

ηk(
√
m+ β)2

ηk∑
i=2

(Bk)−1/2ank+ia
T
nk+i(B

k)−1/2.

We claim that its largest eigenvalue is at most 9/8. This is because for any y ∈ Rm
and ‖y‖ = 1, we have

yT

(
I +

1

ηk(
√
m+ β)2

ηk∑
i=2

(Bk)−1/2ank+ia
T
nk+i(B

k)−1/2

)
y

= ‖y‖2 +
1

ηk(
√
m+ β)2

ηk∑
i=2

(yT (Bk)−1/2ank+i)
2

≤ ‖y‖2 +
1

ηk(
√
m+ β)2

ηk∑
i=2

‖y‖2‖(Bk)−1/2ank+i‖2

= 1 +
1

ηk(
√
m+ β)2

ηk∑
i=2

aTnk+i(B
k)−1ank+i

≤ 1 +
1

ηk(
√
m+ β)2

ηk∑
i=2

‖ank+i‖2/8 (by Bk � 8I)

≤ 1 +
ηk − 1

8ηkm(
√
m+ β)2

< 9/8.

Thus,

ω2 = aTnk+1

(
Bk +

1

ηk(
√
m+ β)2

ηk∑
i=2

ank+ia
T
nk+i

)−1

ank+1

= aTnk+1(Bk)−1/2

(
I +

∑ηk
i=2(Bk)−1/2ank+ia

T
nk+i(B

k)−1/2

ηk(
√
m+ β)2

)−1

(Bk)−1/2ank+1

≥ aTnk+1(Bk)−1/2

(
8

9
I

)
(Bk)−1/2ank+1

=
8

9
(ωnk+1)2.

This shows that

log detBk+1 = log det

(
Bk +

1

ηk(
√
m+ β)2

ηk∑
i=2

ank+ia
T
nk+i

)
+ log

(
1 +

ω2

ηk(
√
m+ β)2

)

≥ log det

(
Bk +

1

ηk(
√
m+ β)2

ηk∑
i=2

ank+ia
T
nk+i

)
+ log

(
1 +

8(ωnk+1)2

9ηk(
√
m+ β)2

)
.
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Continuing this process for i = 2, . . . , ηk, we have

log detBk+1 ≥ log detBk +

ηk∑
i=1

log

(
1 +

8(ωnk+i)
2

9ηk(
√
m+ β)2

)
.

But, for i = 1, . . . , ηk, we have from Bk � B0 � 8I that

8(ωnk+i)
2

9ηk(
√
m+ β)2

≤ 8

9ηk(
√
m+ β)2

1

8
‖ank+i‖2 ≤

1

9
,

hence

log

(
1 +

8(ωnk+i)
2

9ηk(
√
m+ β)2

)
≥ 8(ωnk+i)

2

9ηk(
√
m+ β)2

−

(
8(ωnk+i)

2

9ηk(
√
m+β)2

)2

2
(

1− 8(ωnk+i)2

9ηk(
√
m+β)2

)
≥ 15(ωnk+i)

2

18ηk(
√
m+ β)2

.

Thus, we have

log detBk+1 ≥ log detBk +

ηk∑
i=1

15(ωnk+i)
2

18ηk(
√
m+ β)2

.

Using induction on k and noting that wk+1
j = 1/ηk for j = nk + 1, . . . , nk + ηk, we

have

log detBk+1 ≥ log detB0 +

nk+1∑
j=2m+1

wk+1
j

15(ωj)
2

18(
√
m+ β)2

= m log 8 +

nk+1∑
j=2m+1

wk+1
j

15(ωj)
2

18(
√
m+ β)2

.

However, by using the arithmetic–geometric inequality and Lemma 5.3, we have

1

m
log detBk+1 ≤ log

trace(Bk+1)

m
= log

(
8 +

k + 1

m(
√
m+ β)2

)
.

Thus,

nk+1∑
j=2m+1

wk+1
j

15(ωj)
2

18(
√
m+ β)2

≤ m log

(
8 +

k + 1

m(
√
m+ β)2

)
−m log 8.

This shows that

nk+1∑
j=2m+1

wk+1
j (ωj)

2 ≤ 18m(
√
m+ β)2

15
log

(
1 +

k + 1

8m(
√
m+ β)2

)
,

which completes the proof.
Now we present our main result.
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Theorem 5.6. Let the number of cuts generated in each step of the analytic
center cutting plane algorithm be between 1 and η. Then, the algorithm stops with a
solution in Γ as soon as k satisfies

ε2

(γ1
√
η + γ2 + 7β/3)2

>

m
2 + 18m(

√
m+β)2

15 log

(
1 + k+1

8m(
√
m+β)2

)
2m+ k + 1

,

where γ1 > 0, γ2 > 0 are some absolute constants given by (5.2).
Proof. If the algorithm does not terminate, then we have the following from

relation (5.2) and Lemma 5.1:

(2m+ k + 1) log ε ≤ P (Ωk+1)

≤ P (Ωk) +
1

2ηk

ηk∑
i=1

log(rnk+i)
2 + log

(
γ1
√
η + γ2 +

7

3
β

)

≤ P (Ω0) +
1

2

nk+1∑
j=2m+1

wk+1
j log(rj)

2 + (k + 1) log

(
γ1
√
η + γ2 +

7

3
β

)

= 2m log
1

2
+

1

2

nk+1∑
j=2m+1

wk+1
j log(rj)

2 + (k + 1) log

(
γ1
√
η + γ2 +

7

3
β

)
.

Thus,

log ε− log

(
γ1
√
η + γ2 +

7

3
β

)
≤ 1

2(2m+ k + 1)

2m log
1

4
+

nk+1∑
j=2m+1

wk+1
j log(rj)

2


≤ 1

2
log

2m 1
4 +

∑nk+1

j=2m+1 w
k+1
j (rj)

2

2m+ k + 1

(by the concavity of log and by
∑
j w

k+1
j = k + 1)

≤ 1

2
log

m
2 +

∑nk+1

j=2m+1 w
k+1
j (ωj)

2

2m+ k + 1

≤ 1

2
log

m
2 + 18m(

√
m+β)2

15 log
(

1 + k+1
8m(
√
m+β)2

)
2m+ k + 1

,

where the second-to-last step is due to Lemma 5.4 and the last step follows from
Lemma 5.5. Equivalently, we have

ε2

(γ1
√
η + γ2 + 7β/3)2

≤
m
2 + 18m(

√
m+β)2

15 log
(

1 + k+1
8m(
√
m+β)2

)
2m+ k + 1

.(5.4)

This proves the theorem.
Theorem 5.1 implies that the complexity of the analytic center cutting plane

algorithm, counted by the total number of calls to the oracle, is O∗(ηm(
√
m+β)2

ε2 ); the
notation O∗ means that lower-order terms are ignored. As we shall see in Theorem 6.2,
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the parameter β can be chosen as a constant (say, 1860). Thus, the total number of

oracle calls is O∗(ηm
2

ε2 ). This result improves the recent result of Ye [10] which has

complexity O∗(η
2m2

ε2 ) and requires η ≤ m.
We remark that one can also use the arbitrary weighting scheme

wk+1 =


wk

wk+1
nk+1
...

wk+1
nk+ηk


as long as

ηk∑
i=1

wk+1
nk+i = 1.

The total complexity will be O∗( m2

wminε2
), where wmin denotes the minimum weight

placed on a cut.

6. Updating to a new center. In each step of the analytic center cutting
plane algorithm, we need to compute an (approximate) weighted analytic center yk+1

of Ωk+1. In this section, we show that yk+1 can be computed by the dual Newton
procedure (4.2) starting from yk in no more than seven iterations.

Throughout this section, all the slacks are evaluated at yk, and therefore, for sim-
plicity, we denote sk+1(yk), sk(yk), and snk+i(y

k) by sk+1, sk, and snk+i, respectively.
Furthermore, we denote

H+ = Ak+1(Sk+1)−2W k+1(Ak+1)T and H = Ak(Sk)−2W k(Ak)T

and

g+ = Ak+1(Sk+1)−1W k+1e and g = Ak(Sk)−1W ke.

Clearly, we have

H+ = H +
1

ηk

ηk∑
i=1

ank+ia
T
nk+i

(sknk+i)
2

and

g+ = g +
1

ηk

ηk∑
i=1

ank+i

snk+i
.

We have the following lemma.
Lemma 6.1. Let

δ(yk) =
(
gTH−1g

)1/2
.

Then

δ+(yk) ≡
(
gT+H

−1
+ g+

)1/2 ≤ 1.65δ(yk) +
1.86

β
,
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where β is the constant used in the definition of the new cuts (3.2).
Proof. Let

g0 = g, gi = g +
1

ηk

(
ank+1

snk+1
+ · · ·+ ank+i

snk+i

)
, i = 1, . . . , ηk.

Similarly, we let

H0 = H, Hi = H0 +
1

ηk

(
ank+1a

T
nk+1

(sknk+1)2
+ · · ·+

ank+ia
T
nk+i

(sknk+i)
2

)
, i = 1, . . . , ηk.

Clearly, gηk = g+ and Hηk = H+.
Since

Hi = Hi−1 +
1

ηk

ank+ia
T
nk+i

(sknk+i)
2
,

it follows that H−1 � H−1
i−1 � H−1

i for i = 1, . . . , ηk. Consider

gTi H
−1
i gi ≤ gTi H−1

i−1gi

=

(
gi−1 +

1

ηk

ank+i

snk+i

)T
H−1
i−1

(
gi−1 +

1

ηk

ank+i

snk+i

)

= gTi−1H
−1
i−1gi−1 + 2

gTi−1H
−1
i−1ank+i

ηksnk+i
+
aTnk+iH

−1
i−1ank+i

η2
ks

2
nk+i

.

Notice that

aTnk+iH
−1
i−1ank+i

s2
nk+i

≤
aTnk+iH

−1ank+i

s2
nk+i

=
r2
nk+i

β2r2
nk+i

=
1

β2

and

gTi−1H
−1
i−1ank+i

snk+i
≤
(√

gTi−1H
−1
i−1gi−1

)
√
aTnk+iH

−1
i−1ank+i

snk+i


≤ 1

2

(
gTi−1H

−1
i−1gi−1 +

aTnk+iH
−1
i−1ank+i

s2
nk+i

)

≤ 1

2

(
gTi−1H

−1
i−1gi−1 +

1

β2

)
.

Therefore, we have

gTi H
−1
i gi ≤

(
1 +

1

ηk

)
gTi−1H

−1
i−1gi−1 +

1

β2

(
1

ηk
+

1

η2
k

)
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for i = 1, . . . , ηk. Consequently, we see that

gT+H
−1
+ g+ = gTηkH

−1
ηk
gηk

≤
(

1 +
1

ηk

)ηk
gTH−1g +

1

β2ηk

ηk∑
i=1

(
1 +

1

ηk

)i

=

(
1 +

1

ηk

)ηk
gTH−1g +

1

β2

(
1 +

1

ηk

)((
1 +

1

ηk

)ηk
− 1

)

≤ 2.72gTH−1g +
3.44

β2
.

Thus, we obtain

δ+(yk) =
√
gT+H

−1
+ g+ ≤

√
2.72gTH−1g +

3.44

β2
≤ 1.65δ(yk) +

1.86

β
,

as desired.
We are now ready to establish the main result of this section.
Theorem 6.2. Suppose β = 1860 and µ ≤ 0.0424. Then the dual Newton

procedure (4.2), when initialized at yk satisfying δ(yk) ≤
√

2µ ≤ 0.06, will generate an
approximate analytic center yk+1 for Ωk+1 with δ(yk+1) ≤ 0.06 in seven iterations.

Proof. Let

φ+(y) =

nk+1∑
j=1

wk+1
j log(ck+1 − (Ak+1)T y)j

and let ȳ+ denote its maximizer (the analytic center of Ωk+1). Since δ(yk) ≤
√

2µ ≤
0.06 and β ≥ 1860, it follows from Lemma 6.1 that

δ+(yk) ≤ 1.65× 0.06 +
1.86

1860
≤ 0.1.

By Lemma 2.1 (i) we get

φ+(ȳ+)− φ+(yk) ≤ 1

2

(
1 +

√
δ+(yk)/21/2

)2

δ+(yk)2 ≤ 0.008.

Let yk+1 denote the iterate obtained after performing seven dual Newton iterations.
Then, we have from Lemma 2.1 (iii) that

φ+(ȳ+)− φ+(yk+1) ≤ (0.68)7
(
φ+(ȳ+)− φ+(yk)

)
≤ (0.68)7 × 0.008 = 5.3784× 10−4.

Finally, we use Lemma 2.1 (ii) to bound

δ+(yk+1) ≤
(
φ+(ȳ+)− φ+(yk+1)

0.5(1− 5
√

0.008)2

)1/2

≤ 0.06.

Thus, yk+1 is sufficiently close to the new analytic center ȳ+.
Combining Theorems 5.1 and 6.1, we see that the analytic center cutting plane

algorithm (with multiple cuts added at each iteration) will terminate in at most
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O∗(ηm
2

ε2 ) Newton steps. This is a factor of η faster than Ye’s algorithm (see [10])
which uses the unweighted analytic center (i.e., wki = 1 for all k and i). It should be
pointed out that the constants in our analysis have not been fully optimized, and it
is quite likely that a much smaller value of β may work in Theorem 6.2. Finally, the
above complexity bound in the multiple cut case is worse (by a factor of η) than that

in the single cut case which has a complexity of only O∗(m
2

ε2 ). It will be interesting
to close this gap.

Acknowledgment. It is a pleasure to thank both Professor Y. Ye for his encour-
agement in this work and a referee for pointing out a mistake in the proof of Lemma
5.2.
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A TRUST REGION INTERIOR POINT ALGORITHM FOR
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Abstract. We present an extension, for nonlinear optimization under linear constraints, of
an algorithm for quadratic programming using a trust region idea introduced by Ye and Tse [Math.
Programming, 44 (1989), pp. 157–179] and extended by Bonnans and Bouhtou [RAIRO Rech. Opér.,
29 (1995), pp. 195–217]. Due to the nonlinearity of the cost, we use a linesearch in order to reduce
the step if necessary. We prove that, under suitable hypotheses, the algorithm converges to a point
satisfying the first-order optimality system, and we analyze under which conditions the unit stepsize
will be asymptotically accepted.

Key words. trust region, quadratic model, linesearch, interior points

AMS subject classifications. 90C30, 65K05, 49M40

PII. S1052623493250639

1. Introduction. In this paper, we study an algorithm for minimizing a non-
linear cost under linear constraints. We consider problems with linear equality con-
straints and nonnegative variables. At each step, a direction is computed by minimiz-
ing a convex quadratic model over an ellipsoidal trust region, and then a linesearch
of Armijo type is performed in this direction. At each iteration, the ellipsoid of the
quadratic problem is so small that it forces the nonnegativity constraints to be satis-
fied. However, the ellipsoid is not necessarily contained in the set of feasible points.

In the case of linear programming (LP) or convex quadratic programming (QP),
we may assume the quadratic model to be equal to the cost function. Then the unit
step will be accepted by the linesearch. In the case of LP, the algorithm is then reduced
to the celebrated Dikin’s algorithm [10] (see also Tsuchiya [26]). Ye and Tse [27] have
extended this algorithm to convex quadratic programming using the trust region idea.
This problem was also considered by Sun [25]. Bonnans and Bouhtou [2] studied such
methods for nonconvex quadratic problems by taking a variable size for the trust
region. An early extension of trust region algorithms to nonlinear costs is done in
Dikin and Zorkalcev [11]. Among the related work, we quote Gonzaga and Carlos
[13]. Interior point algorithms for the solution of constrained convex optimization
problems have been studied by many other researchers; see, for instance, Den Hertog,
Roos, and Terlaky [8], Jarre [15], Mehrotra and Sun [19], McCormick [18], Monteiro
and Adler [20], Dennis, Heinkenschloss, and Vicente [9], and Coleman and Li [7].
Gonzaga [14] explores the shape of the trust regions to generate ellipsoidal regions
adapted to the shape of the feasible set. The resulting algorithm generates sequences
of points in the interior of the feasible set.

In this paper, we obtain some results of global convergence, comparable to those
obtained in [2] for QP; by global convergence we only mean that the limit points
of the sequence generated by the algorithm satisfy the first-order optimality system.
The main novelty of the paper, however, is in the local analysis in the vicinity of
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a local solution satisfying some strong second-order sufficient conditions. We check
that if such a point is a limit point of the sequence computed by the algorithm and
is under a “sufficient curvature” condition satisfied by the Hessian of the quadratic
approximation, then the sequence actually converges to this point and the unit step
is asymptotically accepted. Unfortunately, the acceptance of the unit step is not by
itself a guarantee of a rapid convergence (the convergence might be linear at a very
poor rate). The interest of the result lies in the fact that in the case of convex QP,
this type of algorithm converges reasonably well in practice, although the convergence
rate is only linear (see, e.g., the numerical results reported in Bonnans and Bouhtou
[2] and Bouhtou [5]). Therefore, the question is to know to which extent the features
of Dikin’s type algorithms may be kept when dealing with nonlinear cost functions.
In particular, we do not expect the rate of convergence of the cost to be superlinear,
as this is not the case for quadratic programs.

The paper is organized as follows. In section 2 we present the algorithm and give
a result of global convergence in the sense that under some convenient hypotheses,
the sequence computed by the algorithm converges towards a point satisfying the
first-order optimality system. Then, in section 3 we perform the local analysis: we
check that if the sequence computed by the algorithm has some regular limit point x̄
and if a condition of “sufficient curvature” holds, then the sequence converges to this
point and the unit step is asymptotically accepted.

2. The algorithm. We consider the following problem:

(P) min f(x);Ax = b;x ≥ 0,

where f is a smooth mapping from Rn in R, not necessarily convex; A is a p × n
matrix; and b ∈ Rp. We define the following sets:

F := {x ∈ Rn;Ax = b, x ≥ 0},

◦
F := {x ∈ Rn;Ax = b;x > 0},

so that F is the set of feasible points and
◦
F is the set of “strictly feasible” points. In

the sequel, we assume that F is bounded and
◦
F is nonempty.

The algorithm will use two matrices at each iteration. The first isXk := diag (xk),
where {xk} is the current feasible point. This is a scaling matrix that takes care of
the positivity constraints. The second matrix is Mk, a symmetric approximation of
the Hessian of the cost function. We assume Mk to be positive semidefinite (i.e.,
dtMkd ≥ 0 for all d in Rn). We consider the following algorithm.

Algorithm 1.

0) Choose x◦ ∈
◦
F , δ ∈ (0, 1), β ∈ (0, 1), γ ∈ (0, 1); k ← 0.

1) Choose an n×n symmetric matrix Mk. Compute δk in (δ, 1/δ) such that the
point dk that solves

(SP) min
d
ϕk(d) := f(xk) +∇f(xk)td+

1

2
dtMkd; Ad = 0; dtX−2

k d ≤ δ2
k

satisfies xk + dk > 0.
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2) If ϕk(dk) = f(xk), stop.
3) Linesearch: Compute ρk = β`k , with `k the smallest nonnegative integer such

that

f(xk)− f(xk + β`kdk) ≥ γβ`k(f(xk)− ϕk(dk)).(1)

4) xk+1 = xk + ρkdk ; k ← k + 1. Go to 1.
Some comments are needed to clarify the description of the algorithm. First, let

us note that the stopping criterion of step 2 is, of course, unrealistic. The algorithm
will typically never stop. This is convenient for studying the asymptotic properties of
the sequence generated by the algorithm. A practical stopping criterion might require
that we stop when ϕk(dk) is close enough to f(xk). Because the cost function may be
nonconvex, there is, of course, no guarantee that the limit points are close to a global
or even local solution (our results below deal with the optimality system at the limit
points).

Our second comment deals with the fact that we allow δk to be greater or equal to
1. If we specify a value of δk smaller than 1, then we automatically have xk + dk > 0.
What is the meaning of allowing δk ≥ 1 ? In order to understand that, let us observe
that the trust region problem (SP) cannot be solved directly because of the nonlinear
constraint (see, e.g., Moré [21], Sorensen [24]). Instead, one typically solves a sequence
of equality constrained quadratic problems of type

min
d
f(xk) +∇f(xk)td+

1

2
dtMkd+

ν

2
dtX−2

k d; Ad = 0,

where ν ≥ 0 is an estimate of νk (the Lagrange multiplier associated with the nonlinear
constraint). As Mk is semidefinite positive for any ν > 0, this problem has a unique
solution d = d(ν), and the mapping ν → dt(ν)X−2

k d(ν) is strictly decreasing. Let us
say that ν is too small if either dt(ν)X−2

k d(ν) > 1/δ or mini x
k
i + di(ν) < 0 and too

large if dt(ν)X−2
k d(ν) < δ (as δ < 1, it follows in that case that mini x

k
i + di(ν) > 0).

A dichotomic procedure based on these notions of “too large” and “too small” allows
us to compute a solution of (SP) with δk ∈ (δ, 1/δ) in a finite number of steps; this
is associated with a value of δk that may be greater than 1. It was observed already
in [2] that to allow the possibility that δk ≥ 1 may speed up the convergence, and
therefore it is worth taking this possibility into account in the analysis.

We note that if the algorithm stops at iteration k, then xk satisfies the first-order
optimality condition of (P). To see this, we need the following lemma, which states
the optimality system of (SP). This is a simple extension of the known result for
problems without equality constraints; see [6].

Lemma 2.1. The point dk that solves (SP) is characterized by the existence of
λk+1 in Rp, νk ≥ 0 such that

∇f(xk) +Mkd
k +Atλk+1 + νkX

−2
k dk = 0,(2)

Adk = 0,(3)

νk ≥ 0, (dk)tX−2
k dk ≤ δ2

k, νk[(dk)tX−2
k dk − δ2

k] = 0.(4)
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We now come back to the discussion of step 2 of the algorithm. Using (2), we
deduce that

f(xk)− ϕk(dk) = −∇f(xk)tdk − 1

2
(dk)tMkd

k,

= (λk+1)tAdk + νk(dk)tX−2
k dk +

1

2
(dk)tMkd

k.

Using (3) and (4), we get

f(xk)− ϕk(dk) = νkδ
2
k +

1

2
(dk)tMkd

k.(5)

So, if f(xk) = ϕk(dk), as Mk is a positive semidefinite matrix, then each of the
nonnegative terms on the right-hand side is equal to 0. We deduce that νk = 0 and

M
1/2
k dk = 0, so Mkd

k = 0, where (Mk)1/2 is the square root of the symmetric positive
semidefinite matrix Mk. That is,

(Mk)1/2 =

n∑
i=1

(λi)
1/2ui(ui)t,

where {λi, ui}, i = 1 to n, are the eigenvalues and associated orthonormal eigenvectors
of Mk. Hence, again using (2), we get

∇f(xk) +Atλk+1 = 0,
Axk = b, xk > 0.

So, xk satisfies the first-order optimality condition of (P).
In the sequel, when studying the convergence of the algorithm, we will assume

that it generates an infinite sequence of iterates.
Remark 2.1. From Lemma 2.1 it follows that the convex quadratic function

ψk(x) := ϕk(x− xk) + νk(x− xk)tX−2
k (x− xk)/2

attains its minimum on {x ∈ Rn;Ax = b} at xk + dk.
In step 3, we see that the linesearch is of Armijo type [1], i.e., it consists simply

of testing the unit step, then reducing the step by a factor β < 1 until a convenient
point is found. We note that this linesearch is well defined because, as Mk is positive
semidefinite, the function ϕk is convex. It follows that

∇f(xk)tdk = ∇ϕk(0)tdk ≤ ϕk(dk)− ϕk(0) = ϕk(dk)− f(xk),

hence, for ρ > 0 small enough,

f(xk)− f(xk + ρdk) = −ρ∇f(xk)tdk + o(ρ),

≥ ρ[f(xk)− ϕk(dk)] + o(ρ).

As γ ∈ (0, 1) and f(xk) > ϕk(dk), condition (1) is satisfied whenever `k is large
enough.

For the statement of the result of global convergence, we need some definitions.
Given x ∈ F , we denote the set of active constraints by

I(x) := {i ∈ {1, . . . , n};xi = 0}.
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To any I ⊂ {1, . . . , n} we associate the optimization problem

(P)I min f(x);Ax = b;xI = 0.

The first-order optimality system associated to (P )I is

(OS)I

 ∇f(x) +Atλ− µ = 0,
Ax = b,
xI = 0; µi = 0, i /∈ I.

We will use the following hypotheses:

(H1) For all I ⊂ {1, . . . , n}, system (OS)I has no nonisolated solutions.

(H1)′ For all I ⊂ {1, . . . , n}, system (OS)I has at most one solution.

(H2) There exists α > 0 ; (dk)t(Mk + 2νkX
−2
k )dk ≥ α‖dk‖2.

(H3)

{
The constraints of (P) are qualified in the sense that
(Atλ)i = 0, ∀ i /∈ I(x̄) implies that λ = 0.

We briefly discuss these hypotheses. If f is strictly convex, then the optimality
system (OS)I, which characterizes the minima of F over the feasible set of (P)I, has
at most one primal solution; therefore, if (H3) is satisfied in addition, then (H1)′ will
be satisfied. (H1) is a weaker condition that may be useful especially for nonconvex
problems. Hypothesis (H2) is a means that allows control of the decrease of the cost
function at each iteration. Indeed, from (5) it follows easily that (H2) is equivalent to

there exists α > 0 ; f(xk)− ϕk(dk) ≥ α

2
‖dk‖2.

We have no control on the value of νk, except that it is nonnegative. Still, we may
observe that (H2) will be satisfied if Mk is uniformly positive definite in the sense
that

there exists α > 0 ; (dk)tMkd
k ≥ α‖dk‖2.

In particular, (H2) is satisfied if Mk is close to the Hessian of f and f satisfies a strong
convexity condition of the type

∀x ∈ F, ∃α > 0 ; (dk)t∇2f(x)dk ≥ α‖dk‖2 ∀d ∈ Rn; Ad = 0.

Also, (H3) is no more than the hypothesis of linear independence of the gradients
of active constraints.

Theorem 2.2. Let {xk} be computed by Algorithm 1. We assume that {Mk} is
bounded. Then,

(i) any limit point x̄ of {xk} is a solution of (OS)I(x̄);

(ii) if either (H1)′ or (H1) and (H2) hold, then {xk} converges. If, in addition,
(H3) holds then x̄ satisfies the first-order optimality system of (P); i.e.,

(OS)

 ∇f(x̄) +Atλ̄− µ̄ = 0,
Ax̄ = b,
x̄ ≥ 0, µ̄ ≥ 0, x̄tµ̄ = 0.
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The proof of the theorem uses the following lemma.
Lemma 2.3. The sequence {xk} generated by Algorithm 1 satisfies the following

conditions:
(i)
∑
k

(f(xk)− ϕk(dk))2 <∞.

(ii) νk → 0.
(iii) (Mk)1/2dk → 0.
(iv) If, in addition, {Mk} is bounded, then

Xk[∇f(xk) +Atλk+1]→ 0.

Proof. (i) As F is bounded, {xk} and {dk} are bounded too. We deduce that for
some c1 > 0,

f(xk)− f(xk + ρdk) ≥ −ρ∇f(xk)tdk − c1ρ2.

Using the convexity of ϕk, we get

−∇f(xk)tdk ≥ f(xk)− ϕk(dk),

so that

f(xk)− f(xk + ρdk) ≥ ρ[f(xk)− ϕk(dk)]− c1ρ2.

It follows after some algebra that the linesearch test is satisfied whenever

ρ ≤ ρ̂k := min

{
1,

1− γ
c1

[f(xk)− ϕk(dk)]

}
.

This implies that ρk ≥ βρ̂k. Plugging this in the linesearch test and using the fact
that as F is bounded, {f(xk)} is bounded from below, we deduce that necessarily
(f(xk)− ϕk(dk)) vanishes and, for k large enough,

f(xk)− f(xk+1) ≥ γβ 1− γ
c1

(f(xk)− ϕk(dk))2.

Relation (i) follows.
(ii), (iii) By (i), we get that the left-hand side of (5) goes to 0. Then each of the

nonnegative terms on the right-hand side must go to 0, and that proves (ii) and (iii).
(iv) From (2) we deduce

Xk[∇f(xk) +Atλk+1] = −νkX−1
k dk −XkMkd

k.(6)

From (4) we have that ‖νkX−1
k dk‖2 = νkδk. So, using Lemma 2.3 (ii) and the

boundedness of {δk}, it follows that ‖νkX−1
k dk‖ → 0. If, in addition, {Mk} is

bounded, we get that XkMkd
k = Xk(Mk)1/2(Mk)1/2dk → 0 by using the bound-

edness of {Xk} and Lemma 2.3 (iii). Henceforth, the left-hand side of (6) goes
to 0.

Proof of Theorem 2.1. (i) Let us denote by R(.) the range of an operator. Define

Ī := {1, . . . , n} − I(x̄).
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From point (iv) of Lemma 2.3 it follows that

[∇f(xk) +Atλk+1]Ī → 0.

Since R (At)Ī is closed, we deduce that ∇f(x̄)Ī ∈ R (At)Ī , i.e., (∇f(x̄)+Atλ̄)Ī =
0 for some λ̄ ∈ Rp ; system (OS)I(x̄) follows.

(ii) We first discuss the convergence of {xk}. Note that xk+1
i = xki (1 + ρkdki /x

k
i );

hence,

xk+1
i ≤ (1 + 1/δ)xki .

It follows that if (xk, xk+1)→ (x̄, x̂) for a subsequence, then I(x̄) ⊂ I(x̂).
If (H1)′ holds, using point (i) we deduce that x̄ = x̂ and, in particular, ‖xk+1 −

xk‖ → 0; hence, the set of limit points of {xk} is connected. Using (H1)′ again, it
follows that the set of limit points is finite. Hence, the entire sequence converges
towards the same point.

Now let us analyze the case when (H1) and (H2) hold. We know by Lemma 2.3
(i) that f(xk) − ϕk(dk) → 0. With (5) and (H2), this implies that dk → 0. As
‖xk+1−xk‖ = ρk‖dk‖ and ρk ≤ 1, the set of limit points of {xk} is connected. By (i)
and (H1) each of them is isolated. It follows that the sequence converges.

We now prove that (OS) is satisfied under the additional assumption (H3). If
xk → x̄ then there exists (λ̄, µ̄) such that (x̄, λ̄, µ̄) verifies the first-order optimality
system of (P)I(x̄) by (i). We have to show that µ̄I(x̄) ≥ 0. With Lemma 2.3 (iv) and

(H3), we deduce that {λk} converges to λ̄; hence, by (2) we have µk+1 := −νkX−2
k dk

converges to µ̄. Let i ∈ I(x̄) be such that µ̄i < 0; then dki = −(xki )2µk+1
i /νk > 0 for

k large enough, and this contradicts the fact that xki → x̄i = 0.

3. Acceptance of the unit stepsize. In this section we perform a local analysis
around some point x̄, local solution of (P). We seek conditions implying that if x̄ is
a limit point of {xk}, the sequence {xk} converges to x̄ and ρk = 1 is accepted. We
note that the rate of convergence of the cost will not be better than linear, as this is
the case in LP. Hence, the interest in obtaining a unit stepsize might be questionable.
Our motivation is the following. We know that for QP problems, the solution can
be computed with a good precision in a small number of iterates by using the exact
Hessian for Mk (see [2] and [5]). Hence, we try to reproduce, for problems with a
nonquadratic cost, this behavior. What we may prove, by a theoretical study, is that
provided that Mk approximates the Hessian of the cost in a certain sense, the stepsize
1 is accepted; we then may hope that the contribution of the “nonquadratic part” of
the cost is asymptotically negligible so that the rapid (although linear) convergence
still occurs.

It might be argued that the need for Mk to be both positive semidefinite and an
approximation of the Hessian in a certain sense makes the theory applicable only in
the case of a convex f . This is not so. The situation is comparable to the one for
sequential QP algorithms that use a positive definite approximation of the Hessian.
The key property is that the Hessian of the cost is positive definite in the tangent
space under some natural second-order assumptions, whereas the approximation in
the normal space plays no role. This allows approximation in an effective way of a
possibly undefinite Hessian by a positive semidefinite matrix.

We need a few definitions. Assuming that x̄ satisfies (H3), it follows that x̄ is
associated with a unique pair (λ̄, µ̄) such that (OS) holds. Define the set of strictly
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active constraints as

J(x̄) := {i ∈ {1, . . . , n} ; µ̄i > 0}

and the extended critical cone as

T := {d ∈ Rn ; Ad = 0 ; di = 0, i ∈ J(x̄)}.

We say that x̄ satisfies the strong second-order condition (see Robinson [23])
whenever

(SSOC) ∃α1 > 0 ; dt∇2f(x̄)d ≥ α1‖d‖2 ∀ d ∈ T.

This is a sufficient condition for the strong regularity, as defined in [23], of the
associated optimality system. It has proven useful in sensitivity analysis as well as in
the study of convergence properties of algorithms (see, e.g., [16], [4], and [3]).

Given d in N (A), the null space of A, we now define dT , dN as the orthogonal
projection (in N (A)) of d onto T and N , where N is the orthogonal complement of
T in N (A), i.e.,

N = {z ∈ N (A) ; ztd = 0 ∀ d ∈ T},

of course, d = dT + dN and ‖d‖2 = ‖dT ‖2 + ‖dN‖2. Similarly, we associate dk with
dkT and dkN . Last, but not least, we define the sufficient curvature condition as

(SCC)


∃ ε0 > 0, if ‖xk − x̄‖ ≤ ε0 then

(dkT )tMkd
k
T ≥

1

2− γ (dkT )t∇2f(x̄)dkT + ε0‖dkT ‖2.

We briefly discuss this condition. Specifically, we check that if Mk satisfies the
inequality below and condition (SSOC) holds, then (SCC) is satisfied. We consider
the following condition:

(dkT )tMkd
k
T ≥ (dkT )t∇2f(x̄)dkT + o(‖dkT ‖2).(7)

To see that (7) implies (SCC), note that 1/(2− γ) ∈ (0, 1) and (dkT )t∇2f(x̄)dkT ≥
α1‖dkT ‖2 by (SSOC). This and (7) imply that

(dkT )tMkd
k
T ≥

1

2− γ (dkT )t∇2f(x̄)dkT + α1

(
1− 1

2− γ

)
‖dkT ‖2 + o(‖dkT ‖2),

from which (SCC) follows. In particular, (SCC) is satisfied if (SSOC) holds and
Mk = ∇2f(xk) (which, of course, is possible only if f is convex).

Condition (SCC) is similar to a condition recently used in the analysis of successive
QP algorithms [3]. It is checked in [3] that in the case of unconstrained optimization
(then actually dkT and dk coincide), this condition is very weak in the following sense:
assuming that the second-order sufficient optimality condition hold for (∇2f(x̄) > 0),
a necessary condition for the acceptance of the unit step for xk close to x̄ is

(dkT )tMkd
k
T ≥

1

2− γ (dkT )t∇2f(x̄)dkT + o(‖dkT ‖2).
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Theorem 3.1. Assume that {Mk} is bounded, x̄ satisfies (H3) and (SSOC), and
(SCC) is satisfied for xk close enough to x̄. Then, there exists ε > 0; if, for some
k0, ‖xk0 − x̄‖ < ε then dk → 0, ρk = 1 for all k ≥ k0, and xk → x̄.

We need a few lemmas (Lemma 3.2 is stated in [3]; we give its proof for the
reader’s convenience).

Lemma 3.2. Given ε > 0 and an n× n symmetric matrix M , define

K(ε,M) := ‖M‖(1 + ‖M‖/ε).
The two inequalities below then hold:

dtTMdT ≥ dtMd− ε‖dT ‖2 −K(ε,M)‖dN‖2,(8)

dtMd ≥ dtTMdT − ε‖dT ‖2 −K(ε,M)‖dN‖2.(9)

Proof. Since d = dT + dN , it follows that

dtMd = dtTMdT + 2dtTMdN + dtNMdN .

Hence,

|dtMd− dtTMdT | = |2dtTMdN + dtNMdN | ≤ ‖M‖(2‖dT ‖.‖dN‖+ ‖dN‖2).

Using the inequality 2ab ≤ a2 + b2 with a =
√
ε‖dT ‖ and b = ‖M‖‖dN‖/

√
ε, we

get

|dtMd− dtTMdT | ≤ ε‖dT ‖2 + ‖M‖(1 + ‖M‖/ε)‖dN‖2,
from which the conclusion follows.

Lemma 3.3. There exists c1 > 0 such that

‖zN‖ ≤ c1
∑
i∈J(x̄)

|zi| ∀ z ∈ kerA.

Proof. We have zN = z − zT and (zT )i = 0, i ∈ J(x̄). Henceforth, zi = (zN )i, i ∈
J(x̄), and it suffices to prove that

‖z‖ ≤ c1
∑
i∈J(x̄)

|zi| ∀ z ∈ N.

Since both sides are positively homogeneous, it suffices to establish the inequality
when ‖z‖ = 1. Then, the existence of c1 amounts to saying that the problem

min
∑
i∈J(x̄)

|zi| ; z ∈ N, ‖z‖ = 1

has a positive infimum. If this were not the case, there would exist z ∈ N , ‖z‖ = 1,
with zi = 0, i ∈ J(x̄) because this problem has a solution by compactness arguments;
hence, z ∈ T (by definition of T ), i.e., z ∈ T ∩N = {0}, a contradiction.

Lemma 3.4. Assume that {Mk} is bounded and x̄ satisfies (H3). Given K ≥ 0,
if xk is sufficiently close to x̄, the following relation holds:

νk(dk)tX−2
k dk > K‖dkN‖2.(10)
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Proof. Denote µk+1 := −νkX−2
k dk. From (H3) and Lemma 2.3 (iv), we deduce

that for any subsequence of {xk} converging to x̄, the associated subsequence λk

converges. Combining this with (2), the boundedness of Mk, and Lemma 2.3 (iii), we
deduce that the associated subsequence of {µk} converges to µ̄. Hence, if xk is close
enough to x̄, one has dki < 0 and µki > µ̄i/2, i ∈ J(x̄). Denote

θ := min{µ̄i/2, i ∈ J(x̄)}.
It follows that

νk(dk)tX−2
k dk ≥ νk

∑
i∈J(x̄)

(dki /x
k
i )2 ≥ 1

2

∑
i∈J(x̄)

−µ̄idki ≥ θ
∑
i∈J(x̄)

|dki |.(11)

Also, since |dki | ≤ |xki |/δ, it follows that |dki |, i ∈ J(x̄) can be made arbitrarily
small by taking xk close to x̄. It follows with (11) that

νk(dk)tX−2
k dk/

( ∑
i∈J(x̄)

|dki |
)2

→∞.(12)

We conclude with Lemma 3.3.
Lemma 3.5. Let α1 > 0 be given by (SSOC). Given K > 0, under the hypotheses

of Theorem 3.1, if xk is sufficiently close to x̄ then

(dk)t(Mk + 2νkX
−2
k )dk ≥ α1

2
‖dk‖2 +K‖dkN‖2.(13)

Proof. Define

K(ε) := sup
k∈N

K(ε,Mk).

Because {Mk} is bounded, we have that K(ε) < ∞̇. Apply Lemma 3.2, with ε = ε0,
where ε0 > 0 is such that (SCC) holds. We obtain that if xk is close to x̄, then

(dk)tMkd
k ≥ 1

2− γ (dkT )t∇2f(x̄)dkT −K(ε0)‖dkN‖2.

Since 1/(2− γ) ≥ 1/2, by using (SSOC) we get

(dk)tMkd
k ≥ α1

2
‖dkT ‖2 −K(ε0)‖dkN‖2,

=
α1

2
‖dk‖2 −

(
K(ε0) +

α1

2

)
‖dkN‖2.

The conclusion is obtained with Lemma 3.4.
Proof of Theorem 3.1. (a) We first prove that xk → x̄. We use the fact that ‖dk‖

is small whenever xk is close to x̄, k is large enough as a consequence of Lemma 3.5
and (5), and x̄ satisfies (SSOC). The last fact implies that x̄ is an isolated critical
point of (P) (see [23]). As (H3) necessarily holds in a neighborhood of x̄, it follows
by Theorem 2.2 that x̄ is the only limit point of {xk} in some neighborhood V of x̄.
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We now just have to prove that xk remains in V for k large enough. We can take V
of the form

Vε := {x ∈ F ; ‖x− x̄‖ ≤ ε}.

Note that ‖dk‖ < ε/2 whenever xk ∈ Vε1 for some ε1 > 0 small enough. We may
assume that ε1 < ε/2. It follows that if xk ∈ Vε1 , then ‖xk+1−x̄‖ ≤ ‖xk−x̄‖+‖dk‖ ≤
ε. In other words, xk+1 is in Vε whenever xk is in Vε1 .

On the other hand, we also know that f(xk+1) ≤ f(xk). So, let us define

f̂ := inf{f(x) ; x ∈ Vε − Vε1}.

Because x̄ is a strict local minimum of (P), we may assume that f̂ > f(x̄),

reducing ε and ε1 if necessary. Now, assuming that f(xk) ≤ f̂ and xk ∈ Vε1 , it follows

that f(xk+1) < f̂ and xk+1 ∈ Vε; using the definition of f̂ , we find that xk+1 is in Vε1
again. This implies that the sequence {xk} remains in Vε1 , hence, that xk → x̄.

(b) We now check that ρk = 1 for k large enough. Define

Hk := 2

∫ 1

0

(1− σ)∇2f(xk + σdk)dσ.

Then,

f(xk)− f(xk + dk) = −∇f(xk)tdk − 1

2
(dk)tHkd

k.

If xk is close enough to x̄, dk is then close to 0 as was already observed; hence, Hk is
close to ∇2f(x̄). We deduce that

−(dk)tHkd
k ≥ −(dk)t∇2f(x̄)dk − ε0

2
‖dk‖2,

with ε0 given by (SCC). As a consequence,

f(xk)− f(xk + dk) ≥ −∇f(xk)tdk − 1

2
(dk)t∇2f(x̄)dk − ε0

4
‖dk‖2,

= f(xk)− ϕk(dk) +
1

2
(dk)t(Mk −∇2f(x̄))dk − ε0

4
‖dk‖2.

So, by (1), the unit step will be accepted if

(1− γ)(f(xk)− ϕk(dk)) +
1

2
(dk)t(Mk −∇2f(x̄))dk − ε0

4
‖dk‖2 ≥ 0.(14)

Using (5), Lemma 3.2 with ε = ε0/2 (where ε0 is given by (SCC)), (SCC), and
Lemma 3.4, we get

f(xk)− ϕk(dk) =
1

2
(dk)tMkd

k + νkδ
2
k,

≥ 1

2
(dkT )tMkd

k
T −

ε0

4
‖dkT ‖2 −

K(ε0)

2
‖dkN‖2 + νkδ

2
k,

≥ 1

2(2− γ)
(dkT )t∇2f(x̄)dkT −

K(ε0)

2
‖dkN‖2 +

ε0

4
‖dkT ‖2 + νkδ

2
k,

≥ 1

2(2− γ)
(dkT )t∇2f(x̄)dkT +

νk
2
δ2
k.
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Similarly, by defining K ′(ε) := sup
k∈N

K(ε,Mk −∇2f(x̄)), we obtain

1

2
(dk)t(Mk −∇2f(x̄))dk ≥ 1

2
(dkT )t(Mk −∇2f(x̄))dkT −

ε0

4
‖dkT ‖2 −K ′(ε0)‖dN‖2,

≥ γ − 1

2(2− γ)
(dkT )t∇2f(x̄)dkT −K ′(ε0)‖dkN‖2 +

ε0

4
‖dkT ‖2.

Combining these inequalities and using Lemma 3.4 again, we get

(1− γ)(f(xk)− ϕk(dk)) +
1

2
(dk)t(Mk −∇2f(x̄))dk − ε0

4
‖dk‖2

≥ (1− γ)
νk
2
δ2
k − (K ′(ε0) +

ε0

4
)‖dkN‖2 ≥ 0.

We have proven (14) as required. It follows that the unit step is accepted, hence, dk

vanishes, as was to be proved.
We now check that if Mk is close to ∇2f(x̄) in a very weak sense (see (16) below),

then the following holds:∑
k

(‖xk − x̄‖+ ‖λk − λ̄‖+ ‖µk − µ̄‖) <∞.(15)

Theorem 3.6. Assume that the hypotheses of Theorem 3.1 hold and, in addition,
that x̄ satisfies the strict complementarity condition. If xk → x̄ (hence, ρk = 1 by
Theorem 3.1) then there exists ε1 > 0 such that

‖(Mk −∇2f(x̄))dkT ‖ ≤ ε1‖dk‖(16)

implies (15).
Let us note that Newton’s method satisfies (16). Note that if we assume Mk −→

∇2f(x̄), then we may violate the positive definiteness requirement onMk since∇2f(x̄)
need not be positive definite.

Proof. Denote

I := I(x̄), Ī := {1, . . . , n} − I.

The proof is based on the mapping

ψ(x, λ) :=

 (∇f(x) +Atλ)Ī ,
Ax− b,
xI .

It follows easily from (SSOC) and (H3) that ψ(x, λ) has an invertible derivative
at (x̄, λ̄); hence, there exists some a1 > 0 such that

‖xk+1 − x̄‖+ ‖λk+1 − λ̄‖ ≤ a1‖ψ(xk+1, λk+1)‖.(17)

(a) Let us prove that

∃ K1,K4 ; ‖ψ(xk+1, λk+1)‖ ≤ nK1νk+1 + nK4νk + ‖xk+1 − xk‖/(4a1).(18)
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Indeed, from the convergence of {xk} to x̄ and (H3) and by using Lemma 2.3 (iv)
and (2), it follows that (λk, µk) → (λ̄, µ̄). Now, multiplying (2) by Xk and recalling
that νk‖X−1

k dk‖ = νkδk, we get

‖Xk(∇f(xk) +Mkd
k +Atλk+1)‖ = νkδk.

Using the strict complementarity hypothesis and the relation |zi| ≤ ‖z‖, we ob-
tain, for some K1 > 0,

xki ≤ K1νk, i ∈ I,(19)

|(∇f(xk) +Mkd
k +Atλk+1)i| ≤ K1νk, i 6∈ I.(20)

Now choose ε1 in (16) as ε1 = 1/(8a1n).
We have

∇f(xk) +Mkd
k = ∇f(xk) +∇2f(x̄)dk + (Mk −∇2f(x̄))dk,

= ∇f(xk+1) + rk + (Mk −∇2f(x̄))dk,(21)

where the term rk for xk close to x̄ satisfies

‖rk‖ ≤ ‖dk‖/(8a1n).(22)

Also, by (16) and as {Mk} is bounded, we get for some K2 > 0

‖(Mk −∇2f(x̄))dk‖ ≤ ‖(Mk −∇2f(x̄))dkT ‖+K2‖dkN‖,

≤ ‖dk‖/(8a1n) +K2‖dkN‖.(23)

Using (21), (22), (23), and Lemma 3.3, we obtain for some K3 > 0

‖∇f(xk) +Mkd
k −∇f(xk+1)‖ ≤ ‖dk‖/(4a1n) +K3

∑
j∈I
|dkj |.(24)

Now we prove (18). As µ̄ = − lim
k→+∞

νkX
−2
k dk, using the strict complementarity

hypothesis for k large enough and for all j ∈ I, we get dkj < 0, hence, |dkj | ≤ xkj . So,
combining this with (19), (20), and (24), we get for some K4 > 0

|(∇f(xk+1) +Atλk+1)i| ≤ K4νk + ‖dk‖/(4a1n), i 6∈ I.(25)

So, by (19) and (25), we get (18).
(b) On the other hand, by (5), the linesearch rule, and the fact that ρk = 1, we

have

f(xk)− f(xk+1) ≥ γ(f(xk)− ϕk(dk)) ≥ γνkδ2
k.

Hence, as δk ≥ δ > 0,

ν :=
∞∑
k=1

νk <∞.(26)
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Hence, using (17) and (18), we get

k̄∑
k=k0

(‖xk+1 − x̄‖+ ‖λk+1 − λ̄‖) ≤ a1n(K1 +K4)ν +
1

4

k̄∑
k=k0

‖xk+1 − xk‖.

Now, by using

1

4

k̄∑
k=k0

‖xk+1−xk‖ ≤ 1

4

k̄∑
k=k0

(‖xk+1− x̄‖+‖xk− x̄‖) ≤ 1

2

k̄∑
k=k0

‖xk+1− x̄‖+
1

4
‖xk0− x̄‖,

we deduce that

k̄∑
k=k0

(‖xk+1 − x̄‖+ ‖λk+1 − λ̄‖) ≤ 2a1n(K1 +K4)ν +
1

2
‖xk0 − x̄‖.

Finally, we obtain (15), noticing that by (2)

µk+1 − µ̄ = O(‖xk − x̄‖+ ‖λk+1 − λ̄‖+ ‖dk‖),

= O(‖xk+1 − x̄‖+ ‖xk − x̄‖+ ‖λk+1 − λ̄‖).
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Abstract. Tensor methods for unconstrained optimization were first introduced by Schnabel
and Chow [SIAM J. Optim., 1 (1991), pp. 293–315], who described these methods for small- to
moderate-sized problems. The major contribution of this paper is the extension of these methods
to large, sparse unconstrained optimization problems. This extension requires an entirely new way
of solving the tensor model that makes the methods suitable for solving large, sparse optimization
problems efficiently. We present test results for sets of problems where the Hessian at the minimizer
is nonsingular and where it is singular. These results show that tensor methods are significantly
more efficient and more reliable than standard methods based on Newton’s method.

Key words. tensor methods, unconstrained optimization, sparse problems, large-scale opti-
mization, singular problems
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1. Introduction. In this paper we describe tensor methods for solving the un-
constrained optimization problem

given f : <n → <, find x∗ ∈ <n such that f(x∗) ≤ f(x) for all x ∈ D,(1.1)

where D is some open set containing x∗, and f is convex on D. We assume that f is
at least twice continuously differentiable and n is large.

Tensor methods for unconstrained optimization are general-purpose methods pri-
marily intended to improve upon the performance of standard methods, especially on
problems where ∇2f(x∗) has a small rank deficiency. They are also intended to be at
least as efficient as standard methods on problems where ∇2f(x∗) is nonsingular.

Tensor methods for unconstrained optimization base each iteration upon the
fourth-order model of the objective function f(x),

MT (xc + d) = f(xc) +∇f(xc) · d+
1

2
∇2f(xc) · d2 +

1

6
Tc · d3 +

1

24
Vc · d4,(1.2)

where d ∈ <n, xc is the current iterate, ∇f(xc) and ∇2f(xc) are the first and second
analytic derivatives of f at xc, or finite-difference approximations to them, and the
tensor terms at xc, Tc ∈ <n×n×n, and Vc ∈ <n×n×n×n are symmetric. (We use the
notation ∇f(xc) · d for ∇f(xc)

T d, and ∇2f(xc) · d2 for dT∇2f(xc)d to be consistent
with the tensor notation Tc · d3 and Vc · d4. Also, for simplicity, we abbreviate terms
of the form dd, ddd, and dddd by d2, d3, and d4, respectively.) Before proceeding, we
define the tensor notation used above.
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Definition 1.1. Let T ∈ <n×n×n. Then for u, v, w ∈ <n, T ·uvw ∈ <, T · vw ∈
<n, with

T · uvw =
n∑
i=1

n∑
j=1

n∑
k=1

T (i, j, k)u(i)v(j)w(k),

(T · vw)(i) =

n∑
j=1

n∑
k=1

T (i, j, k)v(j)w(k), i = 1, . . . , n.

Definition 1.2. Let V ∈ <n×n×n×n. Then for r, u, v, w ∈ <n, V · ruvw ∈
<, V · uvw ∈ <n with

V · ruvw =
n∑
i=1

n∑
j=1

n∑
k=1

n∑
l=1

V (i, j, k, l)r(i)u(j)v(k)w(l),

(V · uvw)(i) =

n∑
j=1

n∑
k=1

n∑
l=1

V (i, j, k, l)u(j)v(k)w(l), i = 1, . . . , n.

The tensor terms are selected so that the model interpolates a small number
of function and gradient values from previous iterations. This results in Tc and Vc
being low-rank tensors, which is crucial for the efficiency of the tensor method. The
tensor method requires no more function or derivative evaluations per iteration and
hardly more storage or arithmetic operations than does a standard method based on
Newton’s method.

Standard methods for solving unconstrained optimization problems are widely
described in the literature; general references on this topic include Dennis and Schn-
abel [9], Fletcher [12], and Gill, Murray, and Wright [14]. In this paper, we propose
extensions to standard methods that use analytic or finite-difference gradients and
Hessians.

The standard method for unconstrained optimization, Newton’s method, bases
each iteration upon the quadratic model of f(x),

MN (xc + d) = f(xc) + ∇f(xc) · d+
1

2
∇2f(xc) · d2.(1.3)

This method is defined when ∇2f(xc) is nonsingular and consists of setting the next
iterate x+ to the minimizer of (1.3), namely,

x+ = xc −∇2f(xc)
−1∇f(xc).(1.4)

A distinguishing feature of Newton’s method is that if ∇2f(xc) is nonsingular at
a local minimizer x∗, then the sequence of iterates produced by (1.4) converges locally
quadratically to x∗. However, Newton’s method is generally linearly convergent at
best if ∇2f(x∗) is singular [15].

Methods based on (1.2) have been shown to be more reliable and more efficient
than standard methods on small- to moderate-sized problems [19]. In the test results
obtained for both nonsingular and singular problems, the improvement by the tensor
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method over Newton’s method is substantial, ranging from 30% to 50% in iterations
and in function and derivative evaluations. Furthermore, the tensor method solves
several problems that Newton’s method fails to solve.

The tensor algorithms described in [19] are QR-based algorithms involving or-
thogonal transformations of the variable space. These algorithms are very effective
for minimizing the tensor model when the Hessian is dense because they are very
stable numerically, especially when the Hessian is singular. They are not efficient for
sparse problems, however, because they destroy the sparsity of the Hessian due to the
orthogonal transformation of the variable space. To preserve the sparsity of the Hes-
sian, we have developed an entirely new way of solving the tensor model that employs
a sparse variant of the Cholesky decomposition. This makes our new algorithms very
well suited for sparse problems.

The remainder of this paper is organized as follows. In section 2 we briefly review
the techniques introduced by Schnabel and Chow [19] to form the tensor model. In
section 3 we describe efficient algorithms for minimizing the tensor model when the
Hessian is sparse. In sections 4 and 5 we discuss the globally convergent modifications
for tensor methods for large, sparse unconstrained optimization. These consist of line
search backtracking and model trust region techniques. A high-level implementation
of the tensor method is given in section 6. In section 7 we describe comparative testing
for an implementation based on the tensor method versus an implementation based
on Newton’s method, and we present summary statistics of the test results. Finally,
in section 8, we give a summary of our work and a discussion of future research.

2. Forming the tensor model. In this section, we briefly review the tech-
niques that were introduced in [19] for forming the tensor model for unconstrained
optimization.

As was stated in the preceding section, the tensor method for unconstrained op-
timization bases each iteration upon the fourth-order model of the nonlinear function
f(x) given by (1.2).

The choices of Tc and Vc in (1.2) cause the third-order term Tc ·d3 and the fourth-
order term Vc · d4 to have simple and useful forms. These tensor terms are selected
so that the tensor model interpolates function and gradient information at a set of p
not necessarily consecutive past iterates x−1, . . . , x−p.

In the remainder of this paper, we restrict our attention to p = 1. The reasons
for this choice are that the performance of the tensor version that allows p ≥ 1 is
similar overall to that constraining p to be 1, and that the method is simpler and less
expensive to implement in this case. (The derivation of the third- and fourth-order
tensor terms for p ≥ 1 is explained in detail in [19].)

The interpolation conditions at the past point x−1 are given by

f(x−1) = f(xc) + ∇f(xc) · s +
1

2
∇2f(xc) · s2 +

1

6
Tc · s3 +

1

24
Vc · s4(2.1)

and

∇f(x−1) = ∇f(xc) + ∇2f(xc) · s +
1

2
Tc · s2 +

1

6
Vc · s3,(2.2)

where

s = x−1 − xc.
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Schnabel and Chow [19] choose Tc and Vc to satisfy (2.1) and (2.2). They first
show that the interpolation conditions (2.1) and (2.2) uniquely determine Tc · s3 and
Vc · s4. Multiplying (2.2) by s yields

∇f(x−1) · s = ∇f(xc) · s + ∇2f(xc) · s2 +
1

2
Tc · s3 +

1

6
Vc · s4.(2.3)

Let α, β ∈ < be defined by

α = Tc · s3,

β = Vc · s4.

Then from (2.1) and (2.3) they obtain the following system of two linear equations in
the two unknowns α and β:

1

2
α +

1

6
β = q1,(2.4)

1

6
α +

1

24
β = q2,(2.5)

where q1, q2 ∈ < are defined by

q1 = ∇f(x−1) · s − ∇f(xc) · s − ∇2f(xc) · s2,

q2 = f(x−1) − f(xc) − ∇f(xc) · s −
1

2
∇2f(xc) · s2.

The system (2.4)–(2.5) is nonsingular; therefore, the values of α and β are uniquely
determined. Hence, the interpolation conditions uniquely determine Tc ·s3 and Vc ·s4.
Since these are the only interpolation conditions, the choice of Tc and Vc is vastly
underdetermined.

Schnabel and Chow [19] choose Tc and Vc by first selecting the smallest symmetric
Vc, in the Frobenius norm, for which

Vc · s4 = β,

where β is determined by (2.4)–(2.5). Then they substitute this value of Vc into (2.2),
obtaining

Tc · s2 = a,(2.6)

where

a = 2

(
∇f(x−1) − ∇f(xc) − ∇2f(xc) · s −

1

6
Vc · s3

)
.(2.7)

This is a set of n linear equations in n3 unknowns Tc(i, j, k), 1 ≤ i, j, k ≤ n. More
precisely, Schnabel and Chow [19] choose the smallest symmetric Tc and Vc, in the
Frobenius norm, that satisfy the equations (2.6)–(2.7). That is,
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min
Vc∈<n×n×n×n

|| Vc ||F(2.8)

subject to Vc · s4 = β, and Vc is symmetric,

and

min
Tc∈<n×n×n

|| Tc ||F(2.9)

subject to Tc · s2 = a, and Tc is symmetric.

The solution to (2.8) is

Vc = γ (s⊗ s⊗ s⊗ s), γ =
β

(sT s)4
,

where the tensor Vc = s ⊗ s ⊗ s ⊗ s ∈ <n×n×n×n is called a fourth-order rank-one
tensor for which Vc(i, j, k, l) = s(i)s(j)s(k)s(l), 1 ≤ i, j, k, l ≤ n. (We use the notation
⊗ to be consistent with [19].)

The solution to (2.9) is

Tc = b⊗ s⊗ s+ s⊗ b⊗ s+ s⊗ s⊗ b,(2.10)

where the notation T = u⊗ v ⊗ w, u, v, w ∈ <n, T ∈ <n×n×n, is called a third-order
rank-one tensor for which T (i, j, k) = u(i)v(j)w(k). Here b ∈ <n is the unique vector
for which (2.10) satisfies (2.6). It is given by

b =
3a(sT s) − 2s(sTa)

3(sT s)3
.

Tc and Vc determined by the minimum norm problems (2.9) and (2.8) have rank
2 and 1, respectively. This is the key to forming, storing, and solving the tensor
model efficiently. The whole process of forming the tensor model requires only O(n2)
arithmetic operations. The storage needed for forming and storing the tensor model
is only a total of 6n.

For further information, we refer to [19].

3. Solving the tensor model when the Hessian is sparse. In this section
we give algorithms for finding a minimizer of the tensor model (1.2) efficiently when
the Hessian is sparse.

The substitution of the values of Tc and Vc into (1.2) results in the tensor model

MT (xc + d) = f(xc) +∇f(xc) · d+
1

2
∇2f(xc) · d2

+
1

2
(bT d)(sT d)2 +

γ

24
(sT d)4.

(3.1)

As we stated in section 2, we only consider the case p = 1 where the tensor model
interpolates f(x) and ∇f(x) at the previous iterate. The generalization for p ≥ 1
is fairly straightforward. This constraint is mainly motivated by our computational
results. When we allow p ≥ 1, our test results show almost no improvement over the
case where p = 1. The tensor method is therefore considerably simpler, as well as
cheaper in terms of storage and cost per iteration.
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3.1. Case 1: The Hessian is nonsingular. We show that the minimization of
(3.1) can be reduced to the solution of a third-order polynomial in one unknown, plus
the solution of three systems of linear equations that all involve the same coefficient
matrix ∇2f(xc). For conciseness, we use the notation g = ∇f(xc) and H = ∇2f(xc).

A necessary condition for d to be a local minimizer of (3.1) is that the derivative
of the tensor model with respect to d must be zero. That is,

∇MT (xc + d) = g +Hd+ (bT d)(sT d)s+
1

2
(sT d)2b+

γ

6
(sT d)3s = 0,

which yields

d = −H−1

(
g + (bT d)(sT d)s+

1

2
(sT d)2b+

γ

6
(sT d)3s

)
.(3.2)

If we first premultiply the equation (3.2) by sT on both sides, we obtain a cubic
equation in the unknowns β = sT d and θ = bT d,

sTH−1g + β + sTH−1sθβ +
1

2
sTH−1bβ2 +

γ

6
sTH−1sβ3 = 0.(3.3)

If we then premultiply the equation (3.2) by bT on both sides, we obtain another cubic
equation in the unknowns β and θ,

bTH−1g + θ + bTH−1sθβ +
1

2
bTH−1bβ2 +

γ

6
bTH−1sβ3 = 0.(3.4)

Thus, we obtain a system of two cubic equations in the two unknowns β and θ which
can be solved analytically.

We now show how to compute the solutions of this system of two cubic equations
in two unknowns by computing the solutions of a single cubic equation in the unknown
β. Let u = sTH−1g, v = sTH−1b, w = sTH−1s, y = bTH−1g, and z = bTH−1b. We
first calculate the value of θ as a function of β using the equation (3.3):

θ = −

(
u+ β +

1

2
vβ2 +

γ

6
wβ3

)
wβ

.(3.5)

Note that the denominator of (3.5) is equal to zero if either β = 0 or w = 0. We
assume that β 6= 0; otherwise the tensor model would be reduced to the Newton
model. Now, if w = 0, then (3.3) would be quadratic in β and

β =
−1±

√
1− 2uv

2
.

In this case, real-valued minimizers of the tensor model (3.1) may exist only if 1−2uv ≥
0. It is easy to check that in order for θ to have a defined value, 1 + vβ cannot be
zero.

If β 6= 0 and w 6= 0, we substitute the expression for θ into (3.4) and obtain

−u+ (yw − uv − 1)β − 3

2
vβ2 +

(
1

2
wz − γ

6
w − 1

2
v2

)
β3 = 0,(3.6)

which is a third-order polynomial in the one unknown β. The roots of (3.6) are
computed analytically. We substitute the values of β into (3.5) to calculate the values



738 ALI BOUARICHA

of θ. Then we simply substitute the values of β and θ into (3.2) to obtain the values
of d. The major cost in this whole process is the calculation of H−1g, H−1b, and
H−1s.

After we compute the values of d, we determine which of them are potential
minimizers. Our criterion is to select those values of d that guarantee that there is a
descent path from xc to xc + d for the model MT (xc + d). Then, among the selected
steps, we choose the one that is closest to the current iterate xc in the Euclidean norm
sense. If the tensor model has no minimizer, we use the standard Newton step as the
step direction for the current iteration.

3.2. Case 2: The Hessian is rank deficient. If the Hessian matrix is rank
deficient, we transform the tensor model given in (3.1) by the following procedure.

Let d = d̂+ δ for a fixed d̂, where δ is the new unknown. Substituting this expression
for d into (3.1) yields the following tensor model, which is a function of δ:

MT (xc + d) = f(xc) +∇f(xc) · d̂+
1

2
∇2f(xc) · d̂2 +

1

2
(bT d̂)(sT d̂)2

+
γ

24
(sT d̂)4+

(
∇f(xc) +∇2f(xc)d̂+ (bT d̂)(sT d̂)s

+
1

2
(sT d̂)2b+

γ

24
(sT d̂)3s

)
· δ +

1

2

(
∇2f(xc)

+
(
bT d̂+

γ

2

)
ssT
)
· δ2 + (sT d̂)(bT δ)(sT δ) +

1

2
(bT δ)(sT δ)2

+
γ

6
(sT d̂)(sT δ)3 +

γ

24
(sT δ)4.

(3.7)

If we let β̂ = sT d̂, θ̂ = bT d̂, ĝ = ∇f(xc)+∇2f(xc)d̂+ θ̂β̂s+ 1
2 β̂

2b+ γ
6 β̂

3s, c = bT d̂+ γ
2 ,

and Ĥ = ∇2f(xc) + cssT , then we obtain the modified tensor model

MT (xc + d) = MT (xc + d̂) + ĝ · δ +
1

2
Ĥ · δ2 + β̂(bT δ)(sT δ)

+
1

2
(bT δ)(sT δ)2 +

γ

6
β̂(sT δ)3 +

γ

24
(sT δ)4.

(3.8)

The advantage of this transformation is that the matrix Ĥ is likely to be nonsingular
if the rank of ∇2f(xc) is at least n − 1. A necessary and sufficient condition for Ĥ
to be nonsingular is given in the following lemma. Let g and H denote ∇f(xc) and
∇2f(xc), respectively.

Lemma 3.1. Let H ∈ <n×n, s ∈ <n.

H + cssT is nonsingular if and only if M =


H cs

csT −c

 is nonsingular.

(Note that the
[
sT −1

]
submatrix was premultiplied by the constant c to sym-

metrize the augmented matrix M .)
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Proof. We prove that there exists v ∈ <n, v 6= 0, for which (H + cssT )v = 0, if
and only if there exist v̄ ∈ <n, w ∈ <, for which

H cs

csT −c



v̄

w

 =


0

0

 ,

v̄

w

 6=


0

0

 .(3.9)

Suppose first that (H + cssT )v = 0, v 6= 0. Then for v̄ = v, w = sT v, (v̄, w) satisfies
(3.9). Conversely, if there exists (v̄, w) satisfying (3.9), then sT v̄ = w, so (H+cssT )v̄ =
0, and v̄ 6= 0; otherwise, w = 0, which contradicts (3.9). Thus (H + cssT ) is singular
if and only if M is singular.

Corollary 3.2. Let H ∈ <n×n, s ∈ <n.

If H + cssT is nonsingular, then
[
H cs

]
has full row rank.

Proof. The proof follows from Lemma 3.1.
Lemma 3.3. Let H ∈ <n×n, rank(H) = n− 1, s ∈ <n.

H + cssT is nonsingular if and only if
[
H cs

]
has full row rank.

Proof. The only if part follows from Corollary 3.2. Now assume
[
H cs

]
has

full row rank. Since H has rank n − 1, H = H1H
T
2 , where H1, H2 ∈ <n×(n−1) have

full column rank. Since
[
H cs

]
has full row rank,

(vTH = 0 and vT s = 0)⇒ v = 0.(3.10)

From H = H1H2
T and the fact that H2 has full column rank, (3.10) is equivalent to

(vTH1 = 0 and vT s = 0)⇒ v = 0.

Thus the n × n matrix
[
H1 cs

]
is nonsingular. Analogously, the n × n matrix[

H2 s
]

is nonsingular. Therefore[
H1 cs

] [
HT

2

sT

]
= H1H2

T + cssT = H + cssT

is nonsingular.
Even though Ĥ is not sparse in general, Lemma 3.1 will be used later on to exploit

the sparsity of H when working with Ĥ.
For δ to be a local minimizer of (3.8) the derivative of the tensor model (3.8) with

respect to δ must be zero. That is,

∇MT (xc + δ) = ĝ + Ĥδ + β̂(sT δ)b+ β̂(bT δ)s+ (sT δ)(bT δ)s

+

(
1

2
b+

γ

2
β̂s

)
(sT δ)2 +

γ

6
(sT δ)3s = 0,

(3.11)

which yields

δ = −Ĥ−1

(
ĝ + β̂(sT δ)b+ β̂(bT δ)s+ (sT δ)(bT δ)s

+

(
1

2
b+

γ

2
β̂s

)
(sT δ)2 +

γ

6
(sT δ)3s

)
.

(3.12)
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Premultiplying (3.12) by sT on both sides results in a cubic equation (in β) in the
two unknowns β = sT δ and θ = bT δ:

sT Ĥ−1ĝ + (1 + β̂sT Ĥ−1b)β + β̂sT Ĥ−1sθ + sT Ĥ−1sβθ

+

(
1

2
sT Ĥ−1b+

γ

2
β̂sT Ĥ−1s

)
β2 +

γ

6
sT Ĥ−1sβ3 = 0.

(3.13)

The premultiplication of (3.12) by bT on both sides yields another cubic equation (in
β) in the two unknowns β and θ:

bT Ĥ−1ĝ + (1 + β̂bT Ĥ−1s)θ + β̂bT Ĥ−1bβ + bT Ĥ−1sβθ

+

(
1

2
bT Ĥ−1b+

γ

2
β̂bT Ĥ−1s

)
β2 +

γ

6
bT Ĥ−1sβ3 = 0.

(3.14)

Therefore, we obtain a system of two cubic equations in the two unknowns β and θ,
which we can solve analytically.

Since (3.13) is linear in θ, we can compute θ as a function of β and then substitute
its expression into (3.14) to obtain an equation in the one unknown β. Let u =
sT Ĥ−1ĝ, v = sT Ĥ−1b, w = sT Ĥ−1s, y = bT Ĥ−1ĝ, and z = bT Ĥ−1b. Equation (3.13)
yields

θ =
1

w(β̂ + β)

(
ywβ̂ − u− uvβ̂ + (yw + zwβ̂2 − 2vβ̂ − v2β̂2 − uv − 1)β

+

(
3

2
zwβ̂ − γ

2
wβ̂ − 3

2
v − 3

2
v2β̂

)
β2 +

(
1

2
zw − γ

6
w − v2

2

)
β3

)
.

(3.15)

The denominator of (3.15) is equal to zero if either β̂ + β = 0 or w = 0. If w = 0,
then (3.13) would be quadratic in β. Therefore

β =
−(1 + β̂v)±

√
(1 + β̂v)2 − 2uv

v
.

Hence, real-valued minimizers of the tensor model (3.8) may exist only if (1 + β̂v)2 ≥
2uv and v 6= 0. It is straightforward to verify from (3.14) that for θ to be defined,

(β̂ + β)v cannot equal −1. Now, if β̂ + β = 0, then (3.13) reduces to the following
cubic equation in β:

u+ (1 + β̂v)β +

(
1

2
v +

γ

2
wβ̂

)
β2 +

γ

6
wβ3 = 0.(3.16)

Once we calculate the expressions for β from (3.16), we substitute them into the
following equation for θ obtained from (3.14):

θ = −y − zβ̂β −
(

1

2
z +

γ

2
vβ̂

)
β2 − γ

6
vβ3.

If neither β̂ + β = 0 nor w = 0, we substitute the expression (3.15) into (3.14) and
obtain

−(u+ 2β̂v + β̂uv + β̂2v2 + 1) + (yw + β̂2zw − β̂v − v − uv)β

+

(
β̂2zw +

1

2
β̂zw − 1

2
v − γ

2
β̂w − 1

2
β̂v2

)
β2 +

(
1

2
zw − γ

6
w − 1

2
v2

)
β3 = 0,

(3.17)
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which is a third-order polynomial in the one unknown β. The roots of (3.17) are
then computed analytically. After we determine the values of β, we substitute them
into (3.15) to calculate the corresponding values of θ. Then, we simply substitute the
values of β and θ into (3.12) to obtain the values of δ. The dominant cost in this
whole process is the computation of Ĥ−1ĝ, Ĥ−1b, and Ĥ−1s.

Similar to the nonsingular case, a minimizer δ is selected such that there exists
a descent path from the current point xc to xc + δ, and that δ is closest to xc in the
Euclidean norm sense.

To obtain the tensor step d, we set d to d̂+ δ. An appropriate choice of d̂ is the
step used in the previous iteration simply because it has the right scale.

The above procedure is tailored to handle only the case where the Hessian matrix
has rank n − 1. It has been shown in practice that when ∇2f(x∗) has rank n − 1
the convergence rate of the tensor method is better than the linear convergence of
the standard Newton method [19] (also see section 7 for the ratios of the errors of
successive iterates on the BRYBND problem with rank(∇2f(x∗)) = n − 1). Tensor
methods for nonlinear equations problems have been shown to have three-step Q-order
1.5 convergence on problems where the Jacobian has rank n− 1 at the solution [11],
whereas Newton’s method is linearly convergent with constant 1/2 on such problems.
However, no attempt has been made yet to prove the convergence rate of tensor
methods for unconstrained optimization problems where the Hessian at the solution
has rank n − 1. On problems where rank(∇2f(x∗)) ≤ n − 2, tensor methods do
not have enough information to prove a faster-than-linear convergence rate, since it
usually uses p = 1. Consequently, when rank(∇2f(x∗)) ≤ n − 2 we simply use the
modified Newton step (see section 6) as the step direction for the current iteration.

4. Line search backtracking techniques. The line search global strategy we
use in conjunction with our tensor method for large, sparse unconstrained optimiza-
tion is similar to the one used for nonlinear equations [4, 6]. This strategy has been
shown to be very successful for large, sparse systems of nonlinear equations. We also
found that it is superior to the approach used by Schnabel and Chow [19]. The main
difference between the two approaches is that ours always tries the full tensor step
first. If this provides enough decrease in the objective function, then we terminate;
otherwise we find acceptable next iterates in both the Newton and tensor directions
and select the one with the lower function value as the next iterate. Schnabel and
Chow, on the other hand, always find acceptable next iterates in both the Newton
and tensor directions and choose the one with the lower function value as the next
iterate. In practice, our approach almost always requires fewer function evaluations
while retaining the same efficiency in iteration numbers. The global framework for
line search methods for unconstrained minimization is given in Algorithm 4.1.

Algorithm 4.1. Global Framework for Line Search Methods for

Unconstrained Minimization.

Let xc be the current iterate,
dt the tensor step,
dn is the Newton step,
g = ∇f(xc),
fc = f(xc),
slope = gT dt,
and α = 10−4.

xt+ = xc + dt
fp = f(xt+)
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if (minimizer of the tensor model was found) then
if fp < fc + α · slope then

x+ = xt+
else

Find an acceptable xn+ in the Newton direction dn
using the line search given by Algorithm A6.3.1 [9, p. 325]

Find an acceptable xt+ in the tensor direction dt
using the line search given by Algorithm A6.3.1 [9, p. 325]

if f(xn+) < f(xt+) then
x+ = xn+

else
x+ = xt+

endif
endif

else
Find an acceptable xn+ in the Newton direction dn
using the line search given by Algorithm A6.3.1 [9, p. 325]

x+ = xn+
endif

5. Model trust region techniques. The two computational methods—the
locally constrained optimal (or “hook”) step and the dogleg step—are generally used
for approximately solving the trust region problem based on the standard model,

minimize f(xc) +∇f(xc) · d+
1

2
∇2f(xc) · d2(5.1)

subject to || d ||2 ≤ δc,

where δc is the current trust region radius. When δc is shorter than the Newton
step, the locally constrained optimal step [17] finds a µc such that || d(µc) ||2 ≈ δc,
where d(µc) = −(∇2f(xc) + µI)−1∇f(xc). Then it takes x+ = xc + d(µc). The
dogleg step is a modification of the trust region algorithm introduced by Powell [18].
However, rather than finding a point x+ = xc + d(µc) on the curve d(µc) such that
|| x+ − xc || ≈ δc, it approximates this curve by a piecewise linear function in the
subspace spanned by the Newton step and the steepest descent direction −∇f(xc),
and takes x+ as the point on this approximation for which || x+ − xc || = δc. (See,
e.g., [9] for more details.)

Unfortunately, these two methods are hard to extend to the tensor model, which is
a fourth-order model. Trust region algorithms based on (5.1) are well defined because
it is always possible to find a unique point x+ on the curve such that || x+−xc || = δc.
Additionally, the value of f(xc) + ∇f(xc) · d + 1

2∇2f(xc) · d2 along the curve d(µc)
is monotonically decreasing from xc to xn+, where xn+ = xc + dn, which makes the
process reasonable. These properties do not extend to the tensor model, which is a
fourth-order model that may not be convex. Furthermore, the analogous curve to
d(µc) is more expensive to compute. For these reasons, we consider a different trust
region approach for our tensor methods.

The trust region approach that is discussed in this section is a two-dimensional
trust region step over the subspace spanned by the steepest descent direction and the
tensor (or standard) step. The main reasons that lead us to adopt this approach are
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that it is easy to construct and closely related to dogleg-type algorithms over the same
subspace. This step may be close to optimal trust region step algorithms in practice.
Byrd, Schnabel, and Shultz [7] have shown that for unconstrained optimization using
a standard quadratic model, the analogous two-dimensional minimization approach
produces nearly as much decrease in the quadratic model as the optimal trust region
step in almost all cases.

The two-dimensional trust region approach for the tensor model computes an
approximate solution to

minimize f(xc) +∇f(xc) · d+
1

2
∇2f(xc) · d2 +

1

2
(bT d)(sT d)2 +

γ

24
(sT d)4

subject to || d ||2 ≤ δc,

by performing a two-dimensional minimization,

minimize f(xc) +∇f(xc) · d+
1

2
∇2f(xc) · d2 +

1

2
(bT d)(sT d)2 +

γ

24
(sT d)4(5.2)

subject to || d ||2 ≤ δc, d ∈ [dt, gs],

where dt and gs are the tensor step and the steepest descent direction, respectively,
and δc is the trust region radius. This approach will always produce a step that
reduces the quadratic model by at least as much as a dogleg-type algorithm, which
reduces d to a piecewise linear curve in the same subspace. At each iteration of
the tensor algorithm, the trust region method either solves (5.2) or minimizes the
standard linear model over the two-dimensional subspace spanned by the standard
Newton step and the steepest descent direction. The decision of whether to use the
tensor or standard model is made using the following criterion:

if ( (no minimizer of the tensor model was found)

or (∇f(xc)
T
dt > −10−4|| ∇f(xc) ||2|| dt ||2) ) then

x+ = xc + αdn − βgs; α, β selected by trust region algorithm
else
x+ = xc + αdt − βgs; α, β selected by trust region algorithm

endif
Before we define the two-dimensional trust region step for tensor methods, we show
how to convert the problem

minimize f(xc) +∇f(xc) · d+
1

2
∇2f(xc) · d2 +

1

2
(bT d)(sT d)2 +

γ

24
(sT d)4(5.3)

subject to || d ||2 = δc, d ∈ [ dt, gs ],

to an unconstrained minimization problem.
First, we make gs orthogonal to dt by performing the Householder transformation:

ĝs = gs − dt
gTs dt
dTt dt

;(5.4)

then, we normalize both ĝs and dt to obtain

d̃t =
dt

|| dt ||2
,(5.5)
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g̃s =
ĝs

|| ĝs ||2
.(5.6)

Since d is in the subspace spanned by the tensor step d̃t and the steepest descent
direction g̃s, it can be written as

d = αd̃t + βg̃s, α, β ∈ <.(5.7)

If we square the l2 norm of this expression for d and set it to δ2, we obtain the
following equation for β as a function of α:

β =
√
δ2 − α2.

Substituting this expression for β into (5.7) and then the resulting d into (5.3) yields
the global minimization problem in the one variable α, given by (5.8) below. Thus,
problems (5.8) and (5.3) are equivalent. Let ghg = g̃Ts Hg̃s, dhd = d̃Tt Hd̃t, dhg =

d̃Tt Hg̃s, bt = bT d̃t, st = sT d̃t, bg = bT g̃s, and sg = sT g̃s.

minimize f(xc) +
1

2
δ2cghg +

γ

24
δ4cs

4
g + (1 + δ2c bgs

2
g)
√
δ2c − α2

+(dhg +
γ

6
δ2csts

3
g)α
√
δ2c − α2 + (btsgst + bgs

2
t + btstsg

−bgs2g)α2
√
δ2c − α2 + (δ2c bgsgst + δ2c bts

2
g + δ2c bgstsg)α

+

(
1

2
dhd −

1

2
ghg +

1

2
bts

2
t +

γ

4
δ2cs

2
t s

2
g −

γ

12
δ2cs

4
g

)
α2

−(bgsgst + bts
2
g + bgstsg)α

3 +
( γ

24
s4t −

γ

4
s2t s

2
g +

γ

24
s4g

)
α4

+
(γ

6
s3t sg −

γ

6
sts

3
g

)
α3
√
δ2c − α2,

(5.8)

where −δc < α < δc.
To transform the problem

minimize f(xc) +∇f(xc) · d+
1

2
∇2f(xc) · d2(5.9)

subject to || d ||2 = δc, d ∈ [ dn, g ]

to an unconstrained minimization problem, we use the same procedure described
above to show that (5.9) is equivalent to the following global minimization problem
in the one variable α:

minimize f(xc) +
1

2
δ2cghg +

√
δ2c − α2

+ dhgα
√
δ2c − α2 +

(
1

2
dhd −

1

2
ghg

)
α2,

(5.10)

where −δc < α < δc.
Algorithm 5.1. Two-Dimensional Trust Region for Tensor Methods.

Let dt be the tensor step,
dn the standard step,
xc the current iterate,
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fc = f(xc),
x+ the next iterate,
f+ = f(x+),
gs = −∇f(xc), the steepest descent direction,
gc = ∇f(xc),
Hc = ∇2f(xc),
and δc the current trust region radius.
d̃t, g̃s are given by (5.5) and (5.6), respectively.
d̃n is obtained in an analogous way to d̃t; by applying transformations (5.4) and (5.5)
to it.

1. if tensor model selected then
Solve problem (5.8) using the procedure described in Algorithm 3.4 [6]

else {standard Newton model selected}
Solve problem (5.10) using the procedure described in Algorithm 3.4 [6]

endif

2. if tensor model selected then

d = α∗d̃t + g̃s
√
δ2c − α2

∗
where α∗ is the global minimizer of (5.8)

else {standard Newton model selected}
d = α∗d̃n + g̃s

√
δ2c − α2

∗
where α∗ is the global minimizer of (5.10)

endif

3. { Check new iterate and update trust region radius.}
x+ = xc + d

if
f+ − fc
pred

≥ 10−4 then

the global step d is successful
else

decrease trust region
go to step 1

endif
where

pred =

(
fc + gc · d+

1

2
Hc · d2 +

1

2
(bT d)(sT d)2 +

γ

24
(sT d)4

)
− fc, if tensor model

selected,

pred =

(
fc + gc · d+

1

2
Hc · d2

)
− fc, if standard Newton model selected.

The methods used for adjusting the trust radius during and between steps are given
in Algorithm A6.4.5 [9, p. 338]. The initial trust radius can be supplied by the user;
if not, it is set to the length of the initial Cauchy step.

6. A high-level algorithm for the tensor method. In this section, we
present the overall algorithm for the tensor method for large, sparse unconstrained
optimization. Algorithm 6.1 is a high-level description of an iteration of the tensor
method that was described in sections 3–5. A summary of the test results for this
implementation is presented in section 7.

Algorithm 6.1. An Iteration of the Tensor Method for Large, Sparse

Unconstrained Optimization.

Let xc be the current iterate,
dt the tensor step,
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and dn the Newton step.

1. Calculate ∇f(xc) and decide whether to stop. If not:
2. Calculate ∇2f(xc).
3. Calculate the terms Tc and Vc in the tensor model, so that the tensor model

interpolates f(x) and ∇f(x) at the past point.
4. Find a potential minimizer dt of the tensor model (3.1). If dt cannot be found,

then calculate the modified Newton step dn.
5. Find an acceptable next iterate x+ using either a line search or a two-

dimensional trust region global strategy.
6. xc = x+,
f(xc) = f(x+),
go to step 1.

In step 1, the gradient is either computed analytically or approximated by Algo-
rithm A5.6.3 given in Dennis and Schnabel [9]. In step 2, the Hessian matrix is either
calculated analytically or approximated by a graph coloring algorithm described in
[8]. Note that it is crucial to supply an analytic gradient if the finite-difference Hessian
matrix requires many gradient evaluations. Otherwise, the methods described in this
paper may not be practical, and inexact methods may be preferable. The procedures
for calculating Tc and Vc in step 3 were discussed in section 2. In step 4, the Hessian
matrix is factored using MA27 [10], a sparse Cholesky decomposition package. If the
Hessian matrix is nonsingular, then the tensor step dt is calculated as described in
section 3.1. Otherwise, if the Hessian matrix is singular with rank n − 1, then dt
is computed as outlined in section 3.2. (We comment on the implementation issues
related to this case in the next paragraph.) If the rank of the Hessian matrix is less
than n−1, then the Newton step, dn, is computed as a by-product of the minimization
of the tensor model, and used as the step direction for the current iteration. This
Newton step dn is the modified Newton step (∇2f(xc)+µI)−1∇f(xc), where µ = 0 if
∇2f(xc) is safely positive definite, and µ > 0 otherwise. To obtain the perturbation
µ, we use a modification of MA27 advocated by Gill et al. in [13]. In this method we
first compute the LDLT of the Hessian matrix using the MA27 package, then change
the block diagonal matrix D to D+E. The modified matrix is block diagonal positive
definite. This guarantees that the decomposition L(D + E)LT is positive definite as
well. Note that the Hessian matrix is not modified if it is already positive definite.

Another implementation issue that deserves some attention is how to solve linear
systems of the form Ĥx = b, where Ĥ = H + cssT , H ∈ <n×n is sparse and rank
deficient, and s ∈ <n is full (see section 3.2). Such systems can be efficiently solved us-
ing the augmented matrix defined in Lemma 3.1. That is, we write (H+cssT )x = b as


H cs

csT −c



x

w

 =


b

0

 .(6.1)

The (n+ 1)× (n+ 1) matrix in (6.1) is sparse and can be factored efficiently as long
as the last row and column are not pivoted until the last few iterations. In fact,
we can combine the nonsingular and singular cases by factoring H, but we shift to
a factorization of the augmented matrix if H is discovered to be singular with rank
n − 1. However, we use a Schur complement method to obtain the solution of the
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augmented matrix by updating the solution from the system Hx = b. This choice
was motivated by the fact that the Schur complement method is simpler and more
convenient to use than the factorization of the augmented matrix in (6.1). Note that
if the Schur complement method shows that the augmented matrix in (6.1) is rank
deficient (a case that is very rare in practice), the modified Newton step described
above is used as the step direction for the current iteration.

The Schur complement method requires that H must have full rank. Thus, some
modifications are necessary in order for this method to work. We have modified
the factorization phase of MA27 to be able to detect the row and column indices
of the first pivot whose absolute value is less than or equal to some given tolerance
tol. This stability test is clearly not optimal but appears to work in practice. We
also modified the solve phase of MA27 such that whenever a pivot fails the stability
criterion above, the corresponding solution component is set to zero. This way the
solution of Hx = b is the same as the solution of Hey = b (where He is the matrix
H minus the row and column at which singularity occurred. Since y has n − 1
components, the remaining one, which is also the component corresponding to the
pivot failing the stability test, is set to 0). Afterwards, we obtain the solution of an
augmented system using a Schur complement method, where the coefficient matrix
is the matrix H augmented by two rows and columns; that is, the (n+ 1)st row and
column are the ones at which singularity was detected, and the (n + 2)nd row and
column are csT and cs, respectively. The Schur complement method is implemented
by first invoking MA39AD [1] to form the Schur complement S = D − CH−1B of H
in the extended matrix, where D is the 2 by 2 lower right submatrix, C is the lower
left 2 by n submatrix, and B is the upper right n by 2 submatrix, of the augmented
matrix. The Schur complement is then factored into its QR factors. Next, MA39BD
[1] solves the extended system (6.1) using the following well-known scheme:

1. Solve Hu = b, for u.
2. Solve Sy = b− Cu, for y.
3. Solve Hv = By, for v.
4. x = u− v.

The dominant cost of the above process is the Hu = b and Hv = By solves.
The tensor and Newton algorithms terminate if || ∇f(xc) ||2 ≤ 10−5 or || d ||2 <

10−9.

7. Test results. We tested our tensor and Newton algorithms on a variety of
nonsingular and singular test problems. In this section we present and discuss sum-
mary statistics of the test results.

All our computations were performed on a Sun Sparc 10 Model 40 machine using
double-precision arithmetic.

First, we tested our program on the set of unconstrained optimization problems
from the CUTE [3] and the MINPACK-2 [2] collections. Most of these problems have
nonsingular Hessians at the solution. We also created singular test problems as pro-
posed in [4, 20] by modifying the nonsingular test problems from the CUTE collection
as follows. Let

f(x) =

m∑
i=1

f2
i (x)

be the function to minimize, where fi : <n → <, m is the number of element
functions, and

FT (x) = (f1(x), . . . , fm(x)).(7.1)
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In many cases, F (x) = 0 at the minimizer x∗, and F ′(x∗) is nonsingular. Then
according to [4, 20], we can create singular systems of nonlinear equations from (7.1)
by forming

F̂ (x) = F (x)− F ′(x∗)A(ATA)−1AT (x− x∗),(7.2)

where A ∈ <n×k has full column rank with 1 ≤ k ≤ n. Hence, F̂ (x∗) = 0 and F̂ ′(x∗)
has rank n−k. For unconstrained optimization, we simply need to define the singular
function

f̂(x) =
1

2
F̂ (x)T F̂ (x).(7.3)

From (7.3) and F̂ (x∗) = 0, we obtain ∇f̂(x∗) = 0. From

F̂ ′(x∗) = F ′(x∗)[I −A(ATA)−1AT ]

and

∇2f̂(x∗) = F̂ ′(x∗)
T F̂ ′(x∗) +

m∑
i=1

fi(x∗)∇2fi(x∗) = F̂ ′(x∗)
T F̂ ′(x∗),

we know that ∇2f̂(x∗) has rank n− k.

By using (7.2) and (7.3), we created two sets of singular problems, with ∇2f̂(x∗)
having rank n− 1 and n− 2, respectively, by using

A ∈ <n×1, AT = (1, 0, . . . , 0),

and

A ∈ <n×2, AT =

[
1 0 0 0 · · · 0
0 1 0 0 · · · 0

]
,

respectively. The reason for choosing unit vectors as columns for the matrix A is
mainly to preserve the sparsity of the Hessian during the transformation (7.2).

For all our test problems we used a standard line search backtracking strategy.
All the test problems with the exception of rank n− 1 and rank n− 2 problems were
run with analytic gradients and Hessians provided by the CUTE and MINPACK-2
collections. For rank n − 1 and n − 2 test problems, we have modified the analytic
gradients provided by the CUTE collection to take into account the modification (7.2).
On the other hand, we used the graph coloring algorithm [8] to evaluate the finite
difference approximation of the Hessian matrix.

A summary for the test problems whose Hessians at the solution have ranks n,
n − 1, and n − 2 is presented in Table 7.1. The descriptions of the test problems
and the detailed results are given in the Appendix. In Table 7.1 columns “better”
and “worse” represent the number of times the tensor method was better and worse,
respectively, than Newton’s method by more than one gradient evaluation. The “tie”
column represents the number of times the tensor and standard methods are required
within one gradient evaluation of each other. For each set of problems, we summarize
the comparative costs of the tensor and standard methods using average ratios of
three measures: gradient evaluations, function evaluations, and execution times. The
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Table 7.1

Summary of the CUTE and MINPACK-2 test problems using line search.

Rank Tensor/Standard Pbs Solved Average Ratio–Tensor/Standard

∇2f(x∗) better tie worse t/s s/t feval geval time
n 53 38 5 4 0 1.09 0.69 0.67

n− 1 18 2 0 5 0 0.52 0.48 0.41
n− 2 18 1 1 7 0 0.70 0.63 0.66

average gradient evaluation ratio (geval) is the total number of gradient evaluations
required by the tensor method, divided by the total number of gradient evaluations
required by the standard method on these problems. The same measure is used
for the average function evaluation (feval) and execution time (time) ratios. These
average ratios include only problems that were successfully solved by both methods.
We have excluded all cases where the tensor and standard methods converged to
a different minimizer. However, the statistics for the “better,” “worse,” and “tie”
columns include the cases where only one of the two methods converges, and exclude
the cases where both methods do not converge. We also excluded problems requiring
a number of gradient evaluations less than or equal to 3 by both methods. Finally,
columns “t/s” and “s/t” show the number of problems solved by the tensor method
but not by the standard method and the number of problems solved by the standard
method but not by the tensor method, respectively.

The improvement by the tensor method over the standard method on problems
with rank n− 1 is dramatic, averaging 48% in function evaluations, 52% in gradient
evaluations, and 59% in execution times. This is due in part to the rate of convergence
of the tensor method being faster than that of Newton’s method, which is known to be
only linearly convergent with constant 2

3 . On problems with rank n− 2, the improve-
ment by the tensor method over the standard method is also substantial, averaging
30% in function evaluations, 37% in gradient evaluations, and 34% in execution times.
In the test results obtained for the nonsingular problems, the tensor method is 9%
worse than the standard method in function evaluations, but 31% and 33% better in
gradient evaluations and in execution times, respectively. The main reason for the
tensor method requiring on the average more function evaluations than the standard
method is because on some problems, the full tensor step does not provide sufficient
decrease in the objective function, and therefore the tensor method has to perform
a line search in both the Newton and tensor directions, which causes the number of
function evaluations required by the tensor method to be inflated. As a result, we
intend to investigate other possible global frameworks for line search methods that
could potentially reduce the number of function evaluations for the tensor method.

To obtain an experimental indication of the local convergence behavior of the
tensor and Newton methods on problems where rank(∇2f(x∗)) = n−1, we examined
the sequence of ratios

|| xk − x∗ ||
|| xk−1 − x∗ ||

(7.4)

produced by the Newton and tensor methods on such problems. These ratios for
a typical problem are given in Table 7.2. In almost all cases the standard method
exhibits local linear convergence with constant near 2

3 , which is consistent with the
theoretical analysis. The local convergence rate of the tensor method is faster, with a
typical final ratio of around 0.01. Whether this is a superlinear convergence remains to
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Table 7.2

Speed of convergence on the BRYBND problem with rank(∇2f(x∗)) = n − 1, as modified by
(7.2), n = 5000, started from x0. The ratios in the second and third columns are defined by (7.4).

Iteration (k) Standard Method Tensor Method

1 0.659 0.659
2 0.655 0.033
3 0.650 0.459
4 0.641 0.961
5 0.629 0.850
6 0.612 0.667
7 0.590 0.410
8 0.571 0.323
9 0.600 0.126
10 0.760 0.012
11 0.940
12 0.988
13 0.970
14 0.969
15 0.956
16 0.926
17 0.891
18 0.909
19 0.848
20 0.926
21 0.939
22 0.896
23 0.832
24 0.871
25 0.742
26 0.667
27 0.667
28 0.666
29 0.665
30 0.666

be determined. We have done similar experiments for problems with rank(∇2f(x∗)) =
n − 2, and the tensor method did not show a faster-than-linear convergence rate,
because it did not have enough information since p = 1.

The tensor method solved a total of four nonsingular problems, five rank n − 1
problems, and seven rank n− 2 problems that Newton’s method failed to solve. The
reverse never occurred. These results clearly indicate that the tensor method is most
likely to be more robust than Newton’s method.

The overall results show that having some extra information about the function
and gradient in the past step direction is quite useful in achieving the advantages of
tensor methods.

8. Summary and future research. In this paper we presented new algorithms
for solving large, sparse unconstrained optimization problems using tensor methods.
Implementations using these tensor methods have been shown to be considerably
more efficient, especially on problems where the Hessian matrix has a small rank
deficiency at the solution. Typical gains over standard Newton methods range from
40% to 50% in function and gradient evaluations and in computer time. The size and
consistency of the efficiency gains indicate that the tensor method may be preferable
to Newton’s method for solving large, sparse unconstrained optimization problems
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where analytic gradients and/or Hessians are available. To firmly establish such a
conclusion, additional testing is required, including test problems of very large size.

On sparse problems where the function or the gradient is expensive to evaluate,
the finite-difference approximation of the Hessian matrix by the graph coloring al-
gorithm [8] may be very costly. Hence, quasi-Newton methods may be preferable to
use in this case. These methods involve low-rank corrections to a current approxi-
mate Hessian matrix. We are currently attempting to extend our tensor methods to
quasi-Newton methods for large, sparse unconstrained minimization problems.

We also considered solving large, sparse, structured unconstrained optimization
problems using tensor methods. In this variant, we explored the possibility of using
exact third- and fourth-order derivative information. The calculation of these deriva-
tives is simplified using the concept of partial separability, a structure that has already
proven to be useful when building quadratic models for large-scale nonlinear problems
[16]. The calculation of the minimizer of this exact tensor model is more problematic,
however, because we need to solve a sparse system of nonlinear equations. An obvious
approach to solve these equations is to use a Newton-like method. Such a method is
characterized by the approximation of the Jacobian used in the Newton process. A
simple idea is to use a fixed Jacobian at each step. This has the advantage that the
Jacobian will have already been obtained in the current tensor iteration. However,
potential slow convergence of such a scheme may make the cost of a tensor iteration
prohibitive. We are currently investigating other possible approaches, such as a mod-
ified Newton method in which the approximated Jacobian matrix will incorporate
more useful information, or an iterative method such as a nonlinear GMRES. This
work, in cooperation with Nick Gould [5], will be reported in the near future.

We are almost done with the implementation and testing of the two-dimensional
trust region global strategy described in section 5. This work will be reported in a
forthcoming paper.

We are also implementing the algorithms discussed in this paper in a software
package. This package uses one past point in the formation of the tensor terms,
which makes the additional cost and storage of the tensor method over the standard
method very small. The package will be available soon.

Appendix A. The columns in Tables A.1–A.6 have the following meanings:

– func: name of the problem.
– n: dimension of the problem.
– x0: starting point. 1, 10, 100 stand for x0, 10x0, and 100x0, respectively.
– initf : initial value of the objective function.
– fcn: number of function evaluations.
– grad: number of gradient evaluations.
– time: execution time in seconds.
– finalf : final value of the objective function.

IL, NC stand for iteration limit exceeded and convergence to a nonminimizer, re-
spectively. The iteration limit is 300 for the MINPACK-2 collection and 200 for the
CUTE collection. All starting points were provided by the MINPACK-2 and CUTE
collections.

Remark. For rank n− 1 and n− 2 problems grad does not include the number of
gradients required by Hessian evaluations. On the other hand, fcn does include the
functions evaluations required by Hessian evaluations.
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Table A.1

MINPACK-2 test problems.

Name Description

DEPT Elastic-plastic torsion problem
DGL1 Ginzburg–Landau (1-dimensional) superconductivity problem
DGL2 Ginzburg–Landau (2-dimensional) superconductivity problem
DLJ2 2-dimensional Leonard–Jones clusters (molecular conformation) problem
DLJ3 3-dimensional Leonard–Jones clusters (molecular conformation) problem
DMSA Minimal surface area problem
DODC Optimal design with composite materials problem
DPJB Pressure distribution in a journal bearing problem
DSSC Steady state combustion problem

Table A.2

CUTE test problems.

Name Description

ARWHEAD Quartic problem whose Hessian is an arrowhead (downwards)
with diagonal central part and borderwidth 1

BDQRTIC Quartic problem whose Hessian is banded with bandwidth 9
BRYBND Broyden banded system of nonlinear equations, considered in

the least square sense
DIXMAANA Dixon–Maany test problem (version A)
DIXMAANB Dixon–Maany test problem (version B)
DIXMAANC Dixon–Maany test problem (version C)
DIXMAANI Dixon–Maany test problem (version I)
DIXON3DQ Dixon’s tridiagonal quadratic
EDENSCH Extended Dennis and Schnabel problem, as defined by Li
ENGVAL1 A sum of 2n− 2 groups, n− 1 of which contain 2 nonlinear elements
FLETCBV2 Boundary value problem
FREUROTH Freudenstein and Roth test problem
LIARWHD A simplified version of the NONDIA problem
MOREBV Boundary value problem. This is the nonlinear least squares

version without fixed variables
NONDIA Shanno’s nondiagonal extension of Rosenbrock function
NONDQUAR A nondiagonal quartic test problem with an

arrowhead-type Hessian having a tridiagonal central part and
a borderwidth 1. The Hessian is singular at the solution

PENALTY1 A sum of n+ 1 least squares groups, the first n
which have only one linear element

PENALTY2 A nonlinear least squares problem with m = 2n groups,
group 1 is linear, groups 2 to n use 2 nonlinear elements,
groups n+ 1 to m− 1 use 1 nonlinear element, and group m
uses n nonlinear elements

POWELLSG Extended Powell singular problem
QUARTC A simple quartic function
SINQUAD A function with nontrivial groups and repetitious elements
SROSENBR Separable extension of Rosenbrock’s function
TQUARTIC A quartic function with nontrivial groups and repetitious elements
TRIDIA Shanno’s TRIDIA quadratic tridiagonal problem
WOODS Extended Woods problem
WOODS1 Scaled extended Woods problem
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Table A.3

Results of the MINPACK-2 test problems.

Standard Tensor
func n x0 initf fcn grad finalf time fcn grad finalf time

DEPT 100 1 -0.36364D+01 2 2 -0.10694D+02 0 2 2 -0.10694D+02 0
DEPT 400 1 -0.36584D+01 2 2 -0.10902D+02 0 2 2 -0.10902D+02 0
DEPT 900 1 -0.36629D+01 2 2 -0.10946D+02 0 2 2 -0.10946D+02 0
DEPT 1600 1 -0.36645D+01 2 2 -0.10961D+02 1 2 2 -0.10961D+02 1
DEPT 2500 1 -0.36653D+01 2 2 -0.10969D+02 2 2 2 -0.10969D+02 2
DEPT 3600 1 -0.36657D+01 2 2 -0.10973D+02 2 2 2 -0.10973D+02 2
DEPT 4900 1 -0.36659D+01 2 2 -0.10976D+02 3 2 2 -0.10976D+02 3
DEPT 6400 1 -0.36661D+01 2 2 -0.10977D+02 5 2 2 -0.10977D+02 5
DEPT 8100 1 -0.36662D+01 2 2 -0.10978D+02 7 2 2 -0.10978D+02 7
DEPT 10000 1 -0.36663D+01 2 2 -0.10979D+02 8 2 2 -0.10979D+02 8
DGL1 100 1 -0.16619D-03 18 18 -0.84562D+04 0 5 5 -0.84562D+04 0
DGL1 400 1 -0.16619D-03 18 18 -0.84562D+04 2 9 6 -0.84562D+04 1
DGL1 900 1 -0.16619D-03 18 18 -0.84562D+04 4 6 6 -0.84562D+04 1
DGL1 1600 1 -0.16619D-03 18 18 -0.84562D+04 7 7 7 -0.84562D+04 3
DGL1 2500 1 -0.16619D-03 18 18 -0.84562D+04 11 8 8 -0.84562D+04 5
DGL1 3600 1 -0.16619D-03 19 19 -0.84562D+04 17 9 9 -0.84562D+04 9
DGL1 4900 1 -0.16619D-03 19 19 -0.84562D+04 23 7 7 -0.84562D+04 9
DGL1 6400 1 -0.16619D-03 17 17 -0.84413D+04 27 7 7 -0.84562D+04 12
DGL1 8100 1 -0.16619D-03 – NC – – 7 7 -0.84562D+04 15
DGL1 10000 1 -0.16619D-03 – NC – – 9 9 -0.84562D+04 24
DGL2 100 1 0.18190D+02 231 84 0.16228D+02 11 150 38 0.16228D+02 5
DGL2 400 1 0.20131D+02 159 67 0.16231D+02 45 210 43 0.16231D+02 31
DGL2 900 1 0.22015D+02 265 96 0.16232D+02 202 418 76 0.16232D+02 169
DGL2 1600 1 0.23884D+02 306 111 0.16232D+02 584 455 81 0.16232D+02 444
DGL2 2500 1 0.25748D+02 354 122 0.16232D+02 1330 607 102 0.16232D+02 1170
DGL2 3600 1 0.27609D+02 503 165 0.16232D+02 3140 751 137 0.16232D+02 2190
DGL2 4900 1 0.29469D+02 686 223 0.16232D+02 12800 849 144 0.16232D+02 6440
DLJ2 100 1 -0.10698D+03 252 107 -0.13375D+03 113 176 51 -0.13396D+03 54
DLJ2 200 1 -0.22945D+03 405 132 -0.28056D+03 1030 475 89 -0.28140D+03 698
DLJ2 300 1 -0.35261D+03 544 145 -0.44216D+03 3720 631 118 -0.44025D+03 3050
DLJ3 120 1 -0.11782D+03 375 112 -0.17954D+03 137 348 65 -0.17073D+03 81
DLJ3 210 1 -0.23253D+03 485 139 -0.34073D+03 838 608 113 -0.34522D+03 687
DLJ3 360 1 -0.42908D+03 1031 281 -0.63744D+03 8260 963 173 -0.63311D+03 4660
DMSA 100 1 0.14608D+01 4 4 0.14185D+01 0 4 4 0.14185D+01 0
DMSA 400 1 0.14891D+01 4 4 0.14206D+01 1 10 4 0.14206D+01 1
DMSA 900 1 0.15035D+01 5 5 0.14210D+01 2 4 4 0.14210D+01 2
DMSA 1600 1 0.15123D+01 5 5 0.14212D+01 4 10 5 0.14212D+01 4
DMSA 2500 1 0.15183D+01 6 6 0.14212D+01 8 14 5 0.14212D+01 8
DMSA 3600 1 0.15227D+01 6 6 0.14213D+01 13 10 6 0.14213D+01 15
DMSA 4900 1 0.15260D+01 6 6 0.14213D+01 19 11 6 0.14213D+01 21
DMSA 6400 1 0.15286D+01 7 7 0.14213D+01 31 9 7 0.14213D+01 34
DMSA 8100 1 0.15307D+01 17 12 0.14213D+01 85 16 8 0.14213D+01 60
DMSA 10000 1 0.15324D+01 21 14 0.14213D+01 117 17 7 0.14213D+01 60
DODC 100 1 0.44626D-01 14 8 -0.10980D-01 0 16 8 -0.10980D-01 0
DODC 400 1 0.47194D-01 13 10 -0.11248D-01 2 19 10 -0.11248D-01 3
DODC 900 1 0.47771D-01 23 13 -0.11329D-01 7 41 14 -0.11329D-01 9
DODC 1600 1 0.47974D-01 55 23 -0.11351D-01 26 56 21 -0.11351D-01 27
DODC 2500 1 0.48082D-01 70 33 -0.11359D-01 62 117 28 -0.11359D-01 62
DODC 3600 1 0.48139D-01 129 49 -0.11368D-01 148 194 42 -0.11368D-01 144
DODC 4900 1 0.48178D-01 565 163 -0.11372D-01 713 406 76 -0.11372D-01 380
DODC 6400 1 0.48202D-01 597 168 -0.11374D-01 999 526 94 -0.11374D-01 640
DODC 8100 1 0.48221D-01 – IL – – – IL – –
DODC 10000 1 0.48234D-01 – IL – – – IL – –
DPJB 100 1 0.11274D+02 2 2 -0.27881D+00 0 2 2 -0.27881D+00 0
DPJB 400 1 0.13331D+02 2 2 -0.28144D+00 0 2 2 -0.28144D+00 0
DPJB 900 1 0.14544D+02 2 2 -0.28219D+00 1 2 2 -0.28219D+00 0
DPJB 1600 1 0.15545D+02 2 2 -0.28249D+00 1 2 2 -0.28249D+00 1
DPJB 2500 1 0.16462D+02 2 2 -0.28264D+00 2 2 2 -0.28264D+00 2
DPJB 3600 1 0.17336D+02 2 2 -0.28272D+00 2 2 2 -0.28272D+00 3
DPJB 4900 1 0.18186D+02 2 2 -0.28277D+00 4 2 2 -0.28277D+00 4
DPJB 6400 1 0.19022D+02 2 2 -0.28280D+00 5 2 2 -0.28280D+00 5
DPJB 8100 1 0.19848D+02 2 2 -0.28282D+00 7 2 2 -0.28282D+00 7
DPJB 10000 1 0.20666D+02 2 2 -0.28284D+00 9 2 2 -0.28284D+00 9
DSSC 100 1 -0.52548D+01 3 3 -0.55979D+01 0 3 3 -0.55979D+01 0
DSSC 400 1 -0.50507D+01 3 3 -0.56077D+01 1 3 3 -0.56077D+01 1
DSSC 900 1 -0.49189D+01 3 3 -0.56098D+01 1 3 3 -0.56098D+01 1
DSSC 1600 1 -0.48224D+01 3 3 -0.56105D+01 2 3 3 -0.56105D+01 2
DSSC 2500 1 -0.47466D+01 3 3 -0.56108D+01 4 3 3 -0.56108D+01 4
DSSC 3600 1 -0.46842D+01 3 3 -0.56110D+01 6 3 3 -0.56110D+01 6
DSSC 4900 1 -0.46312D+01 3 3 -0.56112D+01 9 3 3 -0.56112D+01 9
DSSC 6400 1 -0.45852D+01 3 3 -0.56112D+01 12 3 3 -0.56112D+01 12
DSSC 8100 1 -0.45445D+01 3 3 -0.56113D+01 17 3 3 -0.56113D+01 18
DSSC 10000 1 -0.45080D+01 2 2 -0.56113D+01 10 2 2 -0.56113D+01 10
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Table A.4

Results of the CUTE test problems.

Standard Tensor
func n x0 initf fcn grad finalf time fcn grad finalf time

ARWHEAD 5000 1 0.14997D+05 7 7 0.00000D+00 50 3 3 0.00000D+00 17
10 0.19978D+09 12 12 0.00000D+00 91 18 14 0.00000D+00 110
100 0.19996D+13 18 18 0.00000D+00 140 33 20 0.00000D+00 160

BDQRTIC 1000 1 0.22510D+06 10 10 0.39838D+04 10 24 12 0.39838D+04 13
10 0.22424D+10 16 16 0.39838D+04 17 38 17 0.39838D+04 19
100 0.22410D+14 22 22 0.39838D+04 23 51 23 0.39838D+04 25

BRYBND 5000 1 0.12490D+06 24 17 0.13587D-19 33 49 16 0.12928D-16 38
10 0.10765D+12 37 26 0.14231D-19 51 50 24 0.98532D-17 55
100 0.12303D+18 – IL – – 810 189 0.35466D-16 473

DIXON3DQ 5000 1 0.80000D+01 2 2 0.11414D-24 1 2 2 0.11414D-24 1
10 0.24200D+03 2 2 0.34514D-23 1 2 2 0.34514D-23 1
100 0.20402D+05 2 2 0.29050D-21 1 2 2 0.29050D-21 1

DIXMAANA 3000 1 0.20501D+05 6 6 0.10000D+01 2 8 6 0.10000D+01 2
10 0.80013D+10 18 12 0.10000D+01 4 19 12 0.10000D+01 5
100 0.80000D+16 29 21 0.10000D+01 7 19 19 0.10000D+01 7

DIXMAANB 3000 1 0.43242D+05 6 6 0.10000D+01 2 15 6 0.10000D+01 2
10 0.17227D+11 – IL – – – IL – –
100 0.16116D+17 – IL – – – IL – –

DIXMAANC 3000 1 0.74483D+05 15 15 0.10000D+01 5 15 13 0.10000D+01 5
10 0.34452D+11 – IL – – – IL – –
100 0.32233D+17 – IL – – – IL – –

DIXMAANI 3000 1 0.12022D+05 100 33 0.10000D+01 12 108 18 0.10000D+01 9
10 0.80004D+10 184 58 0.10000D+01 22 152 32 0.10000D+01 16
100 0.80000D+16 263 77 0.10000D+01 29 247 41 0.10000D+01 21

EDENSCH 2000 1 0.73583D+07 13 13 0.12003D+05 4 31 16 0.12003D+05 7
10 0.15184D+12 19 19 0.12003D+05 7 53 20 0.12003D+05 9
100 0.16253D+16 24 24 0.12003D+05 8 48 25 0.12003D+05 11

ENGVAL1 5000 1 0.29494D+06 8 8 0.55487D+04 5 7 7 0.55487D+04 5
10 0.31990D+10 14 14 0.55487D+04 10 27 14 0.55487D+04 12
100 0.31994D+14 20 20 0.55487D+04 14 49 20 0.55487D+04 19

FLETCBV2 10000 1 -0.50013D+00 1 1 0.00000D+00 0 1 1 0.00000D+00 0
10 0.39995D+02 2 2 -0.50013D+00 2 2 2 -0.50013D+00 2
100 0.48995D+04 2 2 -0.50013D+00 2 2 2 -0.50013D+00 2

FREUROTH 5000 1 0.50486D+07 461 83 0.60793D+06 96 424 53 0.60821D+06 79
10 0.15963D+09 444 77 0.60726D+06 89 200 30 0.35200D+07 41
100 0.13056D+15 92 45 0.42206D+06 43 155 51 0.53488D+06 61

LIARWHD 10000 1 0.58500D+07 13 13 0.81983D-21 217 13 9 0.49397D-27 148
10 0.97359D+11 22 21 0.63218D-17 363 24 12 0.11125D-16 205
100 0.10189D+16 26 26 0.16259D-16 463 48 18 0.31712D-21 319

MOREBV 5000 1 0.15969D-06 2 2 0.58271D-14 1 2 2 0.58271D-14 1
10 0.15983D-04 2 2 0.22833D-09 1 2 2 0.22833D-09 1
100 0.17190D-02 2 2 0.32151D-04 1 2 2 0.32151D-04 1

NONDIA 10000 1 0.39996D+07 6 6 0.47632D-24 91 10 5 0.11200D-20 74
10 0.12099D+11 34 34 0.53482D-25 595 20 16 0.19919D-28 274
100 0.10200D+15 39 39 0.22382D-20 681 52 21 0.65733D-17 367

NONDQUAR 10000 1 0.10006D+05 20 20 0.41398D-09 965 20 20 0.41413D-09 970
10 0.99981D+08 25 25 0.12450D-08 1220 25 25 0.12538D-08 1230
100 0.99980D+12 31 31 0.73954D-09 1520 31 31 0.87210D-09 1530

PENALTY1 100 1 0.11448D+12 47 38 0.90255D-03 5 10 7 0.90249D-03 1
10 0.11448D+16 51 43 0.90255D-03 6 7 7 0.90249D-03 1
100 0.11448D+20 55 48 0.90257D-03 6 30 16 0.90252D-03 2

PENALTY2 100 1 0.16885D+07 24 21 0.97096D+05 3 26 20 0.97096D+05 3
10 0.15939D+11 27 26 0.97096D+05 4 47 27 0.97096D+05 4
100 0.15939D+15 31 31 0.97096D+05 4 70 31 0.97096D+05 5

POWELLSG 10000 1 0.53750D+06 16 16 0.10947D-04 14 33 15 0.83906D-05 18
10 0.40385D+10 21 21 0.32920D-04 19 28 22 0.11695D-04 26
100 0.40251D+14 27 27 0.19556D-04 25 31 27 0.54051D-05 32

QUARTC 1000 1 0.19850D+15 35 35 0.22354D-09 2 35 35 0.22354D-09 3
10 0.18125D+15 35 35 0.20411D-09 2 35 35 0.20411D-09 3
100 0.65804D+14 34 34 0.37515D-09 2 35 34 0.37515D-09 3

SINQUAD 10000 1 0.65610D+00 25 20 0.39609D-10 975 66 21 0.35876D-15 1030
10 0.00000D+00 1 1 0.35876D-15 0 1 1 0.35876D-15 0
100 0.65610D+04 18 18 0.69625D-08 881 47 19 0.42524D-15 966

SROSENBR 5000 1 0.48500D+05 9 8 0.93253D-11 3 16 7 0.10927D-17 3
10 0.44893D+10 97 66 0.38588D-18 28 65 33 0.22535D-15 18
100 0.51123D+14 – IL – – 204 97 0.26051D-08 55

TQUARTIC 1000 1 0.81000D+00 2 2 0.39936D-27 0 2 2 0.39936D-27 0
10 0.00000D+00 1 1 0.39936D-27 0 1 1 0.39936D-27 0
100 0.81000D+02 2 2 0.12622D-24 0 2 2 0.12622D-24 0

TRIDIA 10000 1 0.50005D+08 2 2 0.41242D-24 1 2 2 0.41242D-24 1
10 0.50005D+10 2 2 0.13131D-22 1 2 2 0.13131D-22 1
100 0.50005D+12 2 2 0.33835D-20 1 2 2 0.33835D-20 1

WOODS 10000 1 0.27296D+08 28 23 0.31973D-14 26 49 21 0.33996D-17 31
10 0.22566D+12 51 42 0.42521D-12 48 72 34 0.42039D-09 50
100 0.22122D+16 73 60 0.27578D-10 70 100 49 0.16526D-16 73

WOODS1 10000 1 0.55500D+06 9 9 0.17486D-11 9 12 8 0.25903D-20 10
10 0.41460D+10 15 15 0.38193D-13 17 22 14 0.26198D-19 20
100 0.40591D+14 21 21 0.61171D-14 24 33 20 0.17403D-17 29
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Table A.5

Results of the rank n− 1 test problems from the CUTE collection.

Standard Tensor
func n x0 initf fcn grad finalf time fcn grad finalf time

BRYBND 5000 1 0.12488D+06 488 30 0.17586D-10 376 176 10 0.13179D-10 130
10 0.10765D+12 – IL – – 1088 60 0.85644D-10 785
100 0.12303D+18 3396 201 0.97750D-21 2630 1560 84 0.16631D-11 1110

DIXON3DQ 5000 1 0.40000D+01 6 2 0.62536D-17 7 6 2 0.62536D-17 7
10 0.12100D+03 6 2 0.18917D-15 7 6 2 0.18917D-15 7
100 0.10201D+05 6 2 0.15948D-13 7 6 2 0.15948D-13 7

NONDQUAR 10000 1 0.10003D+05 – IL – – 182 24 0.57721D-07 635
10 0.99981D+08 – IL – – 4414 187 0.17004D-07 6080
100 0.99980D+12 – IL – – 3820 194 0.62846D-07 5600

QUARTC 1000 1 0.45000D+05 57 15 0.61708D-05 6 13 4 0.24654D-07 1
10 0.45000D+09 81 21 0.36635D-05 9 29 5 0.53107D-07 2
100 0.45000D+13 101 26 0.11038D-04 11 130 22 0.50906D-06 11

SROSENBR 5000 1 0.48481D+05 30 8 0.11403D-09 48 44 7 0.45822D-12 42
10 0.44888D+10 286 65 0.23622D-12 440 121 21 0.16587D-10 146
100 0.51122D+14 – IL – – 242 49 0.35217D-11 344

TQUARTIC 1000 1 0.32368D+04 38 12 0.38436D-15 4 17 4 0.98215D-17 2
10 0.15962D-23 1 1 0.98215D-17 0 1 1 0.98215D-17 0
100 0.32368D+06 23 8 0.20695D-15 3 28 9 0.14036D-15 3

TRIDIA 10000 1 0.50005D+08 6 2 0.41155D-14 27 6 2 0.41155D-14 27
10 0.50005D+10 6 2 0.44999D-12 27 6 2 0.44999D-12 27
100 0.50005D+12 11 3 0.14577D-13 53 11 3 0.14914D-13 54

WOODS 1000 1 0.27296D+07 248 49 0.52712D-11 24 224 32 0.41898D-10 17
10 0.22566D+11 342 67 0.63594D-11 32 245 38 0.20790D-11 20
100 0.22122D+15 446 87 0.44137D-11 42 308 47 0.22064D-10 25

WOODS1 1000 1 0.55491D+05 86 18 0.25201D-09 8 50 10 0.21981D-08 5
10 0.41460D+09 116 24 0.21634D-09 11 84 16 0.40452D-08 8
100 0.40591D+13 146 30 0.19591D-09 14 125 22 0.50008D-08 11

Table A.6

Results of the rank n− 2 test problems from the CUTE collection.

Standard Tensor
func n x0 initf fcn grad finalf time fcn grad finalf time

BRYBND 5000 1 0.12487D+06 527 29 0.42357D-09 454 268 14 0.30203D-08 219
10 0.10765D+12 824 46 0.16732D-15 724 670 32 0.34308D-10 519
100 0.12303D+18 – IL – – 1401 68 0.26897D-12 1100

DIXON3DQ 5000 1 0.80000D+01 7 2 0.62564D-17 9 7 2 0.62564D-17 9
10 0.24200D+03 7 2 0.18928D-15 9 7 2 0.18928D-15 9
100 0.20402D+05 7 2 0.15948D-13 9 7 2 0.15948D-13 9

NONDQUAR 10000 1 0.10002D+05 – IL – – 1109 70 0.14468D-06 2710
10 0.99980D+08 – IL – – 1674 86 0.96220D-07 3320
100 0.99980D+12 – IL – – 1923 101 0.40263D-07 3820

QUARTC 1000 1 0.45000D+05 57 15 0.61708D-05 6 13 4 0.24654D-07 1
10 0.45000D+09 81 21 0.36635D-05 9 101 17 0.53107D-07 8
100 0.45000D+13 101 26 0.11038D-04 12 130 22 0.50906D-06 11

SROSENBR 5000 1 0.48481D+05 72 13 0.82242D-14 108 91 15 0.23908D-16 128
10 0.44890D+10 429 77 0.69440D-04 683 465 68 0.14337D-16 615
100 0.51122D+14 – IL – – 1294 201 0.80433D+06 1830

TQUARTIC 1000 1 0.32335D+04 48 12 0.94635D-16 6 30 6 0.65443D-18 3
10 0.15946D-23 1 1 0.15946D-23 0 1 1 0.15946D-23 0
100 0.32335D+06 49 12 0.18893D-15 6 54 12 0.56162D-18 6

TRIDIA 10000 1 0.50005D+08 8 2 0.41344D-14 35 8 2 0.41344D-14 35
10 0.50005D+10 8 2 0.45002D-12 35 8 2 0.45002D-12 35
100 0.50005D+12 15 3 0.25973D-12 70 15 3 0.25973D-12 71

WOODS 1000 1 0.27277D+07 196 31 0.77284D-13 19 168 26 0.18453D-12 17
10 0.22564D+11 325 51 0.68702D-06 32 289 41 0.10869D-12 27
100 0.22121D+15 434 68 0.56038D-05 42 89 11 0.11251D-08 7

WOODS1 1000 1 0.55470D+05 118 18 0.18927D-09 11 91 16 0.10966D-07 10
10 0.41458D+09 – NC – – 127 22 0.30436D-08 14
100 0.40590D+13 – NC – – 31 6 0.19654D-08 3
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Abstract. This paper introduces a tensor-Krylov method, the tensor-GMRES method, for large
systems of nonlinear equations. Krylov subspace projection techniques for asymmetric systems of
linear equations are coupled with a tensor model formation and solution technique for nonlinear
equations. Similar to traditional tensor methods, the new tensor method is shown to have signifi-
cant computational advantages over the analogous Newton counterpart on a set of nonsingular and
singular problems. For example, an application to the Euler equations for the flow through a nozzle
with a given area ratio shows that the tensor-GMRES method can be much more efficient than the
analogous Newton-GMRES method. The new tensor method is also consistent with preconditioning
and matrix-free implementation.

Key words. nonlinear systems, Krylov subspaces, inexact Newton methods, tensor methods,
generalized minimal residual methods, singularity
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1. Introduction. This paper introduces a tensor-Krylov method for solving the
nonlinear equations problem

given F : <N → <N , find x∗ ∈ <N such that F (x∗) = 0.(1.1)

Standard methods (such as Newton’s method) widely used in practice for solving (1.1)
are iterative methods which base each iteration upon a linear model M(x) of F (x)
around the current point xc:

M(xc + d) = F (xc) + Jcd,(1.2)

where d ∈ <N and Jc ∈ <N×N is either the current Jacobian matrix or an approxima-
tion. When Jc is very large, (1.1) is often (inexactly) solved via a Krylov method, such
as the GMRES method, which does not require the factorization of Jc. The distinct
advantage of Krylov methods is their minimum storage requirement. Newton–Krylov
schemes are considered by many authors, including Brown and Saad [6, 7], Chan and
Jackson [8], and Brown and Hindmarsh [5]. Their computational results show that
these methods can be quite effective for many classes of problems in the context of
systems of partial differential equations or ordinary differential equations.

The distinguishing feature of the Newton-equation–based algorithm is that if
F ′(xc) is Lipschitz continuous in a neighborhood containing the root x∗, F

′(x∗) is
nonsingular and (1.2) is solved exactly (or to certain accuracy; e.g., see [7] for more
details), then the sequence of iterates produced converges locally and q-quadratically
to x∗. This means eventual fast convergence in practice. If F ′(x∗) is singular, however,
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then the Newton-equation–based methods usually do not have rapid local convergence.
This situation is analyzed and acceleration techniques are suggested by many authors,
including Reddien [28], Decker and Kelley [10], [11], [12], Decker, Keller, and Kelley
[9], Kelley and Suresh [21], Griewank and Osborne [19], and Griewank [18]. Recent
work by Kelley and Xue [22] discusses inexact Newton methods for singular problems.
In summary, their papers show that when the Jacobian matrix at the solution has a
nontrivial null space, the Newton-equation–based methods have at best a linear rate
of convergence. Acceleration techniques presented in those papers depend upon a
priori knowledge that the problem is singular.

Tensor methods for nonlinear equations introduced by Schnabel and Frank [31] are
intended to be efficient both for nonsingular problems and for problems with low rank
deficiency. However, these methods rely on the factorization of the Jacobian matrix,
which makes them unsuitable for many large systems of nonlinear equations. The
goal of this paper is to develop a tensor method (referred to as the tensor-GMRES)
for large systems of nonlinear equations using Krylov subspace projection techniques.
This method is independent of matrix factorization and can have efficient matrix-free
implementations. In addition, it is intended to inherit the advantage of traditional
tensor methods over the standard Newton’s method for both singular and nonsingular
problems.

Tensor-Krylov methods were first considered by Bouaricha in his Ph.D. thesis
[2]. The basic idea is to solve the tensor model by calling a linear Krylov method
twice in each tensor iteration. Although the second call of the Krylov method could
be less expensive (due to a possible good initial guess) close to the solution, the
computational cost of one iteration of tensor methods based on this idea is likely to
be significantly more expensive than one iteration of the analogous Newton–Krylov
(e.g., see [3]). This difficulty could make these tensor methods noncompetitive with
their Newton counterpart in many situations.

The new tensor-GMRES method introduced in this paper requires no more func-
tion and derivative evaluations (and hardly more storage or arithmetic per iteration)
than the analogous Newton-GMRES method. This is achieved by formulating the
tensor term in a more restricted form than that of a traditional tensor model. The re-
striction is observed to have minimal impact on the performance of the tensor method.
Comparative test results show that the tensor-GMRES method is more efficient than
an analogous Newton-GMRES method, particularly on problems where the Jacobian
matrix provides insufficient information.

We would like to introduce some notation that will be used later on in this paper.
The solution to the system is represented by x∗, and a current iterate is represented by
xc or xk. Consistent with tradition, we denote F ′(x) by J(x) and usually abbreviate
J(xc), J(x∗) as Jc , J∗, respectively. Similarly, F (xc), F (x∗), F

′′(xc), and F ′′(x∗) are
often abbreviated as Fc , F∗ , F ′′c , and F ′′∗ . The notation ‖ · ‖ denotes the Euclidean
vector norm. We use N to denote the length of x, which is also the number of variables
(equations) in the system.

This paper is organized as follows. Section 2 reviews the GMRES algorithm and
a line search Newton-GMRES algorithm. Traditional tensor methods for nonlinear
equations are briefly reviewed in section 3. The core of this paper is section 4, which
introduces the formation and solution of the new tensor-GMRES model. Implemen-
tation of the tensor-GMRES algorithm is given in section 5. Test results comparing
the tensor-GMRES method versus the analogous Newton-GMRES method are also
reported in this section. Finally, in section 6, we summarize our research and make
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some brief comments on areas for future related research.

2. Newton-GMRES method for nonlinear equations. The GMRES (Gen-
eralized Minimal RESidual) method was introduced by Saad and Schultz [30] for
solving large asymmetric systems of linear equations. This method is very effective
when coupled with preconditioning techniques. It is also very competitive compared
to other iterative methods in many applications.

Given a matrix A ∈ <N×N , a vector v1 ∈ <N , and an integer m ≥ 1, the Krylov
subspace associated with A, v1, and m is defined as

Km(A, v1) = span{v1, Av1, A
2v1, . . . , A

m−1v1}.

Consider a system of linear equations Ax = b. Given an initial guess x0, the
initial residual is defined as r0 = Ax0 − b. The GMRES method attempts to find
zm ∈ Km(A, r0) such that the residual vector A(x0 + zm)− b has minimal norm. The
Gram–Schmidt method is used to compute an l2-orthonormal basis {v1, v2, . . . , vm}
of Km(A, v). (In practice, a modified Gram–Schmidt is often used instead.)

Algorithm G. GMRES.
(G-1) Start. Choose x0 and compute r0 = b−Ax0 and v1 = r0/‖r0‖.
(G-2) Iterate. For j = 1, 2, . . . ,m, . . . until satisfied do:

hi,j = (Avj , vi), i = 1, 2, . . . , j,

v̂j+1 = Avj −
j∑
i=1

hi,jvi,

hj+1,j = ‖v̂j+1‖,
vj+1 = v̂j+1/hj+1,j .

(G-3) Form the approximate solution:
xm = x0 + Vmym where ym minimizes ‖βe1 − H̄mym‖, y ∈ <m.

As consequences of m iterations of (G-2) (assume it does not break down; i.e.,
‖v̂j+1‖ does not vanish throughout), we have m+1 orthonormal vectors v1, . . . , vm+1,
and an (m+1)×m Hessenberg matrix H̄m whose nonzero entries are given by the hi,j
produced by the algorithm. Let Vm = [v1, . . . , vm]. An important relation AVm =
Vm+1H̄m holds after each iteration of (G-2).

The GMRES scheme is based on solving the following least squares problem:

min
zm∈Km

‖b−A(x0 + zm)‖ = min
zm∈Km

‖r0 −Azm‖,(2.1)

where r0 = b − Ax0. If we set zm = Vmy, v1 = r0/‖r0‖, and β = ‖r0‖, this is
equivalent to solving

min
y∈<m

‖βv1 −AVmy‖ = min
y∈<m

‖Vm+1(βe1 − H̄my)‖

= min
y∈<m

‖βe1 − H̄my‖.(2.2)

The least squares problem (2.2) is solved via a QR factorization of H̄m, which is fairly
inexpensive because of the Hessenberg form of H̄m. When m is small, the cost of
solving (2.2) is minimal.

Due to memory limitations, it is necessary to restrict the number of iterations
taken by the Arnoldi process in (G-2). This leads to restarted versions of GMRES.
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The idea is to use the GMRES iteratively by restarting the algorithm every m steps,
where m is some fixed integer parameter. Using the GMRES as a linear solver, one
can obtain a Newton-GMRES algorithm for nonlinear equations. At each iteration
of the nonlinear algorithm, a solution (or an approximate solution) is sought to the
linear system

Jcd = −Fc,(2.3)

with Jc being the current Jacobian matrix and Fc being the current function value.
The Newton-GMRES method is an inexact Newton method in the sense that at each
iteration, a Newton-like step is obtained by solving the Newton equation approxi-
mately instead of exactly for a step d such that ‖Fc + Jcd‖ < ‖Fc‖. (Inexact Newton
methods originated from the work of Dembo, Eisenstat, and Steihaug [13].) A step
obtained in this way is a descent direction for 1

2‖F (x)‖2 (see [7] and [15] for details).
A global convergence strategy such as backtracking line search is employed to deter-
mine the step length along this descent direction, which will force progress towards
the solution.

Algorithm NG. An iteration of the Newton-GMRES.
Given xk, Jk ∈ <N×N and Fk ∈ <N .
(NG-1) Choose εk ∈ [0, 1), the tolerance for the Newton equation step.
(NG-2) Do GMRES (restart if necessary) to find dn = d0 + Vmy

n such that

Fk + Jkd
n = rk, with ‖rk‖/‖Fk‖ ≤ εk,

where d0 is the initial guess to the solution of the Newton equation,
and the columns of Vm form an orthonormal basis for the Krylov
space generated by the Arnoldi process.

(NG-3) Find λ > 0 using a backtracking line search global strategy and form
the next iterate xk+1 = xk + λdn.

The residual vector rk is the amount by which dn fails to satisfy the Newton
equation Jkd + Fk = 0. The forcing sequence εk is used to control the level of accu-
racy. The seminal local convergence analysis for inexact Newton methods was given
by Dembo, Eisenstat, and Steihaug [13]. Their theory implies that if the sequence
εk → 0, then under certain conditions (such as the Jacobian matrix being nonsingu-
lar at the solution) the iterates generated by Algorithm NG converge to the solution
superlinearly; the convergence is quadratic if εk = O(‖Fk‖). This means eventual fast
convergence in practice for nonsingular problems.

An attractive feature of Newton–Krylov algorithms is that the explicit computa-
tion of the Jacobian matrix is not necessary. This is owing to the fact that the only
computation involving the Jacobian matrix is the product of the Jacobian matrix and
a vector, which can be approximated by finite difference

J(x)v ≈ F (x+ σv)− F (x)

σ
,(2.4)

with an appropriately chosen value of σ (see, e.g., [14] for details).

3. Traditional tensor methods for nonlinear equations. The tensor model
for nonlinear equations introduced by Schnabel and Frank [31] is a quadratic model
M(x) of F (x) formed by adding a second order term to the linear Taylor series model,
giving

MT (xk + d) = F (xk) + F ′(xk)d+
1

2
Tkdd,(3.1)
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where Tk ∈ <n×n×n is intended to supply second order information about F (x) around
xk, without appreciably increasing the cost of forming, storing, or solving the model.
Schnabel and Frank [31] form Tk by requiring the tensor model to interpolate the
function values at a very small number, p, of past iterates. This requires no additional
function or derivative evaluations. By choosing the smallest Tk in the Frobenuis norm
that meets these conditions, Tk has rank p, the term Tkdd has a simple form, and the
cost of forming and storing Tk is very small.

Since (3.1) may or may not have a root, the goal is to solve

min
d∈<n

‖MT (xk + d)‖2.

Schnabel and Frank [31] show that when the factorization of the Jacobian matrix is
available, this can be done nearly as efficiently as solving the standard linear model,
usually by solving p quadratic equations in p unknowns and n− p linear equations in
n − p unknowns. If F ′(xk) is large and sparse, the tensor model solution could still
cost very little more than the standard sparse Newton iteration; see [2].

Computational results in [31] and [2] show that the tensor method is more efficient
than an analogous standard method based upon Newton’s method on both nonsingu-
lar and singular problems, with a particularly large advantage on singular problems.
In tests in [31] on a standard set of nonsingular test problems, the tensor method
is almost always more efficient than the standard method and is never significantly
less efficient, with an average improvement over 20% for all problems and over 35%
for harder problems. The average improvement in iterations and function evaluations
for singular problems is larger, generally in the range of 30% to 65%. More recent
computational experiments in [2], including experiments on much larger problems,
show similar advantages for tensor methods.

Furthermore, tensor methods have theoretical advantages over standard methods.
It is shown in [16] that under mild conditions, tensor methods have local superlinear
convergence for a large class of singular problems. In the same situation, standard
methods only have linear convergence. The analysis in [16] also confirms that tensor
methods converge at least quadratically on problems where the Jacobian matrix at
the root is nonsingular.

4. Tensor-GMRES method for nonlinear equations.

4.1. Introduction. The tensor method introduced here is primarily intended
to improve upon the Newton–Krylov methods in cases where the Jacobian matrix
is singular or ill conditioned at the solution. The basic idea is to first compute the
Newton-GMRES step. Then the Krylov subspace which resulted from the Newton-
GMRES step computation is utilized to form a tensor model, which is subsequently
solved to give a tensor step.

The tensor model considered here only uses information from one past iterate.
There are three reasons for this. First, tensor methods that use one past point are
easier to implement and have satisfactory computational performance in practice.
Second, tensor methods based on a single past point are theoretically better under-
stood. Third and most importantly, using more past points may require significantly
more storage.

The major difference between the new tensor model and the traditional tensor
model is that the new model has a more restricted second order term. The analysis of
tensor methods for nonlinear equations by Feng, Frank, and Schnabel [16] indicates
that tensor methods will not lose fast local convergence on singular problems if the
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tensor term is projected into proper subspaces. As a matter of fact, we can show
that for problems where the Jacobian matrix has rank deficiency one at the solution,
if the second order term in the tensor model is projected into the subspace spanned
by the left singular vector corresponding the smallest singular value of the Jacobian
matrix, the theoretical results given in [16] remain intact. This is the theoretical
foundation of our tensor-GMRES method. The idea of projected tensor methods was
first implemented in [17] for constrained optimization, where the projection took place
in the variable space. The difference here is that the projection occurs in the function
space.

Some notation is also useful to us. Let F ′(xc) = UcDcV
T
c be the singular value

decomposition of F ′(x) at xc, where Uc = [uc1, u
c
2, . . . , u

c
N ], Vc = [vc1, v

c
2, . . . , v

c
N ], and

Dc = diag[σc1, σ
c
2, . . . , σ

c
N ], with σc1 ≥ σc2 ≥ · · · ≥ σcN ≥ 0 being the singular values

of F ′(xc) and {uci}, {vci } being the corresponding left and right singular vectors.
Similarly, let F ′(x∗) = UDV T . Let v and u be the right and left singular vector of
F ′(x∗) corresponding to the zero singular value, when F ′(x∗) has rank deficiency one.

4.2. Analysis of an ideal tensor method. The analysis in this section is an
extension of the analysis of tensor methods for nonlinear equations by Feng, Frank,
and Schnabel [16]. We will refer to some of their lemmas and theorems, and sometimes
parts of their proofs. For the sake of brevity, we do not reiterate their results here.
See [16] for details.

The sequence of iterates produced by the algorithm analyzed is invariant to trans-
lations in the variable space. Thus, no generality is lost by making the assumption
that the solution occurs at x∗ = 0 (which is consistent with [16]), and this assumption
is made throughout this section. We also assume that vcN and ucN are chosen so that
‖vcN − v‖ = O(‖xc‖) and ‖ucN − u‖ = O(‖xc‖), whenever xc is sufficiently close to
x∗. This assumption is valid from the theorems about continuity of eigenvectors in
Ortega [25] and Stewart [32], as long as F ′(x) is continuous near x∗ and has rank
deficiency no greater than one at x∗.

Before going into the details of the analysis, we give Assumption 4.0. It basically
states that near x∗, the second order term supplies useful information in the null space
direction of F ′(x∗), where F ′(x∗) lacks information.

Assumption 4.0. Let F : <N → <N have two Lipschitz continuous derivatives.
Let F (x∗) = 0, F ′(x∗) be singular with only one zero singular value, and let u and
v be the left and right singular vectors of F ′(x∗) corresponding to the zero singular
value. Then we assume that

uTF ′′(x∗)vv 6= 0,(4.1)

where F ′′(x∗) ∈ <N×N×N .
Assumption 4.0 is satisfied by most problems with rank(F ′(x∗)) = N − 1 and

has been assumed in most papers that analyze the behavior of Newton’s method on
singular problems. When N = 1, Assumption 4.0 is equivalent to F ′′(x∗) 6= 0.

Suppose we know the right and left singular vectors vcN and ucN corresponding to
the least singular value of F ′(xc), where xc is the current iterate and ‖vcN‖ = ‖ucN‖ =
1. Let W ∈ <N×m with m ≤ N orthonormal columns. Consider an ideal tensor
model

MTW (xc + d) = F (xc) + F ′(xc)d+
1

2
(WWT )ac(v

cT
N d)2,(4.2)

where ucN is in the span of the column vectors of W , i.e., ucN = Wy for some y ∈ <m 6=
0, and ac = F ′′(xc)v

c
Nv

c
N . The model is an excellent model of F (x) at xc because
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it contains the correct second order information where the Jacobian contains the
least information and, correspondingly, where the second order term has the greatest
influence. Based on (4.2), a simple tensor algorithm, Algorithm PT, is designed.

Algorithm PT. Projected Tensor Algorithm.

IF (4.2) has real roots THEN
d← dR where dR solves MTW (xc + d) = 0

ELSE d← dM where dM minimizes ‖MTW (xc + d)‖
Since (4.2) is the basis for the new tensor-GMRES model, an analysis of Algorithm

PT is given. The tensor model specified in (4.2) is closely related to the ideal tensor
model analyzed by Feng, Frank, and Schnabel [16]. The only difference is that their
ideal model does not have a projection matrix WWT in front of ac. It can be shown
that this difference does not change their results.

Corollary 4.1. Let Assumption 4.0 hold and let {xk} be the sequence of iter-
ates produced by Algorithm PT. There exist constants K1,K2 such that if ‖x0‖ ≤ K1,

then the sequence {xk} converges to x∗ and ‖xk+2‖ ≤ K2‖xk‖
3
2 for k = 0, 1, 2, . . ..

Proof. Since ucN = Wy, from the orthogonality of columns of W , we have

ucNu
c
N
TWWT = ucNy

TWTWWT = ucNy
TWT = ucNu

c
N
T .(4.3)

Using (4.3),

MTW (xc + d)

=

(
N∑
i=1

uciu
c
i
T

)(
Fc +

N∑
i=1

σciu
c
iv
c
i
T d+ 1

2 (WWT )ac(v
c
N
T d)2

)

=

[
N−1∑
i=1

(σci v
c
i
T d+ uci

TFc + 1
2u

c
i
T (WWT )ac(v

c
N
T d)2)uci

]
+(σcNv

c
N
T d+ ucN

TFc + 1
2u

c
N
Tac(v

c
N
T d)2)ucN .(4.4)

Note that the difference between (4.4) and (4.2) of [16] is only a second order term in
the coefficient of each uci for i = 1, . . . , N−1, which does not affect either of the proofs
of Lemmas 4.1 and 4.2 of [16]. The rest of the proof can be completed by following
exactly the proof of Theorem 4.4 of [16].

4.3. Formation of the tensor model. The first stage of the tensor-GMRES
algorithm is to compute a Newton-GMRES step. The resulting Krylov subspace
information from the Newton-GMRES step calculation is then utilized to form and
solve a tensor-GMRES model. At the current iterate xc, an ideal situation is that

Fc + Jcd
n = 0(4.5)

is solved exactly by the GMRES method with dn = Vmym+d0 (starting from d0). An
interesting fact is that the resulting Newton step dn is in the span of {Vm, d0}. The
analysis of Feng, Frank, and Schnabel [16] indicates that when the Jacobian matrix
has a null space of dimension one at the solution, the Newton iterates fall into a funnel
around the null space close to the solution. In this situation, their theory also implies
that the angle between dn and vcN , the right singular vector corresponding to the
smallest singular value of the current Jacobian matrix Jc, will be arbitrarily close to
zero, close to the solution. As a consequence of dn ∈ {Vm, d0}, vcN will be arbitrarily
close to being in the span of {Vm, d0}. Hence ucN , in the same direction as Jcv

c
N , will



764 DAN FENG AND THOMAS H. PULLIAM

be arbitrarily close to being in the span of Jc[Vm d0]. Therefore, a good approximate
to the projection matrix WWT in (4.2) would be the projection matrix

P = Y (Y TY )−1Y T , where Y = Jc[Vm d0].(4.6)

In practice, a Newton-GMRES step is usually required to give sufficient reduction
in the residual norm of (4.5), rather than solve the equation exactly. Nevertheless, for a
sufficient small residual norm, P would still be a reasonable and useful approximation
to WWT . This is confirmed by test results given in the next section.

The singular vectors and the exact second order derivative used in (4.2) are nor-
mally too expensive to obtain. We approximate them in the following manner. As in
the situation of the traditional tensor model, let sc = xp − xc, the difference between
the past iterate xp and the current iterate xc. There are two choices for approximat-
ing vcN in (4.2); one choice uses dn/‖dn‖, since the Newton step dn is likely to be
along the null space close to the solution for singular problems. Another choice uses
h = sc/‖sc‖, since the difference between the two consecutive iterates is also likely to
be along the null space when consecutive iterates are in the funnel around the null
space near the solution. We choose to use h because, as we will see later, this will
cause our tensor model to interpolate a past point in a projected space. The ability
to interpolate past points is vital for the success of traditional tensor methods. Close
to the solution, the term ac = F ′′(xc)v

c
Nv

c
N in (4.2) is likely to be approached by

āc =
2(F (xp)− F (xc)− J(xc)sc)

sTc sc
= F ′′(xc)hh+ E,(4.7)

where ‖E‖ = O(‖sc‖) (see [16]). Equation (4.7) is standard in a tensor model formu-
lation, which requires no extra function or derivative evaluations.

Putting all the pieces together, we arrive at the following tensor model:

MTP (xc + d) = Fc + Jcd+ 1
2P āc(h

T d)2,(4.8)

where P is given by (4.6). It is easy to verify that the unprojected tensor model

MT (xc + d) = Fc + Jcd+ 1
2 āc(h

T d)2(4.9)

interpolates the function value at the past point xp. Hence,

PMTP (xc + d) = PFc + PJcd+ 1
2PP āc(h

T d)2

= PFc + PJcd+ 1
2P āc(h

T d)2

= P (Fc + Jcd+ 1
2 āc(h

T d)2)

implies that the interpolation property holds in a projected space. A second property
of (4.8) is that when m = N and Jc is nonsingular, the projector matrix P is equal
to identity, which recovers the full tensor model (4.9).

4.4. Solution of the tensor model. Solving the tensor model (4.8) in the
full variable space is not preferable since it could be as expensive as solving the full
tensor model. An alternative is to solve (4.8) along a subspace that spans the Newton
step direction. Despite tending to undershoot (or overshoot) when the first order
information is lacking, the Newton step usually gives good directional information.
Therefore, we would like to solve the least squares problem

min
d∈{d0}∪Km

‖Fc + Jcd+ 1
2P āc(h

T d)2‖.(4.10)
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Recall that JcVm = Vm+1H̄m. Let H̄m = Q̄mR̄m be the QR factorization of H̄m.
(Note that Q̄m is the product of m Givens rotations; for details see [30].) Let d =
Vmy + d0τ . Using r0 = −Fc − Jcd0, (4.10) is equivalent to solving

min
y∈<m,τ∈<

∥∥∥∥∥Fc + Jc[Vm, d0]

(
y
τ

)
+ 1

2P āc

{
hT [Vm, d0]

(
y
τ

)}2
∥∥∥∥∥

= min
y∈<m,τ∈<

∥∥∥∥∥Fc + [Vm+1H̄m, g]

(
y
τ

)
+ 1

2P āc

{
hT [Vm, d0]

(
y
τ

)}2
∥∥∥∥∥ ,(4.11)

where g = −Fc − r0. An important feature of (4.11) is that it does not involve the
Jacobian matrix Jc. We simplify (4.11) to

min
ŷ∈<m+1

‖Fc + Ĵ ŷ + 1
2 âc(ŝ

T ŷ)2‖,(4.12)

where Ĵ = [Vm+1H̄m, g], ŷ = [yT τ ]T , âc = P āc, and ŝ = [Vm, d0]Th. The solution of
this type of nonlinear least squares problem is studied by Bouaricha and Schnabel in
[4]. Their theory shows that when Ĵ has full rank, the solution of (4.12) is given by

ŷ∗ = (ĴT Ĵ)−1ŝ q(β∗)/ω − (ĴT Ĵ)−1ĴT (Fc + 1
2 âcβ

2
∗),(4.13)

where q(β) and ω are defined by

q(β) = ŝT (ĴT Ĵ)−1ĴTFc + β + 1
2 ŝ
T (ĴT Ĵ)−1ĴT âcβ

2,(4.14)

ω = ŝ(ĴT Ĵ)−1ŝ,(4.15)

and the value of β∗ is determined from

min
β∈<
‖q(β)/

√
ω‖2 + ‖n(β)‖2,(4.16)

where ‖n(β)‖2 = ‖(Fc − PFc) + 1
2 (âc − P âc)β2‖2.

In our situation, since P is a projector matrix and

âc − P âc = P āc − PP āc = P āc − P āc = 0,

n(β) is a constant function. Hence, the minimization problem (4.16) is equivalent to

min
β∈<
‖q(β)‖.(4.17)

To obtain ŷ∗, the critical computational work comes from the factorization of ĴT Ĵ ,
since all the computations involving (ĴT Ĵ)−1 can be achieved through backsolves
when this factorization is available. For this reason, we discuss the factorization of
ĴT Ĵ . Recall that Ĵ = [Vm+1H̄m, g] and H̄m = Q̄mR̄m. Hence, we have

ĴT Ĵ = [Vm+1H̄m, g]T [Vm+1H̄m, g]

=

(
H̄T
mH̄m H̄T

mV
T
m+1g

gTVm+1H̄m gT g

)
=

(
R̄TmR̄m H̄T

mV
T
m+1g

gTVm+1H̄m gT g

)
=

(
R̄1
m

T
0

wT γ

)(
R̄1
m w
0 γ

)
,
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where R̄1
m is the first m rows of R̄m, w = Q̄TmV

T
m+1g, and γ =

√
gT g − wTw. The

factorization is possible since ĴT Ĵ is always at least positive semidefinite. After ŷ∗ is
obtained, (4.10) is solved by dt = [Vm, d0]ŷ∗.

However, the calculation of expressions involving (ĴT Ĵ)−1 is impossible if γ = 0;
i.e., Ĵ is rank deficient. We discuss how to overcome this difficulty. Since Ĵ =
[Vm+1H̄m, g] and Vm+1H̄m has full rank, Ĵ being singular implies that g has to be
in the span of {Vm+1H̄m}, which implies that Jcd0 = g is in the span of JcVm =
Vm+1H̄m. When Jc has full rank, this implies that d0 is in the span of {Vm}, which
in turn implies that dn = d0 + Vmy

n is in the span of Vm. In this situation, based
on previous discussions, we actually would like to solve the tensor model (4.8) in the
Krylov subspace Vm only, i.e.,

min
z∈Km

‖Fc + Jc(d0 + z) + 1
2 P̄ āc(h

T (d0 + z))2‖,(4.18)

where P̄ = Ȳ (Ȳ T Ȳ )−1Ȳ T with Ȳ = JcVm, which is equivalent to solving

min
y∈<m

‖Fc + Jcd0 + JcVmy + 1
2 P̄ āc(h

T (d0 + Vmy))2‖.(4.19)

Note that

P̄ = Vm+1Q̄mR̄m[(Vm+1Q̄mR̄m)T (Vm+1Q̄mR̄m)]−1(Vm+1Q̄mR̄m)T

= Vm+1Q̄mR̄m(R̄TmR̄m)−1R̄TmQ̄
T
mV

T
m+1

= Vm+1Q̄m

(
Im 0
0 0

)
Q̄TmV

T
m+1.(4.20)

Using JcVm = Vm+1H̄m, H̄m = Q̄mR̄m, r0 = −Fc − Jcd0, (4.20), and by letting b be
the first m components of Q̄TmV

T
m+1āc, (4.19) is equivalent to

min
y∈<m

∥∥∥∥−r0 + Vm+1H̄my + 1
2Vm+1Q̄m

(
b
0

)
(hT (d0 + Vmy))2

∥∥∥∥
= min
y∈<m

∥∥∥∥Vm+1

(
‖r0‖e1 − Q̄mR̄my − 1

2 Q̄m

(
b
0

)
(hT (d0 + Vmy))2

)∥∥∥∥
= min
y∈<m

∥∥∥∥Q̄m(Q̄Tm‖r0‖e1 − R̄my − 1
2

(
b
0

)
(hT (d0 + Vmy))2

)∥∥∥∥
= min
y∈<m

‖w − R̄1
my − b(hT (d0 + Vmy))2‖+ |τ |,(4.21)

where [mT τ ]T = Q̄Tm‖r0‖e1 and R̄1
m is the first m rows of R̄m. Again, using the

techniques for solving the tensor model of nonlinear least squares developed in [4], we
form the β function

q(β) = hTVm(R̄1
m)−1w − hTVmy − 1

2h
TVm(R̄1

m)−1b(hT (d0 + Vmy))2

= ĥT (R̄1
m)−1w + hT d0 − β − 1

2 ĥ
T (R̄1

m)−1bβ2,(4.22)

where β = hT (d0 + Vmy) and ĥ = V Tmh, and solve the minimization problem

min
β∈<
‖q(β)‖.(4.23)

Let β∗ be a solution to (4.23). By the theory established in [4], (4.21) is solved by

yt∗ = [(R̄1
m)T (R̄1

m)]−1ĥq(β∗)/ω + (R̄1
m)−1w − 1

2 (R̄1
m)−1bβ2

∗ .
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Then the tensor step for the system of nonlinear equations is given by

dt = d0 + Vmy
t
∗.(4.24)

4.5. Preconditioning and matrix-free implementation. The success of the
GMRES method on a system of linear equations usually depends on a good precon-
ditioner. The formation and solution of the tensor model is consistent with precon-
ditioning. When a preconditioner M is used in solving the Newton equation by the
GMRES algorithm, āc is replaced by M−1āc, and Fc is replaced by M−1Fc for left
preconditioning (or s by M−1s for right preconditioning). The rest of the solution
procedure is unchanged.

Compared to the Newton-GMRES method, the only extra computation involving
the Jacobian matrix in the tensor-GMRES method is the computation of Js in the
formation of the tensor term. In a Jacobian-free implementation, this matrix-vector
product can be approximated by the finite difference formula specified by (2.4). Hence,
the tensor-GMRES scheme is consistent with matrix-free implementation.

4.6. Work comparison. If m steps of GMRES are required to solve the Newton
equation, in addition to m Jacobian-vector products, the Newton-GMRES iteration
costs m(m+ 2)N multiplications and requires storage of m+ 1 N -vectors. The extra
storage required by the tensor-GMRES method is two N -vectors.

The extra computational cost of forming the tensor model is N multiplications.
Compared to the solution of the Newton equation by the GMRES algorithm in a
similar situation, the solution of the tensor model requires a minimal amount of extra
work. The major extra work comes from forming dt, ŝ, ĴT âc, and ĴTFc, each requiring
(m + 1)N multiplications (note that ĴT âc = ĴTP āc = ĴT āc from the definition of
P ). Since V Tm+1g = V Tm+1(−Fc − r0) = −V Tm+1Fc − ‖r0‖e1, given V Tm+1Fc, the cost

of V Tm+1g is only a single subtraction. Hence, the extra cost of factorization of ĴT Ĵ ,
which involves the calculation of Q̄TmV

T
m+1g, gT g and wTw, is N+5m multiplications.

The operation count is accumulated from an application of m Givens rotations costing
4m multiplications, a dot-product of two N -vectors costing N multiplications, and a
dot-product of two m-vectors costing m multiplications. Given ŝ, ĴT âc, and ĴTFc,
the major cost of forming q(β) and ω defined in (4.14) and (4.15), respectively, comes
from the calculation of ŝT (ĴT Ĵ)−1. Using the available factorization of ĴT Ĵ , this
can be done by two backsolves of (m + 1) × (m + 1) triangular systems, which costs
(m+ 1)2 multiplications. After ŝT (ĴT Ĵ)−1 is obtained, the cost of forming q(β) and
ω is three dot-products of two m-vectors costing 3m multiplications. The cost for
obtaining ŷ∗ using (4.13) needs two extra backsolves of (m+ 1)× (m+ 1) triangular
systems, which costs (m + 1)2 multiplications, given ŝT (ĴT Ĵ)−1, ĴT âc, and ĴTFc.
In summary, the total extra work required by solving the tensor model in the worse
situation is at most (4(m+ 1) + 1)N + 2(m+ 1)2 + 8m multiplications compared to
the GMRES algorithm.

Because of the memory limitation, restarts might be required for the GMRES
to solve the Newton equation. However, we should point out that the tensor model
is not formed until the Newton equation is approximately solved by the GMRES
algorithm or, in other words, until the Krylov space that contains the solution to the
Newton equation is found. We form the tensor model only using the Krylov subspace
generated in the last restarted GMRES algorithm. The tensor model has nothing to
do with the intermediate Krylov spaces generated by the GMRES algorithm which
resulted from restarts before the final restart. In addition, no extra preconditioning
calculation is needed for obtaining the tensor step. Therefore, compared to the total
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cost of the Newton-GMRES with restarts, the extra cost of formation and solution
of the tensor model is likely to be minimal for a large portion of nonlinear problems,
particularly hard problems that need many restarts of the GMRES algorithm.

5. Implementation and testing. In the previous section, we presented the
main new features of our tensor-GMRES method for nonlinear equations, namely,
how to form the quadratic model of the nonlinear function and how to solve this
model efficiently. In this section the complete algorithm is implemented to test these
ideas. Various aspects of this algorithm are discussed; then, test results on several
problems are presented.

Although the tensor model is derived from an ideal situation, i.e., assuming that
the Newton equation is solved exactly by the GMRES method, test results indicate
that the tensor method based on this model works fairly well in inexact situations.

This section is organized as follows. Section 5.1 gives a complete tensor-GMRES
algorithm for systems of nonlinear equations and discusses the implementation of each
step in detail. In sections 5.2–5.4 we will show comparative test results for the tensor-
GMRES algorithm given in section 5.1 (Algorithm TG) versus the Newton-GMRES
algorithm given in section 2 (Algorithm NG) with the same implementation. Three
distinct test problems, i.e., the Broyden tridiagonal problem, a Bratu problem, and
the one-dimensional Euler equations problem, and several of their variants were used
in the testing. The tests on the Bratu problem, the Broyden tridiagonal problem, and
their variants were performed on a Sun Super Workstation II+/50 using MATLAB.
The test on the one-dimensional Euler equations problem was performed on a Cray
Y-MP using FORTRAN 90.

5.1. A complete algorithm. The full algorithm of the tensor-GMRES method
is defined in the following algorithm.

Algorithm TG. An iteration of the tensor-GMRES method.

Given xk, xk−1 ∈ <N , Jk ∈ <N×N , Fk ∈ <N and Fk−1 ∈ <N .
(TG-1) Decide whether to stop. If not:
(TG-2) Set s = xk−1 − xk, a = 2(Fk−1 − Fk − Jks)/(sT s) and h = s/‖s‖.

Choose a tolerance εk ∈ [0, 1).
(TG-3) Do GMRES (restart if necessary) to find dn = d0 + Vmy

n such that

Fk + Jkd
n = rk with ‖rk‖/‖Fk‖ < εk,

where d0 is the starting point of the last restarted GMRES procedure,
and the columns of Vm form an orthonormal basis for the Krylov
space generated by the corresponding Arnoldi process. In addition,
let H̄m be the Hessenberg matrix generated from the Arnoldi process,
and H̄m = Q̄mR̄m be its QR-factorization. Let R̄1

m be the first m
rows of R̄m.

(TG-4) If d0 = 0 or d0 ∈ {Vm} then
Solve

min
y∈<m

‖Fk + Jkd0 + JkVmy + 1
2 ā{h

T (d0 + Vmy)}2‖,(5.1)

where ā = (JkVm){(JkVm)T (JkVm)}−1(JkVm)Ta, by first
solving

min
β∈<
‖q1(β) ≡ ĥT1 (R̄1

m)−1w + hT d0 − β − 1
2 ĥ

T
1 (R̄1

m)−1bβ2‖,



TENSOR-GMRES METHOD 769

to obtain a solution β∗, where w is the first m compo-
nents of QTm‖Fk + Jkd0‖e1, b is the first m components of

QTmV
T
m+1a, and ĥ1 = V Tmh. Then the solution to (5.1) is

given by

yt∗ = [(R̄1
m)T (R̄1

m)]−1ĥ1q1(β∗)/ω + (R̄1
m)−1w − 1

2 (R̄1
m)−1bβ2

∗ ,

where ω = ĥT1 [(R̄1
m)T (R̄1

m)]−1ĥ1.
Form the tensor step dt = d0 + Vmy

t
∗.

Otherwise (d0 6= 0 and d0 6∈ {Vm}),
Solve

min
ŷ∈<m+1

‖Fc + Ĵ ŷ + 1
2 âc(ĥ

T
2 ŷ)2‖,(5.2)

where Ĵ = [Vm+1H̄m,−Fk − r0], âc = Ĵ(ĴT Ĵ)−1ĴTa

and ĥ2 = [Vm, d0]Th. This is done by first solving

min
β∈<
‖q2(β) ≡ ĥT2 (ĴT Ĵ)−1ĴTFc + β + 1

2 ĥ
T
2 (ĴT Ĵ)−1ĴT âcβ

2‖

with solution β∗. Then the solution to (5.2) is given by

ŷ∗ = (ĴT Ĵ)−1ĥ2q2(β∗)/ω − (ĴT Ĵ)−1ĴT (Fc + 1
2 âcβ

2
∗),

where ω = ĥ2(ĴT Ĵ)−1ĥ2.
Form the tensor step dt = [Vm, d0]ŷ∗.

(TG-5) Choose a new step d between dn and dt.
(TG-6) Find λ > 0 using a backtracking line search global strategy and form

the next iterate xk+1 = xk + λd.
Several tests are performed to determine whether to stop the algorithm in step

(TG-1). These stopping criteria are described by Dennis and Schnabel in Chapter 7
of [14]. For the sake of simplicity, we only use simplified versions of their criteria. The
first test determines whether xk solves (1.1). This is accomplished by using ‖F (xk)‖ ≤
FTOL, where a typical value of FTOL is around 10−5. A much more stringent test
used here is to set FTOL to 10−12. The second test determines whether the algorithm
has converged or stalled at xk. It is done by measuring the relative change in the
iterates from one step to the next. We use ‖xk − xk−1‖/‖xk−1‖ ≤ STPTOL, where a
typical STPTOL is around 10−8 in our implementation. Finally, we test if a maximum
number of iterations is exceeded. Currently this value is 150.

In step (TG-2), we need to choose the tolerance εk, which is passed to the GMRES
algorithm when it is called to solve the Newton equation at the kth iteration. In [6],
Brown and Saad suggested a sequence εk = ( 1

2 )k for k = 1, 2, . . .. Since a good
sequence is normally problem related, again for the sake of simplicity, we use a fixed
εk at every iteration for our test problems.

Step (TG-3) calls the GMRES. The number of Arnoldi iterations allowed between
restarts is usually set to 20, and the number of maximum restarts of GMRES allowed
is usually set to 150. However, these two values can be provided by the users based
on their experience. When the required tolerance is not reached after a maximum
number of restarts, we simply go ahead and use the last computed data. When it
returns, the GMRES algorithm readily provides R̄1

m and Q̄m, which is a product of
the m Givens rotations. One byproduct of step (TG-3) is the Newton-GMRES step.
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Step (TG-4) calculates the tensor-GMRES step. It is basically a concise reiterate
of the solution of the tensor model described in the previous section. The minimization
of a quadratic function in one variable is done using standard root formula. When a
quadratic function has two distinct roots, the root that is smaller in absolute value is
chosen.

Step (TG-5) usually consists of choosing the tensor step direction dt obtained in
step (TG-4). However, the Newton step direction is chosen instead when the tensor
step direction is not a descent direction for 1

2‖F (x)‖2, which rarely occurs in practice
but is not precluded in theory. Since the gradient of 1

2‖F (x)‖2 is J(x)TF (x), dt is a
descent direction if (dt)TJ(x)TF (x) < 0. We discuss how to compute this expression
efficiently. At current iterate xc, on the one hand, when d0 ∈ {Vm}, using dt = Vmy

t,
JcVm = Vm+1H̄m and Fc = −‖Fc‖v1 yields

(dt)TJTc Fc = (Vmy
t)TJTc Fc = (yt)T (JcVm)TFc

= (yt)T (Vm+1H̄m)TFc = (H̄my
t)T (V Tm+1Fc) = −(H̄my

t)T ‖Fc‖e1.(5.3)

The cost of calculating (5.3) is minimal. On the other hand, when d0 6∈ {Vm}, using
dt = [Vm, d0]ŷt, JcVm = Vm+1H̄m and r0 = −Fc − Jcd0 yields

(dt)TJTc Fc = ([Vm, d0]ŷt)TJTc Fc = (ŷt)T [JcVm, Jcd0]TFc

= (ŷt)T [Vm+1H̄m,−r0 − Fc]TFc = (ŷt)T
(

H̄T
mV

T
m+1Fc

−rT0 Fc − ‖Fc‖2
)
.(5.4)

The major work in (5.4) is the calculation of V Tm+1Fc. However, since this calculation
is already done in the solution of the tensor step, no extra cost is necessary.

Finally, in step (TG-6), we use a standard quadratic backtracking line search
algorithm (see [14]). The merit function 1

2‖F (x)‖2 is used for measuring the progress
towards the solution.

When dn is chosen in step (TG-5), the directional derivative is given by
(dn)TJTc Fc, which can be calculated in a fashion similar to when dt is chosen. When
d0 ∈ {Vm}, we can simply replace yt in (5.3) by yn and calculate −(H̄my

n)‖Fc‖e1.
When d0 6∈ {Vm},

(dn)TJTc Fc = (d0 + Vmy
n)TJTc Fc = (Jcd0 + JcVmy

n)TFc

= (−Fc − r0 + Vm+1H̄my
n)TFc = −‖Fc‖2 − rT0 Fc + (yn)T H̄T

m(V Tm+1Fc),

which is easy to calculate given V Tm+1Fc.

5.2. Test results for the Broyden tridiagonal problem and its variants.
As a first test, the Broyden tridiagonal problem is chosen from a standard test set of
Moré, Garbow, and Hillstrom [24]. The function is defined as

fi(x) = (3− 2xi)xi − xi−1 − 2xi+1 + 1 for i = 1, . . . , n,(5.5)

where x0 = xn+1 = 0 and n can be any positive integer. A root of f = 0 is sought.
For our test, we set n = 1000, which results in a system of 1000 nonlinear equations
in 1000 unknowns. The Jacobian matrix has full rank at the solution. The standard
starting point is x0 = [−1,−1, . . . ,−1].

Since starting from the standard starting point x0 is too easy for both algorithms,
we tried to start farther away from x0, i.e., from 100∗x0. Figure 1 shows the test results
of using εk = 10−1, 10−2, 10−3, 10−4, 10−5. At the nonlinear level, both methods
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Fig. 1. Results for the Broyden tridiagonal problem. x0 = 100 ∗ [−1,−1, . . . ,−1]T .
Diagonal preconditioning: solid line, tensor-GMRES ; dotted line, Newton-GMRES. εk =
10−1, 10−2, 10−3, 10−4, 10−5.

performed better as the tolerance goes down. In all five cases, the tensor-GMRES
method required fewer nonlinear iterations. The margin of improvement ranges from
28% to 50%.

Next we give the test results for a rank one deficient modification of the Broyden
tridiagonal problem. The problem was constructed by squaring the last function
defined by (5.5). This construction does not alter the solutions to the original system
and results in a system whose Jacobian matrix has rank deficiency one at the solution.
Test results are given in Figure 2.
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Fig. 2. Results for a rank one deficient modification of the Broyden tridiagonal problem.
x0 = [−1,−1, . . . ,−1]T . Diagonal preconditioning: solid line, tensor-GMRES ; dotted line, Newton-
GMRES. ε = 10−1, 10−2, 10−9.

The tolerance εk was taken as 10−1, 10−2, 10−9, respectively. For all the three
cases, the Newton-GMRES method performed about the same (not distinguishable
in the figure). It took 22 iterations, while the tensor-GMRES method required fewer
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Fig. 3. Results for a rank two deficient modification of the Broyden tridiagonal problem.
x0 = [−1,−1, . . . ,−1]T . Diagonal preconditioning: solid line, tensor-GMRES ; dotted line, Newton-
GMRES. ε = 10−1, 10−2, 10−4, 10−8.

iterations as the tolerance went down. The margin of improvement ranges from 27%
to 55%. The tensor-GMRES method also shows superlinear-like convergence in two
situations.

Finally, we give the test results for a rank two deficient modification of the Broy-
den tridiagonal problem. The problem was constructed by squaring the last two
functions defined by (5.5). This construction does not alter the solutions to the origi-
nal system and results in a system whose Jacobian matrix has rank deficiency two at
the solution. The test results are given by Figure 3.

The tolerance εk was taken as 10−1, 10−2, 10−4, 10−8, respectively. For all four
cases, the Newton-GMRES method again performed about the same (taking 22 iter-
ations), while the tensor-GMRES method required fewer iterations as the tolerance
went down. The margin of improvement ranged from 32% to 55%.

5.3. Test results for a Bratu problem. As a second test, we choose to solve
the nonlinear partial differential equation

−∆u = λeu in Ω, u = 0 on Γ,(5.6)

where ∆ = ∇2 =
∑2
i=1 ∂

2/∂x2
i is the Laplace operator, Ω = (0, 1)×(0, 1), and Γ is the

boundary of Ω. This version of the Bratu problem is chosen from a set of nonlinear
model problems collected by Moré [23].

We define h = 1/(n+ 1), where n is a positive integer, and then a mesh is given
by

Mij = {ih, jh}, 0 ≤ i, j ≤ n.

To approximate problem (5.6) we use the following finite-difference scheme:

−ui+1j + ui−1j + uij+1 + uij−1 − 4uij
h2

= λeuij , 1 ≤ i, j ≤ n(5.7)

ukl = 0, if Mkl ∈ Γ.
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Fig. 4. Results for the Bratu problem, λ = 6.80673. Diagonal preconditioning: solid line,
tensor-GMRES ; dotted line, Newton-GMRES. εk = 10−1, 10−2, 10−3.

In (5.7), uij is an approximation to u(Mij). For λ ≤ 0, (5.6) has a unique solution.
For λ > 0, (5.6) may have one, several, or no solutions. In this test, we took n = 32
and λ = 6.80673, which yields a system of N = 1024 equations in N unknowns.
Since the branch of solutions has a limit point at λ = 6.80812, this gives a good test
problem that has a very ill-conditioned Jacobian matrix at the solution. We did not
use the exact limit point since our preconditioner is not good enough to converge
the GMRES algorithm in this situation. The size of the Krylov subspace is set to
50. The initial guess was chosen as u0 = 0. Test results are shown in Figure 4
for εk = 10−1, 10−2, 10−3. The tensor-GMRES method outperformed the Newton-
GMRES method in all three cases with the margin of improvement ranging from 20%
to 42%.

Before going to the next test problem, we would like to make a few more com-
ments regarding Figures 1–4. For the Broyden tridiagonal problem with a nonsingular
Jacobian, Figure 1 clearly shows linear convergence of both the tensor-GMRES and
Newton-GMRES methods for each choice of ε, with smaller ε resulting in faster con-
vergence and with the two methods exhibiting about the same ultimate speed of
linear convergence for each choice of ε. However, it is very interesting that the tensor-
GMRES method breaks into the regime in which the choice of ε controls the speed of
convergence significantly sooner than Newton-GMRES. Figures 2 and 3 show advan-
tages of the tensor-GMRES method when the Jacobian is singular. In these figures,
the Newton-GMRES iterates show rather slow linear convergence, independent of ε,
until termination, while the tensor-GMRES iterates show increasingly fast, roughly
linear convergence as ε becomes smaller; thus, the convergence of Newton-GMRES
is sharply limited by the singularity of the problem, while the convergence of tensor-
GMRES is not. Figure 4 for the Bratu problem, in which the Jacobian is nearly
singular, clearly shows the superiority of tensor-GMRES in overcoming the near sin-
gularity of the Jacobian at an early stage. Specifically, the Newton-GMRES method
is “fooled” by the near singularity into exhibiting linear convergence until about the
ninth iteration, after which the convergence accelerates, while the tensor-GMRES
method exhibits accelerated convergence after the second iteration.
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5.4. Test results for one-dimensional Euler equations. One of the target
applications for the tensor-Krylov methods is the nonlinear differential systems arising
in physical problems, e.g., aerodynamics. One good model problem is the quasi-one-
dimensional Euler equations for flow through a nozzle with a given area ratio. In
particular, transonic conditions which generate a shock within the nozzle present a
difficult test case, where methods typical of practical aerodynamic applications are
required. Such methods include finite difference, finite element, and unstructured
grid finite volume techniques employing various forms of highly nonlinear algorithm
constructions. For our purposes here, we have chosen one popular form of central
finite differences with nonlinear artificial dissipation; see [26] for general details.

The steady quasi-one-dimensional Euler equations are

F(Q) = ∂xE(Q)−H(Q) = 0, 0.0 ≤ x ≤ 1.0,(5.8)

where

Q =

 ρ
ρu
e

 , E = a(x)

 ρu
ρu2 + p
u(e+ p)

 , H =

 0
−p∂xa(x)

0

 ,(5.9)

with ρ (density), u (velocity), e (energy), p = (γ − 1)(e− 0.5ρu2) (pressure), γ = 1.4
(ratio of specific heats), and a(x) = (1. − 4.(1 − at)x(1 − x)) (the nozzle area ratio),
with at = 0.8. For a given area ratio and shock location (here x = 0.7), an exact
solution can be obtained from the method of characteristics.

We elect to use second order central differences

∂xu ≈ δxuj =
uj+1 − uj−1

2∆x
, j = 0, . . . , JN , ∆x = 1.0/JN , uj = u(j∆x).(5.10)

It is common practice and well known that artificial dissipation must be added to
the discrete central difference approximations in the absence of any other dissipative
mechanism, especially for transonic flows. Nonlinear dissipation as defined in [27]
is used where 2nd order (D2(Q)) and 4th order (D4(Q)) difference formulas are
employed.

D2
j (Q) = −∇x (σj+1 + σj)

(
ε
(2)
j ∆xQj

)
,(5.11a)

D4
j (Q) = ∇x (σj+1 + σj)

(
ε
(4)
j ∆x∇x∆xQj

)
,(5.11b)

with

∇xqj = qj − qj−1, ∆xqj = qj+1 − qj ,(5.11c)

ε
(2)
j = κ2 max(Υj+1,Υj ,Υj−1),

Υj =
|pj+1 − 2pj + pj−1|
|pj+1 + 2pj + pj−1|

,

ε
(4)
j = max

(
0, κ4 − ε(2)

j

)
,(5.11d)

where typical values of the constants are κ2 = 1/4 and κ4 = 1/100. The term
σj = |u|+ c (where c =

√
γp/ρ is the speed of sound) is a spectral radius scaling.

Boundary operators at j = 0 and j = JN are defined in terms of physical condi-
tions (taken from exact solution values) and the use of Riemann invariants. For this
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problem, both inflow and outflow boundaries are subsonic and locally one-dimensional
Riemann invariants are used. The locally one-dimensional Riemann invariants are
given in terms of the velocity component as

R1 = u− 2c/(γ − 1) and R2 = u+ 2c/(γ − 1).(5.12)

The Riemann invariants R1, R2 are associated with the two characteristic velocities
λ1 = u − c and λ2 = u + c, respectively. One other equation is needed so that the
three flow variables can be calculated. We choose S = ln(p/ργ), where S is entropy.
For subsonic inflow (u < c), characteristic velocity λ2 > 0 carries information into the
domain, and therefore the characteristic variable R2 can be specified along with one
other condition. The Riemann invariant R2 and S are set to exact values. The other
characteristic velocity λ1 < 0 carries information outside the domain, and thereforeR1

is extrapolated from the interior flow variables. On subsonic outflow u < c and λ2 > 0
carry information outside the domain, while λ1 < 0 propagates into the domain, so
only R1 is fixed to exact values, and R2 and S are extrapolated. Once these three
variables are available at the boundary the three flow variables Q can be obtained. If
we consider the boundary procedure as an operator on the interior data, we can cast
the boundary scheme as

B(Q)i = Qi −B(Qi+1) = 0, i = 0

and

B(Q)i = Qi −B(Qi−1) = 0, i = JN ,

which are nonlinear equations at the boundaries, where B(Q) represents the action
of the boundary condition operator (subroutine) on interior data.

The total system we shall solve is

F(Q) =

{
δxE(Q)j −H(Q)j +D2

j (Q) +D4
j (Q), j = 1, . . . , JN − 1,

B(Q)i = 0, i = 0, JN .
(5.13)

An analytic Jacobian can be formed directly from (5.13) by differentiating each
term with respect to Qj , thereby producing a block banded matrix. The order of the
resulting system is N = (JN + 1)× 3.

Forming the Jacobian from derivatives using (5.13) is only difficult when dealing
with the highly nonlinear, nonanalytic coefficients of the artificial dissipation (5.11d).
In the case of the artificial dissipation Jacobians (e.g., ∂Qj(D

4
j )), two approximations

are made. In the first part of the approximation, the spectral radius is not linearized
since it contains an absolute value function, a nondifferentiable form. In the second
part of the approximation, the nonlinear switch functions (5.11d), containing absolute
values and max operators, are also not linearized. In both cases, frozen values at the
local states are used to evaluate these terms as variable coefficients. It is common
practice in fluid dynamic algorithms to avoid linearization of nonlinear switches and
higher order terms by either restricting bandwidth or avoiding dealing with compli-
cated functional forms, e.g., [1, 29].

The calculation of these nondifferentiable terms could be avoided by approximat-
ing Jacobian-vector products with finite differences (see (2.4)). If an exact lineariza-
tion is used (and since the system is nonsingular), it is then expected (and confirmed
numerically) that q-quadratic-like convergence would be achieved by both Newton-
GMRES and tensor-GMRES when the tight tolerance level εk = 10−8 is applied. In
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Fig. 5. Results for one-dimensional Euler using full nonlinear dissipation. Solid line, dashed
line, Newton-GMRES with εk = 10−3, 10−5; dotted line, dash-dotted line, tensor-GMRES with
εk = 10−3, 10−5.

order to provide a more realistic setting (as noted above it is commonplace to em-
ploy approximate Jacobians in practical applications), most of the results presented
employ the approximate Jacobian.

A key element to the success of the solution using the Krylov subspace methods
is the choice of preconditioning. This issue for systems which are not diagonally
dominant, such as (5.13), is not straightforward and is still the subject of active
research. One choice of a preconditioner is the inverse of the Jacobian matrix (which
is not too difficult to construct for this one-dimensional problem but would be very
difficult in multidimensions). Inexact preconditioners are employed in the test, which
allows us to study the effect of different tolerance levels for the linear steps. In
a one-dimensional setting, a large number of effective approximate preconditioners
are possible. For our study here, we only require one which gives a finite number of
required subspace iterations (the linear GMRES phase) meeting some preset tolerance
level εk. We shall not go into the details of the preconditioner here and only state that
the same preconditioner is used for both Algorithms NG and TG so that consistent
comparisons can be made.

Figure 5 shows Algorithms NG and TG applied to (5.13) for JN = 200; N = 603.
Two sets of results are shown for two values of the tolerance parameter εk = 10−3 and
εk = 10−5. In the case of Algorithm NG, the convergence appears linear (it takes 127
steps to converge for a tight tolerance εk = 10−5), while Algorithm TG for εk = 10−5

shows about a 60% (76 steps) decrease in the number of nonlinear iterations. When
the tolerance is increased, i.e., εk = 10−3, Algorithm NG actually achieves improved
performance (it takes 62 steps to converge), while Algorithm TG for εk = 10−3 shows
about a 42% (26 steps) decrease in the number of nonlinear iterations. In addition,
the convergence for the tensor algorithm is much smoother. The “scalloping” behavior
of Algorithm NG is due to the use of the minimal step length triggered by line search
failures.

To date, our analysis indicates that the system derived from (5.13) is nonsingular,
so we do not consider this an example similar to the singular ones presented above.
The inaccurateness of the Jacobian approximation is the source of the linear behavior



TENSOR-GMRES METHOD 777

0 5 10 15 20 25 30
-12

-10

-8

-6

-4

-2

0

Number of iterations

Lo
ga

rit
hm

 o
f r

es
id

ua
l n

or
m

Fig. 6. Results for one-dimensional Euler using nonlimited dissipation. Solid line, dotted
line, Newton-GMRES with εk = 10−3, 10−5; dashed line, dash-dotted line, tensor-GMRES with
εk = 10−3, 10−5.

observed. In particular, the inaccurate linearization of the second order dissipation
term, D2(Q), produces the largest error. Figure 6 shows the convergence results with
κ2 = 0, resulting in a very fast linear convergence (εk = 10−5) from both Algorithms
NG and TG. For both cases of εk = 10−3 and εk = 10−5, the tensor algorithm shows
about a 50% improvement in the number of nonlinear iterations over the Newton
counterpart. Nonlinear switching, such as is defined in (5.11a–5.11d), is typical of
current numerical algorithms for the Euler and Navier–Stokes equations. They may
take a similar form to (5.11a–5.11d), see [27], or be in the form of limiters for upwind
techniques, e.g., [33], [20]. The nonlinear switching (limiting) is necessary to eliminate
overshoots at shocks, where higher order schemes are limited to lower order, which
more correctly differences the equations across discontinuities.

6. Summary and topics for future research. This paper has introduced the
tensor-GMRES method for systems of nonlinear equations. This method has require-
ments similar to the Newton-GMRES method in terms of storage and arithmetic
per iteration. The method is also consistent with preconditioning and matrix-free
implementation. An implementation of the full nonlinear algorithm using the tensor-
GMRES method has shown to be more efficient on both nonsingular and singular
problems than analogous implementation of the Newton-GMRES method. The ef-
ficiency advantage of the tensor-GMRES method is significantly larger on problems
where the Newton-GMRES method exhibits linear convergence (due to lack of suffi-
cient first order information).

One interesting question is whether the tensor-GMRES method would be more
robust than the Newton-GMRES method since it depends on the solution of the
Newton equation by the GMRES algorithm. The answer is twofold. At the linear
level, the answer is no, since the tensor-GMRES fails when the GMRES fails. However,
at the nonlinear level, from our experience with traditional tensor methods where the
Newton equation is solved exactly, tensor model-based methods solve more problems
than linear-model–based methods. Hence, the tensor-GMRES is expected to be more
robust than the Newton-GMRES method at the nonlinear level.

Based on these results, it would appear worthwhile to continue research on tensor-
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Krylov methods for nonlinear equations. The two main topics for future research
would appear to be practical implementation and further testing of the tensor-GMRES
methods for nonlinear equations and new tensor-Krylov methods for nonlinear equa-
tions. We discuss each of these briefly.

As seen in section 5, our implementation is still in an early stage. Several direc-
tions can be pursued immediately to improve the current implementation: (1) scaling
in both the variable space and the function space; (2) matrix-free implementation of
the tensor-GMRES method, which can be achieved in a fashion similar to analogous
implementation of the Newton-GMRES method; (3) more sophisticated stopping cri-
teria in the nonlinear algorithm; (4) more global convergence strategies such as model
trust region techniques. We would like to continue our testing of the tensor-GMRES
method on more practical problems. One interesting task is to test the tensor-GMRES
method on the ARC2D code [26] which is the two dimensional version of the ARC1D
code that we tested in section 5.

Secondly, new tensor-Krylov methods can be developed. A nonstraightforward
direction that can be pursued in the future is to combine tensor methods with Krylov
methods that use two mutually orthogonal sequences such as BiCG and QMR. We
are currently investigating this possibility.
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sions and suggestions related to this paper. We also thank the anonymous referees
for their careful reading of the manuscript and for their constructive criticism.
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[24] J. J. Moré, B. S. Garbow, and K. E. Hillstrom, Testing unconstrained optimization soft-
ware, ACM Trans. Math. Software, 7 (1981), pp. 17–41.

[25] J. M. Ortega, Numerical Analysis, Academic Press, New York, 1972.
[26] T. H. Pulliam, Efficient solution methods for the Navier–Stokes equations, in Lecture Notes
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Abstract. This paper describes a reduced quasi-Newton method for solving equality constrained
optimization problems. A major difficulty encountered by this type of algorithm is the design of a
consistent technique for maintaining the positive definiteness of the matrices approximating the
reduced Hessian of the Lagrangian. A new approach is proposed in this paper. The idea is to search
for the next iterate along a piecewise linear path. The path is designed so that some generalized Wolfe
conditions can be satisfied. These conditions allow the algorithm to sustain the positive definiteness
of the matrices from iteration to iteration by a mechanism that has turned out to be efficient in
unconstrained optimization.
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1. Introduction. In unconstrained optimization, when a function x ∈ Rn 7→
ξ(x) ∈ R is minimized using descent direction methods, there is a nice combination of
a line-search technique attributed to Wolfe [43, 44] and some quasi-Newton methods.
On the one hand, if dk is a descent direction of ξ at the current iterate xk (i.e.,
∇ξ(xk)>dk < 0), the Wolfe line-search consists in determining a step-size αk > 0
along dk such that the next iterate xk+1 = xk + αkdk satisfies

ξ(xk+1) ≤ ξ(xk) + ω1 αk∇ξ(xk)>dk,(1.1)

∇ξ(xk+1)>dk ≥ ω2∇ξ(xk)>dk,(1.2)

where 0 < ω1 < ω2 < 1 are constants (independent of k). These conditions contribute
to the convergence of descent direction methods. On the other hand, in quasi-Newton
methods the descent direction has the form dk = −B−1

k ∇ξ(xk), where Bk is an up-
dated symmetric matrix approximating the Hessian of ξ. It is interesting to maintain
this matrix positive definite, in particular because dk is then a descent direction. With
most update formulas, the new matrix Bk+1 satisfies the so-called quasi-Newton equa-
tion

γk = Bk+1δk,

where γk = ∇ξ(xk+1) − ∇ξ(xk) is the change in the gradient of ξ and δk = αkdk is
the step. Of course, if Bk+1 is positive definite, the quasi-Newton equation implies
that

γ>k δk > 0.(1.3)
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Therefore, this curvature condition (1.3) has to be satisfied if one expects Bk+1 to be
positive definite. For some quasi-Newton formulas (for instance the BFGS formula,
see below), which update Bk using γk and δk, this inequality is also sufficient to have
Bk+1 positive definite (provided Bk is already positive definite). The remarkable fact
is that the second Wolfe condition above guarantees this inequality. Hence, using the
Wolfe line-search and the BFGS formula, e.g., ensures that all the search directions
have the descent property.

For various reasons (see, for example, Powell [33]), it is not straightforward to
extend the above scheme to a minimization problem with constraints on the variables.
Such an extension is desirable, however, because numerical experience has shown that
the approach is very successful in unconstrained minimization, even when the number
of variables is large (see Liu and Nocedal [26] and Gilbert and Lemaréchal [20]).

In this paper, we study in more detail the matter for the equality constrained
minimization problem {

min f(x)
c(x) = 0, x ∈ Ω,

(1.4)

where Ω ⊂ Rn is an open set and f : Ω → R and c : Ω → Rm (m < n) are smooth
functions.

Since the set Ω is supposed to be open, it cannot be used to define general
constraints. It is the set where f and c have nice properties. For example, we always
suppose that the m× n Jacobian matrix of the constraints

A(x) = ∇c(x)>

is surjective (i.e., has full row rank) for any x ∈ Ω. We also suppose that this matrix
has a right inverse A−(x) depending smoothly on x:

A(x)A−(x) = I ∀x ∈ Ω.

Besides, we assume that for all x ∈ Ω, there is a basis Z−(x) of the null space N(A(x))
of A(x), which means that Z−(x) is an injective (or full column rank) n × (n −m)
matrix satisfying

A(x)Z−(x) = 0 ∀x ∈ Ω.

We also suppose that the map x 7→ Z−(x) is smooth. These assumptions on Z− are
not restrictive if Ω may differ from Rn but can rarely be satisfied when Ω = Rn (for
example, the assumptions on Z− cannot be satisfied on even-dimensional spheres).
Observe that for A−(x) and Z−(x) defined as above, there exists a unique (n−m)×n
matrix Z(x) such that

Z(x)Z−(x) = I and Z(x)A−(x) = 0(1.5)

in R(n−m)×(n−m) and R(n−m)×m, respectively (see Gabay [14], for example).
The Lagrangian function of problem (1.4) is the function ` : (x, λ) ∈ Ω×Rm → R,

defined by

`(x, λ) = f(x) + λ>c(x).

Its Hessian with respect to x is denoted by L(x, λ) = ∇2
xx`(x, λ). The reduced Hessian

of the Lagrangian is the order n−m matrix Z−(x)>L(x, λ)Z−(x). We denote by x∗
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a solution of (1.4) and by λ∗ its associated multiplier and denote L∗ = L(x∗, λ∗) and
B∗ = Z−(x∗)

>L∗Z
−(x∗).

Our study is done in the framework of those reduced quasi-Newton methods that,
near a solution x∗, generate the sequence of iterates {xk} ⊂ Ω approximating x∗ by

xk+1 = xk + dk,(1.6)

where dk is the solution of the quadratic program{
min ∇f(xk)>d+ 1

2d
>Z>kBkZkd

ck +Akd = 0.
(1.7)

In (1.7), ck = c(xk), Ak = A(xk), Zk = Z(xk), and the order n−m matrix Bk is an
approximation of the reduced Hessian of the Lagrangian (see Murray and Wright [30]
and Gabay [15]). Since Z>kBkZk approximates only a part of the Hessian of the La-
grangian, the method differs from the well-known sequential quadratic programming
(SQP) algorithm (see Wilson [42], Han [22], and Pshenichnyi and Danilin [10]) in
which an approximation of the full Hessian of the Lagrangian is updated. These
reduced quasi-Newton algorithms have a lower speed of convergence than SQP meth-
ods, but they may be used for larger problems because they need to update smaller
matrices.

Any direction d satisfying the linear constraints in (1.7) has the form d = Z−k h−
A−k ck, where Z−k = Z−(xk), A−k = A−(xk), and h is some vector in Rn−m. Substitut-
ing this in the objective function of (1.7), assuming that Bk is positive definite, and
minimizing in h, we obtain as a solution of (1.7)

dk = tk + rk = −Z−k B
−1
k gk −A−k ck,

where gk = g(xk) = Z−>k ∇f(xk) ∈ Rn−m is called the reduced gradient of f at xk,
tk = −Z−k B

−1
k gk is called the tangential or longitudinal component of the step, and

rk = −A−k ck is called the restoration or transversal component of the step.
One of the main concerns of this paper is to develop a technique that maintains

the positive definiteness of the matrices Bk. This property is interesting because it
makes the direction tk a descent direction of most merit functions used to globalize the
local method (1.6)–(1.7). It is also natural since this matrix approximates the reduced
Hessian of the Lagrangian, which is positive semidefinite at the solution. To obtain
this property, our approach mimics what is done in unconstrained optimization, as
was recalled in the beginning of this introduction. First, we use an update formula
allowing the positive definiteness to be transmitted from one matrix to the next one.
A typical example is the BFGS formula (see [13, 21, 11])

Bk+1 = Bk −
Bkδkδ

>
kBk

δ>kBkδk
+
γkγ
>
k

γ>k δk
.(1.8)

This formula requires the use of two vectors γk and δk in Rn−m, which will be specified
in a moment. The important point is that the positive definiteness is sustained from
Bk to Bk+1 if the vectors γk and δk satisfy the following condition:

γ>k δk > 0.(1.9)

Next, we propose a “piecewise line-search” (PLS) technique that finds a point satis-
fying generalized Wolfe conditions, which reduce to conditions (1.1)–(1.2) when there
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are no constraints. These conditions imply inequality (1.9) for appropriate vectors γk
and δk and, therefore, also the positive definiteness of the matrices updated by using
these vectors.

The local analysis of algorithm (1.6)–(1.7) shows that it is convenient to take for
γk the change in the reduced gradient and for δk the reduced displacement

γk = gk+1 − gk and δk = αkZktk.(1.10)

Other choices are sometimes proposed: see, for instance, Coleman and Conn [7] and
Nocedal and Overton [31]. All of them are asymptotically equivalent to the above
choice, which is preferred for its geometrical interpretation (see section 3) and its
simplicity. In these formulas appears a step-size αk > 0 (see section 3) because the
matrices Bk are also updated far from the solution where the algorithm differs from
(1.6)–(1.7). Note, however, that xk+1 is obtained in a more sophisticated way than
a simple move along the tangent direction tk. This is necessary because such a move
does not usually yield (1.9) (see [17]).

Condition (1.9) holds if the search algorithm determines xk+1 such that

g>k+1Zktk ≥ ω2 g
>
kZktk,(1.11)

where 0 < ω2 < 1. This is actually what the search algorithm realizes. Now, this
algorithm has another role to play, which is to contribute to the global convergence
of the method. This is achieved by sufficiently decreasing some merit function, which
we choose to be

Θσ(x) = f(x) + σ‖c(x)‖,(1.12)

where σ is positive number and ‖ · ‖ denotes a norm in Rm. This penalty function is
exact when σ is sufficiently large (see, for example, Han and Mangasarian [23]). The
decrease in Θσ is typically forced by requiring that

Θσ(xk+1) ≤ Θσ(xk) + ω1 νk(αk),(1.13)

where 0 < ω1 < 1 and νk(α) is negative for positive α. Note that we do not need
ω1 < ω2 in the PLS algorithm.

The difficulty of realizing both (1.11) and (1.13) simultaneously comes from the
fact that, unlike what happens for unconstrained problems, the left-hand side in (1.11)
is not the directional derivative of Θσ at xk+1 along commonly used search directions
such as tk or dk. We shall see that it is the directional derivative Θ′σ(xk+1;Z−k+1Zktk).
This suggests making a reorientation of the search direction when (1.11) does not
hold by using the new basis Z−k+1, while keeping the same reduced tangent direction
Zktk. This is the idea underlying the search algorithm proposed in [17], where the
search path has only longitudinal components, i.e., components in the range space
of the matrices Z−(xik), where xik (i = 0, . . . , ik − 1) are intermediate points. Here
we show how to implement this idea for paths also having transversal components,
i.e., components in the range space of A−(xik). This improves the algorithm, since
asymptotically the constraints need no longer be linearized twice per iteration of the
overall algorithm.

The analysis results in a quite simple search algorithm, which can be described
as follows. At each inner iteration i of the PLS algorithm, condition (1.13) is first
realized and, next, condition (1.11) is tested. If the latter holds, the PLS algorithm
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terminates with a suitable point. Otherwise, a new inner search direction is defined,
using the same matrix Bk and the same reduced gradient gk as for the previous inner
direction. A new inner iteration is then started.

Other authors have proposed techniques for maintaining the positive definiteness
of the generated matrices for constrained minimization problems, but none uses the
search algorithm to achieve this goal. These papers also deal with the SQP method,
in which approximations of the full Hessian of the Lagrangian are generated. In this
case γk is usually γ`k, the change in the gradient of the Lagrangian, and δk is the step.
The first proposal, due to Powell [33], was to take for γk a convex combination of γ`k
and Bkδk such that (1.9) holds. According to Powell [35], the method may lead to ill
conditioning when the problem is difficult to solve. We have also observed the failure
of this technique on some academic problems (see Armand and Gilbert [1]). Due to
its great simplicity, however, it is the most widely implemented technique. Another
promising idea, proposed by Han [22] and Tapia [40] and subsequently explored by
Tapia [41] and Byrd, Tapia, and Zhang [5], is to generate approximations of the
Hessian of the augmented Lagrangian, which is positive definite at the solution when
the penalty parameter is sufficiently large. The difficulty in choosing the penalty
parameter has always been the stumbling block of this approach, and we believe that
more research is needed to improve the method satisfactorily. Finally, Fenyes [12] and
Coleman and Fenyes [8] separately update approximations of Z−(x∗)

>L∗Z
−(x∗) and

A−(x∗)
>L∗Z

−(x∗), maintaining positive definite the approximations of the former
matrix.

We conclude this introduction with a few remarks. First, our PLS algorithm
also can be used for the reduced quasi-Newton method of Coleman and Conn [6] with
minor modifications (see [18]), while its use for the SQP method has been investigated
by Armand and Gilbert [1]. An important point to mention is that when the reduced
Hessian of the Lagrangian is computed exactly and used in place of Bk in (1.7), there
is no need to use the PLS algorithm. In this case, a simple Armijo [2] backtracking
along dk is preferable, since it is less expensive and easier to implement than the PLS
algorithm.

The paper is organized as follows. In section 2, we make the hypotheses and
notation more precise. In section 3, the search path is introduced and its meaning
is discussed. Also, conditions for obtaining finite termination of the search algorithm
are given. Section 4 contains a global convergence result and, finally, some numerical
experiments are reported in section 5.

2. Hypotheses and notation. We suppose that the function c defining the
constraints in (1.4) is a submersion on Ω, which means that its Jacobian matrix A(x)
is surjective for all x in Ω. Then, for any x ∈ Ω, the set

Mx = {y ∈ Ω : c(y) = c(x)}

forms a smooth submanifold of Rn, having dimension n−m (for the geometrical tools,
we refer the reader to Spivak [38], Boothby [3], or Conlon [9], for example).

We quote the fact that the columns of the basis Z−(x) introduced in section 1
span the space tangent to Mx at x and that the columns of the right inverse A−(x)
span a space complementary to this tangent space. The matrix Z(x) defined by (1.5)
is also characterized by the useful identity

A−(x)A(x) + Z−(x)Z(x) = I,
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which allows us to decompose a direction d of Rn in its transversal component A−(x)
A(x)d and its longitudinal component Z−(x)Z(x)d. Also,

Z(x) =
(
I 0

) (
Z−(x) A−(x)

)−1
,

so that the map x 7→ Z(x) inherits the smoothness of Z− and A−.
We assume that there is a pair (x∗, λ∗) ∈ Ω×Rm satisfying the sufficient second

order conditions of optimality, i.e.,{
c(x∗) = 0,
∇f(x∗) +A(x∗)

>λ∗ = 0,

and h>L∗h > 0 for all nonzero h ∈ N(A(x∗)). By these assumptions, the reduced
Hessian of the Lagrangian at the solution B∗ = Z−(x∗)

>L∗Z
−(x∗) is positive definite.

We also introduce

λ(x) = −A−(x)>∇f(x),(2.1)

which estimates the Lagrange multiplier at the solution: λ(x∗) = λ∗.
We recall that we use the penalty function Θσk defined in (1.12) to globalize the

local method (1.6)–(1.7). The penalty parameter σk depends on the iteration index k
and is updated to satisfy at each iteration

σk ≥ ‖λk‖D + σ,(2.2)

where λk = λ(xk) and σ is a fixed positive number. We have denoted by ‖ · ‖
D

the
dual norm of the norm ‖ · ‖ used in (1.12). It is defined by

‖v‖
D

= sup
‖u‖=1

u>v.

The manifolds on which the reduced gradient g is constant are denoted by

Nx = {y ∈ Ω : g(y) = g(x)}.

These sets are indeed manifolds if Ω is sufficiently “small,” because g is a submersion
in a neighborhood of x∗. To see this, observe that g′(x∗) = Z−>∗ L∗ (see Stoer [39] or
Nocedal and Overton [31]) and that Z−>∗ L∗ is surjective.

We denote by ξ′(u; v) the directional derivative of a function ξ at u along the
direction v. In particular, if ξ is a function of a real variable α, ξ′(α; 1) denotes its
right derivative. We quote the fact that if C is a convex continuous function and if
ξ has directional derivatives, then C ◦ ξ also has directional derivatives (“◦” denotes
composition). This can be seen by using the local Lipschitz continuity of C, implied by
its continuity (see Theorem 10.4 in [36] or Theorem IV.3.1.2 in [24]). As a result, when
the constraint function c is smooth, Θσ defined in (1.12) has directional derivatives.

The following identity will be used several times. If f and c are smooth and
h ∈ Rn−m, we have for Θσ defined by (1.12)

Θ′σ

(
x;Z−(x)h−A−(x)c(x)

)
= g(x)>h+ λ(x)>c(x)− σ‖c(x)‖.(2.3)

Indeed, function f in Θσ gives the first two terms in the right-hand side of (2.3) (use
the definition of g(x) and (2.1)). Next, taking the notation η(x) = ‖x‖ and knowing



786 JEAN CHARLES GILBERT

that (η ◦ c)′(x; v) = η′(c(x);A(x)v), the directional derivative of the second term in
Θσ is given by

σ(η ◦ c)′
(
x;Z−(x)h−A−(x)c(x)

)
= ση′(c(x);−c(x))

= σ lim
t→0+

1

t

(
‖c(x)− tc(x)‖ − ‖c(x)‖

)
= −σ‖c(x)‖.

3. The search algorithm. In unconstrained optimization, the path pk : α ∈
R+ 7→ pk(α) starting at the current iterate pk(0) = xk ∈ Ω and along which a step-size
is taken is most commonly a straight line, which can be determined before the search
begins. When constraints are present, a search along a line is no longer possible if
one aims at satisfying the reduced Wolfe conditions

Θσk(pk(α)) ≤ Θσk(xk) + ω1 νk(α),(3.1)

g(pk(α))>Zktk ≥ ω2 g
>
kZktk(3.2)

for some α > 0. In (3.1) and (3.2), the constants ω1 and ω2 are chosen in (0, 1), and
α 7→ νk(α) is a function forcing the decrease of Θσk by the properties{

νk(0) = 0
Θ′σk(xk; p′k(0; 1)) ≤ ν′k(0; 1) < 0.

(3.3)

These properties and ω1 < 1 make it possible to realize (3.1) for small positive α. We
have assumed that pk is a descent path for Θσk , i.e., Θ′σk(xk; p′k(0; 1)) < 0.

In our proposal, the description of the search path is not as easy as in uncon-
strained optimization, because it depends on some intermediate step-sizes. From the
point of view taken here, a reorientation of the search path is indeed necessary at
some intermediate step-sizes αik, i = 1, . . . , ik − 1. Furthermore, condition (3.1) also
depends on the step-sizes αik through the function νk, which cannot be given before
the search is completed. For these reasons, we have to specify simultaneously the
function νk and the way the search path is designed.

The algorithm we discuss has some similarities with the one given in [17], but here
the path has at once a longitudinal and a transversal component. More basically, one
can see it as an extension of the method proposed by Fletcher [13] and Lemaréchal [25]
for finding a Wolfe point in unconstrained optimization. With the option ρik = 1
below, the algorithm is related to the search technique of Moré and Sorensen [28] for
realizing the strong Wolfe conditions for unconstrained problems.

3.1. Guiding paths. Before giving a precise description of the search algorithm,
we would like to show by some observations why trying to realize conditions (3.1) and
(3.2) simultaneously can succeed. On the way, we exhibit conditions under which our
search technique should be numerically efficient.

First, let us introduce a path α 7→ pk(α) as a solution of the following differential
equation: {

p′k(α) = Z−(pk(α))Zktk,
pk(0) = xk.

(3.4)

This trajectory belongs to the manifold Mk = Mxk because multiplying the first
equation in (3.4) by A(pk(α)) gives (c ◦ pk)′(α) = 0, which means that c remains
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0
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Fig. 3.1. An interpretation of the longitudinal guiding path.

constant along the path. As quoted in [17], if this path is defined for sufficiently large
α and if f is bounded from below on Mk, there exists a step-size αk such that (here
ω1 < ω2 is necessary)

Θσk(pk(αk)) ≤ Θσk(xk) + ω1 αk g
>
kZktk,(3.5)

g(pk(αk))>Zktk ≥ ω2 g
>
kZktk.(3.6)

This can be seen by considering the standard Wolfe [43, 44] conditions (recalled in
the introduction) on the function

α 7→ (Θσk ◦ pk)(α) = (f ◦ pk)(α) + σk‖ck‖.

Indeed, using (2.3), the derivative of this map at αk is g(pk(αk))>Zktk, the left-hand
side of (3.6). Note that condition (3.5) has the form (3.1) with a linear function νk.

Locally, the search along pk also has the following geometrical interpretation,
illustrated in Figure 3.1. Suppose that there exists a parametrization ψk : U ⊂ Rn−m
→Mk ⊂ Rn of Mk around xk such that 0 ∈ U , ψk(0) = xk, and

ψ′k(u) = Z−(ψk(u)) ∀ u ∈ U.(3.7)

The existence of such parametrization depends on the choice of the tangent basis map
Z− (see [19]). Then, it is easy to see that

pk(α) = ψk(αZktk).

Indeed, denoting qk(α) = ψk(αZktk), we have q′k(α) = Z−(qk(α))Zktk, by (3.7),
and qk(0) = xk; hence, qk satisfies the differential equation (3.4), which implies that
qk = pk. As a result, (f ◦ψk)(αZktk) = (Θσk ◦pk)(α)−σk‖ck‖ and ∇(f ◦ψk)(αZktk) =
g(pk(α)), so that the search to realize (3.5)–(3.6) can now be seen as a standard Wolfe
search on the function f ◦ψk starting at 0 ∈ Rn−m along the reduced direction Zktk.
From this interpretation, we define the reduced (longitudinal) displacement from xk
to pk(αk) as the vector δk = αkZktk.

The path α 7→ pk(α) shows that there is at least one way of generalizing the
Wolfe conditions to equality constrained problems. We call this path the longitudinal
guiding path; we say longitudinal because its image

Pk = {pk(α) : α ≥ 0 and pk(α) exists}

lies inMk. This trajectory can be used as a guide for designing a search path having
points satisfying (3.5)–(3.6) but easier to compute than pk(·); see [17].
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Fig. 3.2. The map µx.

In this paper, we follow the same strategy and introduce a smooth guiding path
having longitudinal and transversal components, i.e., neither c nor g is constant along
the path. Later, a discretization will be introduced. We proceed step by step and
begin by some definitions.

Definition 3.1. Let F be the function

F : Ω→ Rn : x 7→
(
c(x)

g(x)

)
.

Definition 3.2. Let us also introduce an open subset Ω0 of Ω such that: (i)
x∗ ∈ Ω0; (ii) F ′(x) is nonsingular when x ∈ Ω0; (iii) F (Ω0) has the form U0 × V0,
where U0 and V0 are open sets in Rm and Rn−m, respectively; (iv) F : Ω0 → U0 × V0

is a diffeomorphism.
Note that such open subset Ω0 always exists when B∗ = Z−(x∗)

>L∗Z
−(x∗) is

nonsingular, which we assume. Indeed, in this case, recalling that g′(x∗) = Z−>∗ L∗,
we see that F ′(x∗) is nonsingular, so conditions (i)–(iv) are satisfied for some (possibly
large) neighborhood Ω0 of x∗.

Definition 3.3. For a point x fixed in Ω0, we introduce the map

µx : Ω0 →Mx ∩ Ω0,

defined in the following way. For y ∈ Ω0, µx(y) ∈ Mx ∩ Ω0 is defined as the unique
point in Mx ∩ Ny ∩ Ω0 (Ny is the reduced gradient manifold containing y); see Fig-
ure 3.2.

To see that the set Mx ∩ Ny ∩ Ω0 is formed of just one point, note that x ∈ Ω0

and y ∈ Ω0 imply that (c(x), g(y)) ∈ U0 × V0 = F (Ω0). As F is a diffeomorphism
on Ω0, Mx ∩ Ny ∩ Ω0 = F−1((c(x), g(y))) ∩ Ω0 is a singleton. As we see, µx maps
a point y ∈ Ω0 to a point in Mx ∩ Ω0 by following the manifold of constant reduced
gradient Ny. The following result will be useful.

Proposition 3.4. Suppose that c and g are of class Cl (l ≥ 1) on Ω0 and let
x ∈ Ω0. Then, µx : Ω0 → Mx ∩ Ω0 is of class Cl and, as a function with values in
Rn, its Jacobian matrix at y ∈ Ω0 is given by

µ′x(y) = Z̃−(z)
(
g′(z)Z̃−(z)

)−1

g′(y),(3.8)

where z = µx(y) and Z̃−(z) is an arbitrary basis of the space tangent to Mx at z (one

can take Z̃−(z) = Z−(z)).
Proof. To show that µx is of class Cl, we “read” this map with appropriate Cl-

compatible coordinate charts. Let us take (U,ϕ) = (Ω0, F ) as a chart of Ω0 at y and
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(V, ψ) = (Mx ∩ Ω0, g|Mx∩Ω0
) as a chart of Mx ∩ Ω0 at z = µx(y). These coordinate

charts are Cl because c and g are Cl. Then, µx is read with ϕ and ψ as

ψ ◦ µx ◦ ϕ−1,

which is the C∞ map Rn → Rn−m : (u1, . . . , un) 7→ (um+1, . . . , un). This shows that
µx is of class Cl.

Since c is of class Cl, the canonical injection j : Mx ∩ Ω0 → Rn is of class Cl,
and µx with values in Rn (more precisely, j ◦ µx) is also of class Cl. Then, we can
differentiate the identities

c(µx(y)) = c(x) and g(µx(y)) = g(y)

with respect to y. This gives, with z = µx(y),

A(z)µ′x(y) = 0 and g′(z)µ′x(y) = g′(y).

To solve this system in µ′x(y), we introduce an arbitrary basis Z̃−(z) of the null space

of A(z). From the first identity, we see that µ′x(y) = Z̃−(z)M for some (n −m) × n
matrix M . Then, by the nonsingularity of F ′(z) when z ∈ Ω0 (see Definition 3.2),

g′(z)Z̃−(z) is nonsingular and the second identity above leads to (3.8).
Let us now go back to our problem of designing a suitable path α 7→ p̃k(α), with

longitudinal and transversal components. Suppose we ensure that its image by µxk
lies in Pk; i.e.,

µxk(p̃k(α)) ∈ Pk for α ≥ 0.

We recall that αk is some step-size such that (3.5)–(3.6) hold. Then, if p̃k(α) exists
for sufficiently large α, it is reasonable to expect to find some positive α̃k such that
g(p̃k(α̃k)) = g(pk(αk))—this assumes that the path p̃k does not blow up for a finite
longitudinal displacement. Using (3.6), we obtain

g(p̃k(α̃k))>Zktk ≥ ω2 g
>
kZktk.

This shows that condition (3.2) can be satisfied along a path not belonging toMk.
For two reasons, this is not enough, however, to have a satisfactory search. First,

the two conditions (3.1) and (3.2) have to be satisfied simultaneously. Second, if we
want to minimize approximation errors by updating the matrix with γ̃k = g(p̃k(α̃k))−
gk = g(pk(αk)) − gk and δ̃k = α̃kZktk, we also need to have α̃k = αk so that the
changes in the reduced gradient along pk and p̃k will correspond to the same reduced
displacement δk = αkZktk.

This latter condition will be satisfied if we build a path α 7→ p̃k(α) such that

g(p̃k(α)) = g(pk(α))(3.9)

for all α for which p̃k(α) and pk(α) exist. In the next proposition, we show that
this can be achieved when p̃k(·) is defined as a solution of the following differential
equation: {

p̃′k(α) = Z−(p̃k(α))Zktk −A−(p̃k(α))c(p̃k(α)),
p̃k(0) = xk,

(3.10)
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and the maps Z−(·) and A−(·) are chosen such that{
g′A− = 0,
g′Z− is constant on the reduced gradient manifolds.

(3.11)

The first condition in (3.11) requires that the transversal displacements (in the range
space of A−) be in the space tangent to the reduced gradient manifold. The matrix
g′Z− appearing in (3.11) is the matrix from which information is collected by the pair
(γk, δk) in (1.10). At the solution, it is also the reduced Hessian of the Lagrangian.
The second condition of (3.11) requires that this matrix be constant along the reduced
gradient manifolds.

Proposition 3.5. Suppose that c and g are continuously differentiable on the set
Ω0 introduced in Definition 3.2, that xk ∈ Ω0, and that the maps Z− and A− are such
that (3.11) holds on Ω0. Consider the paths pk and p̃k defined by (3.4) and (3.10),
respectively. Then, (3.9) holds as long as both pk(α) and p̃k(α) exist in Ω0.

Proof. Let us define qk = µxk ◦ p̃k, a path in Mk. This path is well defined as
long as p̃k exists in Ω0. By the definition of µxk , g(qk(α)) = g(p̃k(α)). Hence, we just
have to prove that qk = pk.

Note that since p̃k(α) and qk(α) belong to the same reduced gradient manifold,
the second condition in (3.11) gives

g′(p̃k(α))Z−(p̃k(α)) = g′(qk(α))Z−(qk(α)).(3.12)

Now, by Proposition 3.4, we see that qk is differentiable; by using Z̃− = Z− in (3.8),
we have

q′k(α) = µ′xk(p̃k(α))p̃′k(α)

= Z−(qk(α))
(
g′(qk(α))Z−(qk(α))

)−1

g′(p̃k(α))Z−(p̃k(α))Zktk

= Z−(qk(α))Zktk,

where we also used (3.10), the first condition in (3.11), and (3.12). Therefore, qk
satisfies the same differential equation as pk, with the same initial condition xk at
α = 0 (see (3.4)). Hence, qk = pk and the proposition is proved.

We call the path defined by p̃k, the solution of (3.10), the bicomponent guiding
path. The actual PLS path introduced in section 3.2 will be a discretization of this
one. From Proposition 3.5 and the discussion that precedes it, one can say that the
PLS should be numerically efficient when Z− and A− are chosen such that (3.7) holds
for some parametrization ψk and (3.11) holds.

If (3.7) can always be realized by choosing suitable tangent bases (see [19]), it is
unrealistic to ask the user to realize (3.11), because the computation of g′ requires
the evaluation of second derivatives, which are not available in the quasi-Newton
framework. Also, we shall not assume that (3.11) holds and, therefore, (3.9) may
not hold either, even at the first order. Figure 3.3 represents a still rather favorable
situation without (3.9); it is favorable because the dashed curve in Mk and in the
reduced space is still rather close to the solid curve. On the other hand, we shall keep
the path defined by (3.10). As we shall see below (Proposition 3.6), no matter the
realization of (3.9), one can satisfy the reduced Wolfe conditions (3.1)–(3.2) along the
path p̃k for an appropriate function νk. Of course, an update of the matrix without
(3.9) may not be safe. We believe, however, that it could be the role of the update
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Fig. 3.3. The bicomponent guiding path.

criterion to detect situations where (3.11) is not violated by much. Nevertheless, the
update criteria introduced by Nocedal and Overton [31] and Gilbert [16], as well as
the one used in the numerical experiments below, are based on a condition different
from (3.11).

Let us now show how to realize (3.1)–(3.2) along the path pk = p̃k without
condition (3.9). For this, we take for νk in (3.1) the function defined by

νk(α) = Θσk(p̃k(α))−Θσk(xk),(3.13)

with p̃k given by (3.10). Conditions (3.3) are satisfied for this choice, provided that
σk is sufficiently large. Then (3.1) is equivalent to requiring that

Θσk(p̃k(α)) ≤ Θσk(xk).(3.14)

At this point, function νk does not look very useful, since it no longer appears in
the descent condition (3.14). But this is only true in the present smooth case. In
the discretized version of the search algorithm, it is (3.1) with (3.13) that will be
discretized, not (3.14), so that terms coming from the discretization will force the
merit function to decrease.

Requiring (3.14) is not very demanding, but it gives the time for (3.2) to be
realized before violating (3.1); this is shown in Proposition 3.6 below. Note that the
result of this proposition can be obtained without the inequality ω1 < ω2 (ω1 is not
used in the statement of the proposition).

Proposition 3.6. Suppose that the path α 7→ p̃k(α) defined by (3.10) exists for
sufficiently large step-size α ≥ 0, that Θσk is bounded from below along this path, that
σk ≥ ‖λ(p̃k(α))‖

D
whenever p̃k(α) exists, and that ω2 ∈ (0, 1). Then, the inequalities

Θσk(p̃k(α)) ≤ Θσk(xk),(3.15)

g(p̃k(α))>Zktk ≥ ω2 g
>
kZktk(3.16)

are satisfied for some α > 0.

Proof. We recall that if ξ1 and ξ2 are continuous functions on an interval [a, b]
having right derivatives on (a, b) with ξ′1(α; 1) ≤ ξ′2(α; 1) for all α ∈ (a, b), then
ξ1(b) − ξ1(a) ≤ ξ2(b) − ξ2(a) (see, for instance, Schwartz [37, Chapter III, section 5,
Remark 3]). Also, as in the proof of (2.3), denoting the norm ‖ · ‖ by η, we have
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from (3.10)

(η ◦ c ◦ p̃k)′(α; 1) = η′(c(p̃k(α)); (c ◦ p̃k)′(α))

= η′(c(p̃k(α));−c(p̃k(α)))

= −‖c(p̃k(α))‖.

Hence, using (2.3) and σk ≥ ‖λ(p̃k(α))‖
D

, we obtain

(Θσk ◦ p̃k)′(α; 1)

= g(p̃k(α))>Zktk + λ(p̃k(α))>c(p̃k(α))− σk‖c(p̃k(α))‖
≤ g(p̃k(α))>Zktk.(3.17)

Then, the result of the proposition is clear when gk = 0, because (3.16) readily
holds (tk = 0) and (3.17) implies that (Θσk ◦ p̃k)′(α; 1) ≤ 0 for small α ≥ 0 (those for
which p̃k(α) exists). Therefore, (3.15) is satisfied for small α ≥ 0.

Suppose now that gk 6= 0. Since g>kZktk < 0 and ω2 < 1, (3.16) is not verified for
small positive α, so there is a nonempty interval of the form (0, α] on which (3.16) is
false. Now, when (3.16) is not verified, one has from (3.17) that

(Θσk ◦ p̃k)′(α; 1) ≤ ω2 g
>
kZktk.

Therefore, we obtain

Θσk(p̃k(α))−Θσk(xk) ≤ ω2 α g
>
kZktk for α ∈ (0, α].

Hence, (3.15) is trivially satisfied on (0, α]. On the other hand, because of this last
inequality and the fact that α 7→ Θσk(p̃k(α)) is bounded below, the interval (0, α]
cannot be arbitrarily large. Therefore, (3.16) must eventually be satisfied. At the
first step-size α > 0 for which (3.16) holds, (3.15) is still verified by continuity. The
proposition is proved.

We are now ready to describe the actual search path, which may be seen as an
explicit Euler approximation of the solution of (3.10) with well-chosen discretization
points. Similarly, the actual function νk is not given by (3.13) (with which global
convergence could not be obtained) but is a piecewise linear approximation of this
function with the same discretization points. A successful idea is to introduce a
discretization point αik only when the discretized form of (3.1) holds for α = αik.

3.2. The search algorithm. We assume that the current iterate xk is in Ω and
that it is not stationary: ‖gk‖+ ‖ck‖ 6= 0. Let constants ω1 and ω2 be given in (0, 1).

The search algorithm is iterative and generates, for i = 0, . . . , ik−1, intermediate
step-size candidates αik, points xik, descent directions dik of Θσk at xik, piecewise linear
search paths pik, and piecewise linear forcing functions νik. These functions νik, playing
the role of νk in (3.1), may be taken as discontinuous. The following conditions will
hold for i = 1, . . . , ik − 1:

xik ∈ Ω,(3.18a)

Θσk(xik) ≤ Θσk(xk) + ω1 ν
i−1
k (αik),(3.18b)

g(xik)>Zktk < ω2 g
>
kZktk,(3.18c)

σk ≥ ‖λ(xik)‖
D

+ σ.(3.18d)
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Inequality (3.18b) means that descent is forced at each iteration, while (3.18c) means
that the curvature condition does not hold. Note that (3.18c) implies that xik is not
stationary.

At the beginning, the iteration index i is set to 0, α0
k = 0, and x0

k = xk. To
initialize the recurrence, we define ν−1

k (0) = 0. It is also assumed that Bk is positive
definite and that σk ≥ ‖λk‖D + σ. Then, (3.18a, b, d) clearly hold for i = 0. Stage i
(i ≥ 0) of the search comprises the following steps.

Stage i of the PLS algorithm.

1. Choose a tangent scaling factor τ ik > 0 and compute the direction dik defined by

dik = τ ikZ
−(xik)Zktk −A−(xik)c(xik).(3.19)

Update the search path pik:

pik(α) =

{
pi−1
k (α) for 0 ≤ α < αik
xik + (α− αik)dik for α ≥ αik.

Update the function νik (see below).
2. Determine a step-size αi+1

k > αik from xik along dik such that

xi+1
k = xik + (αi+1

k − αik)dik(3.20)

is in Ω and the descent condition

Θσk(pik(α)) ≤ Θσk(xk) + ω1 ν
i
k(α)(3.21)

holds for α = αi+1
k .

3. If i = 0 and some (unspecified) update criterion does not hold, set ik = 1, αk = α1
k,

xk+1 = x1
k, pk = p0

k, νk = ν0
k and quit the PLS algorithm.

4. Linearize the constraints at xi+1
k and test the curvature condition

g(xi+1
k )>Zktk ≥ ω2 g

>
kZktk.(3.22)

If the latter holds, set ik = i + 1, αk = αi+1
k , xk+1 = xi+1

k , pk = pik, νk = νik, and
quit the PLS algorithm.

5. If the penalty parameter σk is not sufficiently large to have

σk ≥ ‖λ(xi+1
k )‖

D
+ σ,(3.23)

set ik = i + 1, αk = αi+1
k , xk+1 = xi+1

k , pk = pik, νk = νik, and quit the PLS
algorithm.

Let us give more details on the steps of the algorithm.
Step 1. The factor τ ik > 0 scales the tangential component of the direction dik. One

reason for introducing this factor is that it may be convenient to use different step-sizes
for the transversal and longitudinal part of the displacement. Indeed, second order
information is used transversally, while a quasi-Newton model is used longitudinally.
Another reason for using different transversal and longitudinal step-sizes will come
from the discussion in section 3.6.

When i = 0 (initially) and τ0
k = 1, d0

k has the form of the reduced SQP direction
dk and is tangent to p̃k at 0. For i ≥ 1, the direction comes from the discretization of
(3.10): its longitudinal component τ ikZ

−(xik)Zktk is tangent to Mxik
at xik, and the

unscaled reduced direction Zktk is kept unchanged from one stage to the other.
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The update formula of νi−1
k includes two natural possibilities. They correspond

to the setting of the parameter ρik to 0 or 1 below. So, let ρik be any number in [0, 1]
and let us introduce the notion of total decrease of Θσk at xik as the positive quantity

T ik = Θσk(xk)−Θσk(xik).(3.24)

Then, νik is defined by

νik(α) =

 νi−1
k (α) for 0 ≤ α < αik,

(1− ρik)νi−1
k (αik)

+ρik(−T ik/ω1) + (α− αik)Θ′σk(xik; dik) for α ≥ αik.
(3.25)

When ρik = 0, νik is continuous and the search can be viewed as a discretization of
the smooth search described in section 3.1. This corresponds to a loose search. When
ρik = 1, the search is closer to the “skipping rule” strategy discussed in section 3.3
below. It is also more demanding, since νik is more negative (use (3.18b)).

Step 2. Observe that dik is a descent direction of Θσk at xik, since by (2.3)

Θ′σk(xik; dik) = τ ikg(xik)>Zktk + λ(xik)>c(xik)− σk‖c(xik)‖,(3.26)

which is negative when (3.18c) and (3.18d) hold. Then, it is standard to verify that,
with conditions (3.18a), (3.18b), and ω1 ∈ (0, 1), one can find a step-size α = αi+1

k >
αik such that xi+1

k is in Ω and the descent condition (3.21) holds.
Step 3. If i = 0, it is the right place to ask whether the pursuit of the search is

useful. Indeed, unlike in unconstrained optimization, the curvature condition (3.2)
is not strong enough to force global convergence (see section 4). It is only useful
for guaranteeing the positive definiteness of the generated matrices. On the other
hand, the role of the update criterion is to judge whether an update is appropriate by
appreciating the quality of the information contained in the pair (γk, δk). We believe
that this appreciation has to be done when i = 0 so that a PLS is not launched without
necessity. We shall not be more specific on this update criterion, because the results
below do not need it. For these results, it can be any rule such as “never update”
or “always update.” A better rule is used, however, in the numerical experiments
of section 5. For more information on this subject, see Nocedal and Overton [31] or
Gilbert [16].

Step 4. By linearization of the constraints at a point x, we mean the computation
of the Jacobian matrix A(x), the basis Z−(x), and the right inverse A−(x). At step 4,
the curvature condition (3.22) is tested. If it holds, the search terminates. From
step 2 and (3.22), the point xk+1 is in Ω and satisfies the reduced Wolfe conditions
(3.1)–(3.2) with α = αk.

Step 5. If (3.22) is not satisfied, one has to check whether the penalty parameter
is sufficiently large to continue the search from xi+1

k , i.e., whether (3.23) holds. If
such is the case, all the conditions in (3.18) hold and a new iteration can start after
having increased i by one. Otherwise, the search is interrupted (another possibility
would have been to increase σk and to pursue the search).

3.3. Additional comments. To summarize, there are three facts that can in-
terrupt the search algorithm: either (i) the update criterion does not hold in step 3
after α1

k is determined in step 2, or (ii) the conditions (3.1)–(3.2) are satisfied in step
4, or (iii) the penalty parameter σk is not large enough to guarantee that the next
search direction is a descent direction of Θσk (step 5). We shall show in section 4
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that under natural assumptions the algorithm does not cycle and terminates on one
of these situations.

As announced above, when τ ik = 1 for all i, the path pk is a piecewise linear ap-
proximation of the bicomponent guiding path p̃k, which was obtained by an explicit
Euler discretization of the differential equation (3.10) at the step-sizes αik. Further-
more, if ρik = 0 for all i, νk can also be viewed as a discretization of the function νk
defined by (3.13) with pk instead of p̃k: ν′k(αik; 1) = Θ′σk(xik; dik) = (Θσk ◦ pk)′(αik; 1).

Remark that the search direction d1
k is close to

ď1
k = −Z−(x1

k)B−1
k g(x1

k)−A−(x1
k)c(x1

k),

which is the direction that would be taken in an algorithm skipping the update of
Bk at x1

k when γ>k δk is nonpositive or when the curvature condition does not hold
(skipping rule). When ρ1

k = 1 in the definition of ν1
k above, inequality (3.21) becomes

Θσk(x1
k+(α−α1

k)d1
k) ≤ Θσk(x1

k) + ω1 (α−α1
k) Θ′σk(x1

k; d1
k),

which is also the condition to realize in an algorithm with skipping rule.
The only difference between ď1

k and d1
k is that in the latter the reduced gradient is

also kept unchanged. The main motivation for this choice is explained in section 3.1:
if the matrices A−(xik) and Z−(xik) are good in the sense of (3.11), the search consists
of minimizing (f ◦ ψk) along the reduced direction Zktk (the meaning of ψk is given
in Figure 3.1). With this in mind, it makes sense to update the matrix Bk using the
vectors

γk = gk+1 − gk and δk =

(
ik−1∑
i=0

τ ik(αi+1
k − αik)

)
Zktk.(3.27)

Note that when τ ik = 1 for all i, δk = αkZktk, simply.
When ρik = 1 for all i, the PLS algorithm applied to unconstrained problems

(c(xik) = 0 for all i) is related to the method of Moré and Sorensen [28] (see also Moré
and Thuente [29, Section 2]). The differences are that Moré and Sorensen look for a
point satisfying the strong Wolfe conditions (for this reason our method terminates
more quickly), and the slope of the pieces of the forcing function νik is kept unchanged
in their method (while we adapt it to the current point xik).

For i ≥ 0, we introduce the notion of forced decreased of Θσk at xi+1
k as the

positive quantity

F i+1
k = −ω1

i∑
l=0

(αl+1
k − αlk)Θ′σk(xlk; dlk).(3.28)

Using (3.18b) and the definition (3.25) of νik, we get, for i ≥ 1,

F ik ≤ −ω1 ν
i−1
k (αik) ≤ T ik,(3.29)

where T ik is the total decrease of Θσk defined by (3.24).
We conclude this section by some comments on the cost of the PLS algorithm.

The main requirement of this method is the linearization of the constraints (the
computation of A, A−, and Z−) at the intermediate points xik (1 ≤ i ≤ ik − 1). This
apparently damning cost must be reappreciated in view of the following two facts.
First, we have shown in [18] that it is possible to combine the PLS technique with
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a suitable update criterion such that, asymptotically, each time the update criterion
holds, the PLS algorithm succeeds without intermediate point (ik = 1) and with
unit step-size (αk = 1). Therefore, one can expect that in practice very few inner
iterations will be necessary in the PLS algorithm. This is confirmed by the limited
numerical experiments presented in section 5. Secondly, the work realized during the
inner iterations of the PLS algorithm helps to find a better approximation of the
solution: the search along the inner direction dik makes the linearization at xik useful.
In fact, since dik is close to a standard reduced SQP direction, one could consider all
the intermediate iterates xik as “true” iterates. It is a matter of presentation to group
in a single iteration all the stages between two matrix updates.

3.4. Successive backtrackings. When a step-size candidate αik is not accepted
because inequality (3.22) does not hold, one has to determine the next tangent scaling
factor τ ik > 0 and the next step-size candidate αi+1

k such that

αi+1
k > αik, xi+1

k = pik(αi+1
k ) ∈ Ω, and (3.21) holds with α = αi+1

k .

This cannot be done in an uncontrolled manner. In particular, τ ik cannot be arbitrarily
small or large, and αi+1

k cannot be chosen too close to αik. In this section, we describe
a method for determining αi+1

k that will ensure the finite termination of the search
algorithm.

The determination can be divided into two stages. In the forward or extrapolation
stage, a step-size αi,1k > αik is taken along dik. The backward or interpolation stage

is iterative: as long as (for the current trial with a step-size αi,jk (j ≥ 1)) pik(αi,jk ) is

not in Ω or (3.21) does not hold for α = αi,jk , a new trial is made with a step-size

αi,j+1
k ∈ (αik, α

i,j
k ). By requiring that αi,jk converges to αik when j →∞, pik(αi,jk ) will

be in Ω and (3.21) with α = αi,jk will hold for some finite index j. We denote by ji
the first index j for which this occurs and set

αi+1
k = αi,jik .

We also suppose that {αi,jk }j≥1 does not tend too fast to αik: the closer αi+1
k is to αik,

the larger ji must be. The rigorous form of our assumptions follows.
Assumptions 3.7. We suppose that the determination of the tangent scaling factor

τ ik > 0 and the step-sizes αi,jk is such that
(i) the sequences {τ ik}i≥0 and {1/τ ik}i≥0 are bounded,

(ii) the sequence {αi,jk }j≥1 converges to αik,
(iii) if the increasing sequence {αik}i≥1 converges to some step-size αk, then

(a) for any index j′ ≥ 1, there is an index i′ ≥ 1 such that ji ≥ j′ for all i ≥ i′,
(b) for any j ≥ 1, the sequence {αi,jk }i≥1 converges to a step-size α∞,jk 6= αk,

(c) the sequence {α∞,jk }j≥1 converges to αk.
Assumption 3.7 (iii-a) means that when {αik}i≥1 converges, the number (ji − 1) of
interpolations must go to infinity when i→∞.

Assumption 3.7 (i) is not difficult to satisfy. On the other hand, an easy way
of satisfying Assumptions 3.7 (ii) and (iii), while using its favorite extrapolation and
interpolation formulas, is to use some safeguard rules. Here is an example of rules
that guarantee Assumptions 3.7 (ii) and (iii).

Example of safeguard rules for αi,jk .
1. Choose εE > 0 and εI ∈ (0, 1/2).
2. Extrapolation safeguard: for i ≥ 0, choose αi,1k ≥ αik + εE .
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3. Interpolation safeguard: for i ≥ 0 and j ≥ 2, choose

αi,jk ∈
[
(1− εI)αik + εIα

i,j−1
k , εIα

i
k + (1− εI)αi,j−1

k

]
.

Let us show that Assumptions 3.7 (ii), (iii-a), and (iii-c) are satisfied if these rules
are used. Observe that, for i ≥ 1 and j ≥ 1,

αik < αi,jk ≤ αik + (1− εI)j−1(αi,1k − αik).(3.30)

Therefore, Assumption 3.7 (ii) is verified. On the other hand, suppose that {αik}i≥1

converges, and choose an index j′ ≥ 1. Then, one can find an index i′ ≥ 1 such that

αi+1
k − αik ≤ εE ε

j′−1
I ∀i ≥ i′.

As

αi+1
k = αi,jik ≥ (1− εji−1

I )αik + εji−1
I αi,1k ≥ αik + εE ε

ji−1
I ,

we have from the previous inequality that

εE ε
ji−1
I ≤ εE εj

′−1
I ∀i ≥ i′.

Now, because εI < 1, we obtain ji ≥ j′ for all i ≥ i′, which is Assumption 3.7 (iii-a).
Finally, Assumption 3.7 (iii-c) is also guaranteed by the above rules as this can be
seen by taking the limit on i and then on j in (3.30).

We have not discussed the case of Assumption 3.7 (iii-b), but it also can easily
be satisfied by taking for i ≥ 0, for example,

αi,jk =

{
αik + εE if j = 1,
1
2 (αik + αi,j−1

k ) if j ≥ 2,

which is compatible with the safeguard rules given above. More appropriate interpo-
lation rules would use the known values of Θσk and its directional derivatives.

3.5. Finite termination of the search algorithm. The next proposition gives
conditions that ensure the finite termination of the PLS algorithm described in sec-
tions 3.2 and 3.4 at a point xk+1 satisfying

Θσk(xk+1) ≤ Θσk(xk) + ω1 νk(αk),(3.31)

g>k+1Zktk ≥ ω2 g
>
kZktk,(3.32)

where the function νk is defined recursively in step 1 of the algorithm (see (3.25)).
Recall that the search path pk is also defined recursively in step 1 of the algorithm.

Proposition 3.8. Suppose that f and c are differentiable on Ω, c is a submersion
on Ω, and the decomposition of Rn described in section 1 is made with maps Z− and
A− which are bounded on Ω. Let xk be a point in Ω and Bk be a symmetric positive
definite matrix of order n−m. Suppose that the penalty factor σk in (1.12) satisfies
(2.2). Then, if the PLS algorithm described in sections 3.2 and 3.4, with Assumptions
3.7, ω1 ∈ (0, 1), and ω2 > 0, is started from xk, one of the following situations occurs:

(i) the algorithm terminates after a finite number of stages with a step-size αk > 0,
a point xk+1 ∈ Ω, and a function νk satisfying conditions (3.31) and (3.32);
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(ii) the algorithm terminates prematurely with a step-size αk > 0, a point xk+1 ∈
Ω, and a function νk satisfying (3.31) only, because either the update criterion does
not hold at x1

k or (3.23) fails at xi+1
k = xk+1;

(iii) the algorithm builds a sequence of points {xik}i≥1 in Ω and either Θσk(xik)
tends to −∞ or {xik}i≥1 tends to a point on the boundary of Ω.

Proof. We have already observed in section 3.3 that if the algorithm terminates,
then either situation (i) or (ii) occurs.

Suppose now that the algorithm cycles: a sequence {xik}i≥1 is built in Ω. This
can only occur when gk 6= 0, since (3.32) is always satisfied when tk = 0 and (3.31)
is satisfied at x1

k. We have to show that one of the events given in (iii) occurs. We
proceed by contradiction, supposing that {Θσk(xik)}i≥1 is bounded from below and
that {xik}i≥1 does not converge to a point on the boundary of Ω. We recall that
conditions (3.18) are satisfied for all i ≥ 1.

Step 1. Let us prove that the sequences {F ik}i≥1, {νi−1
k (αik)}i≥1, and {αik}i≥1

converge, say to F k, Nk, and αk, respectively.
The first sequence is increasing and the second is decreasing; hence, from (3.29),

they will converge if we prove that {T ik} is bounded. But this is clear since T ik =
Θσk(xk)−Θσk(xik) ≥ 0 and {Θσk(xik)} is supposed to be bounded below.

On the other hand, using the definition (3.28) of F i+1
k , (3.26), (2.2), (3.18d),

g>kZktk ≤ 0, and (3.18c), we obtain

F i+1
k ≥ −ω1

i∑
l=0

τ lk (αl+1
k − αlk) g(xlk)>Zktk

≥ −ω1 ω2

(
i∑
l=1

τ lk (αl+1
k − αlk)

)
g>kZktk.

Then, the boundedness of {F ik}i≥1, g>kZktk < 0, and ω1ω2 > 0 imply that∑
i≥0

τ ik (αi+1
k − αik) < +∞.(3.33)

As {τ ik}i≥0 is bounded away from 0 by Assumption 3.7 (i), {αik}i≥1 converges.
Step 2. Let us show that the sequence {xik}i≥1 converges to a point xk ∈ Ω.
By definition of F i+1

k , g>kZktk ≤ 0, (3.18c), (2.2), and (3.18d), we obtain

F i+1
k ≥ ω1 σ

i∑
l=0

(αl+1
k − αlk) ‖c(xlk)‖.

Since {F ik}i≥1 is bounded, we have the convergence of the series∑
i≥0

(αi+1
k − αik) ‖c(xik)‖ < +∞.(3.34)

Now, by definition of xik,

xik = xk +

i−1∑
l=0

(αl+1
k − αlk)

(
τ lkZ

−(xlk)Zktk −A−(xlk)c(xlk)
)
.

Using the boundedness of Z−(·) and A−(·) on Ω, (3.33), and (3.34), we see that the
series in the right-hand side is absolutely convergent when i → ∞. Therefore, the
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series is convergent and xik converges to a limit point xk. By our assumptions, xk
cannot be a point on the boundary of Ω; hence, xk ∈ Ω.

This implies the following convergence when i→∞ (see (3.24)):

T ik → T k = Θσk(xk)−Θσk(xk).

Furthermore, since {τ ik} and {1/τ ik} are bounded by Assumption 3.7 (i), there is some
τk > 0 and a subsequence I ∈ N such that for i → ∞, i ∈ I, we have τ ik → τk and
(using (3.19), (3.26), and (2.3))

dik → dk = τkZ
−(xk)Zktk −A−(xk)c(xk),

Θ′σk(xik; dik)→ τk g(xk)>Zktk + λ(xk)>c(xk)− σk‖c(xk)‖ = Θ′σk(xk; dk).

Step 3. Let us conclude with the expected contradiction.
Define

xi,jk = xik + (αi,jk − αik) dik.

By Assumption 3.7 (iii-b), the sequence {αi,jk }i≥1 converges to a step-size α∞,jk 6= αk.
Therefore, for any j ≥ 1,

xi,jk → x∞,jk = xk + (α∞,jk − αk) dk when i→∞ with i ∈ I.

Now, for fixed j ≥ 1, Assumption 3.7 (iii-a) says that ji > j for sufficiently large i.
This means that, for large i, xi,jk is not accepted in step 2 of the PLS algorithm. Hence,

either xi,jk 6∈ Ω or (3.21) is not verified with α = αi,jk . This can be written

xi,jk ∈ Ω =⇒ Θσk(xi,jk ) > Θσk(xk) + ω1 ν
i
k(αi,jk )

= Θσk(xk) + ω1 ν
i
k(αi+1

k ) + ω1 (αi,jk − α
i+1
k ) Θ′σk(xik; dik).

Taking the limit on i ∈ I in this relation and using ω1Nk ≥ −T k from (3.29) and the
results of step 2, we obtain

x∞,jk ∈ Ω =⇒ Θσk(x∞,jk ) ≥ Θσk(xk)− T k + ω1 (α∞,jk − αk) Θ′σk(xk; dk)

= Θσk(xk) + ω1 (α∞,jk − αk) Θ′σk(xk; dk).

Hence,

x∞,jk ∈ Ω =⇒ Θσk(x∞,jk )−Θσk(xk)

α∞,jk − αk
≥ ω1 Θ′σk(xk; dk).

Because xk ∈ Ω, taking the limit in this implication when j tends to infinity gives
(with Assumption 3.7 (iii-c)) Θ′σk(xk; dk) ≥ ω1 Θ′σk(xk; dk). Because ω1 < 1, we get

Θ′σk(xk; dk) ≥ 0.

On the other hand,

Θ′σk(xk; dk) = τk g(xk)>Zktk + λ(xk)>c(xk)− σk‖c(xk)‖
≤ τk ω2 g

>
kZktk

< 0,

because ‖λ(xk)‖
D
≤ σk from the limit in (3.18d), g(xk)>Zktk ≤ ω2 g

>
kZktk from the

limit in (3.18c), τkω2 > 0, and gk 6= 0. This inequality contradicts the nonnegativity
of Θ′σk(xk; dk) obtained above and concludes the proof.
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µxk(x1
k)µxk(x2
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Fig. 3.4. A difficult case for the PLS.

3.6. Resetting the PLS. In some cases, the PLS described in sections 3.2 and
3.4 can be trapped in a situation where its behavior is poor. Such a situation may
happen when conditions (3.11) do not hold, in particular, when the path µxk ◦ pk is
not a descent path for f . Then, the search algorithm may necessitate a large number
of inner iterations to satisfy the reduced Wolfe conditions, and the vectors γk and δk
may be erroneous. We show how to improve the PLS algorithm in this situation.

Here is an example of such a situation, in which n = 2 and m = 1. Take

f(x) =
1

4

(
x(1) + x(2)

)2
and c(x) = ex(2) − 1,

where x(i) denotes the ith component of x. The unique solution of this problem is
clearly x∗ = 0. With the following decomposition of R2,

Z−(x) = e1 and A−(x) = e−x(2)e2,

where (e1, e2) is the canonical basis of R2, the reduced gradient is given by g(x) =
(x(1) + x(2))/2, and the transversal component of the steps are orthogonal to the
constraint manifold. The manifolds c(·) = 0 and g(·) = 0 are the lines x(2) = 0 and
x(1) + x(2) = 0 represented in Figure 3.4.

Now, suppose that the current iterate xk has coordinates (−1− ε, 1), with ε > 0,
and that Bk = I. Consider an implementation of the PLS in which ω1 = 10−4,
ω2 = 0.9, ρik = 1, τ ik = 1, and the first step-size candidate is αi,1k = αik + 1. If

the penalty parameter σk = 10, the step-size αi,1k is always accepted by the Armijo
condition (3.21). When ε = 0.5 the search algorithm requires 5 inner iterations. The
intermediate points {xik}5i=1 are represented in Figure 3.4. By decreasing ε > 0, one
can obtain as many inner iterations as desired. For example, 21 inner iterations are
necessary for ε = 0.1, while 2001 are necessary for ε = 10−3! The reason is that when ε
decreases, xk is closer to the manifold g(·) = 0 and the reduced tangent direction Zktk
is smaller. Because the iterates go rapidly close to the constraint manifold where the
reduced gradient is much more negative than at xk and because the reduced gradients
evaluated at the intermediate points are not used for defining the search directions,
the algorithm needs more and more inner iterations to cross the manifold g(·) = gk
(represented by a dashed line in Figure 3.4), beyond which it has to go to satisfy the
curvature condition (3.22). If the search path is mapped by µxk (see Definition 3.3)
on the line c(·) = ck, it is clear from Figure 3.4 that the mapped path starts in the
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wrong left direction. The correct direction is followed from µxk(x2
k) only. The basic

reason for this behavior is, once again, that reduced methods have no information on
the space tangent to the manifold of constant reduced gradient.

In reduced quasi-Newton methods, the update criterion is often a rule that sug-
gests not updating the matrix when the tangential component of the direction is
small with respect to its transversal component (see Nocedal and Overton [31] or
Gilbert [16]). In the example above, this would result in skipping the update when
ε is small. By step 3 of the PLS algorithm, the search would be interrupted at x1

k,
avoiding the large number of inner iterations that we have observed. Unfortunately,
the implementation of update criteria is often less efficient than expected. Therefore,
we propose a modification of the PLS algorithm, such that the situation of the exam-
ple above is faced with more success. In the modified version, the curvature condition
(3.32) is replaced by

g>k+1Zktk ≥ ω2 min
0≤i<ik

g(xik)>Zktk.(3.35)

The PLS algorithm with this new condition is said to be “with resetting” and it is
denoted by “PLS-rst” below. Since inequality (3.35) is less restrictive than (3.32),
it is clear that PLS-rst terminates more quickly than PLS. In particular, it still has
the finite termination property of Proposition 3.8. Questions concerning the global
convergence of the algorithm with PLS and PLS-rst are discussed in the next section.
On the example above, this new version of the algorithm terminates in 3, 5, and 204
inner iterations when ε = 0.5, 0.1, and 10−3, respectively.

When the PLS is reset at an intermediate point xlkk , where lk gives the current
arg-minimum in (3.35), the reduced direction Zktk may be very small (this is the case
in the example above), so that guessing the correct tangent step-size (or the tangent
scaling factor τ ik) by using an extrapolation formula may be useful. For example, one
can try to use g(xi−1

k )>Zktk and g(xik)>Zktk to evaluate τ i+1
k . The rationale behind

this is that, when (3.7) and (3.11) hold, g(xi−1
k )>Zktk and g(xik)>Zktk are derivatives

of the function α 7→ (f ◦ ψk)(αZktk). Hence, when g(xi−1
k )>Zktk < g(xik)>Zktk, one

can use quadratic interpolation to determine τ i+1
k . Using this, the runs with ε = 0.5,

0.1, and 10−3 terminate now in 3, 4, and 5 inner iterations, respectively.
With PLS-rst, the vectors γk and δk used to update Bk have to be modified. If

lk denotes the largest index for which the minimum in (3.35) is reached, then it is
appropriate to take

γk = gk+1 − g(xlkk ) and δk =

(
ik−1∑
i=lk

τ ik(αi+1
k − αik)

)
Zktk.

Note again that when τ ik = 1 for all i, δk = (αk − αlkk )Zktk, simply. With this choice,
γ>k δk > 0. Note also that these vectors usually put better information into the matrix

Bk+1, because the new value of δk is generally closer to the reduced step from xlkk
to xk+1 than the previous value of δk is close to the reduced step from xk to xk+1.
This remark particularly applies to the example above. From Figure 3.4, we have
γPLS
k = g(x5

k)− gk ' g(x5
k)− g(x4

k) ' g(x3
k)− g(x2

k) = γPLS-rst
k . But δPLS

k = 5δPLS-rst
k

and it is clear that δPLS-rst
k corresponds better to γPLS

k ' γPLS-rst
k than δPLS

k .

4. Convergence result. In this section, we show that the PLS method of sec-
tion 3 is able to force convergence of reduced secant algorithms from remote starting
points. For this, we shall suppose that the calculation of the reduced matrices keeps
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the sequences {Bk} and {B−1
k } bounded. This is a rather strong assumption, but the

present state of the convergence theory for constrained problems is not sufficiently
developed to have significantly better results. For instance, Byrd and Nocedal [4]
analyze the global convergence of reduced quasi-Newton algorithms under conditions
that are not known to be guaranteed by the present step-size determination method.

The algorithm we consider is therefore not fully determined, since we shall not be
very specific on the way the matrices are updated (in particular, the update criterion
will remain unspecified). A possibility is to use the BFGS update formula (1.8),
which is always well defined when the PLS succeeds. There is still another facet of
the algorithm that must be clarified—this is how the penalty parameter σk is updated.
We suppose that a rule is chosen such that the following three properties are satisfied
(σ > 0 is a constant): σk ≥ ‖λk‖D + σ ∀k ≥ 1,

∃ an index k1, ∀k ≥ k1, σk−1 ≥ ‖λk‖D + σ =⇒ σk = σk−1,
{σk} is bounded =⇒ σk is updated finitely often.

(4.1)

Many rules can satisfy these conditions. For example, Mayne and Polak [27] suggest
taking (σ̃ > 1):

if σk−1 ≥ ‖λk‖D + σ, then σk = σk−1, else σk = max(σ̃σk−1, ‖λk‖D + σ).(4.2)

We can now outline the algorithm, whose convergence is analyzed in Proposi-
tion 4.2. At the beginning, the iteration index k is set to 1 and the constants ω1 and
ω2 used in the PLS algorithm are chosen in (0, 1). When the kth iteration starts,
an iterate xk ∈ Ω is known, as well as a positive definite matrix Bk. Then the PLS
technique is used to determine the next iterate xk+1 such that xk+1 ∈ Ω and (3.31)
(and possibly (3.32)) hold. Then, the matrix Bk is updated, provided that the PLS
algorithm has not been interrupted prematurely by an update criterion or the failure
of (3.23). Finally, the penalty parameter is updated according to the rules (4.1).

In unconstrained optimization, the curvature condition corresponding to (3.32)
prevents the step-size from being too small, which is important for the global con-
vergence of the algorithm. In constrained problems, this is not necessarily the case,
because condition (3.32) ignores the transversal component of the search path. For
example, when the objective function f is constant the reduced gradient vanishes and
(3.32) is satisfied for any step-sizes, independently of the form of the search path.
Therefore, something has to be done such that the first step-size candidate α1

k (≤ αk)
will not be too small. For the same reason, the first tangent scaling factor τ0

k must
be chosen bounded away from zero. We gather below additional conditions that the
tuning of the PLS algorithm must take into account in order to get global convergence.

Assumptions 4.1. We suppose that the determination of the tangent scaling fac-
tors τ0

k > 0 and the step-sizes α1
k is such that

(i) the sequences {τ0
k}k≥1 and {1/τ0

k}k≥1 are bounded,

(ii) the sequence {α0,1
k }k≥1 is bounded away from zero,

(iii) there exists a constant β ∈ (0, 1) such that for all k ≥ 1 and j ≥ 1, α0,j+1
k ≥

βα0,j
k .
Note that these assumptions are compatible with Assumptions 3.7 and the safe-

guard rules given afterwards. Assumptions 4.1 (ii) and (iii) can be satisfied, for
instance, by using Armijo’s backtracking to determine the first step-size candidate α1

k

from a constant value for α0,1
k . In quasi-Newton methods, τ0

k = 1 and α0,1
k = 1 are

recommended.
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In Proposition 4.2 below, we suppose that a sequence {xk} is generated in Ω.
This implicitly supposes that the PLS algorithm never cycles: situation (i) or (ii)
of Proposition 3.8 occurs at each iteration. We denote by dist(x,Ωc) the Euclidean
distance between a point x and the complementary set of Ω.

Proposition 4.2. Suppose that f and c are differentiable on Ω with Lipschitz
continuous derivatives, that c is a submersion on Ω, that the map A− is continuous
and bounded on Ω, and that Z− is bounded on Ω. Suppose also that the algorithm
for solving problem (1.4) outlined above generates a sequence {xk} in Ω by the PLS
method with Assumptions 3.7 and 4.1 and that the constants ω1 and ω2 are taken in
(0, 1). Suppose finally that the symmetric positive definite matrices Bk used in the
algorithm are such that {Bk} and {B−1

k } are bounded. Then, one of the following
situations occurs:
(i) {σk}k≥1 is unbounded and {xk : σk 6= σk−1} has no accumulation point in Ω,
(ii) σk is modified finitely often and one of the following situations occurs:

(a) gk → 0 and ck → 0,
(b) Θσk(xk)→ −∞,
(c) dist(xk,Ω

c)→ 0 for some subsequence of indices k →∞.
Proof. First, consider situation (i): {σk} is unbounded. Let K be the subsequence

of indices {k : σk 6= σk−1, k ≥ k1} (k1 given by (4.1)). From (4.1),

σk−1 < ‖λk‖D + σ for k ∈ K.

As {σk}k≥k1 is increasing, if it is unbounded, the inequality above shows that the
sequence {‖λk‖D}k∈K tends to ∞. Then, by continuity of x 7→ λ(x) on Ω, {xk : σk 6=
σk−1} has no accumulation point in Ω.

Suppose now that {σk} is bounded. By (4.1), σk is modified finitely often: σk = σ
for k ≥ k2, say. Suppose also that Θσk(xk) is bounded from below and that {xk}
remains away from Ωc. We have to prove that situation (ii-a) of the proposition
occurs. We denote by C an “absorbing” positive constant independent of k.

From the definition (3.28) of F ikk , (3.26), the fact that (3.18c) holds for i = 1,
. . . , ik − 1, g>kZktk ≤ 0, (4.1), (3.18d), and the boundedness of {Bk}, we have the
following for k ≥ k2:

F ikk = −ω1

ik−1∑
i=0

(αi+1
k − αik)Θ′σ(xik; dik)

≥ ω1

ik−1∑
i=0

(αi+1
k − αik)

(
ω2 τ

i
k g
>
kB
−1
k gk + σ‖c(xik)‖

)
≥ C

(
ik−1∑
i=0

τ ik (αi+1
k − αik) ‖gk‖2 +

ik−1∑
i=0

(αi+1
k − αik) ‖c(xik)‖

)
.(4.3)

As the sequence {Θσ(xk)}k≥k2 decreases and is bounded below, it converges. Then,
from (3.31) and ω1 νk(αk) ≤ −F ikk (use (3.29) with i = ik), we see that F ikk → 0.
Therefore, the terms in the right-hand side of (4.3) converge to zero when k →∞:

ik−1∑
i=0

τ ik (αi+1
k − αik) ‖gk‖2 → 0,

ik−1∑
i=0

(αi+1
k − αik) ‖c(xik)‖ → 0.

(4.4)
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The result (ii-a) will be proved if we show that the step-size candidates α1
k are

bounded away from zero. Indeed, from (4.4) and Assumption 4.1 (i), this implies
that gk → 0 and ck → 0. We proceed by contradiction, supposing that for some
subsequence K of indices k ≥ k2 we have

α1
k → 0, when k →∞ in K.(4.5)

By Assumptions 4.1 (ii) and (iii), we can suppose that, for k ∈ K, α1
k < α0,1

k (therefore

α1
k = α0,j1

k for some j1 ≥ 2) and α0,j1−1
k ≤ 1.

Observe first that we can also suppose that, for k ∈ K, α0,j1−1
k is not accepted by

the search algorithm because the descent condition (3.21) does not hold for i = 0 and
α = α0,j1−1

k . Indeed, otherwise we would have a subsequence K′ ⊂ K such that

x0,j1−1
k 6∈ Ω for k ∈ K′.(4.6)

Recall that rk = −A−k ck. We have x0,j1−1
k −xk = α0,j1−1

k (τ0
k tk + rk) and, by Assump-

tion 4.1 (iii), α0,j1−1
k ≤ α1

k/β ≤ αk/β. Then, using the boundedness of {α1
k}k∈K (due

to (4.5)); Assumption 4.1 (i); the boundedness of {Z−k }, {B
−1
k }, and {A−k }; and (4.4);

we have for k →∞ in K

‖α0,j1−1
k τ0

k tk‖2 ≤ C α1
k τ

0
k ‖gk‖2 → 0,

‖α0,j1−1
k rk‖ ≤ C α1

k ‖ck‖ → 0.

Therefore, (x0,j1−1
k −xk)→ 0 for k →∞ in K, and (4.6) would imply that dist(xk,Ω

c)
tends to 0 for k →∞ in K′, in contradiction with our assumptions.

Therefore, we can suppose that (3.21) is not satisfied for i = 0, α = α0,j1−1
k , and

k ∈ K, i.e.,

Θσ(x0,j1−1
k ) > Θσ(xk) + ω1 α

0,j1−1
k

(
τ0
k g
>
kZktk + λ>kck − σ‖ck‖

)
.(4.7)

We obtain a contradiction with (4.5) by showing that this may not occur for too small
α0,j1−1
k . For this, we expand the left-hand side of (4.7) about xk.

First, using the Lipschitz continuity of f ′ on Ω,

f(xk + α τ tk + α rk) ≤ fk + α τ g>kZktk + αλ>kck + Cα2
(
τ2 ‖tk‖2 + ‖rk‖2

)
.

Similarly, using the Lipschitz continuity of c′ on Ω, we get the following for α ≤ 1:

‖c(xk + α τ tk + α rk)‖ ≤ ‖ck − α ck‖+ Cα2
(
τ2 ‖tk‖2 + ‖rk‖2

)
= ‖ck‖ − α ‖ck‖+ Cα2

(
τ2 ‖tk‖2 + ‖rk‖2

)
.

Grouping these estimates, we obtain the following for α ≤ 1:

Θσ(xk + α τ tk + α rk) ≤ Θσ(xk) + α
(
τ g>kZktk + λ>kck − σ ‖ck‖

)
+ Cα2

(
τ2 ‖tk‖2 + ‖rk‖2

)
.

Using this inequality in (4.7) gives (recall that α0,j1−1
k ≤ 1 for k ∈ K)

(1− ω1)α0,j1−1
k

(
τ0
k g
>
kB
−1
k gk − λ>kck + σ‖ck‖

)
< C(α0,j1−1

k )2
(

(τ0
k )2‖gk‖2 + ‖ck‖2

)
for k ∈ K.
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With the boundedness of {Bk}, {τ0
k} and {1/τ0

k} and the inequalities ω1 < 1 and
σ ≥ ‖λk‖D + σ, we obtain

α0,j1−1
k ‖gk‖2 + α0,j1−1

k ‖ck‖ < C(α0,j1−1
k )2

(
‖gk‖2 + ‖ck‖2

)
for k ∈ K.

By (4.4) and α0,j1−1
k ≤ α1

k/β, α0,j1−1
k ‖ck‖ → 0. Hence, the inequality above gives

α0,j1−1
k ‖gk‖2 + α0,j1−1

k ‖ck‖ < C(α0,j1−1
k )2‖gk‖2 + Cεkα

0,j1−1
k ‖ck‖ for k ∈ K,

where εk → 0 for k ∈ K. Finally,

α0,j1−1
k ‖gk‖2 < C(α0,j1−1

k )2‖gk‖2 for large k ∈ K.

Clearly, this strict inequality shows that {α0,j1−1
k }k∈K is bounded away from zero. As

α1
k ≥ βα

0,j1−1
k , {α1

k}k∈K cannot converge to zero, contradicting (4.5).
This contradiction concludes the proof.
When g is Lipschitz continuous on Ω, Assumptions 4.1 are no longer necessary

to prove that gk → 0. This can be shown by a standard argument, using (3.32) and
(4.4). But we were not able to prove that ck → 0 without these assumptions, for
the reasons given above the statement of Assumptions 4.1. On the other hand, once
Assumptions 4.1 hold, condition (3.32) is no longer useful for the global convergence
(it is not used in the proof above). In this case, if the PLS algorithm is replaced by
the PLS-rst method described in section 3.6, the conclusion of Proposition 4.2 still
holds.

5. Numerical experiment. The behavior of the PLS technique introduced in
section 3 and the reduced quasi-Newton algorithm presented in section 4 have been
tested on two model problems with a dimension ranging from n = 2 to 500 and a
single constraint. They consist in minimizing quadratic functions on the unit sphere.
Since there is just one constraint, this problem does not favor reduced SQP methods.
A full SQP method should be more efficient on this problem.

The numerical experiments have been done in double precision on a SUN SPARC-
station 1, with a program written in Fortran-77.

Test problem I. In the first test problem, the function f to minimize and the
constraint function c are defined on Ω = {x ∈ Rn : x(1) > 0} by

f(x) =
1

2

n∑
i=1

(a(i)x(i) − 1)2, c(x) =
1

2
(‖x‖22 − 1).

Here v(i) denotes the ith component of a vector v. The constants a(i) are set to
(n + 1 − i)/n for 1 ≤ i ≤ n. The problem is more and more difficult to solve as n
increases because the order of the updated matrices and the condition number of the
reduced Hessian of the Lagrangian increase with n.

The Jacobian matrix of the constraints A(x) = x> is surjective if x 6= 0. The
matrix Z−(x), whose columns form a basis of the space tangent to the constraint
manifold, and the restoration operator A−(x) are chosen as follows:

Z−(x) =

(
−x(2) − · · · − x(n)

x(1)In−1

)
, A−(x) =

x

‖x‖22
,(5.1)

where In−1 is the identity matrix of order n − 1. These matrices are well defined
and injective for x ∈ Ω. The form of A−(x) shows that the transversal steps are
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Table 5.1

Test problems.

n x∗(1) κ2(B∗)
2 0.69 1.
5 0.53 6.

10 0.42 9.
20 0.32 14.
50 0.22 26.

100 0.16 46.
200 0.12 84.
500 0.075 192.

orthogonal (for the Euclidean scalar product) to the space tangent to the constraint
manifold.

Table 5.1 gives some information on the problems: n is the number of variables
(hence, n − 1 is the dimension of the constraint manifold and the order of the ma-
trix to update), x∗(1) is the first component of the solution, and κ2(B∗) is the `2
condition number of the reduced Hessian of the Lagrangian at the solution (com-
puted by the LAPACK program DSYEV). Note that although the Hessian of the
Lagrangian L(x, λ) is a diagonal matrix and Z−(x) is sparse, the reduced Hessian
Z−(x)>L(x, λ)Z−(x) is dense: its (i, j) element is (a2

1 +λ)xi+1xj+1 + (a2
i+1 +λ)x2

1δij .
To globalize the algorithm, the exact `1 penalty function (with the `1-norm in

(1.12)) is used with σ1 = 2‖λ1‖∞ initially. Next, σk is updated by the rule (4.2) with
σ = σ1/100 and σ̃ = 2. The initial point x1 has its ith component set to (−1)i−110,
and the algorithm stops at the point xk when

‖ck‖2 ≤ 10−7‖c1‖2 and ‖gk‖2 ≤ 10−7‖g1‖2.

The update of the matrix B−1
k is done with the inverse BFGS formula when it

is appropriate (this depends on the algorithm and is specified below). The first time
this occurs, for k = k0 say, the inverse matrix is first initialized to γ>k0δk0/‖γk0‖

2I
before being updated.

The results of our experiments on test problem I are given in Tables 5.2 to 5.6
and summarized in Table 5.7. Here are some common symbols: “n” is the dimension
of the problem, “iter” is the number of iterations, “lin” is the number of times the
constraints are linearized, “func” is the number of function calls, “skip” is the number
of times the matrix update is skipped, and “σ ↗” is the number of increases of the
penalty parameter. The meaning of some other symbols is given below.

To serve as a reference, the first runs have been made with Armijo’s backtracking
along dk = tk+rk and the skipping rule: if at the point found by the search algorithm
γ>k δk is positive, Bk is updated; otherwise, the update is skipped. This algorithm is
denoted by AS-skip. The results are given in Table 5.2.

We see that the number of skips is usually small, except for the cases n = 20 and
n = 500.

In the next experiment, Armijo’s backtracking is still used as search technique,
but a correction is made to δk when γ>k δk is not sufficiently positive (the so-called

Powell’s correction; see Powell [34]): δ̃k = θδk + (1− θ)B−1
k γk, where

θ =

{
1 if γ>k δk ≥ 0.2 γ>kB

−1
k γk,

0.8
γ>kB

−1
k γk

γ>kB
−1
k γk−γ>k δk

otherwise.
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Table 5.2

AS-skip: Armijo’s search and skipping rule (I).

n iter func skip σ ↗
2 17 23 1 0
5 55 58 1 1

10 88 93 5 1
20 110 116 31 2
50 82 89 3 3

100 83 95 2 3
200 72 90 3 4
500 91 98 11 5

Table 5.3

AS-Powell: Armijo’s search and Powell’s correction (I).

n iter func P-cor σ ↗
2 17 23 1 0
5 55 58 2 1

10 86 89 3 1
20 98 110 14 2
50 74 82 6 3

100 95 118 18 3
200 78 89 4 4
500 104 132 11 5

The update of B−1
k is then made with (γk, δ̃k) instead of (γk, δk). This algorithm is

denoted by AS-Powell. Table 5.3 shows the results: “P-cor” is the number of Powell’s
corrections, i.e., the number of times θ 6= 1 in the formula of δ̃k above. We see that
this algorithm works slightly better than the method with skipping rule for small n
(n ≤ 50) and slightly worse for larger n. We believe that this may not be fortuitous
and may come from update pairs (γk, δk) of bad quality, in particular of the initial
one, which is used to scale the matrix. Indeed, for small n, the effect of an initial
pair with wrong information is rapidly compensated by updates with good pairs (this
is clearly the case when n = 2, since then the matrix to update has order 1 and the
update formula is memoryless). On the other hand, from our experience [20], if n is
large and if the first pair used to scale the matrix is spoiled, it may take many updates
to recover from this bad initial scaling.

For two reasons, we introduce an update criterion in the algorithm AS-Powell.
First, we want to see whether an update criterion improves the algorithm by selecting
good pairs (γk, δk) and, second, we want to offer a fairer comparison with algorithms
using the PLS, which naturally require update criteria. We take the following in-
equality as update criterion:

‖rk‖2 ≤ µ ‖e1
k	2‖2 ‖tk‖2.(5.2)

An update is desirable when the inequality holds. In this criterion, µ is a positive
constant, k	 2 is the index of the last but one iteration at which an update occurred
before iteration k (see [16] or [18]), and e1

k = α1
kdk. The value used for µ is important

for the efficiency of the criterion. In order to get a sufficiently good initial pair, we
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Table 5.4

AS-Powell-UC: Armijo’s search, Powell’s correction, and update criterion (I).

n iter func skip P-cor σ ↗
2 18 27 3 1 0
5 19 26 7 0 1

10 27 35 5 0 1
20 40 51 8 2 2
50 56 72 8 4 3

100 43 50 4 1 3
200 48 63 5 1 3
500 57 79 10 6 4

Table 5.5

PLS: Piecewise line-search and update criterion (I).

n iter lin func skip σ ↗
2 16 21 30 3 0
5 19 20 26 7 1

10 27 28 35 5 1
20 37 38 46 7 2
50 51 53 63 7 3

100 43 44 50 7 3
200 47 48 61 5 3
500 43 56 66 10 4

take for µ the quotient

µ = 0.1
‖r1‖2

‖e1
1‖2 ‖t1‖2

,

so the update criterion cannot be satisfied before a few iterations have been done.
This forces the algorithm to choose as its initial scaling pair (γk0 , δk0) a better pair
than (γ1, δ1).

The results of algorithm AS-Powell with this update criterion, denoted as AS-
Powell-UC, are given in Table 5.4. They are remarkably better than those of algorithm
AS-Powell: the number of iterations and function calls has decreased by 49 % and
43 %, respectively. This confirms our feeling on the importance of selecting good
pairs (in particular the first one).

The last two experiments use the PLS technique, provided that the update cri-
terion (5.2) holds. Hence, the update is skipped when the PLS is interrupted by
the update criterion or by the test on the penalty parameter (step 5 of the search
algorithm). As far as the PLS algorithm is concerned, we have always set ρik = 1 in
(3.25), which corresponds to a demanding search. The results with ρik = 0 hardly
differ, essentially because the unit step-size is usually accepted by the PLS. The first
tangent scaling factor τ0

k and the step-size candidates αi,1k are always set to 1 and
αik + 1, respectively. Safeguarded quadratic interpolation is used to determine the

intermediate step-sizes {αi,jk }
ji
j=2.

In the first experiment, whose results are given in Table 5.5, the plain PLS method
described in sections 3.2 and 3.4 is used with τ ik always set to 1 (without tangential
extrapolation). A first observation is that the PLS algorithm never cycles, as this is
suggested by the theory (Proposition 3.8). Now, comparing the number of lineariza-
tions with those of the algorithms with Powell’s correction, we observe an important
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Table 5.6

PLS-rst: Piecewise line-search (with resetting) and update criterion (I).

n iter lin func rst skip σ ↗
2 17 19 27 1 3 0
5 19 20 26 0 7 1

10 27 28 35 0 5 1
20 37 38 46 0 7 2
50 51 53 65 1 8 3

100 43 44 50 0 7 3
200 47 48 61 0 5 3
500 48 52 65 1 10 4

Table 5.7

Compared performance of the algorithms (I).

Algorithm iter lin func
AS-skip 598 606 662
AS-Powell 607 615 701
AS-Powell-UC 308 316 403
PLS 283 308 377
PLS-rst 289 302 375

improvement with respect to algorithm AS-Powell and a small one with respect to
algorithm AS-Powell-UC. The results look quite satisfactory, particularly if we ob-
serve that the small improvement with respect to algorithm AS-Powell-UC is due
to a very limited use of the PLS technique. Only the cases n = 2, n = 50, and
n = 500 use this technique, as this can be seen by a positive number of inner iter-
ations: “lin” − “iter” − 1 > 0. Now the results with n = 500 are not very good,
since the PLS algorithm requires a great number of inner iterations. By looking more
closely at these results, however, we have observed that the deterioration is due to a
single iteration and that a phenomenon resembling the one described in the example
of section 3.6 occurs.

The last experiment is done with the PLS-rst algorithm of section 3.6. The PLS
algorithm is interrupted as soon as condition (3.35) holds. Furthermore, the tangent
scaling factor τ ik may be different from 1: either τ ik is determined by a safeguarded
quadratic or cubic extrapolation formula using the values g(xik)>Zktk or (when this
is unsuccessful, due to the inconsistency of the interpolating values) τ ik is doubled at
each inner iteration (provided that the descent test (3.18b) has always been verified
with αik = αi−1,1

k during the current PLS). The results are given in Table 5.6. The
number of iterations with “resettings” are given in a column labeled by ‘rst’: it is the
number of times condition (3.35) differs from (3.32). Of course, only the results of the
cases n = 2, n = 50, and n = 500 may change. We see that the very few “resettings”
slightly improve the results. We also observe that the number of inner iterations used
by the PLS-rst algorithm (= “lin”− “iter”− 1) is now very small.

To summarize, we add up the number of iterations, linearizations, and function
calls used by the considered algorithms for all the runs: see Table 5.7 (for every run
with AS-skip or AS-Powell, “lin” = “iter” + 1). The results of PLS-rst compare
favorably with those of the other techniques.

Test problem II. The second test problem is obtained by changing the objective
function in the first test problem. It is now the quadratic form 1

2x
>Qx− q>x, where
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Table 5.8

Compared performance of the algorithms (II).

Algorithm iter lin func
AS-skip 1109* 1117* 1294*
AS-Powell 495 503 583
AS-Powell-UC 381 389 490
PLS 375 462 533
PLS-rst 354 382 440

Table 5.9

Compared performance for Test problem I with tangent basis (5.3).

Algorithm iter lin func saving in “lin”
AS-skip 453 461 503 24 %
AS-Powell 388 396 440 36 %
AS-Powell-UC 279 287 370 9 %
PLS 254 262 324 15 %
PLS-rst 254 262 324 13 %

Table 5.10

Compared performance for Test problem II with tangent basis (5.3).

Algorithm iter lin func saving in “lin”
AS-skip 235 243 298 78 %*
AS-Powell 230 238 303 53 %
AS-Powell-UC 252 260 357 33 %
PLS 226 242 300 48 %
PLS-rst 228 238 295 38 %

Qi,j = (i + j − 1)−1 and qi = n for all i, j ∈ {1, . . . , n}. Table 5.8 summarizes the
results. The “*” in this table indicates that algorithm AS-skip failed to satisfy the
stopping test for n = 500. This is due to the fact that the matrix update is very often
skipped in this run. The same type of comments as for Test problem I can be given:
• Algorithm AS-Powell works much better than AS-skip;
• The update criterion in AS-Powell-UC improves algorithm AS-Powell signifi-

cantly;
• The less satisfactory results of the plain PLS algorithm are due to a large number

of inner iterations in the PLS (no resettings, see section 3.6);
• The PLS-rst algorithm has the best results, with very few inner iterations.

Change of tangent basis. We would like to mention the results obtained by chang-
ing the field of tangent basis Z−. We now take

Z−(x) =

(
−x(2)/x(1) − · · · − x(n)/x(1)

In−1

)
.(5.3)

Hence, the elements of the previous matrix Z− in (5.1) have been divided by x(1).
This is motivated by the fact that this new basis satisfies property (3.7) for some
parametrization ψk, while the basis (5.1) does not (see [19]). All the other parameters
of the algorithms have been kept unchanged.

Tables 5.9 and 5.10 give the results corresponding to Test problems I and II. We
observe an important improvement in the number of linearizations (last column, i.e.,
saving in “lin”). Note that this is not due to a change in the conditioning of the
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problem: since the previous basis has just been divided by x(1), the condition number
of the reduced Hessian of the Lagrangian at the solution has not changed. We still do
not know whether the fact that the basis (5.3) satisfies (3.7) is a key to explain the
improvement (see [19] for a possible explanation).

Comments on the numerical experiments. Among the techniques used to maintain
the positive definiteness of the reduced matrices that have been tested (skipping rule,
Powell’s corrections, PLS technique), the PLS technique appears to be the best one,
provided that the method is carefully implemented (PLS-rst version of the algorithm).
For the test-problems we considered, two other tools are of great importance for
the efficiency of reduced SQP methods: the use of update criteria and a proper
choice of the tangent basis field Z−. It is clear that this small amount of tests
impedes from giving final conclusions. More experiments with more realistic problems
are necessary before asserting the usefulness of the PLS technique. We have found,
however, that these results are encouraging and we believe that this limited number
of tests demonstrates the feasibility of the PLS approach.

6. Conclusions. This paper proposes a method for maintaining the positive def-
initeness of the matrices in reduced quasi-Newton algorithms for equality constrained
optimization. By using a PLS (as opposed to a traditional line-search) technique,
which conducts the search of the next iterate along a piecewise linear path, some re-
duced Wolfe conditions are satisfied whenever desired. One of these conditions is such
that between two successive iterates, the function to minimize, reduced to the current
manifold, seems to have positive curvature. This allows the algorithm to sustain the
positive definiteness of the reduced Hessian approximations from one iteration to the
other.

A few numerical experiments have shown that a careful implementation of the
technique can do better than other methods, such as the skipping rule or Powell’s
correction of the BFGS update. This improvement is obtained with reduced methods,
despite of their important defect, which is that they have no means to improve the
orientation of the transversal component of the step. Because this defect is crucial in
the present context (due to the first condition in (3.11)) and because it is not shared
with the SQP method, it is expected that the PLS technique could be more clearly
efficient when the updated matrices approximate the full Hessian of the augmented
Lagrangian. This discussion also raises the question whether an update criterion based
on (3.11) rather than on the comparison of the transversal and tangential components
of the step can be conceived.

Another feature of the PLS technique is to offer the possibility to have cleaner
algorithms. At least, this is an advantage for their analysis. For example, in [18],
a strong superlinear convergence result has been proven for an algorithm with PLSs
and the update criterion (5.2). It is shown, indeed, that if in the Coleman and
Conn reduced algorithm the points {xik}k,i converge to a solution satisfying sufficient
second order conditions of optimality, then no intermediate point exists eventually
(ik = 1 for k large) and the sequence converges q-superlinearly. In this result, the
matrices are supposed to be generated by the BFGS formula from any positive definite
starting matrix. No other assumptions on the generated matrices are necessary. To
our knowledge, this is the first extension of Powell’s result (see [32]) to constrained
problems.
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Abstract. Distance geometry problems arise in the determination of protein structure. We
consider the case where only a subset of the distances between atoms is given and formulate this
distance geometry problem as a global minimization problem with special structure. We show that
global smoothing techniques and a continuation approach for global optimization can be used to
determine global solutions of this problem reliably and efficiently. The global continuation approach
determines a global solution with less computational effort than is required by a standard multistart
algorithm. Moreover, the continuation approach usually finds the global solution from any given
starting point, while the multistart algorithm tends to fail.

Key words. global optimization, continuation methods, smoothing transform, distance geom-
etry problems, macromolecular modeling
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1. Introduction. Distance geometry is generally associated with the study of
the relationship between geometric constraints on the atoms of a molecule and the
structure of the molecule. Structures are usually determined with the aid of dis-
tance data between the atoms and other geometric constraints (for example, angle
constraints), since this information can be obtained from nuclear magnetic resonance
(NMR) data. For surveys and reviews of work in this area, see Crippen and Havel
[4], Havel [9], Kuntz, Thomason, and Oshiro [16], and Brünger and Nilges [1].

We consider the case where only distance data is available. Moreover, since NMR
only yields estimates for a fraction of the distances, we assume that the distances
δi,j between the (i, j) pair of atoms are only available for a subset S of the atom
pairs. The problem we study is to find positions x1, . . . , xm in R3 of the atoms in the
molecule such that

‖xi − xj‖ = δi,j , (i, j) ∈ S.(1.1)

If there is no solution x1, . . . , xm to these constraints, then the length specification
must be in error. This can happen, for example, if the triangle inequality

δi,j ≤ δi,k + δk,j

is violated for atoms {i, j, k} with bond length constraints.
Since the data obtained from NMR is inaccurate, distance geometry problems

that arise in the determination of protein structure are usually associated with the
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more general problem of finding positions x1, . . . , xm in R3 such that

li,j ≤ ‖xi − xj‖ ≤ ui,j , (i, j) ∈ S,(1.2)

where li,j and ui,j are lower and upper bounds on the distance constraints, respec-
tively. We do not consider the general problem (1.2) because the aim of this paper is
to show that algorithms based on the continuation approach for global optimization
can be used to determine solutions of (1.1) reliably and efficiently. The techniques of
this paper can be extended to (1.2), but the theory is not as elegant.

Saxe [21] proved that the distance geometry problem (1.1) in Rd is NP-hard. The
proof of this result, when all the atoms are restricted to R1, is obtained by reducing
the problem to the set partition problem: given positive integers s1, . . . , sm, determine
a partition of these integers in sets S1 and S2 such that∑

i∈S1

si =
∑
i∈S2

si.

The proof is instructive. Given an instance of the set partition problem, consider a
distance geometry problem in R1 with m+ 1 atoms, where

δi,i+1 = si, 1 ≤ i ≤ m, δ1,m+1 = 0.

If the distance geometry problem (1.1) has a solution, then the constraint δ1,m+1 = 0
implies that xm+1 = x1, and thus

m∑
i=1

(xi+1 − xi) = xm+1 − x1 = 0.

Since |xi+1 − xi| = si, the sets S1 = {i : xi+1 − xi ≥ 0} and S2 = {i : xi+1 − xi < 0}
solve the set partition problem.

We formulate the distance geometry problem (1.1) in terms of finding the global
minimum of the function

f(x) =
∑
i,j∈S

wi,j
(
‖xi − xj‖2 − δ2

i,j

)2
,(1.3)

where wi,j are positive weights. Clearly, x ∈ Rn solves the distance geometry problem
if and only if f(x) = 0. We could use any global optimization algorithm (see [20, 12, 5]
for global optimization background) in the search for a global minimum of f , but these
general algorithms do not take advantage of the structure in the distance geometry
problem. Other algorithms used in the solution of distance geometry problems (for
example, Hendrickson [10, 11], Havel [9], and Glunt, Hayden, and Raydan [7, 8]) must
also rely on general techniques, such as multistarts or simulated annealing, to claim
convergence to a global minimizer.

The continuation approach for global optimization hinges on the ability to gradu-
ally transform the original function into a smoother function with fewer local minimiz-
ers. An optimization algorithm is then applied to the transformed function, tracing
their minimizers back to the original function. The idea of transforming a function
into a smoother function is appealing; the main approaches include the diffusion equa-
tion method of Piela, Kostrowicki, and Scheraga [19], the packet annealing method of
Shalloway [24, 23], and the effective energy simulated annealing method of Coleman,
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Shalloway, and Wu [2, 3]. In the diffusion equation method, the transformation can
be written (see [13, 14] for details) in the form

1

(4πτ)n/2

∫
Rn
f(y) exp

(
−‖y − x‖

2

4τ

)
dy,(1.4)

where τ is a parameter (time). The smoothing properties of this transformation have
been studied by the researchers in Scheraga’s group, often in connection with the
search for the lowest energy conformation of a molecule (see, for example, [13, 14, 15,
22]). The transformation used in the packet annealing method and in the effective
energy simulated annealing method can be written in the form

1

πn/2|detΛ|n
∫

Rn
exp

(
−f(y)

κBt

)
exp

(
−‖Λ−1(y − x)‖2

)
dy,(1.5)

where κB is the Boltzmann constant, t is a parameter (temperature), and Λ is a
nonsingular matrix (the sampling scale). Other transformations used in molecular
conformation problems are reviewed by Straub [25]. In this paper we follow the work
of Wu [26] by developing the general properties and use of (1.4) in continuation algo-
rithms for the solution of large global optimization problems, since this transformation
seems to have the strongest mathematical properties.

We feel that (1.4) is likely to play an important role, not only in the molecular
conformation problem, but in the solution of a wide variety of global optimization
problems. For this reason section 2 introduces the term Gaussian transform to de-
note this transformation. We also illustrate the smoothing properties of the general
Gaussian transform on a simple two-dimensional problem. This example also provides
motivation for the continuation approach.

Section 3 presents some of the more interesting properties of the Gaussian trans-
form. We study, in particular, the computation of the Gaussian transform for the
decomposable functions. This is an important class of functions because many of the
functions that arise in applications are decomposable. This class of functions was
introduced by Wu [26] under the term generalized multilinear functions; we are using
the term decomposable to avoid confusion with the use of multilinear for a function
that is linear in each argument.

Our approach for solving the distance geometry problem is outlined in sections
4 and 5. We compute the Gaussian transform of function (1.3) as a special case
of more general results in section 4, while section 5 presents the basic ideas behind
global continuation algorithms. We concentrate on an approach based on choosing a
predetermined sequence of smoothing parameters, since this approach already brings
out the power of the continuation algorithm. In future work we plan to address more
sophisticated approaches for choosing the smoothing parameters.

In section 6 we consider a typical distance geometry problem and compare a basic
global continuation algorithm with a multistart method for global optimization. We
are interested in the solution of problems with a large number of atoms, and thus we
performed our numerical testing on the Argonne IBM SP system. This system has
128 nodes, where each node is an IBM RS/6000-370 with 128 MB of memory. One
of our main conclusions from the numerical results is that the continuation algorithm
usually finds a solution of the distance geometry problem (1.1) from any given starting
point. On the other hand, the local minimization algorithm used in the multistart
methods is unreliable as a method for determining global solutions. As a result, the
multistart method becomes increasingly unreliable and expensive as the number of



GLOBAL CONTINUATION FOR DISTANCE GEOMETRY PROBLEMS 817

atoms increases. We also show that the continuation approach determines a global
solution with less computational effort than is required by the local minimization
algorithm.

2. Continuation for global optimization. In the continuation approach for
global optimization, the original function is gradually transformed into a smoother
function with fewer local minimizers. An optimization algorithm is then applied to
the transformed function, tracing the minimizers back to the original function. In
this section we define the transformation and provide motivation for the continuation
approach.

The transformed function depends on a parameter λ that controls the degree of
smoothing. The original function is obtained if λ = 0, while smoother functions are
obtained as λ increases.

Definition 2.1. The Gaussian transform 〈f〉λ of a function f : Rn 7→ R is

〈f〉λ(x) =
1

πn/2λn

∫
Rn
f(y) exp

(
−‖y − x‖

2

λ2

)
dy.(2.1)

We are using the term Gaussian transform because we can view 〈f〉λ(x) as the
expected value of f(x) with respect to the Gaussian density function

ρλ(y) =
1

πn/2λn
exp

(
−‖y‖

2

λ2

)
.(2.2)

The value 〈f〉λ(x) of the Gaussian transformation is a weighted average of f(x) in
a neighborhood of x, with the relative size of this neighborhood controlled by the
parameter λ. The size of the neighborhood decreases as λ decreases so that when
λ = 0, the neighborhood is the center x. The Gaussian transform can also be viewed
as the convolution of the function f with the Gaussian density function. We explore
additional properties of the Gaussian transformation in the next section.

We illustrate the transformation process with a function that is a linear combina-
tion of four Gaussian functions. In this section we discuss the transformation in terms
of the global maximization problem because visualization is easier in this case. Note,
however, that in the rest of the paper we deal with the global minimization problem.

The function that we use to illustrate the transformation process appears in the
top left corner of Figure 2.1. This function is of the general form

f(x) =

4∑
i=1

αi exp

(
‖x− xi‖2

σ2
i

)
,(2.3)

where σi = 0.5 for 1 ≤ i ≤ 4, α1 = 1.5, and αi = 1 for i = 2, 3, 4; the centers xi are
the vertices of the square [−0.5, 0.5] × [−0.5, 0.5]. As can be seen in Figure 2.1, the
function has four maximizers in [−2, 2] × [−2, 2]. The Gaussian transforms of (2.3)
for three values of λ also appear in Figure 2.1. The top right corner corresponds to
λ = 0.2, and in the bottom row we have λ = 0.3, 0.4.

Figure 2.1 clearly shows that the original function is gradually transformed into a
smoother function with fewer local maximizers and that the smoothing increases as λ
increases. We can view the Gaussian transform of a function as a coarse approximation
to the original function, with small and narrow maximizers being removed while the
overall structure of the function is maintained. This property allows an optimization
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Fig. 2.1. The Gaussian transform of a function. The original function (λ = 0) is in the top
left corner, with λ = 0.2 in the top right corner, λ = 0.3 in the bottom left corner, and λ = 0.4 in
the bottom right corner.

procedure to skip less interesting local maximizers and to concentrate on regions with
average high function values, where a global maximizer is most likely to be located.

Another point that is apparent from Figure 2.1 is that a continuation process
based on the Gaussian transform will find the global maximizer. In general, we can-
not expect that the continuation process will succeed on an arbitrary function. In
particular, the Gaussian transform eliminates tall, narrow hills; hence, if the global
maximizer lies in one of these hills, the continuation approach is likely to fail. De-
termining broad regions of maximal value is often of more interest than determining
tall, narrow hills, so this characteristic of the continuation approach should be viewed
as a strength, rather than a weakness.

3. The Gaussian transform. We have defined the Gaussian transform for a
function f : Rn 7→ R by (2.1). In many cases, it is preferable to make the change of
variables y 7→ x+ λu in (2.1) to obtain

〈f〉λ(x) =
1

πn/2

∫
Rn
f(x+ λu) exp

(
−‖u‖2

)
du.(3.1)

In this section we explore some of the properties of this transformation.
The Gaussian transform is defined for a large class of functions. In particular,

the transformation is defined if f is continuous almost everywhere and if

|f(x)| ≤ β1 exp(β2‖x‖)(3.2)
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for positive constants β1 and β2. These assumptions guarantee that f is bounded on
compact sets but allow for unbounded f on Rn. In the development that follows, we
assume that f satisfies assumptions (3.2).

An important property of this transformation is that 〈f〉λ is a linear operator in
the sense that

〈αf〉λ = α〈f〉λ, 〈f1 + f2〉λ = 〈f1〉λ + 〈f2〉λ

for any scalar α and functions f1 and f2. Also note that the Gaussian transform of
the identity function is unity; this result depends on the identity∫ +∞

−∞
exp

(
−ξ2

)
dξ = π1/2.

More generally, if µ1 ≤ f(x) ≤ µ2 for all x ∈ Rn, then µ1 ≤ 〈f〉λ(x) ≤ µ2 also holds
for all x ∈ Rn. In particular, this shows that if f is bounded below, then 〈f〉λ is also
bounded below.

Theorem 3.1. The Gaussian transform 〈f〉λ is a continuous function.
Proof. The proof is a direct consequence of general results (see, for example, Lang

[17, Chapter 13]) on the continuity of functions of the form

x 7→
∫

Rn
h(x, y) dy,

where the mapping h is continuous in x and integrable in y.
Theorem 3.1 helps to support our claim that 〈f〉λ is a smoother version of f .

Indeed, Theorem 3.1 is a special case of a more general result that establishes 〈f〉λ as
an infinitely differentiable function. This result can be established by showing that
the mapping h defined by

h(x, y) = f(y)ρλ(x− y),

where ρλ is given by (2.2), is infinitely differentiable with respect to x, and all the
derivatives are integrable.

We now show that if f is convex, the Gaussian transform is also a convex func-
tion. This property is reassuring because it shows that the transformation does not
introduce difficulties if none exist.

Theorem 3.2. If f : Rn 7→ R is convex, then 〈f〉λ is also convex.
Proof. The result follows from (3.1) because the convexity of f implies that

f(αx1 + (1− α)x2 + λu) ≤ αf(x1 + λu) + (1− α)f(x2 + λu), 0 ≤ α ≤ 1

for any x1 and x2 in Rn.
A serious drawback to the general use of the Gaussian transform for minimization

is that computing 〈f〉λ for a general function defined on Rn is not practical because
this requires the computation of n-dimensional integrals. However, there is a large
class of functions for which the computation of the Gaussian transform is reasonable.

Definition 3.3. A function f : Rn 7→ R is decomposable if f can be written in
the form

f(x) =
m∑
k=1

fk(x), fk(x) =
n∏
j=1

fk,j(xj)(3.3)
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Table 3.1

The Gaussian transformation of elementary functions.

f(x) 〈f〉λ(x)

x x

x2 x2 + 1
2λ

2

sin(x) sin(x) exp(− 1
4λ

2)

cos(x) cos(x) exp(− 1
4λ

2)

exp(x) exp(x) exp(1
4λ

2)

for some set of functions {fk,j}, where fk,j : R 7→ R.
This class of functions was introduced by Wu [26] under the term generalized

multilinear functions; we are using decomposable to avoid confusion with the use of
multilinear for a function that is linear in each argument.

The decomposable functions are of interest with respect to the Gaussian transform
because computing the Gaussian transform of a decomposable function requires the
computation of only one-dimensional integrals. Indeed, a computation shows that if
f is defined by (3.3), then

〈f〉λ(x) =
m∑
k=1

 n∏
j=1

〈fk,j〉λ(xj)

 .

Thus, computing 〈f〉λ for a decomposable function requires the computation of only
the one-dimensional integrals for each 〈fk,j〉λ.

Table 3.1 shows the Gaussian transformation of several elementary functions de-
termined by Kostrowicki and Piela [13]. We will justify the correctness of the entries
later; here we note that the Gaussian transform of any decomposable function with
component functions drawn from this table can be calculated explicitly. For example,
using these results, we can show that if f is the general quadratic

f(x) = 1
2x

TQx+ cTx

for some Q ∈ Rn×n and c ∈ Rn, then

〈f〉λ(x) = 1
2x

TQx+ cTx+ 1
4λ

2

(
n∑
i=1

qi,i

)
.(3.4)

In particular, this shows that 〈f〉λ(x) = f(x) for linear functions.
Table 3.1 includes only the most commonly occurring functions; there are many

other functions with an easily computable Gaussian transform. For example,

〈f〉λ(x) =
1

(λ2 + 1)1/2
exp

(
− x2

(λ2 + 1)

)
is the Gaussian transform of f(x) = exp(−x2).
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In addition to quadratic functions, the decomposable functions include the poly-
nomial functions, that is, functions that are linear combinations of terms of the form

xp11 x
p2
2 · · ·xpnn

for arbitrary integer powers pi ≥ 0. The following result is needed to compute 〈f〉λ
for a polynomial function.

Theorem 3.4. If f : R 7→ R is the monic polynomial f(x) = xk, then

〈f〉λ(x) =

bk/2c∑
l=0

(
k!

(k − 2l)! l!

)(
λ

2

)2l

xk−2l.

Proof. Since f is a polynomial, we can expand f(x+λu) in (3.1) and obtain that

〈f〉λ(x) =
1

π1/2

k∑
j=0

f (j)(x)
λj

j!

∫
R
uj exp

(
−‖u‖2

)
du

and, since the integrals with odd powers vanish by symmetry,

〈f〉λ(x) =
1

π1/2

bk/2c∑
l=0

f (2l)(x)
λ2l

(2l)!

∫
R
u2l exp

(
−‖u‖2

)
du.

We can complete the proof if we show that

1

π1/2

∫
R
u2l exp

(
−‖u‖2

)
du =

(2l)!

4ll!
.(3.5)

This identity can be established by defining I2l as the integral in (3.5) and noting
that integration by parts yields

I2l =
2l − 1

2
I2l−2 =

(2l)(2l − 1)

4l
I2l−2.

An induction argument, based on this relationship and using the result I0 = 1, shows
that (3.5) holds, and thus completes the proof.

Theorem 3.4 was obtained by Kostrowicki and Piela [13], but it had a completely
different approach. We will elaborate on this point below.

We can extend Theorem 3.4 by noting that if f is analytic, the Taylor series of
f(x+λu) as a function of u converges for all λu. Thus we can proceed as in the proof
of Theorem 3.4 to obtain

〈f〉λ(x) =
1

π1/2

+∞∑
l=0

f (2l)(x)
λ2l

(2l)!

∫
R
u2l exp

(
−‖u‖2

)
du.

Hence, (3.5) shows that

〈f〉λ(x) =
+∞∑
l=0

1

l!
f (2l)(x)

(
λ

2

)(2l)

.(3.6)

This relationship holds, in particular, for the functions in Table 3.1. A short compu-
tation shows that this expression justifies the entries in this table.
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Expression (3.6) was used by Piela, Kostrowicki, and Scheraga [19] to define the
transformation for the diffusion equation method. A disadvantage of this definition
is that it requires an analytic f , while (3.1) requires only the integrability of f . On
the other hand, as we have noted, this expression is quite useful for determining the
Gaussian transform of several important functions. In particular, Kostrowicki and
Piela [13] obtained Theorem 3.4 with this approach.

The Gaussian transform for functions that are related by a scaling or a translation
of the variables can be computed by noting that if

f0(x) = f(αx− x0)

for some scalar α and vector x0, then

〈f0〉λ(x) = 〈f〉αλ(αx− x0).

For example, if f(x) = sin(αx), then

〈f〉λ(x) = sin(αx) exp
(
− 1

4 (αλ)2
)
.

As noted by Piela, Kostrowicki, and Scheraga [19], this result suggests that 〈f〉λ tends
to dampen the high-frequency components in a function, since if α is large, then the
exponential term produces a larger damping effect. See Wu [26, section 4] for a
discussion of the effect of the Gaussian transform on the high-frequency components
of a general function.

We have defined the Gaussian transform of a real-valued function f : Rn 7→ R by
(3.1), but this definition extends immediately to vector-valued functions. This remark
is of interest because in addition to transforming the function, we could also transform
the gradient and the Hessian of f . We now show that the Gaussian transform of the
gradient (Hessian) is the gradient (Hessian) of 〈f〉λ. This result can be deduced by
differentiating under the integral sign in (3.1) to obtain that

∇〈f〉λ(x) =
1

πn/2

∫
Rn
∇f(x+ λu) exp

(
−‖u‖2

)
du = 〈∇f〉λ(x),(3.7)

which is the desired result for the gradient. If we repeat the process, we obtain that

∇2〈f〉λ(x) =
1

πn/2

∫
Rn
∇2f(x+ λu) exp

(
−‖u‖2

)
du = 〈∇2f〉λ(x),(3.8)

so that the Gaussian transform of the Hessian matrix is the Hessian of 〈f〉λ.
We guarantee the validity of differentiating under the integral sign in (3.8) by

assuming that ∇2f is continuous almost everywhere and that

‖∇2f(x)‖ ≤ γ1 exp(γ2‖x‖)(3.9)

holds for some positive constants γ1 and γ2. This result requires a technical lemma.
Lemma 3.5. If f : Rn 7→ R is twice differentiable on Rn and (3.9) holds for some

positive constants γ1 and γ2, then

‖∇f(x)‖ ≤ 2β1 exp (β2‖x‖) , |f(x)| ≤ 3β1 exp (β2‖x‖) ,

where β1 ≥ max{γ1, ‖∇f(0)‖, |f(0)|} and β2 ≥ 2 + γ2.
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Proof. The standard estimate

‖∇f(x)−∇f(0)‖ ≤ sup
0≤τ≤1

‖∇2f(τx)‖ ‖x‖,

together with the bound ‖x‖ ≤ exp(‖x‖), implies that

‖∇f(x)‖ ≤ ‖∇f(0)‖+ γ1 exp
(
γ2‖x‖

)
‖x‖ ≤ β1 + β1 exp

(
(1 + γ2)‖x‖

)
,

and thus

‖∇f(x)‖ ≤ 2β1 exp
(

(1 + γ2)‖x‖
)
,

which is clearly of the desired form. We complete the proof by using this inequality
and repeating the above argument, but with ∇f replaced by f . In this case we obtain

|f(x)| ≤ |f(0)|+ 2β1 exp
(

(1 + γ2)‖x‖
)
‖x‖ ≤ β1 + 2β1 exp

(
(2 + γ2)‖x‖

)
,

as desired.
We now show that assumption (3.9) guarantees that (3.7) and (3.8) hold.
Theorem 3.6. If f : Rn 7→ R is twice continuously differentiable almost every-

where on Rn and (3.9) holds for some positive constants γ1 and γ2, then

∇〈f〉λ(x) = 〈∇f〉λ(x), ∇2〈f〉λ(x) = 〈∇2f〉λ(x).

Proof. Assumption (3.9) guarantees that the function

u 7→ ∇2f(x+ λu) exp
(
−‖u‖2

)
is bounded by an integrable function for any fixed x and λ. The validity of (3.8) now
follows from standard results that guarantee differentiation under the integral sign
(see, for example, Lang [17, Chapter 13]). Lemma 3.5 shows that the same argument
can be used to validate (3.7).

Theorem 3.6 was stated informally by Wu [26]; the above argument supplies the
pieces needed to give a formal proof of this result. Theorem 3.6 is of interest from a
computational viewpoint because optimization algorithms usually require the gradient
of 〈f〉λ; Newton methods also require the Hessian matrix. This result shows that the
gradient and Hessian of 〈f〉λ are also smooth functions in the sense that they are
obtained by transforming the gradient and Hessian of f , respectively.

In this section we have concentrated on obtaining explicit expressions for the
Gaussian transform of various functions. We have also experimented with other ap-
proaches. In one of the approaches, the Gaussian transform is approximated by
a Gaussian quadrature. This approach hinges on the ability to evaluate Gaussian
integrals efficiently with ORTHOPOL (Gautschi [6]). Another approach is based on
approximating the function by a decomposable function and using the Gaussian trans-
form of the decomposable function as an approximation to the Gaussian transform of
the original function. We plan to pursue these approaches in future work.

4. The Gaussian transform for the distance geometry problem. Our
continuation algorithms for the distance geometry problem are based on the function

f(x) =
∑
i,j∈S

wi,j
(
‖xi − xj‖2 − δ2

i,j

)2
,(4.1)
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where wi,j are positive weights and δi,j are distances. Computing the Gaussian trans-
form of (4.1) is not difficult because f is decomposable. In fact, f is a polynomial
function in the components of x. The development below shows that f has consid-
erable structure and that this structure can be used to simplify the computation for
the Gaussian transform.

In the standard formulation of the distance geometry problem, the components
xi of x belong to R3. We assume that xi ∈ Rp because this assumption does not lead
to extra complications. We thus consider the general problem where f is of the form

f(x) =
∑
i,j∈S

wi,jhi,j(xi − xj)(4.2)

and hi,j : Rp 7→ R is defined by

hi,j(x) =
(
‖x‖2 − δ2

i,j

)2
.(4.3)

The following result shows that computing the Gaussian transform of (4.2) requires
only the Gaussian transform on hi,j .

Theorem 4.1. If f : Rn 7→ R and h : Rp 7→ R are related by

f(x) = h(PTx)

for some matrix P ∈ Rn×p such that PTP = σ2I, then

〈f〉λ(x) = 〈h〉σλ(PTx).

Proof. Define Q ∈ Rn×(n−p) such that

R =
1

σ

(
P Q

)
is an orthogonal matrix. By definition,

〈f〉λ(x) =
1

πn/2

∫
Rn
h(PTx+ λPTu) exp

(
−‖u‖2

)
du,

so if we make the change of variables u 7→ Rv in (3.1), we obtain

〈f〉λ(x) =
1

πn/2

∫
Rn
h(PTx+ λPTRv) exp

(
−‖v‖2

)
dv,

since R is an orthogonal matrix. Now note that PTR = σ (I 0), and thus the above
integral reduces to an integral over Rp; that is,

〈f〉λ(x) =
1

πp/2

∫
Rp
h(PTx+ λσv) exp

(
−‖v‖2

)
dv = 〈h〉σλ(PTx).

The application of Theorem 4.1 to the distance geometry problem requires that
we specify how the vectors xi are related to x. Let the ith component of the vector xj
be the c(i, j) components of x. In other words, c(i, j) specifies how the components
of xj are stored in x ∈ Rn. Another way of defining c(i, j) is by the relationship

[x]c(i,j) = [xj ]i.
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With this choice we can define P ∈ Rn×p by

P =
(
ec(1,i) − ec(1,j), . . . , ec(p,i) − ec(p,j)

)
and obtain PTx = xi − xj . In particular, PTP = σ2I, where σ2 = 2.

As an application of these results, note that Theorem 4.1 implies that

〈f〉λ(x) = 〈h〉√2λ(xi − xj)

is the Gaussian transform of f(x) = h(xi − xj). We can apply this result to the
distance geometry problem, where h is given by (4.3), by computing the Gaussian
transform of the functions f1 : Rp 7→ R and f2 : Rp 7→ R defined by

f1(x) = ‖x‖2, f2(x) = ‖x‖4.

Since f1 is a quadratic,

〈f1〉λ(x) = ‖x‖2 + 1
2pλ

2(4.4)

is just a special case of (3.4). We now claim that Theorem 3.4 shows that

〈f2〉λ(x) = ‖x‖4 + [3 + (p− 1)]λ2‖x‖2 + 1
4p(p+ 2)λ4.(4.5)

We prove (4.5) by noting that(
p∑
i=1

x2
i

)2

=

p∑
i=1

x4
i +

p∑
i6=j

(
x2
ix

2
j

)
,

and thus Theorem 3.4 implies that

〈f2〉λ(x) =

p∑
i=1

(
x4
i + 3λ2x2

i + 3
4λ

4
)

+

p∑
i6=j

(
(x2
i + 1

2λ
2)(x2

j + 1
2λ

2)
)
.

Identity (4.5) is now a direct consequence of this expression.
Theorem 4.2. If h : Rp 7→ R is defined by

h(x) =
(
‖x‖2 − δ2

)2
,

then

〈h〉λ(x) = h(x) + [3 + (p− 1)]λ2‖x‖2 + 1
4p(p+ 2)λ4 − pδ2λ2.

Proof. Since

h(x) = f2(x)− 2δ2f1(x) + δ4,

the result follows from (4.4) and (4.5).
The computation of the Gaussian transform for the distance geometry problem

now follows from the results that we have obtained.
Theorem 4.3. If f : Rn 7→ R is defined by (4.2) and (4.3), then

〈f〉λ(x) = f(x) +
∑
i,j∈S

(
2wi,j [3 + (p− 1)]λ2‖xi − xj‖2

)
+ γ,
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where γ is the constant

γ =
∑
i,j∈S

(
p(p+ 2)λ4 − 2pδ2

i,jλ
2
)
wi.j .

Proof. Recall that we can write f in the form

f(x) =
∑
i,j∈S

wi,jhi,j(Pi,jx),

where PTi,jPi,j = σ2I with σ2 = 2.
Theorem 4.3 shows that the Gaussian transform of the distance geometry function

defined by (4.2) and (4.3) can be computed quite easily. Moreover, this result also
shows that the gradient and the Hessian matrix of the Gaussian transform are also
readily computable at a fractional increase in cost.

We conclude this section by discussing the relationship between Theorem 4.1 and
the anisotropic Gaussian transform defined by Wu [26]. Given a nonsingular matrix
Λ ∈ Rn×n, the anisotropic Gaussian transform of f is defined by

〈f〉Λ(x) =
1

πn/2| det Λ|

∫
Rn
f(y) exp

(
−‖Λ−1(y − x)‖2

)
dy.(4.6)

Clearly, this transformation generalizes Definition 2.2, where Λ = λI.
From a computational viewpoint, the anisotropic transformation is important

when Λ is a diagonal matrix, and it is closely related to the isotropic transformation
when f is a decomposable function. In particular, if f is defined by (3.3) and Λ =
diag(λj), then

〈f〉Λ(x) =
m∑
k=1

 n∏
j=1

〈fk,j〉λj (xj)

 .

The following result, a generalization of Theorem 4.1, provides further motivation for
the anisotropic transformation.

Theorem 4.4. If f : Rn 7→ R and h : Rp 7→ R are related by

f(x) = h(PTx)

for some matrix P ∈ Rn×p such that PTP = DTD where D is a diagonal matrix,
then

〈f〉λ(x) = 〈h〉λD(PTx).

Proof. The proof follows that of Theorem 4.1. In this case we defineQ ∈ R(n−p)×n

such that

R =
(
PD−1 Q

)
is an orthogonal matrix and obtain that

〈f〉λ(x) =
1

πp/2

∫
Rp
h(PTx+ λDv) exp

(
−‖v‖2

)
dv.
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The result now follows from the definition of the anisotropic transformation because
the change of variables y 7→ x+Du in (4.6) shows that

〈h〉D(x) =
1

πn/2

∫
Rn
h(x+Du) exp

(
−‖u‖2

)
du

is the anisotropic transformation of h.

5. Continuation algorithms. The basic idea behind the continuation approach
is to trace a curve {x(λ) : λ ≥ 0}, where each x(λ) is a minimizer of 〈f〉λ. In the
simplest approach we choose a sequence {λk} of smoothing parameters that converges
to zero and compute a minimizer xk of each 〈f〉λk . A more sophisticated approach
is to rely on a differential equation to trace the curve. For this approach, we define
h : Rn × R 7→ R by

h(x, λ) = 〈f〉λ(x)(5.1)

and note that, since x(λ) is a stationary point of 〈f〉λ,

∂xh[x(λ), λ] = 0.

We now differentiate with respect to λ to obtain

∂xxh[x(λ), λ]x′(λ) + ∂λxh[x(λ), λ] = 0.

This differential equation, together with an initial value x0, defines a curve if the
coefficient matrix ∂xxh[x(λ), λ] is nonsingular. In this paper we concentrate on the
approach based on choosing a predetermined sequence of smoothing parameters, since
this approach already brings out the power of continuation algorithms.

We wish to analyze the ideal situation where we are able to determine a global
minimizer xk of 〈f〉λk for some sequence {λk} converging to zero. This requires that
we show that the function h : Rn × R 7→ R defined by (5.1) is continuous on Rn × R.
Without loss of generality, we show continuity at (x∗, 0). We had previously noted
the continuity of h with respect to x and λ; we now establish the joint continuity with
respect to (x, λ).

Lemma 5.1. Assume that f : Rn 7→ R is continuous on Rn and satisfies (3.2). If
{xk} converges to x∗ and {λk} converges to zero, then

lim
k→+∞

〈f〉λk(xk) = f(x∗).

Proof. Let Br be the ball of radius r centered at the origin, and let Cr be the
complement of Br, that is,

Cr = {x ∈ Rn : ‖x‖ > r} .

We first show that for any ε > 0 we can choose r > 0 and k0 so that∫
Cr

|f(xk + λku)− f(x∗)| exp
(
−‖u‖2

)
du ≤ ε, k ≥ k0.(5.2)

Assumption (3.2) implies that there is a constant µ > 0 such that

|f(xk + λku)− f(x∗)| ≤ µ exp (λk‖u‖) ,
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and since λ‖u‖ ≤ 1
2‖u‖2 for λ ≤ 1

2 and ‖u‖ ≥ 1,∫
Cr

|f(xk + λku)− f(x∗)| exp
(
−‖u‖2

)
du ≤ µ

∫
Cr

exp
(
− 1

2‖u‖
2
)
du

if λk ≤ 1
2 and r ≥ 1. This inequality proves (5.2) because, if r is sufficiently large, the

integral of exp
(
− 1

2‖u‖2
)

over Cr is arbitrarily small. Now note that the continuity
of f at x∗ shows that for given r and k0 we can choose k1 ≥ k0 so that∫

Cr

|f(xk + λku)− f(x∗)| exp
(
−‖u‖2

)
du ≤ ε, k ≥ k1.

This inequality and (5.2) imply that

|〈f〉λk(xk)− f(x∗)| ≤ 2ε, k ≥ k1,

which is the desired result.
A variation on Lemma 5.1 would be to show that the gradient and Hessian matrix

of h are continuous. The proof of this variation would be entirely similar to the one
for Lemma 5.1.

Theorem 5.2. Assume that f : Rn 7→ R is continuous on Rn and satisfies (3.2).
Let {λk} be any sequence converging to zero. If xk is a global minimizer of 〈f〉λk and
{xk} converges to x∗, then x∗ is a global minimizer of f .

Proof. Since xk is a global minimizer of 〈f〉λk ,

〈f〉λk(xk) ≤ 〈f〉λk(x), x ∈ Rn.

Lemma 5.1 now implies that f(x∗) ≤ f(x) for any x ∈ Rn. Hence, x∗ is a global
minimizer of f .

Given λk, we need an algorithm to determine a minimizer xk of 〈f〉λk . A trust
region version of Newton’s method based on the work of Moré and Sorensen [18] is
an attractive choice because it has strong global and local convergence properties.

At each iteration of a trust region Newton method for the minimization of f :
Rn 7→ R, we have an iterate xk, a bound ∆k, a scaling matrix Dk, and a quadratic
model qk : Rn 7→ R of the possible reduction f(xk + w) − f(xk) for ‖Dkw‖ ≤ ∆k.
The developments in section 4 show that the gradient and Hessian matrix easily can
be obtained for the distance geometry problem. Thus

qk(w) = ∇f(xk)Tw + 1
2w

T∇2f(xk)w

is our choice for the quadratic model.
An important ingredient in a trust region method is the choice of step sk. In

general, sk is an approximate solution to the trust region subproblem

min {qk(w) : ‖Dkw‖ ≤ ∆k}

with qk(sk) < 0. We use the algorithm described by Moré and Sorensen [18] because
it provides an approximate global solution to the subproblem. In particular, if xk is a
saddle point so that ∇f(xk) = 0 and ∇2f(xk) is indefinite, we still have qk(sk) < 0.

Given the step sk, the test for acceptance of the trial point xk + sk depends on
a parameter η0 > 0. The following algorithm summarizes the main computational
steps:
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For k = 0, 1, . . . ,maxiter
Compute the quadratic model qk.
Compute a scaling matrix Dk.
Compute an approximate solution sk to the trust region subproblem.
Compute the ratio ρk of actual to predicted reduction.
Set xk+1 = xk + sk if ρk ≥ η0; otherwise set xk+1 = xk. Update ∆k.

Given a step sk such that ‖Dksk‖ ≤ ∆k and qk(sk) < 0, the rules for updating the
iterate xk and the bound ∆k depend on the ratio

ρk =
f(xk + sk)− f(xk)

qk(sk)

of the actual reduction in the function to the predicted reduction in the model. See,
for example, Moré and Sorensen [18] for details on these rules.

The trust region method outlined above is attractive for the distance geometry
problem provided the number of molecules m is moderate, say m ≤ 50. For larger
problems we still can use the trust region method, provided that the set S in (4.1) is
sparse and the computation of the step sk makes use of sparsity. We plan to address
this case in future work.

6. Numerical results. We present numerical results for two model problems
based on a molecule with m = s3 atoms located in the three-dimensional lattice

{(i1, i2, i3) : 0 ≤ i1 < s, 0 ≤ i2 < s, 0 ≤ i3 < s}

for some integer s ≥ 1. Figure 6.1 shows a molecule with 64 atoms (s = 4). For both
model problems we consider a distance geometry problem of the form

‖xi − xj‖ = δi,j , (i, j) ∈ S,(6.1)

where S is a subset of the pairwise distances δi,j between atoms i and j.
Reasonable choices of the set S depend on the source of the data. NMR data

usually produces information for atoms located in chains of relatively close atoms.
Distance data for atoms that are far away is available, but it tends to be less accurate.
Other sources of distance geometry problems yield data for all atoms. For example,
the embed algorithm (see Crippen and Havel [4] and Havel [9]) approaches the general
distance geometry problem (1.2) by solving a sequence of exact distance geometry
problems where all pairwise distances are included.

Both model problems that we consider try to capture various features in distance
data from applications. The first model problem has distance data for both near and
relatively far away atoms, while the second problem only has distance data for nearby
atoms.

In the first model problem we specify an ordering for the atoms in this molecule
by letting atom i be the atom at position (i1, i2, i3), where

i = 1 + i1 + si2 + s2i3,

and define the set S in terms of an integer r by

S = {(i, j) : |i− j| ≤ r} .(6.2)

With this definition, the set S is sparse in the sense that it contains about rm pairs
out of a possible m2 pairs. Figure 6.2 shows an 8-atom problem defined by a sparse
S with r = 3.
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Fig. 6.1. An example lattice structure of 64 atoms.

Our construction shows that the distance geometry problem defined by (6.1) and
(6.2) always has at least one solution for any value of r. Since in our numerical
results we choose r = s2, there is data for atoms at positions (i1, i2, i3) and (j1, j2, j3)
only if |i3 − j3| ≤ 1. This means that these atoms must be either on the same
plane perpendicular to the i3-axis or on adjacent planes that are one unit apart and
perpendicular to the i3-axis. Thus, in this model problem there is distance data for
both near and relatively far away atoms.

We attack the distance geometry problem by using the global continuation ap-
proach to obtain a global minimum of the function

f(x) =
∑

(i,j)∈S
(‖xi − xj‖2 − δ2

i,j)
2,(6.3)

where δi,j is the distance between atoms i and j in the lattice. We need the Gaussian
transform of f and, for the trust region Newton method, the gradient and Hessian
matrix of the transform. Theorem 4.3 shows that

〈f〉λ(x) =
∑

(i,j)∈S

(
(‖xi − xj‖2 − δ2

i,j)
2 + 10λ2‖xi − xj‖2

)
+ γ(6.4)

is the Gaussian transform of f , where γ is a constant. The gradient and Hessian
matrix can be obtained from this expression.

The parameter λ in the Gaussian transform (6.4) must be chosen with care. In
particular, if λ is chosen so that the element functions

hi,j(x) = (‖xi − xj‖2 − δ2
i,j)

2 + 10λ2‖xi − xj‖2

in (6.4) are convex, then minimization of 〈f〉λ is obtained only if all the atoms collapse
into one atom; that is, all global minimizers of (6.4) have x1 = · · · = xm. We elaborate
on this remark when we discuss the implementation of the continuation algorithm.
To determine λ so that hi,j is convex, consider the function

h(r) =
(
r2 − δ2

)2
+ 10λ2r2.
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Fig. 6.2. An example lattice structure with sparse distance constraints.

Note that if h is increasing and convex, then x 7→ h(‖xi − xj‖) is convex, and thus
hi,j is convex. We choose λ so that h is increasing and convex by noting that

h′(r) = 4r3 + 4r(5λ2 − δ2), h′′(r) = 12r2 − 4δ2 + 20λ2

implies that we must have λ ≥ ( 1
5 )1/2δ. These computations also show that if

λ ≥ ( 1
5 )1/2 max {δi,j : (i, j) ∈ S} ,

then the Gaussian transform 〈f〉λ in (6.4) is convex.
In this paper we have shown that the continuation method has strong theoretical

properties. We now use numerical results to show that the continuation method
is superior to the multistart approach, a standard procedure for finding the global
minimizer of f .

We are interested in the solution of problems with a large number of atoms, and
thus we performed our numerical testing on the Argonne IBM SP system. This system
has 128 nodes, where each node is an IBM RS/6000-370 with 128 MB of memory. We
defer a discussion of the parallel aspects of our approach to future work.

In the multistart method we choose a random starting point xs and use the trust
region method from this starting point to determine a local minimizer x∗s. If x∗s
satisfies ∣∣∣‖xi − xj‖ − δi,j∣∣∣ ≤ ε, (i, j) ∈ S(6.5)

for some tolerance ε, then x∗s is declared to be a solution to the distance geometry
problem (6.1), and we terminate the multistart method. If x∗s does not satisfy (6.5),
we repeat the procedure with another starting point. The multistart method fails if
(6.5) is not satisfied after trying ten starting points.

The global continuation method that we use is similar to the multistart method,
except that the continuation algorithm of section 5 is used to determine a local mini-
mizer x∗s of f . We start the continuation algorithm with the random starting point xs
and λ0 > 0. We compute p major iterations, where p is the number of continuation
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Table 6.1

Performance for the multistart and continuation method (λ0 = 0.5, p = 10).

Multistart Continuation Multistart Continuation

m r nfev ngev nfev ngev nfev ngev nfev ngev

27 9 573 472 255 216 273 229 221 188

64 16 F1211 1009 886 710 1102 917 863 698

125 25 1810 1461 390 304 1600 1324 410 322

216 36 F3397 2782 550 421 F3416 2802 446 337

xs ∈ rand(B) xs ∈ 2 rand(B)

steps. The kth major iterate xk is computed by applying a trust region algorithm,
with xk−1 as a starting point, to the transformed function 〈f〉λk , where

λk =

(
1− k

p

)
λ0.

Since λp = 0, the final major iterate xp is a local minimizer of f , so we set x∗s = xp.
In Table 6.1 we present the results obtained by the global continuation method

and the multistart method on two sets of starting points. The number of molecules
in these tables are of the form m = s3 for 3 ≤ s ≤ 6. The parameter r in (6.2) was
set to r = s2.

Since the solutions of the distance geometry problems defined by (6.1) and (6.2)
lie in

B = {x ∈ Rn : 0 ≤ xi ≤ s− 1} ,

it is reasonable to choose the starting points randomly in B by setting each component
of the starting point to a random number in (0, s−1). In Table 6.1 we present results
when the starting point is chosen randomly in B and 2B.

For these results we used λ0 = 0.5 and p = 10 continuation steps. An automatic
choice of λ0 for these problems is not clear; in particular, below we point out that
λ0 = 0.5 is too small for some problems. Also note that if we choose λ0 large,
then 〈f〉λ0

is convex, and thus the local minimizer x∗s obtained by the continuation
approach is independent of the random starting point xs. This is clearly an undesirable
situation. We plan to address the automatic selection of λ0 in future work.

Performance is measured in terms of the number of function and gradient evalu-
ations, nfev and ngev, used to find a global minimizer. The results marked by F are
the cases where no global minimizer was found after trying 10 starting points.

We have not included execution times in Table 6.1 because the distance geome-
try problems under consideration give rise to sparse minimization problems, but the
algorithm that we have used does not take advantage of sparsity. Our concern in this
paper is mainly with the ability of the continuation method to solve these problems
with a reasonable number of function and gradient evaluations. In future work we will
consider problems with more atoms and the use of algorithms that take advantage of
sparsity.

These results show that the continuation method finds a global minimizer in all
cases and with fewer function and gradient evaluations than the multistart method.
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Table 6.2

Probability of success when the constraint set S is defined by (6.2).

m r Multistart Continuation Multistart Continuation

27 9 10% 100% 60% 100%

64 16 0% 70% 10% 50%

125 25 10% 100% 10% 100%

216 36 0% 100% 0% 100%

xs ∈ rand(B) xs ∈ 2 rand(B)

Moreover, the performance of the continuation method seems to be relatively insen-
sitive to the choice of starting point. The multistart method, on the other hand,
requires a large number of function and gradient evaluations to determine a global
minimizer and is unable to find a global minimizer for problems with m = 216 atoms.
Also note that the performance of the multistart method seems to be sensitive to the
choice of starting point.

The reliability of the continuation and multistart methods can be measured by
the probability of success of these methods, that is, the percentage of successful runs
(the global minimizer is found) in all 10 starting points. The results in Table 6.2
clearly show that the multistart method had little success in finding a global mini-
mizer, especially for problems with m ≥ 64 atoms. However, the continuation method
succeeded 100% in most of the cases. Even for m = 64, the probability of success is
much higher for the continuation method.

One might wonder why the continuation method was not able to find the global
minimizer for m = 64 in all 10 runs. A simple answer to this question is that the initial
λ0 = 0.5 value was too small for smoothing the function in this problem. Therefore,
we repeated the runs for the problem with m = 64 atoms but with λ0 = 1 and p = 20.
The continuation method then found the global minimizer for all 10 starting points.

The results in Table 6.3 compare the average performance of the multistart and
the continuation method when λ0 = 1 and p = 20. When m = 64 and xs ∈ rand(B),
the multistart method fails in all cases, so the results in Table 6.3 measure the effort
required to find a local minimizer. In contrast, the continuation method succeeds
in all cases, so the results measure the effort required to find a global minimizer.
This is interesting because, in general, we expect the effort required to find a global
minimizer to be much larger than the effort needed to find a local minimizer. A
similar conclusion is reached when m = 64 and xs ∈ 2 rand(B), since in this case the
multistart method only succeeds in one case. When m = 216, the additional effort
(measured by the number of function and gradient evaluations) required to find a
global minimizer is less than 30% of the effort required to find a local minimizer.

We conclude this section by presenting our numerical results for the second model
problem. In this problem distance data is generated for all pairs of atoms in

S =
{

(i, j) : ‖xi − xj‖ ≤ r1/2
}
.(6.6)

Distance data defined by (6.6) is similar to distance data defined by (6.2) with r = s2

because if (i, j) ∈ S, where S is defined by (6.2), then

‖xi − xj‖ ≤
√

1 + 2(s− 1)2 ≤ (2r)1/2.
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Table 6.3

Average performance for the multistart and continuation method (λ0 = 1, p = 20).

Multistart Continuation Multistart Continuation

m r nfev ngev nfev ngev nfev ngev nfev ngev

27 9 61.2 50.5 251.1 211.1 57.4 98.7 240.9 200.9

64 16 121.1 100.9 267.9 212.4 118.3 98.7 272.2 217.0

125 25 241.2 197.3 328.4 249.2 212.1 176.5 344.9 265.5

216 36 339.7 278.2 446.9 340.8 341.6 280.2 472.6 361.7

xs ∈ rand(B) xs ∈ 2 rand(B)

Table 6.4

Probability of success when the constraint set S is defined by (6.6) with r = 2.

m Multistart Continuation Multistart Continuation

27 0% 100% 0% 90%

64 0% 90% 0% 60%

125 0% 60% 0% 60%

216 0% 30% 0% 30%

xs ∈ rand(B) xs ∈ 2 rand(B)

A difference between both definitions of S is that (6.6) includes all nearby atoms,
while (6.2) includes some of the nearby atoms and some relatively far away atoms.
Also note that if r = 1 then the set S defined by (6.6) has roughly 6m pairs; with
r = 2 there are about 18m pairs, while with r = 3 there are about 26m pairs. On the
other hand, the set S defined by (6.2) has about rm pairs. Thus, for the same value
of r, the set S defined by (6.6) has more elements than (6.2).

We measured the reliability of the continuation and multistart methods on the
second model problem by recording the percentage of successful runs in all 10 starting
points. The results obtained were highly dependent on the choice of r. For example,
the multistart and global continuation methods were 100% successful in all cases when
r = 1, but as shown by Table 6.4, the multistart method fails in all cases when r = 2.
The global continuation method always finds the solution, but the reliability is not as
good as in Table 6.2.

The difficulty of the second model problem continues to vary as r increases. We
give an impression of the variability in these results by briefly discussing the reliability
of the multistart and global continuation methods. We restrict the discussion to the
case where xs ∈ 2rand(B), but similar results are obtained when xs ∈ rand(B).

The reliability of the multistart method changes dramatically for 2 ≤ r ≤ 5.
Table 6.4 shows that the multistart method fails in all cases for r = 2. For r = 3,
on the other hand, the multistart method only failed on half the cases, with most
of the failures when m = 216 (four failures for m = 27, five for m = 125, and ten
for m = 216). For r = 4, the multistart method only succeeds in two cases (when
m = 27) and fails in all cases for r = 5. In general, the reliability of the multistart
method decreases as the number of atoms increases.
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The reliability of the global continuation method also changes for 2 ≤ r ≤ 5,
but the variability is not dramatic. Table 6.4 shows that the global continuation
method failed in sixteen cases when r = 2. For r = 3 there were eight failures (two
failures when m = 124 and six with m = 216), while for r = 4 there were two failures
(one failure each for m = 64 and m = 216), but for r = 5 there were five failures
(four failures for m = 64 and one failure for m = 124). The reliability of the global
continuation method does not seem to depend on the number of atoms.

The results obtained with the second model problem show that the multistart
method tends to fail, with the reliability decreasing as the number of atoms increase.
The global continuation method, on the other hand, finds a solution for all problems
with at least 30% reliability. Thus, our results with the second model problem confirm
the general reliability conclusion obtained with the first problem.
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Abstract. We consider the problem of designing feedback control laws when a complete set of
state variables is not available. For linear autonomous systems with quadratic performance criterion,
the design problem consists of choosing an appropriate matrix of feedback gains according to a certain
objective function. In the literature, the performance of quasi-Newton methods has been reported
to be substandard. We try to explain some of these observations and to propose structured quasi-
Newton updates. These methods, which take into account the special structure of the problem, show
considerable improvement in the convergence. Using test examples from optimal output feedback
design, we also can verify these results numerically.
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1. Introduction. The computational design of feedback controllers has been an
active research area of the control community for several decades. Since the result-
ing optimization problems are of considerable importance, there exist several special
purpose algorithms developed by engineers to obtain a numerical solution. These
can be found in books and review articles like [1] or [9]. By the mid 1980s, these
algorithms had been refined using techniques from mathematical optimization such
as step size rules or iterative solution of Newton steps. Also, there were attempts to
use quasi-Newton methods, but these were reported to perform worse than the known
algorithms designed by engineers in the field. It is the goal of this paper to follow
up on this discrepancy and explain why this observation is reasonable. From this
understanding we give a quasi-Newton method which is an extension of the classical
engineering algorithms and therefore combines both favorable features.

In section 2 we derive and state the optimal design problem which we want to
consider in this paper. The resulting optimization problem is to minimize

J(F ) = tr [K(F )P ],

where the variable F is a matrix. K(F ) is the solution of a matrix equation

K(F ) [A+BFC] + [A+BFC]T K(F ) + CTFTRFC + Q = 0.

All other quantities are constant matrices and are defined and explained in section 2.
A discussion of the output feedback problem and additional references appears in [2].

Section 3 deals with the derivation of the differentiability of the mappings involved
and the proper formulation of the necessary optimality conditions. The first and
second derivatives of the objective function are given in several lemmas.

For a review of the existing algorithms which treat this problem we refer to an
excellent survey article (see [9]), where many references can be found. Section 4
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presents the algorithm developed by Anderson and Moore in 1971 for the optimal
design problem. For completeness we give the results on the descent property of this
method and the convergence result using a step size rule. Similar results have already
been credited in [9] to Halyo and Broussard as well as Mäkilä.

Section 5 contains convergence rate estimates for the Anderson–Moore algorithms
in terms of the distance of the iterates to the solution. To our knowledge, only results
on the convergence rate of the function values are known. We show linear convergence
under a certain assumption on the Hessian of J . Furthermore, we can show that the
convergence rate is quadratic for so-called observable systems; cf. [9].

In section 6 we give a structured quasi-Newton update based on the work of Dennis
and Walker. We show that this type of update is an extension of the Anderson–Moore
algorithm. If we do not update at all in our method, then the Anderson–Moore
algorithm results. We prove that this method converges at a superlinear rate of
convergence instead of the linear rate of the Anderson–Moore method.

Finally, in section 7 we use standard test examples from the engineering literature
to support our theoretical results. It shows that the new method is superior to the
Anderson–Moore method due to its improved local convergence properties.

2. Optimal design problem. In this section we give a simple motivation for
the optimal design problem. It can be found in most books on systems theory but
might not be so well known in the area of mathematical optimization.

We consider the linear quadratic control system defined by

ẋ(t) = Ax(t) +Bu(t) , x(0) = x0,
y(t) = Cx(t),

(1)

where

x(t) ∈ Rn state vector, u(t) ∈ Rp input vector, y(t) ∈ Rr output vector.

The objective function is given by

Jx0
(F ) =

∫ ∞
0

[
x(t)TQx(t) + u(t)TRu(t)

]
dt.(2)

With regard to the matrices, we make the following assumptions.
Assumption 1. Let A,Q ∈ Rn×n, B ∈ Rn×p, C ∈ Rr×n, R ∈ Rp×p be given

with Q positive semidefinite, R positive definite, and C having maximal rank with
r ≤ n.

It is our understanding that this assumption is true throughout the paper.
Our goal is to design a feedback control which is given by the time-invariant linear

output feedback matrix F :

u(t) = Fy(t), F ∈ Rp×r.(3)

If we substitute (3) into the system equation (1), we obtain

ẋ(t) = (A+BFC)x(t) , x(0) = x0.(4)

In order to maintain stability of the system, F should be chosen from the set of
stabilizing feedback gains

Ds = {F ∈ Rp×r| Re{λ(A+BFC)} < 0} ,(5)
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where {λ(A+BFC)} are the eigenvalues of A+BFC. Equation (3) can be used to
rewrite the objective function (2) as

Jx0
(F ) =

∫ ∞
0

x(t)T [Q+ (FC)TR(FC)]x(t) dt.(6)

In order to reformulate the objective function further, we recall the Lyapunov equation.
Theorem 2.1 (see [8, Theorem 3.2.1]). Let F ∈ Ds be given. Then there exists

a unique solution K(F ) ∈ Rn×n, K(F ) positive semidefinite, of

K(F ) [A+BFC] + [A+BFC]T K(F ) + CTFTRFC + Q = 0.(7)

Furthermore, if Q + CTFTRFC is positive definite then K(F ) is also positive
definite.

It is easy to check that from (4) and (7),

d

dt
xTKx = −xT [Q+ (FC)TR(FC)]x.

This implies, with F ∈ Ds, that∫ ∞
0

x(t)T [Q+ (FC)TR(FC)]x(t) dt = xT (0)Kx(0) − lim
t→∞

xT (t)Kx(t) = xT0 Kx0.

Theorem 2.2. If F ∈ Ds, the objective function (2) can be rewritten as

Jx0(F ) = xT0 K(F )x0,(8)

where K(F ) ∈ Rn×n solves the Lyapunov equation (7).
Since the objective function depends on x0, let x0 be a random variable, uniformly

distributed over the unit sphere. Then we arrive with a covariance matrix P ∈ Rn×n,
P positive definite, at the optimal output feedback design problem.

(D) Minimize J(F ) = E(Jx0(F )) = tr [K(F )P ] subject to F ∈ Ds and (7).

The function K(F ), defined by the Lyapunov equation (7), is continuous in F ; hence,
the objective function (8) also is continuous. In [10] the set of stabilizing feedback
gains Ds (5) is replaced by the level set

N(F0) = {F ∈ Ds | J(F ) ≤ J(F0)}.

It can be shown (see, e.g., [10]) that it is compact for any given matrix F0 ∈ Ds.
Using the theorem of Bolzano–Weierstrass, this implies the following theorem.

Theorem 2.3 (see [10, Lemma 2.1]). Given a matrix F0 ∈ Ds, the optimal
output feedback design problem (D) has a solution in the level set N(F0).

3. Derivatives of the objective function and optimality conditions. In
the following theorem we state the most important properties of the objective func-
tion’s first and second derivatives. They lead to a necessary optimality condition
which is exploited in the development of algorithms to solve the optimal output feed-
back design problem.

First we show the differentiability of K depending on F .
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Lemma 3.1. Let F ∈ Ds. Then K(F ) defined in (7) is differentiable and
K ′(F ) dF, dF ∈ Rp×r is given as the solution of the following Lyapunov equation:

K ′(F ) dF [A+BFC] + [A+BFC]TK ′(F ) dF

= −CT dFT [BTK(F ) +RFC]− [BTK(F ) +RFC]T dFC.(9)

Proof. Define

ψ(K,F ) = K [A+BFC] + [A+BFC]T K + CTFTRFC + Q.

Since F ∈ Ds and Ds is an open set, we know by Theorem 2.1 that ψK(K,F ) given
by

ψK(K,F )dK = dK [A+BFC] + [A+BFC]T dK

is surjective. The implicit function theorem then yields the differentiability of K(F )
and also, with

ψF (K,F )dF = KBdFC + [BdFC]TK + CT dFTRFC + CTFTRdFC,

the representation of K ′(F ) dF .
In order to write the derivative J ′(F ) dF for dF ∈ Rp×r in a gradient form, we

introduce a gradient of J using the trace of a matrix:

J ′(F ) dF = tr[∇J(F )T dF ], where ∇J(F ) ∈ Rp×r .

Theorem 3.2. The objective function (2) is differentiable on the set of stabilizing
feedback gains Ds. The gradient of J at F is given by

∇J(F ) = 2[BTK(F ) +RFC]L(F )CT ,

where L(F ) ∈ Rn×n solves the Lyapunov equation

L(F )[A+BFC]T + [A+BFC]L(F ) + P = 0 .(10)

Proof Using Lemma 3.1 we have

J ′(F ) dF = tr[K ′(F ) dF P ],

where K ′(F ) dF solves the Lyapunov equation (9). Since L(F ) also solves a Lyapunov
equation, we can proceed as follows. Multiply (10) by K ′(F ) dF and (9) by L(F ) and
then take the trace of the left-and right-hand side of both equations. This yields the
following identity and completes the proof:

tr [K ′(F ) dF P ] = tr [2(BTK(F ) +RFC)L(F )CT dF ].

The result of Theorem 3.2 also yields the necessary optimality condition for the
design problem (D).

Theorem 3.3. If F∗ ∈ Ds solves the design problem (D), then

[BTK(F∗) +RF∗C]L(F∗)C
T = 0 ,(11)

where K(F∗) and L(F∗) are solutions of (7) and (10), respectively.
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In case of observability, an interesting connection can be drawn between the design
problem (D) and the Riccati equation.

Assumption 2. For the dimension of the matrices, let r = n and let C−1 exist.
Then we can show the following corollary.
Corollary 3.4. If the system (1) is observable, i.e., Assumption 2 holds, then

(7), (10), and (11) are equivalent to solve the Riccati equation

K∗A+AKT
∗ −K∗BR−1BTK∗ +Q = 0

and to set

F∗ = −R−1BTK∗C
−1.

Proof. If C−1 exists, then (11) reduces to

F∗C = −R−1BTK∗.(12)

Hence, (10) is redundant. If we substitute (12) into (7), then we obtain

0 = K∗(A−BR−1BTK∗) + (A−BR−1BTK∗)
TK∗ +K∗BR

−1BTK∗ +Q

= K∗A+AKT
∗ −K∗BR−1BTK∗ +Q .

For higher order methods, second derivative information is an essential part in
the development and analysis of algorithms.

Theorem 3.5. The objective function (2) is twice differentiable, and the second
derivative is Lipschitz continuous on the set of stabilizing feedback gains Ds. The
second derivative, applied to a direction dF ∈ Rp×r, is given by

J ′′(F )(dF, dF ) = 2 tr
[
dFTRdFCL(F )CT

]
+ 2 tr

[
dFTBTK ′(F ) dFL(F )CT

]
+ 2 tr

[
dFT (BTK(F ) +RFC)L′(F ) dFCT

]
(13)

= 2 tr
[
dFTRdFCL(F )CT

]
+ 4 tr

[
dFTBTK ′(F ) dFL(F )CT

]
,

where K ′(F ) dF = K ′(F )dF ∈ Rn×n and L′(F ) dF = L′(F )dF ∈ Rn×n solve the
Lyapunov equations

K ′(F ) dF [A+BFC] + [A+BFC]TK ′(F ) dF

= −CT dFT [BTK(F ) +RFC]− [BTK(F ) +RFC]T dFC(14)

and

L′(F ) dF [A+BFC]T + [A+BFC]L′(F ) dF

= −BdFCL(F )− L(F )CT dFTBT .(15)

Proof With the same arguments as in Lemma 3.1, one can show that L(F ) is
differentiable. The derivative L′(F ) dF satisfies (15). Then we obtain from Theorem
3.2 that

J ′′(F )(dF, dF ) = 2 tr [(BTK ′(F ) dF +RdFC)L(F )CT dF

+ (BTK(F ) +RFC)L′(F ) dFCT dF ].
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Given an increment dF ∈ Rp×r, we can approximate the objective function J at
a point F by the quadratic model

J(F + dF )− J(F ) = J ′(F ) dF +
1

2
J ′′(F )(dF, dF )

= tr
[
dFT∇J(F )

]
+ q1(F, dF ) + q2(F, dF ) ,(16)

where the quadratic terms are split into

q1(F, dF ) = tr
[
dFTRdFCL(F )CT

]
and

q2(F, dF ) = tr
[
dFTBTK ′(F )(dF )L(F )CT

]
+ tr

[
dFT (BTK(F ) +RFC)L′(F )(dF )CT

]
.

The term q1 is always positive for nonzero dF as the following lemma shows.
Lemma 3.6. Let F ∈ Ds. Then there exists µ > 0 such that we have, for all

dF ∈ Rp×r,

tr
[
dFTRdFCL(F )CT

]
≥ µ‖dF‖2.

Proof. We note that F ∈ Ds implies by Theorem 2.1 that L(F ) is positive definite.
By Assumption 1 the matrix V := CL(F )CT is also positive definite. The matrix
U := dFTRdF is positive semidefinite. By Theorem 7.4.10 in [7] there exists for
positive semidefinite matrices U, V ∈ Rr×r a permutation π of the indices 1, ..., r such
that

tr [UV ] =

r∑
i=1

λiµπ(i),

where λi, µi ≥ 0 are the eigenvalues of U, V , respectively. This implies

tr [UV ] = tr [(dFTRdF )(CL(F )CT )] > 0

unless all eigenvalues of dFTRdF vanish. In this case we obtain R1/2dF = 0 and,
hence, dF = 0.

Dealing with matrices F ∈ Rp×r has the disadvantage that one cannot express
∇2J(F ) in an explicit form; see Theorem 3.5. If we write F as a column vector
vec[F ] ∈ Rp·r and define a function j : Rp·r −→ R such that j(vec[F ]) = J(F ), we
are able to calculate the Hessian of j using the Kronecker product ⊗.

Lemma 3.7. The Hessian of the function j(vec[F ]) described above is given by

H(F ) = 2 ·
{(
CL(F )CT ⊗R

)
+H1(F )T +H1(F )

}
,

where H1(F ) can be expressed with an n2 × n2-permutation-matrix P (n, n) as

H1(F ) =
[
C ⊗

(
BTK(F ) +RFC

)]
([I ⊗ [A+BFC]] + [[A+BFC]⊗ I])

−1

(In·n + P (n, n))
[
L(F )CT ⊗B

]
.(17)

According to Lemma 3.6, the matrix CL(F )CT ⊗ R is positive definite. The
remaining term of the Hessian H1(F ) +H1(F )T may be indefinite, which leads to the
following conclusion.

Corollary 3.8. If ‖H1(F )‖ is sufficiently small, then H(F ) is positive definite.
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4. Anderson–Moore algorithm. One of the algorithms that has been used
successfully in the past is the Anderson–Moore method [1]. We rewrite the necessary
optimality conditions (11) for the design problem (D) as

F = −R−1[BTK(F )L(F )CT ][CL(F )CT ]−1.

Based on this equation, we can formulate a fixed point iteration (the so-called Anderson–
Moore algorithm).

Anderson–Moore Algorithm (1971).

Given F
• Solve (7) for K(F )
• Solve (10) for L(F )
• Set F+ = −R−1[BTK(F )L(F )CT ][CL(F )CT ]−1

= F − 1

2
R−1∇J(F )[CL(F )CT ]−1

We refine the algorithm and enhance its global convergence properties by the
incorporation of the following step size rule:

F+ = F − α(F +R−1[BTK(F )L(F )CT ][CL(F )CT ]−1)

= F − α

2
R−1∇J(F )[CL(F )CT ]−1.(18)

The most appealing aspect of the Anderson–Moore algorithm is the fact that each
step is very simple to compute once the gradient of the objective function has been
evaluated. It is evident from (18) that the Anderson–Moore algorithm is different
from the gradient method. Nevertheless, it is a descent method which is well known.
We give a refined version of this statement which will be used later.

Lemma 4.1. The direction for the Anderson–Moore algorithm

−F −R−1[BTK(F )L(F )CT ][CL(F )CT ]−1 = −1

2
R−1∇J(F )[CL(F )CT ]−1

is a descent direction for J(F ) at F ∈ Ds unless ∇J(F ) = 0. In particular, there
exists ν > 0 such that

tr [∇J(F )T (R−1∇J(F )[CL(F )CT ]−1) ≥ ν ‖∇J(F )‖2.(19)

Proof. A matrix S ∈ Rp×r is a descent direction if tr [∇J(F )TS] < 0. In this
special case we have

tr [∇J(F )TS] = −1

2
tr [∇J(F )TR−1∇J(F )[CL(F )CT ]−1].

The proof of (19) follows along the same arguments as in the proof of Lemma 3.6.
Lemma 4.1 enables us to use classical convergence results from optimization for

descent methods to derive convergence. In [11], the Anderson–Moore step was com-
bined with an Armijo step size rule, and a proof of convergence was given in [9].

Theorem 4.2. Consider a sequence of iterates {Fk} ⊂ Ds as in (18), where the
step size is determined by an Armijo rule. Then we obtain

lim
k→∞

‖∇J(Fk)‖ = 0.
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Proof. Since J is bounded from below and is differentiable with a Lipschitz-
continuous derivative, we can invoke standard convergence theorems for descent meth-
ods with descent directions Sk; see, e.g., [4] to obtain

lim
k→∞

tr [∇J(Fk)TSk]

‖∇J(Fk)‖ = 0.

Using (19) in Lemma 4.1, we can derive the desired statement of the theorem.
Next we prove estimates on the rate of convergence.

5. Rate of convergence for the Anderson–Moore method. If we look at
the statement in Corollary 3.8, we expect a linear rate of convergence if the term
H1(F∗) is sufficiently small in norm. As we will show below, this rate estimate can
be refined substantially, and the quadratic rate behavior which is observed in some
instances can be explained along the same lines also.

We look at an alternative approach to derive the Anderson–Moore algorithm.
Instead of using all second order terms of J , we use the following quadratic model for
the objective function:

J(F + dF ) ≈ qAM (F, dF ) = J(F ) + tr[dFT∇J(F )] + q1(F, dF ) .

This approximation uses only the first quadratic term q1 of the Hessian (16), while the
other quadratic terms are neglected. The relation to the Anderson–Moore algorithm
is clear from the following lemma.

Lemma 5.1. For given F ∈ Ds, the minimization problem

min
dF

qAM (F, dF )(20)

has the unique solution

GAM = −1

2
R−1(∇J(F ))[CL(F )CT ]−1 .(21)

Proof. The necessary optimality condition for (20) is

∇J(F ) + 2RdFCL(F )CT = 0,

and since R and CL(F )CT are positive definite, this yields the expression (21) and
its uniqueness.

The step computed by GAM in (21) is the same as the Anderson–Moore step in
(18). The fact that certain parts of the Hessian are neglected in the Anderson–Moore
method and that q1 is positive definite allows us to derive convergence rate results
similar to the Gauß–Newton method (cf. [4]).

Theorem 5.2. Let {Fk} be the sequence of feedback gains determined by the
Anderson–Moore algorithm.

(i) Let δ, λ1, λ2 > 0, with λ1 the smallest eigenvalue of R, and let λ2 be the
minimum of the smallest eigenvalues of CL(F )CT for F in a ball Bδ(F∗). If

‖BTK ′(Fk)(F∗ − Fk)L(Fk)CT +
[
BTK(Fk) +RFkC

]
L′(Fk)(F∗ − Fk)CT ‖

≤ σ‖F∗ − Fk‖(22)
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with 0 < σ < λ1λ2 for Fk ∈ Bε(F∗), then there exists ε > 0 such that

‖Fk+1 − F∗‖ ≤
1

2λ1λ2

(
L∇J

2
ε+ σ

)
‖Fk − F∗‖ < ‖Fk − F∗‖ ,

i.e., the Anderson–Moore method has a linear rate of convergence in Bε(F∗).

(ii) If

q2(F∗, dF ) = 0 ∀ dF ∈ Rp×r ,(23)

then there are c, δ > 0 such that the Anderson–Moore algorithm converges q-quadratically
in Bδ(F∗); i.e.,

‖Fk+1 − F∗‖ ≤ c‖Fk − F∗‖2 for Fk ∈ Bδ(F∗) .

Proof. We first show Theorem 5.2 (ii), then (i).
Choose δ > 0 such that ∇J(F ),∇2J(F ),K(F ), L(F ),K ′(F ), and L′(F ) are Lip-

schitz continuous in a ball Bδ(F∗). If Fk ∈ Bδ(F∗), the following holds (using (23)):

‖Fk+1 − F∗‖ = ‖Fk − 1
2R
−1(∇J(Fk))

[
CL(Fk)CT

]−1 − F∗‖

= ‖R−1
{
R(Fk − F∗)

[
CL(Fk)CT

]
+ 1

2 (∇J(F∗)−∇J(Fk))
} [
CL(Fk)CT

]−1 ‖

≤ 1
2 · ‖R−1‖ ‖

[
CL(Fk)CT

]−1 ‖ ‖∇J(F∗)−∇J(Fk)− 2 ·
[
R(F∗ − Fk)CL(Fk)CT

]
‖

≤ 1
2 · ‖R−1‖ ‖

[
CL(Fk)CT

]−1 ‖ ‖∇J(F∗)−∇J(Fk)−∇2J(Fk)(F∗ − Fk)‖
+‖BTK ′(Fk)(F∗ − Fk)L(Fk)CT +

[
BTK(Fk) +RFkC

]
L′(Fk)(F∗ − Fk)CT

−(BTK ′(F∗)(F∗ − Fk)L(F∗)C
T +

[
BTK(F∗) +RF∗C

]
L′(F∗)(F∗ − Fk)CT )‖.

(24)
Since ∇2J is Lipschitz continuous in Bδ(F∗), there is L∇J > 0 such that the first
term of the sum can be bounded by a quadratic term in ‖F∗−Fk‖. Since K ′, L′, K,
and L are Lipschitz continuous, there is L > 0 such that

‖Fk+1 − F∗‖ ≤
1

2
‖R−1‖ ‖

[
CL(Fk)CT

]−1 ‖
(
L∇J

2
+ L

)
‖Fk − F∗‖2.

Let λ1 be the smallest eigenvalue of R and let λ2 be the smallest eigenvalues of
CL(F )CT . This yields the q-quadratic convergence of the Anderson–Moore method:

‖Fk+1 − F∗‖ ≤
1

2λ1λ2

(
L∇J

2
+ L

)
‖Fk − F∗‖2 = c‖Fk − F∗‖2 .

To show (i), note that the last term in (24) can be estimated using condition (22) by
σ‖F∗ − Fk‖. Inserted into equation (24), this yields

‖Fk+1 − F∗‖ ≤
1

2
· ‖R−1‖ ‖

[
CL(Fk)CT

]−1 ‖
(
L∇J

2
‖Fk − F∗‖2 + σ‖Fk − F∗‖

)
≤ 1

2λ1λ2

(
L∇J

2
‖Fk − F∗‖2 + σ‖Fk − F∗‖

)
.
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Let ε < min{δ, (4λ1λ2 − 2σ)/L∇J}, and we then obtain the desired result:

‖Fk+1 − F∗‖ ≤ ‖Fk − F∗‖
1

2λ1λ2

(
L∇J

2
ε+ σ

)
< ‖Fk − F∗‖ .

In particular, when the system (1) is observable (a case in which solving the design
problem is equivalent to solving the Riccati equation as we showed in Corollary 3.4),
the Anderson–Moore algorithm converges quadratically (cf. [9], p. 660).

Corollary 5.3. Let the system (1) be observable, i.e., Assumption 2 holds.
Then the Anderson–Moore algorithm converges q-quadratically in the neighborhood of
a solution of the design problem (D).

Proof. In the case of observability, the necessary optimality condition for the
design problem reduces to BTK(F∗)+RF∗C = 0. If we insert this into (14), we obtain
K ′(F∗)(dF ) = 0, and thus q2(F∗, dF ) = 0. Hence, the condition (23) in Theorem 5.2
is fulfilled and, therefore, the algorithm has a quadratic rate of convergence.

It is also possible to rewrite the design problem in form of a nonlinear least-squares
problem.

Lemma 5.4. The design problem (D) can be expressed as a nonlinear least-squares
problem by

J(F ) = ‖K(F )
1
2P

1
2 ‖2F(25)

with the Frobenius norm ‖ · ‖F .
Proof

J(F ) = tr [K(F )P ] = tr [K(F )
T
2 K(F )

1
2P

1
2P

T
2 ] = ‖K(F )

1
2P

1
2 ‖2F .

Since it is well known that the Gauß–Newton method converges at a quadratic
rate in the zero residual case, one might suspect that the Anderson–Moore algorithm
is identical with the Gauß–Newton method. However, using the formulation (25),
there is no equivalence between Gauß–Newton method for the nonlinear least-squares
problem and the Anderson–Moore algorithm. The derivative R′(F ) of the residual

R(F ) = K(F )
1
2P

1
2 in (25) is given by

R′(F )dF =
1

2
K(F )−

1
2K ′(F )dFP

1
2 .

In the Gauß–Newton approach, we would use as a quadratic approximation for J(F )

(R′(F )dF )TR′(F )dF =
1

4
tr [dFTK ′(F )K(F )−1K ′(F )dFP ].

For example, in the case of observability, this quadratic term vanishes at F∗ and,
hence, no quadratic rate of convergence could be shown. Furthermore, the residual in
(25) is never zero, so the quadratic convergence for the Gauß–Newton method in the
zero residual case cannot be applied.

In this framework, we also want to mention Newton’s method, which minimizes
a quadratic approximation of the objective function J

min qN (dF ) = J(F ) +∇J(F )(dF ) +
1

2
J ′′(F )(dF, dF ) .

The necessary optimality condition for this minimization problem is

[BTK(F ) +RFC]L(F )CT +R dFCL(F )CT

+BTK ′(F )(dF )L(F )CT + [BTK(F ) +RFC]L′(F )(dF )CT = 0,
(26)
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where K ′(F )dF and L′(F )dF are given by the Lyapunov equations (15) and (14).
This coupled system of three equations adds substantially to the computational cost
compared to the Anderson–Moore algorithm. Using these equations, we can formulate
Newton’s algorithm.

Newton’s Method.

Given F
• Solve (7) for K(F )
• Solve (10) for L(F )
• Solve (26) simultaneously with (14) and (15) for dF
• Set F+ = F + α dF

It has been suggested that (26) can be solved with an iterative scheme like the con-
jugate gradient method (or similar scheme), but we still have to solve two Lyapunov
equations for K ′(F )dF and L′(F )dF in each cg-step, which makes the computation
of a Newton-step rather expensive.

In optimization, quasi-Newton methods are often used instead, but these methods
have been reported to exhibit substandard performance. We will show in the next
section how to develop successful applications of quasi-Newton methods for this class
of problems.

6. Structured quasi-Newton method. Although there are special cases where
the Anderson–Moore method converges quite fast, in general, its rate of convergence
is linear and sometimes rather slow. On the other hand, it is globally a rather ro-
bust optimization algorithm where the descent direction is especially tuned to the
application problem.

General purpose quasi-Newton methods such as BFGS or DFP do not perform as
well as usual; see, e.g., [11]. Therefore, we want to develop a quasi-Newton technique
which is particularly suited for this application.

The idea is based on structured quasi-Newton updates. Certain parts of the
Hessian are relatively easy to compute (such as q1 in (16)), while others are not
(such as q2). Therefore, we distinguish in the Hessian between a part that is exactly
available, denoted by D(F ), and a part that has to be approximated by a quasi-
Newton update A. We split the Hessian J ′′(F ) = D(F ) + A(F ) in such a way that
for A(F ) = 0, the algorithm reduces to the Anderson–Moore method. In this way the
resulting algorithm can be viewed as an extension of the Anderson–Moore method.

For a description of the method, let the matrices ∇J(F ), Sc, Y
#
c be given and let

the approximation of the second derivative be

J ′′(F ) ≈ A+D(F ), A,D(F ) : Rp×r → Rp×r,

where D(F )S = RS
[
CL(F )CT

]
, S ∈ Rp×r.

Structured Quasi-Newton Updates.

• For given Fc, Ac solve

(Ac +D(Fc))Sc = −∇J(Fc).

• Set F+ = Fc + Sc and

Y #
c = ∇J(F+)−∇J(Fc)−D(F+)Sc(27)

or Y #
c =

[
BT (K(F+)−K(Fc))L(F+)CT

+(BTK(F+) +RF+C) (L(F+)− L(Fc))C
T
]
.(28)
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• Update A by defining A+X for all X ∈ Rp×r

A+X = AcX +
tr [(Y #

c −AcSc)TX]

tr [STc (Y #
c −AcSc)]

(Y #
c −AcSc).

This update is the SR-1-update, but the PSB-update

A+X = AcX +
tr [STc X]

tr [STc Sc]
(Y #
c −AcSc)

+

(
tr [(Y #

c −AcSc)TX]

tr [STc Sc]
− tr [(Y #

c −AcSc)TSc]
(tr [STc Sc])

2

)
Sc(29)

also has been used in our numerical experiments.
The choice of Y #

c in (27) corresponds to what Dennis and Walker [5] call the
“default choice.” The version (28), which has been slightly more successful in our tests,
approximates K ′(F+)(Sc) and L′(F+)(Sc) in q2 by K(F+)−K(Fc) and L(F+)−L(Fc),
respectively.

Based on the results of Dennis and Walker [5], we can now show that the algorithm
described above has a local q-superlinear rate of convergence.

Theorem 6.1. Let F∗ be the solution of the design problem (D), let the Hessian

J ′′(F∗) be nonsingular, and choose Y #
k as in (27) or (28). Then there are ε > 0 and

δ > 0 such that for ‖F0−F∗‖ ≤ ε and ‖A0− (H1(F∗)+H1(F∗)
T )‖ ≤ δ (cf. (17)), the

sequence {Fk} generated by the structured quasi-Newton method described above using
either the Broyden-, or the PSB-update is well defined and converges q-superlinearily.

Proof. This proof is based on Theorem 11.4.1 in [4] (respectively, Theorem 3.3 in
[5]). We restrict ourselves to show that the conditions of this theorem are fulfilled.
For the Broyden-update (A = Rn×n), as well as for the PSB-update (A = {M ∈
Rn×n : M = MT }), we have (cf. Lemma 3.7)

H(F∗)−D(F∗) = H1(F∗) +H1(F∗)
T ∈ A ,

since this matrix is always symmetric. Hence, condition (11.4.2) in Theorem 11.4.1
in [4] holds.

If Y #
c has been chosen as in (27), the assertion follows from Theorem 11.4.1 in

[4]. If Y #
c has been chosen as in (28), we have to show that there are α > 0 and p > 0

such that condition (11.4.3) in Theorem 11.4.1 in [4] is fulfilled. For the Broyden- and
the PSB-update, it is sufficient to show that we can choose α > 0 and p > 0 in a way
that for all Fc, F+ in a neighborhood of F∗,

‖Y #
c −A∗Sc‖ ≤ α (max {‖Fc − F∗‖, ‖F+ − F∗‖})p ‖Sc‖(30)

(cf. [5], p. 963 f., Lemma 3.2). We have from (28) and A∗ = H1(F∗) +H1(F∗)
T that

‖Y #
c −A∗Sc‖ = ‖BT (K(F+)−K(Fk))L(F+)CT −BTK ′(F∗)(F+ − Fc)L∗CT

+ (BTK(F+) +RF+C) (L(F+)− L(Fk))CT

− (BTK∗ +RF∗C)L′(F∗)(F+ − Fc)CT ‖
≤ ‖BT {K(F+)−K(Fc)−K ′(F∗)(F+ − Fc)}L∗CT ‖

+ ‖BT (K(F+)−K(Fc))(L(F+)− L∗)CT ‖
+ ‖[BTK∗ +RF∗C] {L(F+)− L(Fc)− L′(F∗)(F+ − Fc)}CT ‖
+ ‖

(
[BTK(F+) +RF+C]− [BTK∗ +RF∗C]

)
(L(F+)− L(Fc)) ‖ .

From this equation it is easy to derive the desired estimate.
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7. Numerical results. We tested the algorithm on examples which are used in
the literature for test purposes. Consider the fourth-order system (cf. [3]) n = 4, p =
2, r = 3, and

A =

 −0.03700 0.01230 0.00055 −1.00000
0.00000 0.00000 1.00000 0.00000
−6.37000 0.00000 −0.23000 0.06180

1.25000 0.00000 0.01600 −0.04570

 ,

B =

 0.000840 0.000236
0.000000 0.000000
0.080000 0.804000
−0.086200 −0.066500

 ,

C =

(
0 1 0 0
0 0 1 0
0 0 0 1

)
, F∗ =

(
0.398 1.593 7.852
−1.258 −3.482 −5.004

)
,

R = I, P = Q = I.

The Lyapunov equations are solved numerically using the Bartels–Stewart algorithm.
Starting data are F0 = 0, which is a stabilizing feedback gain. We list the norm of
the gradients for four methods in Table 1. In the quasi-Newtonm method, we started
the update procedure after six Anderson–Moore steps. We include the same strategy
also for Newton’s method in the column denoted by A–M/Newton.

Table 1

Comparison of four methods.

k Anderson–Moore Newton Struct. quasi-Newton A–M/Newton
1 0.8503D+07 0.8503D+07 0.8503D+07 0.8503D+07
2 0.2869D+04 0.3779D+07 0.2870D+04 0.2870D+04
3 0.4515D+02 0.1679D+07 0.4515D+02 0.4515D+02
4 0.3810D+02 0.7463D+06 0.3810D+02 0.3810D+02
5 0.1955D+02 0.3316D+06 0.1955D+02 0.1955D+02
6 0.4724D+01 0.1472D+06 0.4724D+01 0.4724D+01
7 0.3235D+01 0.6535D+05 0.3235D+01 0.3235D+01
8 0.2237D+01 0.2901D+05 0.6874D+00 0.1571D+01
9 0.1579D+01 0.1221D+05 0.7435D+00 0.6805D+00

10 0.1133D+01 0.5151D+04 0.2594D+00 0.1843D+00
11 0.8250D+00 0.2185D+04 0.5243D–01 0.2893D–01
12 0.6070D+00 0.9343D+03 0.2168D–01 0.9271D–04
13 0.4504D+00 0.4025D+03 0.9107D–03 0.1099D–08
14 0.3365D+00 0.1846D+03 0.2465D–04
15 0.2527D+00 0.8375D+02 0.2642D–05
16 0.1905D+00 0.3663D+02 0.2077D–07
17 0.1442D+00 0.1499D+02
18 0.1092D+00 0.5269D+01
19 0.8304D–01 0.1268D+01
20 0.6320D–01 0.1329D+00
21 0.4815D–01 0.1691D–02
22 0.3672D–01 0.3116D–06
· ·

60 0.1428D–05

We observe clearly the linear convergence of the Anderson–Moore method and
the superlinear convergence of the structured quasi-Newton algorithm. In spite of his
local quadratic rate of convergence, Newton’s method needs more steps to achieve the
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termination criterion ‖∇J(F )‖ < 10−5 than the structured quasi-Newton method. In
terms of the CPU-time (on a DEC 3000 workstation) that is needed until the termi-
nation criterion is reached, the superiority of the structured quasi-Newton method is
even more striking:

• 0.145 seconds for the structured quasi-Newton method,
• 0.263 seconds for Newton’s method,
• 0.387 seconds for the Anderson–Moore method.

If we change the previous example by setting C = I4, we obtain an observable system.
Using the stabilizing feedback gain

F0 =

[
0 0 0 0
0 0 0 0

]
to start, we obtain the solution

F∗ =

[
−1.862 0.180 0.701 6.407

3.939 −0.928 −1.554 −2.993

]
.

Table 2 lists the result of the Anderson–Moore method and shows a quadratic rate of
convergence according to Corollary 5.3.

Table 2

Quadratic convergence of Anderson–Moore.

step J(F ) ‖∇J(F )‖
1 0.3113D+05 0.8503D+07
2 0.7583D+03 0.2810D+04
3 0.3973D+03 0.2075D+02
4 0.2202D+03 0.1591D+02
5 0.1611D+03 0.1326D+02
6 0.1515D+03 0.3427D+01
7 0.1512D+03 0.1220D+00
8 0.1512D+03 0.1650D–03
9 0.1512D+03 0.3184D–09

To illustrate once more the advantages of structured quasi-Newton methods, con-
sider the following example from Horisberger and Bélanger [6]:

A =



0 1 0 0 0 0 0 0 0
0 −20 −4.2 0 4.45 12.5 0 100 0
0 0 0 1 0 0 0 0 0
0 4.7 8.35 0 −1.1 0 0 0 0
0 0 0 0 −3.3 0 0 0 0
0 0 0 0 0 0 1 0 0
0 10.9 0 0 −2.55 −250 0 0 0
0 0 0 0 0 0 0 0 1
0 5.9 0 0 −1.39 0 0 −3700 0


, B =



0
0
0
0

3.3
0
0
0
0


,

C =


1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0.66 0 1.2 0
0 0 0 1 0 0 0.66 0 1.2

 , P = I9, Q = I9, R = I1.
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Starting with

F0 =
[

10.62 3.63 372.7 37.82
]
,

we obtained

F∗ =
[

0.0309 2.6422 63.7458 2.1004
]

and the following iterations for Newton’s method, the Anderson–Moore algorithm,
and structured quasi-Newton methods (see Table 3).

Table 3

Comparison with structured quasi-Newton.

k Anderson–Moore Newton Struct. quasi-Newton A–M/Newton
1 0.7414D+05 0.7414D+05 0.7414D+05 0.7414D+05
2 0.8759D+05 0.2541D+06 0.8759D+05 0.8759D+05
3 0.9096D+05 0.9653D+05 0.9096D+05 0.9096D+05
4 0.1132D+06 0.3524D+05 0.1132D+06 0.1132D+06
5 0.9806D+05 0.2865D+05 0.9806D+05 0.9806D+05
6 0.4420D+06 0.2815D+05 0.4420D+06 0.4420D+06
7 0.2481D+06 0.2792D+05 0.2481D+06 0.4420D+06
8 0.9253D+05 0.3450D+05 0.2266D+06 0.1276D+06
9 0.2855D+06 0.3221D+05 0.1442D+06 0.1086D+06

10 0.1158D+06 0.3660D+06 0.2071D+07 0.9464D+05
· · · · ·

20 0.4508D+06 0.4804D+05 0.2209D+06 0.2075D–04
· · · ·

25 0.9670D+05 0.2119D+04 0.4320D+03
26 0.1745D+06 0.5602D+02 0.2452D+03
27 0.2759D+06 0.8048D+00 0.5247D+01
28 0.9467D+05 0.2368D–03 0.1401D+00
29 0.1497D+06 0.1923D–05 0.4371D–02
30 0.2224D+06 0.5522D–05
· ·

1000 0.9331D+03

This example shows that the Anderson–Moore method can perform very poorly
due to its slow linear convergence. The structured quasi-Newton method was again
the best, and even if it needed one step more than Newton’s method to reach the
termination criterion ‖∇J(F )‖ < 10−4, it performed considerably faster in terms of
CPU-time (0.8 seconds vs. 1.1 seconds on a DEC 3000).

It has been noted in the literature that the convergence of the Anderson–Moore
algorithm can often be improved by checking the condition number of C L(F ) CT . If
the condition number is high, one adds a regularization term and replaces its inverse
in the Anderson–Moore algorithm by (C L(F ) CT +αI)−1. We tried this strategy on
the last example and found that it does not improve the behavior of the Anderson–
Moore method. The condition number is only in the range of 105; however, the
Hessian ∇2J(F ) is indefinite initially, which causes the slow behavior, because the
Anderson–Moore algorithm uses part of the Hessian information as noted above.
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Abstract. We propose a new method for the solution of the single commodity, separable convex
cost network flow problem. The method generalizes the ε-relaxation method developed for linear
cost problems and reduces to that method when applied to linear cost problems. We show that the
method terminates with a near optimal solution, and we provide an associated complexity analysis.
We also present computational results showing that the method is much faster than earlier relaxation
methods, particularly for ill-conditioned problems.
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1. Introduction. We consider a directed graph with node set N = {1, . . . , N}
and arc set A ⊂ N × N . The number of nodes is N and the number of arcs is
denoted by A. We denote by xij the flow of the arc (i, j), and we refer to the vector
x = {xij | (i, j) ∈ A} as the flow vector. The separable convex cost network flow
problem is

minimize
∑

(i,j)∈A
fij(xij)(P)

subject to
∑

{j|(i,j)∈A}
xij −

∑
{j|(j,i)∈A}

xji = si ∀ i ∈ N ,(1)

where si are given scalars and fij : < → (−∞,∞] are given convex, closed, proper
functions (extended real valued, lower semicontinuous, not identically taking the value
∞). We refer to problem (P) as the primal problem. We have implicitly assumed
that there exists at most one arc in each direction between any pair of nodes, but this
assumption is made for notational convenience and easily can be dispensed with. A
flow vector x with fij(xij) < ∞ for all (i, j) ∈ A, which satisfies the conservation of
flow constraint (1), is called feasible. For a given flow vector x, the surplus of node i
is defined as the difference between the supply si and the net outflow from i:

(2) gi = si +
∑

{j|(j,i)∈A}
xji −

∑
{j|(i,j)∈A}

xij .

We will assume that there exists at least one feasible flow vector x such that

(3) f−ij (xij) <∞ and f+
ij (xij) > −∞ ∀ (i, j) ∈ A,

where f−ij (xij) and f+
ij (xij) denote the left and right directional derivatives of fij at

xij [Roc84, p. 329].
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There is a well-known duality framework for this problem, primarily developed
by Rockafellar [Roc70] and discussed in several texts; see, e.g., [Roc84], [BeT89]. This
framework involves a Lagrange multiplier pi for the ith conservation of flow constraint
(1). We refer to pi as the price of node i and to the vector p = {pi | i ∈ N} as the
price vector . The dual problem is as follows:

minimize q(p)(D)

subject to no constraint on p,

where the dual functional q is given by

q(p) =
∑

(i,j)∈A
qij(pi − pj)−

∑
i∈N

sipi,

and qij is related to fij by the conjugacy relation

qij(tij) = sup
xij∈<

{xijtij − fij(xij)}.

We will assume throughout that fij is such that qij is real valued for all (i, j) ∈ A.
This is true, for example, if each function fij takes the value∞ outside some compact
interval.

It is known (see [Roc84, p. 360]) that under our assumptions, both the primal
problem (P) and the dual problem (D) have optimal solutions, and their optimal costs
are the negatives of each other. The standard optimality conditions for a feasible flow-
price vector pair (x, p) to be primal and dual optimal are

f−ij (xij) ≤ pi − pj ≤ f+
ij (xij) ∀ (i, j) ∈ A.

These, known as the complementary slackness conditions (CS conditions), may be
represented explicitly as

(xij , pi − pj) ∈ Γij ∀ (i, j) ∈ A,

where

Γij =
{

(xij , tij) ∈ <2 | f−ij (xij) ≤ tij ≤ f+
ij (xij)

}
is the characteristic curve associated with arc (i, j) as shown in Fig. 1.

The traditional methods for solving the problem of this paper for the case of linear
arc cost functions (when each fij is linear on some closed interval and is∞ outside the
interval) are primal and dual cost improvement methods, which iteratively improve
the primal or the dual cost function. Recently, methods based on the auction ap-
proach have gained attention, following the original proposal of the auction algorithm
for the assignment problem [Ber79] and the ε-relaxation method [Ber86a], [Ber86b].
These methods may not improve the primal or the dual cost at any iteration, and
they are based on a relaxed version of the CS conditions, called ε-complementary
slackness (ε-CS). Their worst-case computational complexity, when properly imple-
mented, is excellent; see [Gol87] (see also [BeE88], [BeT89], [GoT90]). Their practical
performance is also very good, particularly for special classes of problems such as
assignment and max-flow. Furthermore, these methods are well suited for parallel
implementation (see [BCE95], [LiZ91], [NiZ93]). We will focus on extending one such
method, the ε-relaxation method, to the general convex cost case.
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fij(xij)

xij xij

pi - pj 

Fig. 1. A cost function fij and its corresponding characteristic curve.

One possibility for dealing with the convex cost case is to use efficient ways to re-
duce the problem to an essentially linear cost problem by piecewise linearization of the
arc cost functions; see [Mey79], [KaM84], [Roc84]. Another possibility is to use dif-
ferentiable unconstrained optimization methods, such as coordinate descent [BHT87],
conjugate gradient [Ven91], and adaptations of other nonlinear programming methods
[HaH93], [Hag92] or fixed point methods [BeE87], [TBT90]. However, these methods
require that the dual cost function be differentiable, which essentially amounts to the
primal cost functions being strictly convex. A more general alternative, which applies
to nondifferentiable dual cost functions as well, is to use an extension of the primal
or dual cost improvement methods developed for the linear cost case. In particular,
there have been proposals of primal cost improvement methods in [Wei74] and more
recently in [KaM93]. There have also been proposals of dual cost improvement meth-
ods: see the fortified descent method [Roc84] that extends the primal–dual method of
Ford and Fulkerson [FoF62] and the relaxation method of [BHT87] that extends the
corresponding linear cost relaxation method of [Ber85] and [BeT88]. These methods,
together with the price vector, maintain a flow vector that satisfies the ε-CS conditions
and progressively work towards primal feasibility. The flow vector becomes feasible
at termination.

In this paper we develop and analyze the first extension of an auction method,
the ε-relaxation method, to the convex arc cost case.1 (An analogous extension of
the auction/sequential shortest path method given in [Ber92], which has also been
incorporated in the latest release of the RELAX code [BeT94], is developed in the
Ph.D. thesis of the second author [Pol95].) Our method is based on the ε-CS conditions
first introduced in [BHT87] for the case of convex arc costs. In particular, we say that
the flow vector x and the price vector p satisfy ε-CS if and only if (see Fig. 2)

(4) fij(xij) <∞ and f−ij (xij)− ε ≤ pi − pj ≤ f+
ij (xij) + ε ∀ (i, j) ∈ A.

1We have learned that the same method was independently developed and analyzed by De Leone,
Meyer, and Zakarian [DMZ95]. The results of their computational tests qualitatively agree with ours.
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xij

pi - pj

Fig. 2. A visualization of the ε-CS conditions as a cylinder around the characteristic curve
(bold line). The shaded area represents flow-price differential pairs that satisfy the ε-CS conditions.

It was shown in [BHT87] that if a feasible flow-price vector pair (x, p) satisfies
ε-CS, then x and p are primal and dual optimal, respectively, within a factor that
is proportional to ε (see Proposition 6). Our method is similar to the ε-relaxation
method for linear cost network flow problems. It iteratively modifies the price vector
while effecting attendant flow changes that maintain the ε-CS conditions. The method
terminates with a feasible flow-price vector pair which, however, satisfies ε-CS rather
than CS. There is a fundamental difference from the other dual descent methods for
nondifferentiable dual cost problems: the price changes are made exclusively along
coordinate directions, that is, one price at a time, and a price change need not improve
the dual cost. However, because the flow-price vector pair (x, p) maintained by the
ε-relaxation method satisfies ε-CS rather than CS, there is more freedom in adjusting
the flow-price vector pair towards feasibility, even though the pair obtained when the
method terminates is optimal only within a factor proportional to ε.

The method of this paper essentially provides a mechanism to move around the
ε-CS diagram of Fig. 2 while changing one price at a time and works towards primal
feasibility. There is a variety of mechanisms for effecting such price changes and
Fig. 3 illustrates some of the possibilities. In particular, by starting from a point on
the characteristic curve of arc (i, j) we can follow any direction around that point
and change the price pi or the price pj and/or the flow xij simultaneously until
(xij , pi − pj) is either on the characteristic curve or is within a distance of ε above
or below the characteristic curve of arc (i, j). For example, if node i has positive
surplus, by increasing the flow of an outgoing arc (i, j) or by decreasing the flow of
an incoming arc (j, i) the surplus of i will be decreased, while the surplus of j will
be increased by an equal amount. This is the basic mechanism for moving flow from
nodes of positive surplus to nodes of negative surplus, thus working towards primal
feasibility. It is possible, however, that node i has positive surplus, while the flow of
none of the outgoing arcs (i, j) can be increased and the flow of none of the incoming
arcs (j, i) can be decreased without violating the ε-CS conditions. In this case, the
method increases the price of node i in order to “make room” in the ε-CS diagram
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xij

pi - pj

Γij

Fig. 3. Starting from any point on the characteristic curve (dark points) of arc (i, j), a new
point on the characteristic curve can be obtained in a variety of ways. The figure depicts a few such
examples where the flow and price differential for arc (i, j) are changed simultaneously according to
some linear relation.

for a subsequent flow change.

The paper is organized as follows. In section 2 we present the ε-relaxation method
extended to solve convex cost problems. In section 3, we show that this method
terminates with a near optimal flow-price vector pair, and in section 4 we provide
a complexity analysis for the method. In section 5, we describe a version of this
method that uses both price increase and decrease steps, and in section 6 we report
our computational experience with the methods of sections 2 and 5 on some convex
linear/quadratic cost problems. Our test results show that, on problems where some
(possibly all) arcs have strictly convex cost, the new method outperforms, often by
an impressive margin, earlier relaxation methods. Significantly, our method seems to
be minimally affected by ill-conditioning in the dual problem. We do not know of any
other method for which this is true.

2. The ε-relaxation method. For a flow-price vector pair (x, p) satisfying ε-
CS, we define for each node i ∈ N its push list as the set of arcs

(5)
{

(i, j) | ε/2 < pi − pj − f+
ij (xij) ≤ ε

}
∪
{

(j, i) | −ε ≤ pj − pi − f−ji (xji) < −ε/2
}
.

Figure 4 illustrates when an arc (i, j) is in the push list of i and when it is in the
push list of j. We note that a more general definition of the push list can be given by
replacing the term ε/2 with βε, where β is a scalar with 0 < β < 1. The subsequent
analysis applies, with minor modifications, to the corresponding version of the ε-
relaxation method to be given shortly.

An arc (i, j) [or (j, i)] in the push list of i is said to be unblocked if there exists a
δ > 0 such that

pi − pj ≥ f+
ij (xij + δ)
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xij

pi - pj
Γij

xij

pi - pj
Γij

For the flow price
pairs in the shaded
region, arc (i,j) is 
in the push list of i.

For the flow price
pairs in the shaded
region, arc (i,j) is 
in the push list of j.

Fig. 4. A visualization of the conditions satisfied by a push list arc. The shaded area represents
flow-price differential pairs corresponding to a push list arc.

xij+δ

pi - pj

lij uijxij

Γij

+ε/2

-ε/2

pi - pj

lij uijyijyij  - δ

Γij

+ε/2

-ε/2

The flow margin
and a flow push
on an unblocked
arc (i,j) of the
push list of i.

The flow margin
and a flow push
on an unblocked
arc (i,j) of the
push list of j.

Fig. 5. The flow margin of an unblocked push list arc.

(or pj−pi ≤ f−ji (xji−δ), respectively). For an unblocked push list arc, the supremum
of δ for which the above relation holds is called the flow margin of the arc. The flow
margin of an arc (i, j) is illustrated in Fig. 5. An important property is noted in the
following proposition.

Proposition 1. The arcs in the push list of a node are unblocked.
Proof. Assume that for an arc (i, j) ∈ A we have

pi − pj < f+
ij (xij + δ) ∀ δ > 0.

Since the function f+
ij is right continuous, this yields

pi − pj ≤ lim
δ↓0

f+
ij (xij + δ) = f+

ij (xij),

and thus (i, j) cannot be in the push list of node i. A similar argument proves that
an arc (j, i) ∈ A such that

pj − pi > f−ji (xji − δ) ∀ δ > 0

cannot be in the push list of node i.
For a given pair (x, p) satisfying ε-CS, consider an arc set A∗ that contains all

push list arcs oriented in the direction of flow change. In particular, for each arc (i, j)
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in the push list of a node i we introduce an arc (i, j) in A∗, and for each arc (j, i) in
the push list of node i we introduce an arc (i, j) in A∗. The set of nodes N and the
set A∗ define the admissible graph G∗ = (N ,A∗). Note that an arc can be in the push
list of at most one node, so the admissible graph is well defined.

The ε-relaxation method starts with a flow-price vector pair (x, p) satisfying ε-CS
and is such that the corresponding admissible graph G∗ is acyclic. One possibility is
to select an initial price vector p0 and to set the initial arc flow for every arc (i, j) ∈ A
to

(6) xij = sup{ξ | f+
ij (ξ) ≤ p0

i − p0
j − ε/2}.

It can be seen with this choice that ε-CS is satisfied for every arc (i, j) ∈ A and that
the initial admissible graph is empty and thus acyclic.

In the typical iteration of the method, we select a node i with positive surplus,
and we perform one or more of the following two operations:

(a) a price rise on node i, which increases the price pi by the maximum amount
that maintains ε-CS, while leaving all arc flows unchanged,

(b) a flow push (also called a δ-flow push) along an arc (i, j) (or along an arc
(j, i)), which increases (i, j) (or decreases (j, i)) by an amount δ ∈ (0, gi],
while leaving all node prices unchanged.

The iteration is as follows.
Typical Iteration of the ε-Relaxation Method.

Step 1: Select a node i with positive surplus gi; if no such node exists, terminate the
method.

Step 2: If the push list of i is empty, go to Step 3. Otherwise, choose an arc from the
push list of i and perform a δ-flow push towards the opposite node j, where

δ = min{gi, flow margin of arc}.

If the surplus of i becomes zero, go to the next iteration; otherwise go to Step
2.

Step 3: Increase the price pi by the maximum amount that maintains ε-CS. Go to
the next iteration.

We make the following observations about the ε-relaxation method:
1. The method preserves ε-CS and the prices are monotonically nondecreasing.

This is evident from the initialization and Step 3 of the method.
2. Once the surplus of a node becomes nonnegative, it remains nonnegative for

all subsequent iterations. The reason is that a flow push at a node i cannot
make the surplus of i negative (cf. Step 2) and cannot decrease the surplus
of neighboring nodes.

3. If at some iteration a node has negative surplus, then its price must be equal
to its initial price. This is a consequence of observation 2 above and the fact
that price changes occur only on nodes with positive surplus.

3. Termination of the ε-relaxation method. To prove the termination of
the ε-relaxation method of section 2, we first prove that the total number of price
rises that the method can perform is bounded.

Proposition 2. Each price rise increment in the ε-relaxation method is at least
ε/2.

Proof. We first note that a price rise on a node i occurs only when its push list is
empty. Thus, for every arc (i, j) ∈ A we have pi − pj − f+

ij (xij) ≤ ε/2, and for every
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arc (j, i) ∈ A we have pj − pi − f−ji (xji) ≥ −ε/2. This implies that all elements of the
sets of positive numbers

S+ =
{
pj − pi + f+

ij (xij) + ε | (i, j) ∈ A
}
,

S− =
{
pj − pi − f−ji (xji) + ε | (j, i) ∈ A

}
are greater than or equal to ε/2. Since a price rise at i increases pi by the increment
γ = min{S+ ∪ S−}, the result follows.

The following proposition bounds the total number of price increases that the
ε-relaxation method can perform on any node. The proof is patterned after that for
the linear cost case [Ber86a], [BeE88].

Proposition 3. Assume that for some integer K ≥ 1, the initial price vector
p0 for the ε-relaxation method satisfies Kε-CS together with some feasible flow vector
x0. Then, the ε-relaxation method performs at most 2(K + 1)(N − 1) price rises per
node.

Proof. Consider the pair (x, p) at the beginning of an ε-relaxation iteration. Since
the surplus vector g = (g1, . . . , gN ) is not zero and the flow vector x0 is feasible, we
conclude that for each node s with gs > 0 there exists a node t with gt < 0 and a
path H from t to s that contains no cycles and is such that

(7) xij > x0
ij ∀ (i, j) ∈ H+,

(8) xij < x0
ij ∀ (i, j) ∈ H−,

where H+ is the set of forward arcs of H and H− is the set of backward arcs of
H. (This can be seen from the conformal realization theorem ([Roc84] or [Ber91]) as
follows. For the flow vector x−x0, the net outflow from node t is −gt > 0 and the net
outflow from node s is −gs < 0 (here we ignore the flow supplies), so, by the conformal
realization theorem, there is a path H from t to s that contains no cycle and conforms
to the flow x− x0. That is, xij − x0

ij > 0 for all (i, j) ∈ H+ and xij − x0
ij < 0 for all

(i, j) ∈ H−. Equations (7) and (8) then follow.)
From equations (7) and (8) and the convexity of the functions fij for all (i, j) ∈ A,

we have

(9) f−ij (xij) ≥ f+
ij (x0

ij) ∀ (i, j) ∈ H+,

(10) f+
ij (xij) ≤ f−ij (x0

ij) ∀ (i, j) ∈ H−.

Since the pair (x, p) satisfies ε-CS, we also have that

(11) pi − pj ∈ [f−ij (xij)− ε, f+
ij (xij) + ε] ∀ (i, j) ∈ A.

Similarly, since the pair (x0, p0) satisfies Kε-CS, we have

(12) p0
i − p0

j ∈ [f−ij (x0
ij)−Kε, f+

ij (x0
ij) +Kε] ∀ (i, j) ∈ A.

Combining equations (9)–(12), we obtain

pi − pj ≥ p0
i − p0

j − (K + 1)ε ∀ (i, j) ∈ H+,
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pi − pj ≤ p0
i − p0

j + (K + 1)ε ∀ (i, j) ∈ H−.

Applying the above inequalities for all arcs of the path H, we get

(13) pt − ps ≥ p0
t − p0

s − (K + 1)|H|ε,

where |H| denotes the number of arcs of the path H. We observed earlier that if a node
has negative surplus at some time, then its price is unchanged from the beginning of
the method until that time; thus, pt = p0

t . Since the path contains no cycles, we also
have that |H| ≤ N − 1. Therefore, equation (13) yields

(14) ps − p0
s ≤ (K + 1)|H|ε ≤ (K + 1)(N − 1)ε.

Since only nodes with positive surplus can increase their prices and, by Proposition
2, each price rise increment is at least ε/2, we conclude from equation (14) that the
total number of price rises that can be performed for node s is at most 2(K+1)
(N–1).

The result of the preceding proposition is remarkable in that the bound on the
number of price changes is independent of the cost functions but depends only on

K0 = min{K ∈ {0, 1, . . .} | (x0, p0) satisfies Kε-CS for some feasible flow vector x0 },

which is the minimum multiplicity of ε by which CS is violated by the starting price
together with some feasible flow vector. This result will be used later to prove a
particularly favorable complexity bound for the method. Note that K0 is well defined
for any p0 because, for all K sufficiently large, Kε-CS is satisfied by p0 and the feasible
flow vector x satisfying equation (3).

In order to show that the number of flow pushes that can be performed be-
tween successive price increases is finite, we first prove that the method maintains the
acyclicity of the admissible graph.

Proposition 4. The admissible graph remains acyclic throughout the ε-relaxation
method.

Proof. We use induction. Initially, the admissible graph G∗ is empty, so it is
trivially acyclic. Assume that G∗ remains acyclic for all subsequent iterations up to
the mth iteration for some m. We will prove that after the mth iteration G∗ remains
acyclic. Clearly, after a flow push the admissible graph remains acyclic, since it either
remains unchanged or some arcs are deleted from it. Thus, we only have to prove
that after a price rise at a node i, no cycle involving i is created. We note that after
a price rise at node i, all incident arcs to i in the admissible graph at the start of
the mth iteration are deleted and new arcs incident to i are added. We claim that
i cannot have any incoming arcs which belong to the admissible graph. To see this,
note that just before a price rise at node i, we have from (4) that

pj − pi − f−ji (xji) ≤ ε ∀ (j, i) ∈ A,

and since each price rise is at least ε/2, we must have

pj − pi − f−ji (xji) ≤
ε

2
∀ (j, i) ∈ A

after the price rise. Then, by equation (5), (j, i) cannot be in the push list of node
j. By a similar argument, we have that (i, j) cannot be in the push list of j for all
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(i, j) ∈ A. Thus, after a price increase at i, node i cannot have any incoming incident
arcs belonging to the admissible graph, so no cycle involving i can be created.

We say that a node i is a predecessor of a node j in the admissible graph G∗ if a
directed path from i to j exists in G∗. Node j is then called a successor of i. Observe
that flow is pushed towards the successors of a node, and since G∗ is acyclic, flow
cannot be pushed from a node to any of its predecessors. A δ-flow push along an
arc in G∗ is said to be saturating if δ is equal to the flow margin of the arc. By our
choice of δ (see Step 2 of the method), a nonsaturating flow push always exhausts (i.e.,
sets to zero) the surplus of the starting node of the arc. Thus we have the following
proposition.

Proposition 5. The number of flow pushes between two successive price in-
creases (not necessarily at the same node) performed by the ε-relaxation method is
finite.

Proof. We observe that a saturating flow push along an arc removes the arc from
the admissible graph, while a nonsaturating flow push does not add a new arc to the
admissible graph. Thus, the number of saturating flow pushes that can be performed
between successive price increases is at most A. It will thus suffice to show that the
number of nonsaturating flow pushes that can be performed between saturating flow
pushes is finite. Assume the contrary; that is, there is an infinite sequence of successive
nonsaturating flow pushes with no intervening saturating flow push. Then, the surplus
of some node i0 must be exhausted infinitely often during this sequence. This can
happen only if the surplus of some predecessor i1 of i0 is exhausted infinitely often
during the sequence. Continuing in this manner, we construct an infinite succession
of predecessor nodes {ik}. Thus, some node in this sequence must be repeated, which
is a contradiction since the admissible graph is acyclic.

By refining the proof of Proposition 5, we can further show that the number of
flow pushes between successive price increases is at most (N + 1)A, from which a
complexity result for the ε-relaxation method may be derived. However, we will defer
the analysis of complexity to section 4, where an implementation of the method with
sharper complexity bound will be presented.

Propositions 3 and 5 prove that the ε-relaxation method terminates. Upon termi-
nation, we have that the flow-price vector pair satisfies ε-CS and that the flow vector
is feasible since the surplus of all nodes will be zero. The following proposition, due to
[BHT87], shows that the flow vector and the price vector obtained upon termination
are primal optimal and dual optimal within a factor that is essentially proportional
to ε.

Proposition 6. For each ε > 0, let x(ε) and p(ε) denote any flow and price
vector pair satisfying ε-CS with x(ε) feasible, and let ξ(ε) denote any flow vector
satisfying CS together with p(ε) (note that ξ(ε) need not be feasible). Then

0 ≤ f (x(ε)) + q (p(ε)) ≤ ε
∑

(i,j)∈A
|xij(ε)− ξij(ε)| .

Furthermore, f (x(ε)) + q (p(ε))→ 0 as ε→ 0.

Proposition 6 does not give an estimate of how small ε has to be in order to
achieve a certain degree of optimality. However, in the common case where finiteness
of the arc cost functions fij imply lower and upper bounds on the arc flows, i.e.,

−∞ < bij = inf
ξ
{ξ | fij(ξ) <∞} ≤ sup

ξ
{ξ | fij(ξ) <∞} = cij <∞,



ε-RELAXATION METHOD 863

Proposition 6 together with the fact that q (p(ε)) ≥ −f∗ yields the estimate

0 ≤ f (x(ε))− f∗ ≤ εA max
(i,j)∈A

|cij − bij |,

where f∗ is the optimal cost of (P). Similarly, we obtain

0 ≤ q (p(ε))− q∗ ≤ εA max
(i,j)∈A

|cij − bij |,

where q∗ is the optimal cost of (D).

4. Complexity analysis for the ε-relaxation method. We now derive a
bound on the running time of the ε-relaxation method. Because the cost functions
are convex, it is not possible to express the size of the problem in terms of the problem
data. To deal with this difficulty, we introduce a set of simple operations performed
by the method, and we estimate the number of these operations. In particular, in ad-
dition to the usual arithmetic operations with real numbers, we consider the following
operations:

(a) Given the flow xij of an arc (i, j), calculate the cost fij(xij), the left derivative
f−ij (xij), and the right derivative f+

ij (xij).

(b) Given the price differential tij of an arc (i, j), calculate sup{ξ | f+
ij (ξ) ≤ tij}

and inf{ξ | f−ij (ξ) ≥ tij}.
Operation (a) is needed to compute the push list of a node and a price increase
increment; operation (b) is needed to compute the flow margin of an arc and the
flow initialization of equation (6). We will thus estimate the total number of simple
operations performed by the method (see Proposition 8).

To obtain a sharper complexity bound, we introduce an order in which the nodes
are chosen in iterations. This rule is based on the sweep implementation of the ε-
relaxation method, which was introduced in [Ber86a] and was analyzed in more detail
in [BeE88], [BeT89], and [BeC93] for the linear cost network flow problem. All the
nodes are kept in a linked list T , which is traversed from the first to the last element.
The order of the nodes in the list is consistent with the successor order implied by
the admissible graph; that is, if a node j is a successor of a node i, then j must
appear after i in the list. If the initial admissible graph is empty, as is the case with
the initialization of equation (6), the initial list is arbitrary. Otherwise, the initial
list must be consistent with the successor order of the initial admissible graph. The
list is updated in a way that maintains the consistency with the successor order. In
particular, let i be a node on which we perform an ε-relaxation iteration, and let Ni
be the subset of nodes of T that are after i in T. If the price of i changes, then node
i is removed from its position in T and placed in the first position of T . The next
node chosen for iteration, if Ni is nonempty, is the node i′ ∈ Ni with positive surplus,
which ranks highest in T . Otherwise, the positive surplus node ranking highest in
T is picked. It can be shown (see the references cited earlier) that with this rule
of repositioning nodes following a price change, the list order is consistent with the
successor order implied by the admissible graph throughout the method.

A sweep cycle is a set of iterations whereby all nodes are chosen once from the
list T , and an ε-relaxation iteration is performed on those nodes that have positive
surplus. The idea of the sweep implementation is that an ε-relaxation iteration at a
node i that has predecessors with positive surplus may be wasteful, since the surplus
of i will be set to zero and become positive again through a flow push at a predecessor
node.
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Our complexity analysis follows the line of the corresponding analysis for the
linear cost problem. First we have a proposition that estimates the number of sweep
cycles required for termination.

Proposition 7. Assume that for some integer K ≥ 1, the initial price vector p0

for the sweep implementation of the ε-relaxation method satisfies Kε-CS together with
some feasible flow vector x0. Then, the number of sweep cycles up to termination is
O(KN2).

Proof. Consider the start of any sweep cycle. Let N+ be the set of nodes with
positive surplus that have no predecessor with positive surplus; let N0 be the set of
nodes with nonpositive surplus that have no predecessor with positive surplus. Then,
as long as no price change takes place during the cycle, all nodes in N0 remain in N0,
and an iteration on a node i ∈ N+ moves i from N+ to N0. So if no node changed
price during the cycle, then all nodes in N+ will be moved to N0 and the method
terminates. Therefore, there is a price change in every cycle except possibly the last
one. Since by Proposition 3 there are O(KN2) price changes, the result follows.

By using Proposition 7, we now bound the running time for the sweep implemen-
tation of the ε-relaxation method. The dominant computational requirements are as
follows:

(1) the computation required for price increases,
(2) the computation required for saturating δ-flow pushes,
(3) the computation required for nonsaturating δ-flow pushes.

Proposition 8. Assume that for some K ≥ 1 the initial price vector p0 for
the sweep implementation of the ε-relaxation method satisfies Kε-CS together with
some feasible flow vector x0. Then, the method requires O(KN3) operations up to
termination.

Proof. According to Proposition 3, there are O(KN) price increases per node,
so the requirements for (1) above are O(KNA) operations. Furthermore, whenever
a flow push is saturating, it takes at least one price increase at one of the end nodes
before the flow on that arc can be changed again. Thus, the total requirement for (2)
above is O(KNA) operations also. Finally, for (3) above we note that for each sweep
cycle there can be only one nonsaturating δ-flow push per node. Thus, a time bound
for (3) is O(N · total number of sweep cycles), which, by Proposition 7, is O(KN3)
operations. Adding the computational requirements for (1), (2), and (3) and using
the fact that A ≤ N2, the result follows.

It is well known that the theoretical and the practical performance of the ε-
relaxation method can be improved by scaling. One possibility is cost scaling (see
[BlJ92], [EdK72], [Roc80]). An analysis of cost scaling applied to ε-relaxation for the
linear network flow problem is given in [BeE87] and also in [BeE88]. In the convex cost
case, however, cost scaling may be difficult to implement since the arc cost functions
may be unbounded. A second scaling approach in connection with the ε-relaxation
method for linear cost problems is ε-scaling. This approach was originally introduced
in [Ber79] as a means of improving the performance of the auction algorithm for the
assignment problem. Its complexity analysis was given in [Gol87] and [GoT90].

The key idea of ε-scaling is to apply the ε-relaxation method several times, starting
with a large value of ε, and to successively reduce ε up to a final value that will give
the desirable degree of accuracy to our solution. Furthermore, the price and flow
information from one application of the method is transferred to the next.

The procedure is as follows: first, we choose a scalar θ ∈ (0, 1), a price vector p0,
and a desirable value ε for ε on termination. Next, we choose a sufficiently large ε0 so
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that p0 satisfies ε0-CS with some feasible flow vector x0. Then, for k = 1, 2, . . ., we set
εk = θεk−1, and for k = 1, 2, . . . , k̄, we apply the ε-relaxation method with ε = εk−1,
where k̄ is the first positive integer k for which εk−1 is below ε. Let (xk, pk) be the
flow-price vector pair obtained at the kth application of the method for k = 1, 2, ..., k̄.
Then, xk is feasible and satisfies εk−1-CS with pk. Furthermore, the admissible graph
after the kth application of the method is acyclic. The initial price vector for the
(k + 1)st application is pk, and the initial flow is xkij for the arcs (i, j) that satisfy

εk-CS with pk; otherwise,

sup
{
ξ | f+

ij (ξ) ≤ pki − pkj − εk/2
}
.

This choice of initial flows does not introduce any new arcs to the admissible graph,
so the initial admissible graph for the (k + 1)st application of the method is acyclic.
For the 1st application of the method, the initial price vector is p0 and the initial flow
vector is chosen so that the initial admissible graph is acyclic.

We observe that for the (k + 1)st application of the method (k = 0, 1, . . . k̄ − 1),
the initial price vector pk satisfies εk/θ-CS with the feasible flow vector xk. Thus,
based on Proposition 8, we conclude that the (k+ 1)st application of the method has
a running time of O

(
d1/θeN3

)
, which is O(N3) since θ is a fixed scalar. The method

will be applied at most k̄ = dlogθ(ε
0/ε)e times. We have thus obtained the following

proposition.
Proposition 9. The running time of the ε-relaxation method using the sweep

implementation and ε-scaling as described above is O
(
N3 ln(ε0/ε)

)
operations.

We note that a complexity bound ofO
(
NA ln(N) ln(ε0/ε̄)

)
operations was derived

in [KaM93] for the tighten and cancel method. For relatively dense problems where
A = Θ(N2/lnN), our complexity bound for the ε-relaxation method is more favorable,
while for sparse problems, where A = Θ(N), the reverse is true.

5. The reverse and forward–reverse ε-relaxation methods. The ε-relaxation
method we presented in the previous sections performed iterations only on nodes with
positive surplus. We will refer to it as the forward method. We can also define a
method (namely, the reverse method), which performs iterations on nodes of neg-
ative surplus. This involves a simple reformulation of the flow and price changing
operations we introduced in previous sections for the forward method. The reverse
ε-relaxation method is the “mirror image” of the forward method that we developed
in the previous sections. Naturally, it has similar properties to the forward method
and its validity follows from a similar analysis.

It is possible to combine the forward and the reverse methods so that the resulting
method will operate on both positive and negative surplus nodes. Our intuition is
that if we perform ε-relaxation iterations on both sources and sinks, we will be able
to find the optimal solution faster for certain classes of problems. We refer to the
resulting method as the forward–reverse method. We initialize the arc flows and node
prices in the same way we initialized them for the forward and the reverse methods
so that the initial admissible graph is acyclic. The forward–reverse method operates
as follows.

Typical Iteration of the Forward–Reverse ε-Relaxation Method.

Pick a node i with nonzero surplus; if no such node exists then terminate. If
i has positive surplus then perform an iteration of the forward ε-relaxation
method. If i has negative surplus then perform an iteration of the reverse
ε-relaxation method.
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The idea of the forward–reverse method is recurrent in many relaxation-like meth-
ods. Termination of the method can be proved with an analysis similar to the one in
section 3, provided that we also make the following assumption.

Assumption. The number of times the surplus of a node changes sign is finite.
The above assumption can be enforced by various mechanisms, some of which are

discussed in [Tse86] for the relaxation method and in [Pol94] for the auction shortest
path algorithm.

6. Computational results. We have developed and tested two experimental
Fortran codes implementing the methods of this paper for convex cost problems. The
first code, named NE-RELAX-F, implements the forward ε-relaxation method with
the sweep implementation and ε-scaling as described in section 4. The second code,
named NE-RELAX-FV, implements the forward–reverse version of NE-RELAX-F as
described in section 5. These codes are based on the ε-relaxation code for linear
cost problems described in Appendix 7 of [Ber91], which has been shown to be quite
efficient. Several changes and enhancements were introduced in the codes for convex
cost problems: all computations are done in real rather than integer arithmetic, and
ε-scaling, rather than arc cost scaling, is used. Also, the updating of the push lists and
prices are changed to improve efficiency. Otherwise, the sweep implementation and
the general structure of the codes for linear and convex cost problems are identical.
Initial testing on linear cost problems showed that the codes for convex cost problems
perform as well as, and often better than, their counterparts for linear cost problems,
which indicates that these codes are written efficiently. (The superior performance of
the codes for convex cost problems may be due to the latter’s efficient management of
the push lists and the speed of floating point computations of the machine on which
the codes were run.)

The codes NE-RELAX-F and NE-RELAX-FV were compared to two existing
Fortran codes, NRELAX and MNRELAX from [BHT87]. The latter implement the
relaxation method for, respectively, strictly convex cost and convex cost problems,
and they are believed to be quite efficient. All codes were compiled and run on a Sun
Sparc-5 workstation with 24 megabytes of RAM under the Solaris operating system.
We used the -O compiler option in order to take advantage of the floating point unit
and the design characteristics of the Sparc-5 processor. Unless otherwise indicated,
all codes terminated according to the same criterion; namely, the cost of the feasible
flow vector and the cost of the price vector agree in their first 12 digits.

For our testing, we used convex linear/quadratic problems corresponding to the
case of (P) where

fij(xij) =

{
aijxij + bijx

2
ij if 0 ≤ xij ≤ cij ,

∞ otherwise

for some aij , bij , and cij with −∞ < aij < ∞, bij ≥ 0, and cij ≥ 0. We call
aij , bij , and cij the linear cost coefficient, the quadratic cost coefficient, and the
capacity, respectively, of arc (i, j). We created the test problems using two For-
tran problem generators. The first is the public-domain generator NETGEN, writ-
ten by Klingman, Napier, and Stutz [KNS74], which generates linear cost assign-
ment/transportation/transshipment problems having a certain random structure. The
second is the generator CHAINGEN, written by the second author, which generates
transshipment problems having a chain structure as follows: starting with a chain
through all the nodes, a user-specified number of forward arcs are added to each
node (for example, if the user specifies 3 additional arcs per node then the arcs
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Table 1

All problems are generated by NETGEN with linear cost coefficients in the range [1–100], total
supply of 10000, one pure source and one pure sink, and arc capacities in the range [100–500] (except
for problems 22–24 whose capacities are in the range [1000–2000]). For all problems, all arcs have
quadratic cost coefficient in the range [5–10]. The run times for the codes (in seconds) were obtained
on a Sun Sparc 5 with 24MB memory.

Problem N A NRELAX MNRELAX NE-RELAX-F NE-RELAX-FV

1 200 1300 7.9 6.0 1.9 1.7

2 200 1500 7.5 6.3 2.1 1.7

3 200 2000 2.8 5.6 2.1 1.7

4 200 2200 20.4 10.6 2.4 2.0

5 200 2900 2.3 24.8 1.4 1.2

6 300 3150 7.3 22.1 2.7 1.6

7 300 4500 7.5 21.1 3.9 2.6

8 300 5155 48.3 26.7 3.8 2.0

9 300 6075 7.2 22.7 3.2 2.4

10 300 6300 4.4 31.5 2.7 3.3

11 400 1500 69.2 15.0 8.7 7.8

12 400 2250 17.6 17.2 4.9 4.3

13 400 3000 22.0 20.4 7.3 6.0

14 400 3750 13.2 24.3 3.0 1.8

15 400 4500 10.0 35.9 7.4 6.2

16 400 1306 85.1 25.4 8.6 8.4

17 400 2443 31.6 21.5 7.3 6.2

18 400 1416 7.5 9.0 0.9 0.9

19 400 2836 45.4 26.7 8.6 7.8

20 400 1382 79.9 17.7 9.9 8.4

21 400 2676 33.4 23.9 6.8 5.8

22 1000 3000 64.4 50.9 8.4 4.1

23 1000 5000 26.7 49.0 4.0 3.5

24 1000 10000 26.3 323.2 5.5 5.5

(i, i + 2), (i, i + 3), (i, i + 4) are added for each node i) and, for a user-specified
percentage of nodes i, a reverse arc (i, i − 1) is also added. The graphs thus created
have long diameters, and earlier tests on linear cost problems showed that the created
problems are particularly difficult for all methods. As the above two generators create
only linear cost problems, we modified the created problems as in [BHT87] so that a
user-specified percent of the arcs generated a nonzero quadratic cost coefficient in a
user-specified range.

Our tests were designed to study two key issues:

(a) the performance of the ε-relaxation methods relative to the relaxation meth-
ods and the dependence of this performance on network topology and problem
ill conditioning,

(b) the sensitivity of the ε-relaxation methods to problem ill conditioning.

Ill-conditioned problems were created by assigning to some of the arcs smaller
(but nonzero) quadratic cost coefficients compared to other arcs. When the arc cost
functions have this structure, ill conditioning in the traditional sense of unconstrained
nonlinear programming tends to occur.

We experimented with three sets of test problems: the first set comprises well-
conditioned strictly convex quadratic cost problems generated using NETGEN (see
Table 1); the second set comprises well-conditioned strictly convex quadratic cost
problems generated using CHAINGEN (see Table 2); the third set comprises ill-
conditioned strictly convex quadratic cost problems and mixed linear/quadratic cost
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Table 2

All problems are generated by CHAINGEN with linear cost coefficients in the range [1–100], a
supply of 1000 at node 1 and a demand of 1000 at node N , and arc capacities in the range [100–1000].
For all problems, all arcs have quadratic cost coefficient in the range [5–10] and half of the nodes
have an additional reverse arc. The run times for the codes (in seconds) were obtained on a Sun
Sparc 5 with 24MB memory. For these problems, the running times for NRELAX were excessively
long even for 5 digits of accuracy and hence are not reported. For problem 10, MNRELAX did not
terminate after the time shown, and this is indicated by the > in front of the time.

Problem N Added Arcs A MNRELAX NE-RELAX-F NE-RELAX-FV

1 50 4 269 1.1 0.1 0.2

2 100 4 544 14.9 0.6 0.8

3 150 4 819 15.6 1.2 1.0

4 200 4 1094 33.0 2.1 2.1

5 250 4 1369 41.0 2.4 2.7

6 300 6 2235 93.9 4.6 5.2

7 350 6 2610 266.9 5.9 6.3

8 400 8 3772 1102.6 10.4 10.3

9 450 8 4247 2152.5 10.8 11.3

10 500 10 5705 >1300 17.7 17.5

Table 3

All problems are generated by NETGEN with linear cost coefficients in the range [1–100], total
supply of 1000, one pure source and one pure sink, and arc capacities in the range [100–300]. For all
problems, half of the arcs have quadratic cost coefficient in the range [5–10] and the remaining half
have the small quadratic coefficient shown. Note that problems 6 and 12 are mixed cost problems.
The runs for the codes (in seconds) were obtained on a Sun Sparc 5 with 24MB memory. For
NRELAX, the numbers in parentheses indicate the number of significant digits of solution accuracy
obtained by NRELAX in the running time shown.

Problem N A Small Quad Cost NRELAX MNRELAX NE-RELAX-F NE-RELAX-FV

1 200 1300 1 3.6 3.6 0.5 0.5

2 200 1300 0.1 20.9 4.3 0.6 0.9

3 200 1300 0.01 56.1 3.6 0.6 1.1

4 200 1300 0.001 (5)791.2 3.2 0.7 0.7

5 200 1300 0.0001 (5)1866.6 2.7 0.7 0.7

6 200 1300 0 - - 0.6 0.8

7 400 4500 1 52.2 14.1 1.7 1.8

8 400 4500 0.1 53.4 11.2 1.8 2.0

9 400 4500 0.01 (5)80.5 13.7 2.3 2.6

10 400 4500 0.001 (5)710.7 15.0 2.6 2.6

11 400 4500 0.0001 (4)5753.4 13.5 3.6 3.1

12 400 4500 0 - - 2.7 2.6

problems generated using NETGEN (see Table 3). The running time of the codes
on these problems are shown in the last three to four columns of Tables 1–3. In
all problems, the ε-relaxation codes were run to the point where they yielded higher
or comparable solution accuracy than the relaxation codes. From the running times
we can draw the following conclusions: first, the ε-relaxation codes NE-RELAX-
F and NE-RELAX-FV have similar performance and both consistently outperform,
by a factor of at least 3 and often much more, the relaxation codes NRELAX and
MNRELAX on all test problems, independent of network topology and problem ill
conditioning. In fact, on the CHAINGEN problems, the ε-relaxation codes outperform
the relaxation codes by an order of magnitude or more. Other than the favorable
complexity results that we obtained in this paper, we have no clear explanation of
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this phenomenon.
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Abstract. Two new closely related concepts are introduced that depend on a positive constant Γ.
An iteration is proportional if the norm of violation of the Kuhn–Tucker conditions at active variables
does not excessively exceed the norm of the part of the gradient that corresponds to free variables,
while a progressive direction determines a descent direction that enables the released variables to
move far enough from the boundary in a step called proportioning. An algorithm that uses the
conjugate gradient method to explore the face of the region defined by the current iterate until
a disproportional iteration is generated is proposed. It then changes the face by means of the
progressive direction. It is proved that for strictly convex problems, the proportioning is a spacer
iteration so that the algorithm converges to the solution. If the solution is nondegenerate then the
algorithm finds the solution in a finite number of steps. Moreover, a simple lower bound on Γ is
given to ensure finite termination even for problems with degenerate solutions. The theory covers
a class of algorithms, allowing many constraints to be added or dropped at a time and accepting
approximate solutions of auxiliary problems. Preliminary numerical results are promising.

Key words. quadratic programming, conjugate gradients, inexact subproblem solution, pro-
jected search
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1. Introduction. We shall be concerned with the problem to find

(1.1) min
x∈Ω

f(x)

with Ω = {x ∈ Rn : l ≤ x ≤ u}, f(x) = 1
2x

TAx − xT b, l, u, and b given column
n-vectors, and A an n× n symmetric positive definite matrix. We suppose l < u but
admit li = −∞ or ui =∞.

Applications that lead to the problem (1.1) include contact problems in linear
elasticity (e.g., Klarbring [14]), obstacle problems (Cimatti [4], Moré and Toraldo
[16], Glowinski [7]), and problems of optimal design (in Haslinger and Neittaanmäki
[11]). It may be advantageous to reduce some problems with more general linear
constraints to the problem (1.1) by duality (Dostál [5]).

The algorithms for the solution of (1.1) may be classified in two groups. The
algorithms that are known to terminate in the solution x of (1.1) in a finite number
of steps due to arguments of combinatorial nature are called finite (Júdice and Pires
[13]). They include the Polyak algorithm [18], which reduces the solution of (1.1)
to the conjugate gradient minimization [12] of f on a finite sequence of auxiliary
subspaces of Rn called faces, and its modifications. The first modification aims at
more efficient minimization on faces by adapting a suitable preconditioning strategy;
we refer to O’Leary [17] for both general idea and examples. The second modification
concerns precision of the solution of the auxiliary minimization problems. Encouraged
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by experiments of O’Leary, who reduced the number of iterations to about a half with
an algorithm in which the accuracy of the conjugate gradient minimization was refined
during the course of iterations, the author [6] has recently presented a modification of
the Polyak algorithm that accepts approximate solutions of auxiliary subproblems and
preserves the finite termination property of the original algorithm even for degenerate
problems. Finally, the third modification concerns the definition of a new face. An
obvious drawback of the original Polyak algorithm, which is typically unable to add
more than one constraint to a current working face, has led to the development of the
gradient projection methods (Yang and Tolle [19]).

The other class of algorithms arises from iterative procedures such as multigrid
methods (Hackbusch and Mittelmann [10]), the Newton method (Zhang, Tapia, and
Potra [20]), or a combination of the relaxation and conjugate gradients (Kočvara and
Zowe [15]). On the basis of results of Calamai and Moré [3], Moré and Toraldo [16]
proposed an algorithm that also exploits the conjugate gradients, but its convergence
is driven by gradient projections with steplength satisfying the sufficient decrease
condition [3]. For nondegenerate problems, their algorithm also terminates in the
solution in a finite number of steps.

The algorithms that we propose here depend on a positive constant Γ in the way
that they may be considered finite for large Γ and iterative for small Γ. The algorithms
are described by means of two new concepts depending on Γ. An iteration is propor-
tional if the norm of violation of the Kuhn–Tucker conditions at active variables does
not excessively exceed the norm of the part of the gradient that corresponds to free
variables, while a progressive direction determines the decrease direction that enables
the released variables to move far enough from the boundary. We use the progressive
directions to move from disproportional iterations to proportional ones in a process
that we call proportioning.

Our new concepts arise from results of section 3, where we show that in certain
stages of the computation it is possible to extract information about the binding set of
the solution of the auxiliary problem from the gradient of the current iterate. These
results are then used to develop algorithms with controlled precision for the solution
of auxiliary problems.

The main result of section 4 is Theorem 4.2, which implies that the proportioning
is a spacer iteration (Bertsekas [2]). Since the proportioning is easy to compute, it
may be considered an attractive alternative to the gradient projections of Calamai
and Moré [3] or Moré and Toraldo [16], which require a possibly expensive projected
search. Our convergence result for algorithms driven by proportioning is analogous
to the result of Calamai and Moré [3, Theorem 5.2] for the gradient projections.

The power of our new concepts is demonstrated in section 5, where a new class of
algorithms is defined and its finite termination properties are studied. Apart from a
result on the finite termination property for nondegenerate problems that is analogous
to that of Moré and Toraldo [16, Theorem 5.2], we prove that the iterations end in the
solution of (1.1) in a finite number of steps, even for degenerate problems, provided Γ
is greater or equal to the critical release coefficient ρ(A), and we give a simple upper
bound for ρ(A) in terms of the spectral condition number κ(A) of A. Our class of
algorithms includes also the algorithm presented at [6] so that the theoretical results
of section 5 extend applicability of Algorithm 5.1 of [6] to all ΓE > 0.

An implementation of our algorithm with conjugate gradients is proposed in sec-
tion 6 and further specified in section 7. In particular, we describe how to incorporate
projections into the algorithm so that it can drop and add many constraints each time
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the active set is changed.
We have implemented our algorithm in Matlab and carried out some experiments

and comparisons that are reported in sections 8 and 9.

2. Notations and preliminaries. Throughout the whole paper, we shall use
the notation of the introduction.

It is well known that a solution to the problem (1.1) always exists and is necessarily
unique. The solution x is fully determined by the Kuhn–Tucker conditions [1]. Thus
x ∈ Ω is the solution of (1.1) iff for i = 1, . . . , n

(2.1) ri(x) ≥ 0 for xi = li, ri(x) ≤ 0 for xi = ui,

(2.2) ri(x) = 0 for li < xi < ui,

where r(x) = Ax− b = ∇f(x). The conditions (2.1) will be called the Kuhn–Tucker
contact conditions.

Let N denote the set of all indices so that

N = {1, 2, . . . , n}.

The set of all indices for which the variables xi are at their bounds is called an active
set of x. We shall denote it by A(x) so that

A(x) = {i ∈ N : xi = li or xi = ui}.

Its subset

B(x) = {i ∈ N : xi = li and ri(x) ≥ 0 or xi = ui and ri(x) ≤ 0}

and complement

F(x) = {i ∈ N : li < xi < ui}

are called a binding set of x and a free set of x, respectively.
To enable an alternative reference to the Kuhn–Tucker conditions, we shall intro-

duce a notation for the parts of r(x) that are defined by

ϕi(x) = ri(x) for i ∈ F(x),

ϕi(x) = 0 for i ∈ A(x),

βi(x) = r−i (x) for xi = li,

βi(x) = r+
i (x) for xi = ui,

βi(x) = 0 for i ∈ F(x),

where we have used the notation

x+
i = max{xi, 0} and x−i = min{xi, 0} for x ∈ Rm.

The vectors ϕ(x) and β(x) will be called a free gradient and an unbalanced contact
gradient, respectively. Thus, the Kuhn–Tucker contact conditions (2.1) are satisfied
at x iff β(x) = o, and the Kuhn–Tucker conditions (2.1) and (2.2) are satisfied iff the
projected gradient ν(x) = ϕ(x) + β(x) is reduced to zero.
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The Euclidean norm and the l∞-norm of any x ∈ Rm will be denoted by ‖x‖ and
‖x‖∞, respectively. Analogous notation will be used for induced matrix norms.

For any decomposition I, J of the set of indices N and for any x ∈ Rn, let us
denote by xI and xJ the parts of x whose indices belong to I and J , respectively.
Corresponding to this decomposition ofN , we also partition and rearrange the vectors
r = r(x) and b and the matrix A. With this notation,

(2.3)

(
rI
rJ

)
=

(
AII AIJ
AJI AJJ

)(
xI
xJ

)
−
(
bI
bJ

)
,

and for any y ∈ Rn, the minimization of f(x) on the face

W(I, y) = {x ∈ Rn : xi = yi for i ∈ I}

amounts to unconstrained minimization of

fJ(x) =
1

2
xTJAJJxJ − xTJ (bJ −AJIyI).

To simplify manipulation with xI in our algorithms, we shall use notation PI
for the diagonal matrix with diagonal entries equal to 1 or 0 for i ∈ I and i /∈ I,
respectively.

Finally, we shall denote by PΩ the projection from Rn to Ω.

3. Release criteria and release coefficients. The purpose of this section is
to develop useful tests for the control of precision of auxiliary problems. To this end,
it is important to recognize the indices that belong to the current active set but do
not belong to the binding set of the solution of the auxiliary problem.

Lemma 3.1. Let I, J denote a decomposition of the set of indices N such that
J 6= θ. Let x ∈ Rn and let x̄ minimize f(y) on the face W(I, x).

Then for any i ∈ I,

(3.1a) ri > AiJA
−1
JJrJ implies r̄i > 0,

(3.1b) ri < AiJA
−1
JJrJ implies r̄i < 0,

where r = r(x) and r̄ = r(x̄).
Proof. After rearranging the indices, we can write the formulas for r and r̄ in the

form (2.3). Observing that r̄J = o and xI = x̄I , we get

(3.2)

(
rI − r̄I
rJ

)
=

(
AII AIJ
AJI AJJ

)(
o

xJ − x̄J

)
,

and after simple computations,

rI − r̄I = AIJA
−1
JJrJ .

We have used the assumption that A is positive definite so that A−1
JJ exists.

Now let us decompose r̄I = r̄+
I + r−I . We get

(3.3a) r̄+
I = rI −AIJA−1

JJrJ − r
−
I ≥ rI −AIJA

−1
JJrJ ,
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(3.3b) r̄−I = rI −AIJA−1
JJrJ − r

+
I ≤ rI −AIJA

−1
JJrJ ,

where all the inequalities should be read by coordinates. The statement of Lemma
3.1 is just an interpretation of (3.3).

Lemma 3.1 gives the condition in terms of ri(x) that fully determines the sign
of ri(x̄) for i ∈ A(x) and indicates that the sign of ri is that of r̄i provided ‖rJ‖ is
small. Indeed, under the notation and assumptions of Lemma 3.1 and by using the
well-known relations between the vector norms and the interlacing properties of the
spectra of symmetric positive definite matrices, we get

(3.4) |AiJA−1
JJrJ | ≤ ‖AIJA

−1
JJrJ‖∞ ≤ ‖AIJA

−1
JJrJ‖ ≤ ‖A‖‖A

−1
JJ‖‖rJ‖ ≤ κ(A)‖rJ‖,

so that for i ∈ I,

ri −AiJA−1
JJrJ ≥ ri − κ(A)‖rJ‖,

ri −AiJA−1
JJrJ ≤ ri + κ(A)‖rJ‖,

and by Lemma 3.1

(3.5a) ri > κ(A)‖rJ‖ implies r̄i > 0,

(3.5b) ri < −κ(A)‖rJ‖ implies r̄i < 0.

Motivated by (3.5), we may introduce release criteria in the form

‖β(x)‖∞ > Γ‖ϕ(x)‖

with an arbitrary nonnegative release coefficient Γ. The release coefficients that are
large enough to yield information on β(x̄) will be called determining. More formally,
for a given positive definite matrix A, the nonnegative Γ is a determining release
coefficient for A iff for any x ∈ Rn

(3.6) ‖β(x)‖∞ > Γ‖ϕ(x)‖ implies β(x̄) 6= o,

where x̄ minimizes f(y) subject to y ∈ W(A(x), x).
Let use define the critical release coefficient ρ(A) as the infimum of the set of all

determining release coefficients for A. Using (3.1) and (3.5), it is easy to check that
ρ(A) = 0 iff A is diagonal and that ρ(A) ≤ κ(A) for any positive definite matrix. The
following improvement of the latter estimate is based on [6].

Theorem 3.2. Let x ∈ Rn such that

(3.7) ‖β(x)‖∞ > κ(A)1/2‖ϕ(x)‖,

and let x̄ minimize f(y) on the face W(A(x), x). Then β(x̄) 6= o.
Proof. Let use denote Ω = W(A(x), x). By Theorem 1 of [6] and under the

assumptions of Theorem 3.2, the vector

y = x− ‖A‖−1β(x)

satisfies

f(y) < f(x̄),
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so that

(3.8) 0 > f(y)− f(x̄) = (Ax̄− b)T (y − x̄) +
1

2
(y − x̄)A(y − x̄) > r(x̄)T (y − x̄).

Observing that x̄i = xi for i ∈ A(x) and that ri(x̄) = 0 for i ∈ F(x), we get

(3.9) r(x̄)T (y − x̄) = r(x̄)T (y − x) = −‖A‖−1r(x̄)Tβ(x) ≥ −‖A‖−1β(x̄)Tβ(x).

However, (3.8) and (3.9) imply β(x̄) 6= o.
Corollary 3.3. For any positive definite matrix A, the critical release coefficient

ρ(A) for A satisfies

(3.10) ρ(A) ≤ κ(A)1/2.

4. Proportioning and convergence. To simplify our exposition, we shall start
with two closely related definitions that are motivated by the discussion of the previous
section. They use a release coefficient Γ and the gap g between l and u defined by

(4.1) g = min{ui − li : i ∈ N}.

We assume Γ to be fixed throughout the whole section.
A vector x ∈ Rn is proportional (with Γ) iff

(4.2) ‖β(x)‖∞ ≤ Γ‖ϕ(x)‖

and disproportional otherwise.
A nonzero vector d is called a progressive direction at x iff

(4.3a) ‖β(x)‖∞ = ‖dI‖∞ for I = A(x),

(4.3b) rT d ≥ ‖d‖2 and x− (g/‖d‖∞)d ∈ Ω.

The conditions (4.3a) and rT d ≥ ‖d‖2 are obviously satisfied by the projected gradient
of [3, 16] and ensure that −d is a descent direction for f that may be used to generate
an iteration with a reduced active set, while the last condition ensures that it is
possible to move far enough. If x is disproportional then the most simple choice of a
progressive direction is d = β(x). We shall use progressive directions to move from
disproportional iterations to proportional ones in a step called proportioning.

If Γ > 0 and a vector x ∈ Ω is disproportional, then it is easy to check that

(4.4) ‖β(x)‖∞ ≤ ‖d‖∞ and ‖ϕ(x)‖ < Γ−1‖d‖∞

for any progressive direction d at x.
Lemma 4.1. Let x and d denote given n-vectors, d 6= o, r = r(x), and δ ≥ 0. If

(4.5a) rT d ≥ ‖d‖2 and min{αcg, δ/‖d‖∞} ≤ α ≤ αcg,

(4.5b) αcg = rT d/dTAd,

then

(4.6) f(x)− f(x− αd) ≥ 1

2
min{‖A‖−1‖d‖2, δ‖d‖}.



BOX CONSTRAINED QUADRATIC PROGRAMMING 877

Proof. Simple computations show that the function

∆(ξ) = f(x)− f(x− ξd) = ξrT d− 1

2
ξ2dTAd

is increasing for ξ ∈ [0, αcg] and that

∆(αcg) =
1

2
(rT d)2/dTAd ≥ 1

2
‖A‖−1‖d‖2

for any d which satisfies rT d ≥ ‖d‖2.
Let λ1, . . . , λn denote the eigenvalues of A. For 0 ≤ ξ ≤ ‖A‖−1, the eigenvalues

θi of I − 1
2ξA satisfy

θi = 1− 1

2
ξλi ≥ 1− 1

2
‖A‖−1λi ≥

1

2
,

so that

∆(ξ) ≥ ξdT
(
I − 1

2
ξA

)
d ≥ 1

2
ξ‖d‖2 for ξ ≤ ‖A‖−1.

Applying this inequality to

µ = min{‖A‖−1, δ/‖d‖},

we get for δ/‖d‖∞ ≤ αcg

∆(δ/‖d‖∞) ≥ ∆(δ/‖d‖) ≥ ∆(µ) ≥ 1

2
µ‖d‖2.

Substituting for µ, we get for δ/‖d‖∞ ≤ αcg

∆(δ/‖d‖∞) ≥ 1

2
min{‖A‖−1‖d‖2, δ‖d‖}.

Theorem 4.2. Let Γ > 0, let 0 < δ < g where g is the gap (4.1) between l and
u, and let {xk} denote an infinite sequence of xk ∈ Ω that satisfies

(4.7) f(xk+1) ≤ f(xk).

Let Kp denote the set of all indices such that xj is disproportional for each j ∈ Kp

and let there be a progressive direction dj at xj so that xj+1 = xj − αjdj with

(4.8) min{αcgj , δ/‖dj‖∞} ≤ αj ≤ α
cg
j , α

cg
j = r(xj)T dj/(dj)TAdj .

If Kp is infinite, then {xk} converges to the solution x̄ of (1.1).
Proof. Since the set

S = {x ∈ Ω : f(x) ≤ f(x0)}

is compact, there is a limit point x̄ of the sequence {xj : j ∈ Kp} ⊂ S and a subset
K0
p of Kp such that {xj : j ∈ K0

p} converges to x̄. The function f being continuous,

it follows that {f(xj) : j ∈ K0
p} converges to f(x̄) and, using the definition of αj

and Lemma 4.1, we conclude that {‖dj‖ : j ∈ K0
p} converges to zero.
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To show that x̄ satisfies the Kuhn–Tucker conditions, let us first suppose that for
some fixed i ∈ N ,

li < x̄i < ui.

Then for sufficiently large j ∈ K0
p ,

li < xji < ui

and since by (4.4) for such i and j

|ri(xj)| ≤ ‖ϕ(xj)‖ < Γ−1‖dj‖∞ ≤ Γ−1‖dj‖,

{|rji | : j ∈ K0
p} converges to zero and ri(x̄) = 0.

If li = x̄i, then we shall distinguish two cases. If there is an infinite subsequence
of {xj : j ∈ K0

p} such that li < xji , we shall show as above that ri(x
j) converges to

zero. If there is no such subsequence, then there is an infinite subset K1
p of K0

p such
that

li = xji for j ∈ K1
p .

Since by (4.4) in this case

|ri(xj)−| ≤ ‖dj‖∞,

we conclude that ri(x̄)− = 0.

In the same way, we can check that if ui = x̄i, then ri(x̄)+ = 0. Summing up all
three cases, we conclude that x̄ is the solution of (1.1) that satisfies the Kuhn–Tucker
conditions (2.1) and (2.2). In particular, it follows that

(4.9) (Ax̄− b)T (x− x̄) ≥ 0 for any x ∈ Ω.

Now for each integer k, let

M(k) = min{s ∈ K0
p : s ≥ k} and m(k) = max{x ∈ K0

p : s ≤ k}.

With this notation,

f(xM(k))− f(x̄) ≥ f(xk)− f(x̄) ≥ f(xm(k))− f(x̄),

so that

(4.10) f(x̄) = inf {f(xk)}.

Using (4.9), we obtain

f(xk)− f(x̄) = (Ax̄− b)T (xk − x̄) +
1

2
(xk − x̄)TA(xk − x̄) ≥ 1

2
λmin‖xk − x̄‖2,

where λmin is the least eigenvalue of A. Since {f(xk)} converges to f(x̄) by (4.10), it
follows that {xk} converges to the solution x̄ of (1.1).
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5. Proportioning and the finite termination property. Using observations
of section 4, we shall now present a class of algorithms driven by proportioning that
reach the solution x̄ of (1.1) in a finite number of steps even for degenerate problems.
To deal with the latter, let us decompose the active set A(x̄) of the solution x̄ of (1.1)
into

A0 = {i ∈ A(x̄) : ri(x̄) = 0}

and

A1 = {i ∈ A(x̄) : ri(x̄) 6= 0},

so that the degenerate problems are those with A0 6= θ.
Algorithm 5.1 (General proportioning scheme). Let x0 ∈ Ω, 0 < δ < g,

and Γ > 0 be given. For k ≥ 0, choose xk+1 by the following rules:
(a) If xk is disproportional (with respect to Γ), set

(5.1) xk+1 = xk − αkdk

with any progressive direction dk and αk defined by (4.8) so that

(5.2) A(xk) ) A(xk+1).

(b) If xk is proportional (with respect to Γ), choose xk+1 ∈ Ω so that

(5.3) f(xk+1) ≤ f(xk) and A(xk) ⊂ A(xk+1)

and xk+1 satisfies at least one of the conditions

(5.4) f(xk+1) = min{f(x) : x ∈ W(A(xk), xk)},

(5.5) A(xk) ( A(xk+1),

or xk+1 is disproportional.
Lemma 5.2. Let {xk} denote an infinite sequence generated by Algorithm 5.1 and

k ≥ 0.
(i) If xk+1 is generated by (5.4), then xk+1 is proportional iff the Kuhn–Tucker

conditions (2.1) and (2.2) are satisfied at xk+1.
(ii) If xk+1 is generated by (5.4) and xk+1 is proportional, then xk+1 is the

solution x̄ of (1.1) and

(5.6) x̄ = xk+1 = xk+2 = · · · .

(iii) If

(5.7) A(xk) = A(xk+1) = A(xk+2),

then x̄ = xk+1 = xk+2 = · · ·.
(iv) The sequence {f(xk)} is nonincreasing.

Proof. (i) If xk+1 is generated by (5.4), then

(5.8) ‖ϕ(xk+1)‖ = 0.
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However, (5.8) implies ν(xk+1) = β(xk+1), so that

‖β(xk+1)‖∞ ≤ Γ‖ϕ(xk+1)‖ iff ν(xk+1) = o.

(ii) If xk+1 is generated by (5.4) and xk+1 is proportional, then

0 ≤ ‖β(xk+1)‖∞ ≤ Γ‖ϕ(xk+1)‖ = 0,

so that ν(xk+1) = o and xk+1 = x̄. Moreover, it follows that xk+2 also satisfies the
assumptions of (ii), so that x̄ = xk+2, etc.

(iii) Let us assume that A(xk) = A(xk+1) = A(xk+2). Comparing this assump-
tion with (5.2), (5.3), and (5.5), we get that xk+1 is proportional and that xk+1 is
generated by (5.4). Thus the assumptions of (ii) are satisfied and (5.6) follows.

(iv) The statement is obvious.
Theorem 5.3. Let {xk} denote an infinite sequence generated by Algorithm 5.1

with given x0 ∈ Ω and Γ > 0.
(i) {xk} converges to the solution x̄ of (1.1).

(ii) If the problem (1.1) is not degenerate, then there is k such that x̄ = xk.
(iii) If Γ ≥ ρ(A), then there is k such that x̄ = xk.
(iv) If Γ ≥ κ(A)1/2, then there is k such that x̄ = xk.

Proof. (i) Since the number of elements of A(xk) cannot exceed the dimension n
of the problem (1.1), it follows that either there is k such that

(5.9) A(xk) = A(xk+1) = A(xk+2)

or there is an infinite set of indices Kp such that

(5.10) A(xk) ) A(xk+1).

In the first case, we can use Lemma 5.2 (iii) to get

x̄ = xk+1 = xk+2 = · · ·

so that {xk} trivially converges to x̄. In the other case, it is enough to observe that
if k satisfies (5.10), then xk+1 is generated by (5.1). Since f(xk+1) ≤ f(xk+1), the
assumptions of Theorem 4.2 are satisfied and we conclude that {xk} converges to x̄
for any Γ > 0.

(ii) Let us suppose that A0 = θ. Since {xk} converges to x̄, there is an n0 such
that for k ≥ n0,

(5.11) li < xki < ui for i ∈ F(x̄)

and

(5.12) ri(x
k) >

µ

2
and xki < ui or ri(x

k) <
µ

2
and li < xki for i ∈ A1,

where

µ = min{|ri(x̄)| : i ∈ A1}.

Since A0 is empty, (5.11) and (5.12) imply that β(xk) = o for k ≥ n0 so that xk is
proportional for k ≥ n0. Hence, by the definition of Algorithm 5.1,

A(xk) ⊂ A(xk+1) ⊂ · · · for k ≥ n0.
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We complete the proof by using the dimension argument and Lemma 5.2 (iii).
(iii) Now suppose that Γ ≥ ρ(A). Since {xk} converges to x̄ and the mapping

x 7→ r(x) is continuous, for any ε > 0 there is an n0 such that for k ≥ n0,

(5.13) |ri(xk)| < ε for i ∈ A0 ∪ F(x̄)

and both (5.11) and (5.12) are satisfied. For sufficiently small ε and k ≥ n0, it follows
from (5.11), (5.12), and (5.13) that xk is proportional whenever

(5.14) F(xk) ∩ A1 6= θ,

so that

(5.15) A(xk) ⊂ A(xk+1) for k ≥ n0 and F(xk) ∩ A1 6= θ.

Using the same arguments as above, we now deduce that either there is k ≥ n0 such
that (5.7) is satisfied, which yields the desired result, or there is n1 greater than n0

such that

(5.16) F(xk) ∩ A1 = θ for k ≥ n1,

as k ≥ n0 and F(xk) ∩ A1 = θ imply F(xk+1) ∩ A1 = θ by (5.12).
To examine the latter case, let us assume that k ≥ n1 so that (5.11), (5.12),

and (5.16) are satisfied. In particular, (5.11) and (5.16) imply that A(xk) ⊃ A1 and
F(xk) ⊃ F(x̄) so that the solution x̄ of (1.1) satisfies

(5.17) f(x̄) = min{f(x) : x ∈ W(A(xk), xk)}.

Let us assume that xk is disproportional, so that

‖β(xk)‖∞ > Γ‖ϕ(xk)‖.

Since by assumptions Γ ≥ ρ(A), it follows that β(x̄) 6= o in contradiction with the
assumption that x̄ is the solution of (1.1). We conclude that xk is proportional for
k ≥ n1. Thus

A(xk) ⊂ A(xk+1) ⊂ · · · for k ≥ n1

and we complete the proof by the dimension argument and Lemma 5.2 (iii).
(iv) The statement is an immediate consequence of (iii) and Corollary 3.3.

6. Proportioning with conjugate gradients. In this section, we shall for-
mulate a general framework for implementation of Algorithm 5.1 with the conjugate
gradient method.

Inspired by [8], we shall describe our algorithms in an easily understandable vari-
ant of a Matlab-like language. To preserve readability, we do not distinguish genera-
tions of variables by indices unless it is convenient for further reference.

Algorithm 6.1 (Proportioning with conjugate gradients). Given a
starting vector x ∈ Ω, 0 < δ < g, and Γ ≥ 0, the algorithm generates a finite or
infinite sequence {xk} in order to solve (1.1).
{Initialization.}

Step 0. k = 0; x0 = x; r = Ax− b
while ‖ν(xk)‖ > 0
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if ‖β(xk)‖∞ ≤ Γ‖ϕ(xk)‖
{Proportional xk. Initialization of the conjugate gradient loop.}

Step 1. y = xk; J = F(xk); p = PJr; α = 0; αcg = 0
while ‖ν(y)‖ > 0 and α = αcg and ‖β(y)‖∞ ≤ Γ‖ϕ(y)‖
{Set steplength.}

Step 2. αcg = rTJ pJ/p
T
JAJJpJ

if y − αcgp ∈ Ω
Step 2a. α = αcg

else
Step 2b. Choose α so that

f(PΩ(y − αp)) ≤ f(xk) and A(xk) ( A(PΩ(y − αp))
end if
{Conjugate gradient update.}

Step 3. y = y − αp; r = r − αAp
β = rTJAJJpJ/p

T
JAJJpJ ; pJ = rJ − βpJ

end while
{Set xk+1 by Algorithm 5.1(b).}

Step 4. xk+1 = PΩ(y); r = Axk+1 − b; k = k + 1
end if
if ‖β(xk)‖∞ > Γ‖ϕ(xk)‖
{Disproportional xk. Proportioning.}

Step 5. Assign dk a progressive direction at xk

αk = min{δ/‖dk‖∞, rT dk/(dk)TAdk}
xk+1 = xk − αkdk; r = r − αkAdk; k = k + 1

end if
end while
Postponing the discussion on implementation of Step 2b to the next section, we

shall complete this section by the following theorem.
Theorem 6.2. Let {xk} denote a finite or infinite sequence generated by Algo-

rithm 6.1 with given x0 ∈ Ω, 0 < δ < g, and Γ > 0.
(i) If {xk} is finite, then Algorithm 6.1 ends at the solution x̄ of (1.1).
(ii) If {xk} is infinite, then {xk} converges to x̄.

(iii) If the problem (1.1) is nondegenerate, then {xk} is finite.
(iv) If Γ ≥ ρ(A), then {xk} is finite.
(v) If Γ ≥ κ(A)1/2, then {xk} is finite.

Proof. The algorithm ends iff ν(xk) = o, so that xk satisfies the Kuhn–Tucker
conditions (2.1) and (2.2).

If xk is proportional, then the inner loop beginning just after the initialization in
Step 1 generates the conjugate gradient iterations until either the minimum on the
face W(A(xk), xk) is reached or some other condition is satisfied, which may happen
earlier. In any case, it is easy to check that xk+1 is assigned in Step 4 in agreement
with rule (b) of Algorithm 5.1.

If xk is not proportional, then xk+1 is assigned in proportioning Step 5 in agree-
ment with (5.1) of rule (a) of Algorithm 5.1.

To finish the proof, it is enough to apply Theorem 5.3.

7. Steplength computation. We have implemented three variants of the choice
of α in Step 2b of Algorithm 6.1 that may be conveniently described by means of the
following two procedures. For convenience, we shall assume that min over the empty
set returns ∞.
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Algorithm 7.1 (Feasible steplength). Given n-vectors y and p, the algo-
rithm returns α = max{µ : p− µp ∈ Ω} for y ∈ Ω and α = 0 for y /∈ Ω.

function: α = fs(y, p)
µ0 = min{(yi − li) ∗ (ui − yi) : i ∈ N}
µl = min{(yi − li)/pi : i ∈ N and pi > 0}
µu = min{(yi − ui)/pi : i ∈ N and pi < 0}
α = (min{µl, µu, µ0})+

end
Algorithm 7.2 (Conjugate gradient or feasible steplength). Given

n-vectors x and y and p 6= o, the algorithm returns the conjugate gradient steplength
if

f(PΩ(y − αcgp)) ≤ f(PΩ(x))

and α = fs(y, p) otherwise.
function: α = cgfs(x, y, p)
αcg = r(y)T p/pTAp
if f(PΩ(y − αcgp)) ≤ f(PΩ(x))
α = αcg

else
α = fs(x, p)

end
end
Probably the most simple choice of α in Step 2b of Algorithm 6.1 is

(7.1) α = fs(y, p).

We shall call it a feasible strategy as it ensures that y−αp ∈ Ω. The feasible strategy
has been used in the Polyak algorithm and its variants [6, 18].

If we wish to generate the conjugate gradient iterations as long as the function
value at the projection decreases or at least does not increase, we replace Step 2b by

(7.2) α = cgfs(y, y, p).

We shall call the choice (7.2) a monotonic strategy as it yields monotonic reduction
of energy even in an inner conjugate gradient loop.

With regard to the well-known selfpreconditioning properties of the conjugate
gradient method, we may wish to carry out the conjugate gradient iterations as long
as possible. The choice

(7.3) α = cgfs(xk, y, p)

does just this; we shall call it the as long as possible strategy.
The performance of the algorithm may be significantly improved by precondition-

ing. One suitable method is the SSOR preconditioning [9] since it requires neither
additional storage space nor updating of the preconditioner. The drawback is that
the cost of one conjugate gradient step amounts to two matrix vector multiplications.

Finally, to solve any problem with the proportioning algorithm, we have to specify
Γ, which should be large enough to prevent frequent change of active sets without good
reason. At the same time Γ should not be too large so that the solution of auxiliary
problems is not too expensive. In all our experiments we obtained good results with



884 ZDENĚK DOSTÁL

Γ = 1. Indeed, it seems reasonable to release the bounds whenever the violation of
the Kuhn–Tucker conditions in active variables dominates that in free variables, since
only the latter are reduced by the conjugate gradient method. We often observed
better results with Γ = 0.1 for x0 = l, especially for preconditioned algorithms.

8. Numerical experiments. We have implemented our algorithms with the
progressive direction d = β and tested them on two model problems. We used the
stopping criterion ‖ν(x)‖ ≤ 10−5‖b‖.

The first problem arises from the discretization of the inner obstacle problem to
find the minimum of

f(u) =
1

2

∫ 0.5

0

‖u′(x)‖2dx+

∫ 0.5

0

bu dx

subject to u ∈ K, where

K = {u ∈ H1[0, 0.5] : l ≤ u on (0, 0.5) and u(0) = u′(0.5) = 0}.

The problem was discretized by linear finite elements on a regular grid with n + 1
nodes xi = 1

2 i/n, i = 0, 1, . . . , n.
We have used two supports in our tests. The concave support was defined by

the upper part of circle of radius R = 2.03 with center S = (.5, −2.032). The
convex support was defined by the lower part of circle of radius R = 2.03 with center
S = (.5, 1.943). The latter problem is such that if we start the solution with x0 = o,
the first constraints that are activated in the process of solution are released in a later
stage of computation.

Three combinations of supports and x0 have been used. The concave support
with x0 = o and x0 = l was used to demonstrate the performance of our algorithms
on problems with expanding and shrinking active sets, respectively, and the convex
support with x0 = o was used to examine the performance of our algorithms on
problems with chaotic change of the active sets.

Depending on implementation of the steplength computations, we have used three
variants of Algorithm 6.2. The algorithms with feasible strategy (7.1), monotonic
strategy (7.2), and as long as possible strategy (7.3) are identified by QPPf , QPPm,
and QPPalap, respectively.

We have carried out our computations with n = 50. The results for various values
of Γ are in Table 1. The computational cost has been measured by the number nA

of multiplications by the matrix A. We have also included a number ni of iterations
xi that may serve as an upper bound for the number of faces examined. Using the
Matlab function cond, we found that κ(A)1/2 .

= 64.
The second problem is the elastic–plastic torsion problem that was used to as-

sess the performance of algorithms in [15] and [16]. The problem on the domain
D = (0, 1)× (0, 1) is defined by an obstacle function

l(x) = − dist (x, ∂D)

and a constant function b on D. The problem is to find the minimum of

f(u) =
1

2

∫
D
‖Ou‖2dD −

∫
D
bu dD

subject to u ∈ K, where

K = {v ∈ H1
0 (D) : l ≤ u on D}.
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Table 1

Performance of variants of proportioning algorithm on 1D problem.

Support x0 Algorithm Γ = 64 Γ = 5 Γ = 1 Γ = 0.1

ni nA ni nA ni nA ni nA

convex o QPPf 66 567 66 300 16 169 50 192

QPPm 42 547 42 277 16 150 33 132

QPPalap 42 594 42 324 42 197 33 179

concave o QPPf 20 87 20 87 23 116 36 130

QPPm 7 137 7 109 7 90 13 114

QPPalap 18 231 18 134 18 89 19 156

concave l QPPf 55 417 55 242 52 120 47 103

QPPm 55 417 55 242 52 120 47 103

QPPalap 55 417 55 242 52 120 47 103

Table 2

Elastic–plastic torsion problem.

QPPm QPPm− SSOR
b x0 Γ = 0.1 Γ = 1 Γ = 0.1 Γ = 1

ni nA ni nA ni nA ni nA

-5 l 35 385 32 426 31 304 32 401

o 23 554 19 549 23 368 19 427

-10 l 17 159 15 179 17 128 15 147

o 13 195 13 235 13 168 13 180

-20 l 7 61 8 73 7 51 8 65

o 8 87 8 99 6 60 8 86

The problem has been discretized by the triangular elements on a regular grid in the
same way as in [16].

We have used the torsion problem to test the preconditioned and unprecondi-
tioned variants of QPPm. To this end, we have implemented QPPm with SSOR
preconditioning [9]. Table 2 shows the performance of QPPm and its preconditioned
variant QPPm− SSOR for mesh 102× 102.

9. Comparison with other codes. We shall tentatively compare the perfor-
mance of the proposed algorithm with two related codes (GPCG of Moré and Toraldo
[16] and SSORP − PCG of Kočvara and Zowe [15]). In both cases, we shall use the
elastic–plastic torsion problem of the previous section and the results for GPCG and
SSORP − PCG deduced from Table 9 of [15] with ni = nI and nA = nI × nm. To
enable the comparison, we resolved the torsion problem with the stopping rule

‖ν(xk)‖ ≤ 10−5‖r(x0)‖

that was used in [15] and [16]. We use heuristics of section 7 for the choice of Γ.
The code GPCG does not use any problem-dependent preconditioning, so that

it seems fair to compare its performance with QPPm. As in [16], we consider three
mesh sizes with 77×77, 102×102, and 127×127 nodes. Table 3 shows the performance
of QPPm for Γ = 1 and GPCG for initial approximation x0 = l.

The algorithm SSORP − PCG uses an efficient strategy for the initial approx-
imation I∗ of A(x̄). Since we are more interested in comparing basic strategies, we
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Table 3

Comparison with Moré and Toraldo.

QPPm GPCG

b Mesh ni nA ni nA

-5 77x77 24 268 9 268

102x102 32 399 11 415

127x127 39 471 12 522

-10 77x77 12 163 7 172

102x102 15 173 7 204

127x127 20 221 7 243

-20 77x77 5 44 5 90

102x102 8 72 5 101

127x127 9 86 5 121

Table 4

Comparison with Kočvara and Zowe.

QPPm− SSOR SSORP − PCG
b Mesh ni nA ni nA

-20 77x77 6 38 4 44

102x102 7 49 6 60

127x127 10 71 4 44

restrict our attention to the case when A(x̄) is close to our initial approximation A(l).
Thus b = −20 seems suitable for our purpose. Since SSORP − PCG uses precondi-
tioning, we compare it with QPPm−SSOR. We use Γ = 0.1 according to heuristics
of section 7. Table 4 shows the performance of QPPm−SSOR and SSORP −PCG
for x0 = l.

According to an explanation passed kindly by Kočvara, the result of SSORP −
PCG for 127 × 127 grid represents the rare case that after changing the active sets
by thousands of elements in each outer iteration, the algorithm hits A(x̄) at an early
stage of the computation.

10. Comments and conclusions. We have presented a class of algorithms
whose performance depends on a release coefficient Γ that controls the precision of
the solution of auxiliary problems. In particular, for Γ = 0 we get variants of feasible
direction methods that may not converge to the solution [1], for positive Γ that is
less than the critical release coefficient ρ(A) we get convergent algorithms that reach
the solution of nondegenerate problems in a finite number of steps, and for Γ ≥ ρ(A)
we get algorithms with the finite termination property even for degenerate problems.
The projections may be exploited so that the algorithms can drop and add many
constraints in one step.

The idea of proportioning is quite general and may be incorporated into other
algorithms including those of Moré and Toraldo or Kočvara and Zowe. Moreover, since
proportioning guarantees the convergence, other variants of known algorithms may
be considered in simplified form. For example, the algorithm of Moré and Toraldo
with proportioning may not require sufficient decrease condition.

The first numerical results for algorithms based on proportioning seem to be quite
interesting and deserve further investigation. We believe that the proportioning may
be exploited to the development of efficient and reliable algorithms for the solution of
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realistic problems.
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Abstract. Dynamic network flow problems in which there is a delay on the flows in the arcs
have been in existence since the early days of modern optimization. However, most previous work
in this area has only considered models which are discrete in the time variable. In this paper we
present a continuous-time model for a very broad class of dynamic network problems with arc time-
delays. The model is a direct extension of the separated continuous linear program (SCLP) to include
time-delays and is called the separated continuous linear program with time-delays (SCLPTD). By
suitable transformations we are able to rewrite SCLPTD in a manner which is very close to SCLP
itself. This then allows us to use all the recent theory and algorithms for SCLP to derive similar
results for SCLPTD. In particular, the theory we present includes a characterization of the extreme-
point solutions, an existence theorem for piecewise analytic optimal extreme-point solutions, and a
strong duality theorem. We also present a class of convergent algorithms for the solution of SCLPTD
in certain instances.

Key words. dynamic network flows, duality, continuous linear programming, linear optimal
control
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1. Introduction. Problems in networks form a large area of optimization. It
is generally accepted that the foundation of this subject is the book by Ford and
Fulkerson [13]. One of the problems that the authors discussed in [13] is a maximum
dynamic network flow problem in which the commodity being transported takes some
fixed amount of time to traverse the arc. The authors proposed that this problem
is solved by solving a time-expanded network problem. This time-expanded network
comprises copies of the nodes of the original network, each representing the original
node at a particular time. The nodes are then linked by arcs over time, with the
amount of time the arc spans being the delay or traversal time of that arc.

Since then a large number of authors have considered dynamic network flow prob-
lems, both with and without arc delays. These problems are not just restricted to
maximum flow problems, but also include general minimum cost flow problems. The
interest in such problems is no doubt because of the wide number of possible appli-
cations, such as building evacuation (see Chalmet, Francis, and Saunders [10]) or the
dynamic routing of messages in communications networks (Frank [14], Segall [31], and
Moss and Segall [18]). We refer the reader to Lovetskii and Melamed [17] for a survey
of previous work in this area, both general models and their various applications.
In [17], the authors make it clear that along with arc delays, another desirable feature
in dynamic network flow problems is the possibility of storage at the nodes. Again,
the traditional way to solve such problems is to form a time-expanded network with
additional links between the same nodes at different times to represent the storage.
This discrete approach appears to be firmly established as the way of solving such
problems. For instance, in the recent encyclopedic book on network flow problems,
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Ahuja, Magnanti, and Orlin [1], dynamic network problems are solved by using this
approach without any further discussion. However, this discrete approach has a seri-
ous drawback in that the times at which decisions are made are predetermined before
the problem is solved. This is by no means a necessary feature of the problem, and it
would be desirable in many instances to allow decisions to be made at any arbitrary
time in the time interval. For this to be a possibility we must consider a continuous
model in which the flows in the arcs are functions representing the rates of flow at
any particular time.

Continuous-time models for network flow problems were first considered by Phil-
pott [20] and further studied in Anderson, Nash, and Philpott [5], Philpott [21], An-
derson and Philpott [6], and Ogier [19]. The problems considered by these authors are
all continuous-time analogues of various single-commodity network problems, which
include the possibility of storage at the nodes, but not arc delays. The work by Ogier
gives an algorithm for a very specific type of continuous-time network problem. The
culmination of the work of the other authors was an algorithm for solving a general
single-commodity network problem, called the continuous network program (CNP),
under certain restrictions on the problem data. Unfortunately, it was later revealed
that this algorithm often failed to converge to an optimal solution.

The first attempt at solving any sort of continuous network problems which in-
cludes arc delays appears to be by Philpott [22]. Here the author considered a max-
imum dynamic flow problem and proved a max-flow, min-cut theorem. The first
discussion of a general continuous-time minimum cost dynamic network flow problem
with both arc delays and storage appears to be by Anderson [3]. Here the author char-
acterized the extreme-point solutions for the problem given rational traversal times.
The problem studied in [3] is called the dynamic network flow problem (DNFP) and
can be written as follows:

DNFP: minimize

∫ T

0

∑
(i,j)∈A

cij(t)xij(t) dt

subject to yj(t) = yj(0) +

∫ t

0

[
rj(s) +

n∑
i=1

(xij(s− λij)− xji(s))

]
ds,

0 ≤ yj(t) ≤ aj(t), j = 1, . . . , n,

0 ≤ xij(t) ≤ bij(t), (i, j) ∈ A, t ∈ [0, T ].

The problem is only defined over the interval [0, T ], and so it is an implicit constraint
that xij(t) = 0 for each i and j and t < 0. Here A represents the set of arcs in
a network of n nodes, and the variables are xij(t), a bounded measurable function
representing the rate of flow in arc (i, j) at time t, and yj(t), an absolutely continuous
function representing the storage in node j at time t. The costs cij(t) and the upper
bounds on the flows bij(t) are bounded measurable functions, and the storage bound
aj(t) is an absolutely continuous function. The quantity λij is the traversal time for
the arc (i, j) and is assumed to be nonnegative.

Further work on DNFP does not appear to have been done until quite recently, in
Anderson and Philpott [8]. Here the authors survey results relating to similar prob-
lems as well as introducing a dual with a corresponding definition of complementary
slackness and prove a weak duality result.

It would appear from the above that, although modelling dynamic network prob-
lems in continuous time is desirable, it is not practical, as the resulting problems
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cannot be solved. Indeed, Lovetskii and Melamed [17] make precisely this observa-
tion following the introduction of continuous-time models. However, recent work on
a more general class of problems has changed this, at least for the case where the
network does not include arc delays. This more general class of problems is called the
separated continuous linear program (SCLP) and is defined as follows:

SCLP: minimize

∫ T

0

c(t)Tx(t) dt

subject to

∫ t

0

Gx(s) ds+ y(t) = a(t),

Hx(t) + z(t) = b(t),

x(t), y(t), z(t) ≥ 0, t ∈ [0, T ].

Here x(t), z(t), b(t), and c(t) are bounded measurable functions and y(t) and a(t) are
absolutely continuous functions. By taking G to be a node-arc incidence matrix, H
the identity matrix, and aj(t) the total supply in node j up to time t, we obtain the
single-commodity continuous network program CNP (see Anderson and Philpott [6]).
The variable xi(t) then represents the rate of flow in arc i, and the variable yj(t)
represents the storage in node j at time t. However, SCLP is much more general than
a continuous single-commodity network program. In fact, SCLP can easily be used to
give continuous analogues of various network problems without arc time-delays, such
as multicommodity network programs, generalized network programs, or any of these
with side constraints.

The problem SCLP first appeared in Anderson [2] as a continuous model for job-
shop scheduling problems. The study of SCLP was continued in Anderson, Nash, and
Perold [4], where a characterization of extreme-point solutions was given as well as
a result for the existence of optimal solutions with a finite number of breakpoints in
certain cases. However, it is the more recent work on the problem that has made
solving continuous network programs a possibility. This work may be found in Pul-
lan [24, 25, 27, 28, 29, 30], Anderson and Pullan [9], and Anderson and Philpott [7].
Among other things, these papers give a class of convergent algorithms for solving the
problem in certain instances and extensive theories of duality and for the existence of
optimal solutions with a finite number of breakpoints. This work has also resulted in
a further convergent algorithm for the single-commodity network program CNP (see
Philpott and Craddock [23]).

These advances in SCLP, and hence in CNP, show that solving continuous models
is viable and raises the question of whether this is true for CNPs with arc time-delays,
such as DNFP. Indeed Anderson and Philpott [8] show that it is quite a simple
matter to extend some of the less technical matters from CNP to DNFP, such as
the weak duality result referred to above. The purpose of this paper is to go much
further than [8] and to show that, at least from a theoretical point of view, arc time-
delays present no new problems whatsoever when the delay times are rational. This
is because it is possible to transform the problem into one which is very close to a
special case of SCLP but with extra constraints on y. Although the results from the
papers mentioned above on SCLP cannot be applied directly, the same ideas can be
used without any difficulty to arrive at the desired results.

We now define the problem that we shall study in this paper. In order to achieve
full generality so that any possible network problem is covered by the results, we shall
study a direct extension of SCLP to include time-delays on x(t). We give this problem
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the name separated continuous linear program with time-delay (SCLPTD). As with
SCLP, the increased generality unfortunately means that the network structure is lost
in the discussion. We define the separated continuous linear programs with time delay
as follows:

SCLPTD: minimize

∫ T

0

c(t)Tx(t) dt

subject to

∫ t

0

(Gx(s))i ds+

n1∑
j=1

∫ t

0

fijxj(s− λij) ds+ yi(t) = ai(t),(1)

i = 1, . . . , n2,

Hx(t) + z(t) = b(t),

x(t), y(t), z(t) ≥ 0, t ∈ [0, T ].

Again the problem is only defined over the interval [0, T ], and so it is an implicit
constraint that x(t) = 0 for t < 0. Here, as with SCLP, x(t), z(t), b(t), and c(t) are
bounded measurable functions and y(t) and a(t) are absolutely continuous functions.
The dimensions of x(t), y(t), and z(t) are n1, n2, and n3, respectively. We let ω(t)
denote a complete set of variables for SCLPTD, i.e., ω(t)T = (x(t)T , y(t)T , z(t)T ).
As with DNFP, we refer to λij as the traversal times, and these are assumed to be
nonnegative. We can also assume without loss of generality that λij < T for each i
and j, because if λij ≥ T for some i and j, then the integral in (1) of fijx(s − λij)
is always zero, and so we could define fij = 0 instead. Clearly, SCLPTD includes
DNFP as a special case. SCLPTD is also a special case of a linear optimal control
problem with state positivity constraints. However, apart from the articles on network
problems such as DNFP above, the only comparable problem in the literature appears
to be that by Farr and Hanson [12]. Here the authors give some duality results for a
nonlinear continuous-time programming problem with time-delays.

For the purposes of this paper we shall study SCLPTD under the following weak
assumption.

Assumption 1.1. The traversal times are all rational, as is the final time T .
We will assume that this holds throughout the rest of this paper. From a practical

point of view this is no restriction at all, because any measurement of a traversal
time in a practical problem must give rational data or, at least, only be able to be
represented as a rational number on a computer. In any case, in all the literature on
discrete dynamic network problems with arc delays, the traversal times and time T
are integers.

The plan of this paper is as follows. In section 2 we transform SCLPTD into a
problem which is very close to a special case of SCLP, the difference being that there
are extra constraints connecting y(0) and y(T ). This transformed problem allows us
to repeat many of the more important results on SCLP for the problem SCLPTD.
This repetition of results takes up the rest of the paper. Most of the proofs are either
identical or are very minor extensions to the previous proofs for SCLP. For this
reason, and to allow as much theory to be covered as possible in a single paper, we
either omit the proofs or just present an outline.

The results that we present are as follows. In section 3 we study the feasible
region of SCLPTD and show that it is convex and closed in the σ(Ln1∞ [0, T ], Ln1

1 [0, T ])
topology (the weak topology on the dual pair of vector spaces (Ln1∞ [0, T ], Ln1

1 [0, T ]);
see, for example, Holmes [15]). We then give a characterization of the extreme points
of the feasible region which closely resembles the result for SCLP in Anderson, Nash,
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and Perold [4]. This result includes the result for DNFP given in Anderson [3]. Under
the further assumption that the feasible region is nonempty and bounded, we then
show that it is both compact and sequentially compact in the σ(Ln1∞ [0, T ], Ln1

1 [0, T ])
topology. Hence we conclude that, in this case, SCLPTD has an optimal extreme-
point solution. In section 4 we then extend the results from Pullan [25] to show that
a piecewise analytic optimal extreme-point solution exists for SCLPD given piecewise
analytic problem data. In section 5 we introduce a dual problem for SCLPTD based
on the dual problem SCLP* for SCLP. Again this includes the dual problem for
DNFP given in Anderson and Philpott [8]. We then prove a weak duality result.
In section 6 we consider the extension of the algorithms discussed in Pullan [24, 29]
to SCLPTD. This involves introducing special discretizations of the problem. Once
this is done it is fairly trivial to see that all the results from these two papers carry
over verbatim, resulting in a class of convergent algorithms for SCLPTD and a strong
duality theorem. Such a theorem was the starting point of the extensive duality theory
for SCLP in Pullan [27]. We remark that this theorem for SCLPTD will probably
lead to the same duality theory for SCLPTD, but as [27] is very long and technical
we do not pursue this matter at this point.

Finally, in section 7, we comment on the results achieved for SCLPTD. We note
that the results have all been proved quite readily from their SCLP counterparts. We
then comment on those results from SCLP that we have not extended to SCLPTD
in this paper, most notably the duality theory in Pullan [27], and conclude that
it is probably not difficult to establish these results as well. We also comment on
the algorithms for SCLPTD developed in this paper. In particular it is noted that,
because the transformed problem could be very large in general, the algorithms may
be difficult to use, although perhaps not impossible.

2. Transformation of SCLPTD. In this section we transform the problem
SCLPTD into one that closely resembles SCLP. This then allows us to study the
problem in a similar light to SCLP. The transformation here of SCLPTD has several
steps.

First, given Assumption 1.1 concerning the rational traversal times and time T ,
we can rewrite the problem so that T is an integer and λij is an integer between 0
and T − 1 inclusive for each i and j. Indeed, because λij , for each i and j, and T
form a finite set of rational numbers, we can write all these quantities as fractions
with the same common denominator; i.e., for some integers µij , N , and S, we have
λij = µij/N , for each i and j, and T = S/N . We can then make the substitution
τ = Nt in SCLPTD to give an equivalent formulation of the problem with integer
traversal times and final time.

Assume then that SCLPTD has T an integer and λij an integer between 0 and
T − 1 inclusive for each i and j. We can now change the problem further so that
no λij is zero by absorbing the corresponding fij into the matrix G in SCLPTD. In
particular, we can replace G by G′, where

G′ij =

{
Gij + fij , λij = 0,

Gij , otherwise.

Given then that the traversal times are all nonzero, we now define matrices F (k),
k = 1, . . . , T − 1, each of dimension n2 × n1, by

F
(k)
ij =

{
fij , λij ≤ k,

0, otherwise.



894 MALCOLM C. PULLAN

Thus, for each k and i,

(F (k)x(t))i =
∑

{ j:λij≤k }
fijxj(t).

We can now write the problem SCLPTD in the following equivalent manner:

T1: minimize

∫ T

0

c(t)Tx(t) dt

subject to

∫ t

0

Gx(s) ds+

btc∑
k=1

∫ t

0

F (k)x(s− k) ds+ y(t) = a(t),

Hx(t) + z(t) = b(t),

x(t), y(t), z(t) ≥ 0, t ∈ [0, T ],

where btc denotes the greatest integer less than or equal to t.
We now perform the final, and more radical, transformation on the problem.

Define the matrices G and H of dimensions Tn2 × Tn1 and Tn3 × Tn1, respectively,
by

G =




G 0 · · · 0
F (1) G 0 · · · 0
F (2) F (1) G 0 · · · 0
F (3) F (2) F (1) G 0 · · · 0

...
...

...
...

. . .
...

F (T−2) F (T−3) F (T−4) F (T−5) · · · G 0
F (T−1) F (T−2) F (T−3) F (T−4) · · · F (1) G



,

H =




H 0 · · · 0
0 H 0 · · · 0
0 0 H 0 · · · 0
0 0 0 H 0 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · H 0
0 0 0 0 · · · 0 H



.

We now define functions A(t), B(t), and C(t) over the interval [0, 1] as follows:

A(t) =




a(t)− a(0)
a(t+ 1)− a(1)

...
a(t+ T − 1)− a(T − 1)


 , B(t) =




b(t)
b(t+ 1)

...
b(t+ T − 1)


 ,

C(t) =




c(t)
c(t+ 1)

...
c(t+ T − 1)


 .

This defines the problem data for the transformed problem that we are working to-
wards which have obvious counterparts in the normal SCLP model. We now define
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some more problem data which do not have direct counterparts in the SCLP model.
In particular, we define a vector d of dimension Tn2 by

d =



a(0)
0
...
0


 .

We also define a matrix D, of dimension Tn2 × Tn2, by

D =




0 0 · · · 0
I 0 0 · · · 0
0 I 0 0 · · · 0
0 0 I 0 0 · · · 0
...

...
...

. . .
. . .

...
0 0 0 · · · I 0 0
0 0 0 · · · 0 I 0



.

This completes the specification of the problem data for the transformed problem.
The variables for the transformed problem are X(t), a bounded measurable function
of dimension Tn1, Y (t), an absolutely continuous function of dimension Tn2, and Z(t),
a bounded measurable function of dimension Tn3. We now define the transformed
problem T2 over the time interval [0, 1] as follows:

T2: minimize

∫ 1

0

C(t)TX(t) dt

subject to

∫ t

0

GX(s) ds+ Y (t)− Y (0) = A(t),(2)

Y (0)−DY (1) = d,(3)

HX(t) + Z(t) = B(t),(4)

X(t), Y (t), Z(t) ≥ 0, t ∈ [0, 1].

This is very similar to SCLP. In fact, if D were zero, this would be precisely an SCLP
problem. As with SCLP, we let Ω(t)T = (X(t)T , Y (t)T , Z(t)T ) denote a complete set
of variables for T2.

It is not too difficult to see that T2 and T1 are equivalent problems, and hence so
are T2 and SCLPTD. This can be seen by making the following connection between
the variables:

Ω(t) =




ω(t)
ω(t+ 1)

...
ω(t+ T − 1)


 , t ∈ [0, 1].(5)

With this connection it is clear that a set of variables is feasible (optimal) for T1 if
and only if the corresponding set of variables is feasible (optimal) for T2.

This completes our transformations of the problem SCLPTD. In the next sections
we shall study SCLPTD in more depth by studying T2 in the light of recent work on
SCLP. In particular, to prove something about SCLPTD, such as the existence of
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piecewise analytic optimal solutions, we shall prove the result for T2 and thus conclude
that the result is true for SCLPTD. This will involve considerable switching between
SCLPTD solutions and T2 solutions by constructing the appropriate T1 solution and
then using (5), or vice versa. In order to avoid referring to this process every time,
we shall adopt the notation that if ω(t) is defined as a feasible solution for SCLPTD,
then Ω(t) shall mean the T2 solution given by (5) from the corresponding T1 solution.
Similarly, given a feasible solution Ω(t) for T2, ω(t) shall mean the SCLPTD solution
constructed from the T1 solution which is given by (5).

3. Structure of the feasible region. We now begin the study of SCLPTD
with a study of the topological nature of the feasible region, that is, the set

F = {x(t) ∈ Ln1∞ [0, T ] : there exists an absolutely continuous function y(t) and a
bounded measurable function z(t) such that ω(t)T = (x(t)T , y(t)T , z(t)T )
is feasible for SCLPTD }.

We now prove the following result concerning F . The equivalent result for SCLP is
split into various parts in the literature and may be found in Anderson, Nash, and
Perold [4] and Pullan [27, 26].

Theorem 3.1. The feasible region F for SCLPTD is both convex and closed in
the σ(Ln1∞ [0, T ], Ln1

1 [0, T ]) topology. Furthermore, if F is nonempty and bounded, then
it is also both compact and sequentially compact in the σ(Ln1∞ [0, T ], Ln1

1 [0, T ]) topology.
Hence, in this case, there exists an optimal extreme-point solution for SCLPTD.

Proof. The proof is essentially the same as the proofs of the similar results for
SCLP in the above-mentioned papers. We will thus keep the exposition brief. The
convexity of F is trivial. We now prove that F is closed in the σ(Ln1∞ [0, T ], Ln1

1 [0, T ])
topology. This result was proved for SCLP in [27, Lem. 4.1].

Suppose x 6∈ F . There are three cases to consider depending on which constraint
of SCLPTD is violated. If xi(t) < 0 on some set S of nonzero measure for some i,
then define h ∈ Ln1

1 [0, T ] by

hj =

{
0, j 6= i,
χS , j = i,

where χS is the characteristic function of S. Then∫ T

0

h(t)Tx(t) dt < 0,

but for any α ∈ F , ∫ T

0

h(t)Tα(t) dt ≥ 0,

and so x is contained in some weakly open set that does not intersect with F . Now
suppose that

∫ t

0

(Gx(s))i ds+

n1∑
j=1

∫ t

0

fijxj(s− λij) ds > ai(t)

for some index i and t ∈ [0, T ]. By the continuity of the integrals and of a, this will
be true for all t in some open interval S = (t1, t2), with equality at the point t1.
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Define S(s) = [0, T ] ∩ (t1 − s, t2 − s) for s ∈ [0, T ]. Thus S = S(0). We now define
h ∈ Ln2

1 [0, T ] by

hj = GijχS + fijχS(λij).

Then ∫ T

0

h(t)Tx(t) dt >

∫
S

ai(t) dt,

and for any α ∈ F , ∫ T

0

h(t)Tα(t) dt ≤
∫
S

ai(t) dt,

and so again, x is contained in some weakly open set that does not intersect with F .
The remaining case, namely (Hx(t))i > bi(t) on some set S of nonzero measure for
some i, is similar. Thus F is closed in the σ(Ln1∞ [0, T ], Ln1

1 [0, T ]) topology as claimed.
The compactness of F in the σ(Ln1∞ [0, T ], Ln1

1 [0, T ]) topology given a nonempty
and bounded feasible region now follows from Alaoglu’s Theorem (see, for example,
Holmes [15]) and the existence of an optimal extreme-point solution from another
standard result (see again Holmes [15, p. 74]).

To show sequential compactness, we recall a result from functional analysis which
states that if X is a separable normed linear space (that is, a normed linear space
with a countable dense subset), then any norm bounded set in X* (the dual of
X) which is also closed in the σ(X*, X) topology is sequentially compact in the
σ(X*, X) topology (see, for example, Kolmogorov and Fomin [16, Cor. 1, p. 203]).
Now Ln1

1 [0, T ] is a separable space and Ln1
1 [0, T ]* = Ln1∞ [0, T ]. Hence, as F is closed

in the σ(Ln1∞ [0, T ], Ln1
1 [0, T ]) topology by the above, it is also sequentially compact in

this topology. This establishes the result.
Our next result concerns the characterization of the extreme points of F . This

result for SCLP may be found in Anderson, Nash, and Perold [4] and has proved to be
very important in establishing most of the recent results on the problem. The result
for SCLPTD that we present is very similar to that for SCLP in [4].

Theorem 3.2. Let x ∈ F , the feasible region of SCLPTD, and ω(t) the cor-
responding SCLPTD solution. Then x is an extreme point of F if and only if the
columns of

K =

[ G I 0
H 0 I

]

corresponding to the support of Ω(t) (that is, i such that Ωi(t) > 0) are linearly
independent for almost all t ∈ [0, T ].

Proof. The proof is very similar to the proof of the result for SCLP in [4], so we
will omit some of the details. Suppose x is not an extreme point of F . Then there
exists x(1), x(2) ∈ F , both distinct from x, such that x(t) = (x(1)(t) + x(2)(t))/2 a.e.
on [0, T ]. Let ω(1)(t) and ω(2)(t) be the corresponding feasible solutions for SCLPTD.
If we now differentiate the constraint (2) in T2 we see that

K

 X(1)(t)

Ẏ (1)(t)
Z(1)(t)


 = K


 X(2)(t)

Ẏ (2)(t)
Z(2)(t)


 =

[
Ȧ(t)
B(t)

]
,
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a.e. on [0, T ]. Hence the columns of K corresponding to the support of Ω(t) are linearly
dependent on some set of nonzero measure.

Now suppose that the columns of K corresponding to the support of Ω(t) are
linearly dependent on some set of nonzero measure. Since there are only a finite
number of choices of basis for K, and Y (t) is continuous, we can choose an open
interval I, a set P ⊆ I of nonzero measure, and ε > 0 such that the support of Ω(t) is
constant on P , and for all t ∈ P we have Yi(t) > ε for all i such that Yi(t) > 0 on P .
Choose q 6= 0 with Kq = 0 and qi 6= 0 only if Ωi(t) > 0 on P . We will define new
feasible solutions Ω(1)(t) and Ω(2)(t) for T2 by




 X(j)(t)

Ẏ (j)(t)
Z(j)(t)


 =


 X(t)

Ẏ (t)
Z(t)


+ hj(t)q, t ∈ [0, 1],

Y (j)(t) = Y (0) +

∫ t

0

Ẏ (j)(s) ds, t ∈ [0, 1],

(6)

for j = 1, 2. Define

f1(t) = min
k∈I1

{Ωk(t)/qk}, I1 6= ∅,
f2(t) = min

k∈I2
{−Ωk(t)/qk}, I2 6= ∅,

where

I1 = { k : qk > 0, k ≤ Tn1, k > T (n1 + n2) },
I2 = { k : qk < 0, k ≤ Tn1, k > T (n1 + n2) }.

If either I1 or I2 is empty, then we set the corresponding fi to 1. Note that I1 and I2
cannot both be empty. Set f(t) = min{f1(t), f2(t)} for t ∈ P . We now choose disjoint
subsets P1 and P2 of P , each of nonzero measure, such that∫

P1

f(t) dt =

∫
P2

f(t) dt,∣∣∣∣∣qk
∫
Pj

f(t) dt

∣∣∣∣∣ < ε, Tn1 < k ≤ T (n1 + n2), j = 1, 2.

We now define

h1(t) =




f(t), t ∈ P1,
−f(t), t ∈ P2,
0, otherwise,

and h2(t) = −h1(t) for t ∈ [0, T ], and then Ω(1)(t) and Ω(2)(t) by (6). Then it is
clear that Ω(1)(t) and Ω(2)(t) satisfy the constraints (2) and (4) of T2, as well as the
positivity constraints. Also, for any t ∈ [0, T ] such that either t ≥ s or t ≤ s for all s ∈
P , we must have Y (1)(t) = Y (2)(t) = Y (t). Hence the constraint (3) is satisfied as well.
Thus Ω(1)(t) and Ω(2)(t) are feasible for T2. Moreover, Ω(t) = (Ω(1)(t) + Ω(2)(t))/2
on [0, 1]. Hence the corresponding x(1), x(2) ∈ F satisfy x(t) = (x(1)(t) + x(2)(t))/2
on [0, T ], and so x(t) is not an extreme point of F .

It is not too difficult to see that when SCLPTD is specialized to DNFP, this result
is equivalent to the result in Anderson [3], which, like other results about extreme
points on networks, is given in terms of the absence of cycles.
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4. Existence of piecewise optimal solutions. In this section we prove the
analogues of the results in Pullan [25] for the problem SCLPTD. In particular, we
prove that SCLPTD has a piecewise analytic optimal solution if all the problem data
are piecewise analytic. The importance of such results was discussed in detail in [25].
Of most importance is that such results are necessary if we are to have any hope
of solving the problem in practice, or of obtaining a solution which is practical to
implement. These results for SCLP have also been instrumental in obtaining the
detailed duality theory in Pullan [27], and we suspect that the same will be true here
for SCLPTD. It is certainly true in some instances (see Theorem 6.13).

Unlike all the other results on SCLPTD in this paper, the result in this section
may be proved by appealing to the equivalent result for SCLP, and thus it need not
be proved from scratch.

Theorem 4.1. Suppose that the feasible region for SCLPTD is nonempty and
bounded and that a(t), b(t), and c(t) are piecewise analytic on [0, T ] (with a(t) con-
tinuous). Then SCLPTD has a piecewise analytic optimal extreme-point solution.
If a(t) and b(t) are also piecewise polynomials of degrees n + 1 and n, respectively,
then SCLPTD has an optimal extreme-point solution with x(t) piecewise polynomial
of degree n.

Proof. By Theorem 3.1 there exists an optimal (extreme-point) solution ω*(t) to
SCLPTD. Consider the problem T2 with the extra constraints

Y (0) ≡




y(0)
y(1)

...
y(T − 1)


 =




y*(0)
y*(1)

...
y*(T − 1)


 ,

Y (1) ≡



y(1)
y(2)

...
y(T )


 =



y*(1)
y*(2)

...
y*(T )


 .

Call this problem T3. Now Ω*(t) is optimal for T2 and hence, as it is feasible for
T3, it is also optimal for T3. But T3 is precisely an SCLP problem with equality
constraints on the final value of Y , Y (1). Such problems were studied in Pullan [30],
where they were shown to be equivalent to SCLP itself. In particular, the existence
of piecewise analytic optimal extreme-point solutions for such problems was proved
in [30, Thm. 4.3]. Hence T3 has a piecewise analytic optimal extreme-point solution
given piecewise analytic problem data. Since this solution must be feasible for T2,
it is also optimal for T2. This can now be used to construct a piecewise analytic
optimal solution for the original SCLPTD. Moreover, this solution is an extreme-
point solution for SCLPTD because the characterization of extreme-point solutions
for SCLPTD in Theorem 3.2 is identical to that for SCLP with equality constraints
on the final value of Y (see Theorem 4.1 in [30]).

The existence of piecewise polynomial optimal extreme-point solutions when the
problem data are piecewise polynomial follows from Theorem 5.1 in Pullan [25] by
extending it to include SCLP with restrictions on the final value of Y (see section 4.1
in Pullan [30]).

It is worth mentioning that Pullan [25] also gives two other important results
concerning the piecewise nature of optimal solutions. Both of these can be carried
across to SCLPTD without any difficulty. The first is an implicit bound on the
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number of breakpoints in the optimal solution. The second is a necessary condition
at a breakpoint in an optimal solution (see Theorem 4.4 in [25]). We do not repeat
either of these results here because the first is cumbersome to state and the second
requires several extra definitions.

5. Duality. We now turn to duality for SCLPTD. Duality in optimization, and
especially linear optimization, has been key to the development of efficient algorithms
for their solution. This has also been observed for SCLP. In this section we state a
dual problem for SCLPTD based on that for SCLP given in Pullan [24]. This dual
problem includes the one for DNFP in Anderson and Philpott [8] as a special case.
We then wish to study the dual in a similar manner to studying the dual for SCLP
in [24]. To do this we need to transform the dual into an equivalent dual for T2, as
this is the problem that closely resembles SCLP. The details of the transformation of
the dual are identical to that of the primal SCLPTD in section 2, with one exception
which we explain below. We do not repeat the working from section 2 here, but just
state the resulting duals at the various stages of the transformation; i.e., we just state
the duals of T1 and T2.

The dual problem we present for SCLPTD is:

SCLPTD*: maximize

∫ T

0

η(t)T b(t) dt−
∫ T

0

dπ(t)Ta(t)

subject to (c(t)−GTπ(t)−HT η(t))i −
n2∑
j=1

fjiπj(t+ λji) ≥ 0,(7)

i = 1, . . . , n1,

η(t) ≤ 0, a.e. on [0, T ],

π(t) monotonic increasing and right continuous

on [0, T ] with π(T ) = 0.

As with SCLPTD, the problem is only defined over the interval [0, T ], and so it
is an implicit constraint that π(t) = 0 for t > T . We let θ(t) denote a complete
set of variables for SCLPTD* and ψ(t) denote the vector of left-hand sides of (7)
for i = 1, . . . , n1. Thus θ(t)T = (π(t)T , η(t)T ) and ψi(t) = (c(t)−GTπ(t)−HT η(t))i−∑n2

j=1 fjiπj(t + λji). As with the primal problems, it is not difficult to see that this
dual includes the dual of DNFP in Anderson and Philpott [8] as a special case.

If we now repeat the transformations of section 2 we may derive the following
dual for T1.

T1*: maximize

∫ T

0

η(t)T b(t) dt−
∫ T

0

dπ(t)Ta(t)

subject to c(t)−GTπ(t)−
bT−tc∑
k=1

F (k)Tπ(t+ k)−HT η(t) ≥ 0,

η(t) ≤ 0, a.e. on [0, T ],

π(t) monotonic increasing and right continuous

on [0, T ] with π(T ) = 0.

This problem is easily seen to be equivalent to SCLPTD* by a simple scaling of the
variables to make the traversal times and time T integers.
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Continuing with these transformations from section 2 we arrive at the following
dual for T2.

T2*: maximize

∫ 1

0

Υ(t)TB(t) dt−
∫ 1

0

dΠ(t)TA(t) + Π(0)T d

subject to C(t)− GTΠ(t)−HTΥ(t) ≥ 0,(8)

Υ(t) ≤ 0, a.e. on [0, 1],

Π(t) monotonic increasing and right continuous

on [0, 1] with Π(1) = 0 and DTΠ(0) ≥ Π(1−).

We let Θ(t) denote a complete set of variables for T2* and Ψ(t) denote the left-hand
side of (8). Thus Θ(t)T = (Π(t)T ,Υ(t)T ) and Ψ(t) = C(t)− GTΠ(t)−HTΥ(t).

It is clear that the dual problems T1* and T2* are equivalent by making the
following connection between the variables:

Θ(t) =




θ(t)
θ(t+ 1)

...
θ(t+ T − 1)


 , t ∈ [0, 1),(9)

with Θ(1)T = (Π(1)T ,Υ(1)T ) given by Π(1) = 0 and Υ(1)T = (η(1)T , η(2)T , . . . ,
η(T )T ). Note that Π(1)T 6= (π(1)T , π(2)T , . . . , π(T )T ) in general. This accounts for
the added term ΠT (0)T d in the objective function. Indeed, using this connection
between the variables we have∫ 1

0

dΠ(t)A(t)−Π(0)T d

=
T−1∑
i=0

∫ 1

0

dπ(t+ i)T (a(t+ i)− a(i))−
T−1∑
i=0

π(i+ 1)T (a(i+ 1)− a(i))

− π(0)Ta(0)

=

∫ T

0

dπ(t)Ta(t)−
T−1∑
i=0

∫ 1

0

dπ(t+ i)Ta(i)−
T−1∑
i=0

π(i+ 1)T (a(i+ 1)− a(i))

− π(0)Ta(0)

=

∫ T

0

dπ(t)Ta(t)−
T−1∑
i=0

(π(i+ 1)− π(i))Ta(i)−
T−1∑
i=0

π(i+ 1)T (a(i+ 1)− a(i))

− π(0)Ta(0)

=

∫ T

0

dπ(t)Ta(t).

With this connection between the variables we have a set of variables feasible
(optimal) for T1* if and only if the corresponding set of variables is feasible (optimal)
for T2*. We have thus derived a correspondence between variables of SCLPTD* and
T2* via (9). Similar to the notation ω(t) and Ω(t), which refer to corresponding
respective solutions of SCLPTD and T2, we shall now use the notation θ(t) and Θ(t)
to denote the corresponding respective solutions of SCLPTD* and T2*.
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We now show that the problems are true “dual” problems by showing that weak
duality holds. This is based on a corresponding result for SCLP in Pullan [24,
Lem. 2.1]. The connection between the variables shows that it is sufficient to prove
weak duality between only one of the pairs of primal and dual problems. Here, and
throughout the remainder of this paper, we use the notation V [LP] to denote the op-
timal value of a linear program LP, with the value taken to be ∞ if LP is an infeasible
minimization problem, and −∞ if LP is an infeasible maximization problem.

Theorem 5.1 (weak duality). V [SCLPTD*] ≤ V [SCLPTD].
Proof. We shall prove the weak duality result for T2 and argue as in [24]. Suppose

that Ω(t) is feasible for T2 and Θ(t) is feasible for T2*. Then

∫ 1

0

Υ(t)TB(t) dt−
∫ 1

0

dΠ(t)TA(t) + Π(0)T d

=

∫ 1

0

Υ(t)T (HX(t) + Z(t)) dt−
∫ 1

0

dΠ(t)T
(∫ t

0

GX(s) ds+ Y (t)− Y (0)

)
+ Π(0)T (Y (0)−DY (1))

=

∫ 1

0

(GTΠ(t) +HTΥ(t))TX(t) dt+

∫ 1

0

Υ(t)TZ(t) dt−
∫

[0,1)

dΠ(t)TY (t)

−
∫
{1}

dΠ(t)TY (t) +

∫ 1

0

dΠ(t)TY (0) + Π(0)TY (0)− (DTΠ(0))TY (1),

by integrating by parts (see Dunford and Schwartz [11, p. 154]). Now∫
{1}

dΠ(t)TY (t) = (Π(1)−Π(1−))TY (1)

= −Π(1−)TY (1),∫ 1

0

dΠ(t)TY (0) = (Π(1)−Π(0))TY (0)

= −Π(0)TY (0).

Hence,

∫ 1

0

Υ(t)TB(t) dt−
∫ 1

0

dΠ(t)TA(t) + Π(0)T d

=

∫ 1

0

(GTΠ(t) +HTΥ(t))TX(t) dt+

∫ 1

0

Υ(t)TZ(t) dt−
∫

[0,1)

dΠ(t)TY (t)

+ (Π(1−)−DTΠ(0))TY (1).

We now have∫ 1

0

C(t)TX(t) dt−
∫ 1

0

Υ(t)TB(t) dt+

∫ 1

0

dΠ(t)TA(t)−Π(0)T d

=

∫ 1

0

Ψ(t)TX(t) dt−
∫ 1

0

Υ(t)TZ(t) dt+

∫
[0,1)

dΠ(t)TY (t)

+ (DTΠ(0)−Π(1−))TY (1)

≥ 0,
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by the feasibility of Ω(t) and Θ(t). This establishes the result.
As with SCLP, further study of duality for SCLPTD requires an algorithm. In

the next section we give such an algorithm in that it gives a strong duality result as
a corollary from which a more detailed study of duality could proceed.

6. A class of convergent algorithms and a strong duality result. In this
section we mimic the main results from Pullan [24, 29] to produce a class of convergent
algorithms for T2, and hence for SCLPTD. As in [24], we have a strong duality
theorem as a corollary. We work under assumptions on the problem data similar to
those in [24, 29]. In particular, we assume that the following holds throughout the
remainder of this section.

Assumption 6.1. The costs, c(t), are piecewise linear, a(t) is piecewise linear
and continuous, b(t) is piecewise constant, and the feasible region for SCLPTD is
nonempty and bounded.

Before beginning the discussion we give a few definitions based on concepts used
in the literature on SCLP.

Definition 6.1.
1. The breakpoints of a piecewise linear or piecewise constant function are the

discontinuities in either the function or its derivative.
2. We define the initial breakpoint partition to be the smallest partition of [0, 1]

consisting of all the breakpoints of A(t), B(t), and C(t).
3. Let ω(t) be a feasible solution for SCLPTD such that x(t) is piecewise constant

on [0, T ]. We define the breakpoint partition for Ω(t) to be the partition of
[0, 1] consisting of all the breakpoints of Ω(t) and the points in the initial
breakpoint partition.

4. Let f be any real valued function. We use the notation f(t−) to denote
lims↑t f(s) and f(t+) to denote lims↓t f(s) when these limits exist.

In [24], two discretizations DP and AP were introduced for SCLP. We introduce
counterparts for these discretizations here, called DPTD and APTD, which we write in
a form resembling DP and AP in the later work on SCLP (e.g., Pullan [27, 28]). It will
be seen that all the results between DP, AP, and SCLP carry over to DPTD, APTD,
and SCLPTD (or, more correctly, T2) without any difficulty. Let P = {t0, t1, . . . , tm}
be any partition of [0, 1] which is a refinement of the initial breakpoint partition. We
now define

DPTD(P ): minimize

m∑
i=1

C(ui)
T X̂(ti−1+)

subject to GX̂(ti−1+) + Ŷ (ti)− Ŷ (ti−1) = A(ti)−A(ti−1),

i = 1, . . . ,m,

Ŷ (t0)−DŶ (tm) = d,

HX̂(ti−1+) + Ẑ(ti−1+) = (ti − ti−1)B(ti−1+),

i = 1, . . . ,m,

X̂(ti−1+), Ẑ(ti−1+) ≥ 0, i = 1, . . . ,m,

Ŷ (ti) ≥ 0, i = 0, . . . ,m,

and

APTD(P ): minimize

m∑
i=1

[
C(ti−1+)T X̂(ti−1+) + C(ti−)T X̂(ti−)

]
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subject to GX̂(ti−1+) + Ŷ (ui)− Ŷ (ti−1) = A(ui)−A(ti−1),

i = 1, . . . ,m,

GX̂(ti−) + Ŷ (ti)− Ŷ (ui) = A(ti)−A(ui),

i = 1, . . . ,m− 1,

Ŷ (t0)−DŶ (tm) = d,

HX̂(ti−1+) + Ẑ(ti−1+) = τiB(ti−1+), i = 1, . . . ,m,

HX̂(ti−) + Ẑ(ti−) = τiB(ti−), i = 1, . . . ,m,

X̂(ti−1+), X̂(ti−), Ŷ (ui), Ẑ(ti−1+), Ẑ(ti−) ≥ 0,

i = 1, . . . ,m,

Ŷ (ti) ≥ 0, i = 0, . . . ,m,

where

ui =
ti−1 + ti

2
,

τi =
ti − ti−1

2
.

We let Ω̂D and Ω̂ denote a complete set of variables for DPTP(P ) and APTD(P ),
respectively.

Strictly speaking, these are really discretizations of T2, rather than the original
SCLPTD. However, it is these discretizations that we shall study, just as it was the
dual problem T2* rather than SCLPTD* that was studied in the previous section.
The reason we do not bother with the “true” discretizations for SCLPTD is that
there is little to be gained from this, and that they are also very cumbersome to
state, especially if the traversal times are nonintegers. In the case where SCLPTD has
integer traversal times and final time T , it is possible to write down the discretizations
for T1 fairly easily. For instance, the “true” DPTD for T1 is

minimize

T−1∑
k=0

m∑
i=1

c(ui + k)T x̂((ti−1 + k)+)

subject to Gx̂(t0+) + ŷ(t1) = a(t1),

Gx̂((ti−1 + k)+) +
k∑
l=1

F (l)x̂((ti−1 + k − l)+) + ŷ(ti + k)− ŷ(ti−1 + k)

= a(ti + k)− a(ti−1 + k),

i = 1, . . . ,m, k = 0, . . . , T − 1, (i, k) 6= (0, 0),

Hx̂((ti−1 + k)+) + ẑ((ti−1 + k)+) = (ti − ti−1)b(ti−1 + k)+),

i = 1, . . . ,m, k = 0, . . . , T − 1,

x̂((ti−1 + k)+), ẑ((ti−1 + k)+) ≥ 0, i = 1, . . . ,m, k = 0, . . . , T − 1,

ŷ(ti + k), i = 0, . . . ,m, k = 0, . . . , T − 1, (i, k) 6= (0, 0).

This is no more than a rewriting of a finite-dimensional linear program by giving
different names to some of the variables, and would therefore involve no real differ-
ence when formulating on a computer. In contrast, our transformations of SCLPTD
and SCLPTD* involved rewriting continuous problems which would not be directly
represented on a computer. For these reasons, we treat the discretizations above as
the appropriate discretizations of the original problem.
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It is not difficult to see that DPTP and APTD have the same properties in relation
to SCLPTD (or, more correctly, T2) as DP and AP, respectively, have for SCLP. In
particular, there is a natural correspondence between feasible solutions of SCLPTD,
DPTD, and APTD. This is made precise by the following definition.

Definition 6.2. Let P = {t0, t1, . . . , tm} be any refinement of the initial break-
point partition. Suppose that ω(t) is feasible for SCLPTD with X(t) piecewise con-
stant with breakpoints in P . We say that Ω̂D defined by

X̂(ti−1+) = (ti − ti−1)X(ti−1+), i = 1, . . . ,m,

Ŷ (ti) = Y (ti), i = 0, . . . ,m,

Ẑ(ti−1+) = (ti − ti−1)Z(ti−1+), i = 1, . . . ,m,

is the natural solution for DPTD(P ) (constructed from ω(t)). Similarly, we say that
Ω̂ defined by

X̂(ti−1+) = τiX(ti−1+), i = 1, . . . ,m,

X̂(ti−) = τiX(ti−), i = 1, . . . ,m,

Ŷ (ti) = Y (ti), i = 0, . . . ,m,

Ŷ (ui) = Y (ui), i = 1, . . . ,m,

Ẑ(ti−1+) = τiZ(ti−1+), i = 1, . . . ,m,

Ẑ(ti−) = τiZ(ti−), i = 1, . . . ,m,

is the natural solution for APTD(P ) (constructed from ω(t)).
Conversely, suppose now that Ω̂D is any feasible solution for DPTD(P ); then we

say that ω(t)T = (x(t)T , y(t)T , z(t)T ), defined by

X(t) =




1

ti − ti−1
X̂(ti−1+), t ∈ [ti−1, ti−1), i = 1, . . . ,m,

1

ti − ti−1
X̂(tm−), t = 1,

Y (0) = Ŷ (0),

and with Y (t) and Z(t) given by the constraints of T2 (i.e., satisfying (2) and (4)), is
the natural solution for SCLPTD (constructed from Ω̂D). Similarly, suppose that Ω̂
is any feasible solution for APTD(P ); then we say that ω(t), defined by

X(t) =




1

τi
X̂(ti−1+), t ∈ [ti−1, ui), i = 1, . . . ,m,

1

τi
X̂(ti−), t ∈ [ui, ti), i = 1, . . . ,m,

1

τm
X̂(tm−), t = T,

Y (0) = Ŷ (0),

and with Y (t) and Z(t) given by the constraints of T2, is the natural solution for
SCLPTD (constructed from Ω̂).

We now have the following relationships. We omit the proofs, as they are quite
trivial, and anyway, they are identical to those in [24].

Theorem 6.3. Suppose that ω(t) is feasible for SCLPTD with x(t) piecewise
constant. Let P be any refinement of the breakpoint partition for Ω(t). Then the
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natural solution Ω̂D for DPTD(P ) is feasible for DPTD(P ), and the objective function
values of the two solutions are the same in their respective linear programs.

Conversely, let P be any refinement of the initial breakpoint partition and suppose
that Ω̂D is feasible for DPTD(P ). Then the natural solution ω(t) for SCLPTD is
feasible for SCLPTD, and the objective function values of the two solutions are the
same in their respective linear programs.

Theorem 6.4. Suppose that ω(t) is feasible for SCLPTD with x(t) piecewise
constant. Let P be any refinement of the breakpoint partition for Ω(t). Then the
natural solution Ω̂ for APTD(P ) is feasible for APTD(P ), and the objective function
values of the two solutions are the same in their respective linear programs.

Conversely, let P = {t0, t1, . . . , tm} be any refinement of the initial breakpoint
partition and suppose that Ω̂ is feasible for APTD(P ). Then the natural solution ω(t)
for SCLPTD is feasible for SCLPTD, and the difference in the values of the objective
function is given by

α(Ω̂) ≡ ĈT Ω̂−
∫ T

0

c(t)x(t) dt =
m∑
i=1

τi
4

(X̂(ti−)− X̂(ti−1+))T Ċ(ti−).(10)

We now turn to the relationships between the dual problems. Now the standard
linear programming dual of APTD(P ) is

maximize
m∑
i=1

(Π̂(ti−1+) + Π̂(ti−))T (A(ti)−A(ui))

+
m∑
i=1

τi(Υ̂(ti−1+) + Υ̂(ti−))TB(ti−) + σT d

subject to C(ti−)− GT Π̂(ti−)−HT Υ̂(ti−) ≥ 0, i = 1, . . . ,m,

C(ti−1+)− GT Π̂(ti−1+)−HT Υ̂(ti−1+) ≥ 0, i = 1, . . . ,m,

Υ̂(ti−), Υ̂(ti−1+) ≤ 0, i = 1, . . . ,m,

Π̂(ti−)− Π̂(ti−1+) ≥ 0, i = 1, . . . ,m,

Π̂(ti+)− Π̂(ti−) ≥ 0, i = 1, . . . ,m− 1,

Π̂(t0+)− σ ≥ 0,(11)

Π̂(tm−)−DTσ ≤ 0.(12)

We eliminate the variable σ from the above dual. First, to eliminate it from the
constraints we recall the definition ofD, in particular thatD has nonnegative elements,
to combine (11) and (12). This gives DT Π̂(t0+) ≥ Π̂(tm−). Second, to eliminate σ
from the objective function, we note that dT = (a(0)T , 0T , . . . , 0T ) ≥ 0 if SCLPTD is
to have a feasible solution. Now if di > 0, then any optimal solution to the above dual
must have σi = Π̂(t0+). If di = 0, then the objective function of the above dual is
independent of σi. Hence, in this case as well, given an optimal solution to the above
dual exists, there is an optimal solution to the above problem with σi = Π̂(t0+). We
can thus replace the term σT d in the objective function by Π̂(t0+)T d. Hence we can
rewrite the above dual in the following equivalent form:

APTD*(P ): maximize

m∑
i=1

(Π̂(ti−1+) + Π̂(ti−))T (A(ti)−A(ui))
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+

m∑
i=1

τi(Υ̂(ti−1+) + Υ̂(ti−))TB(ti−) + Π̂(t0+)T d

subject to C(ti−)− GT Π̂(ti−)−HT Υ̂(ti−) ≥ 0, i = 1, . . . ,m,

C(ti−1+)− GT Π̂(ti−1+)−HT Υ̂(ti−1+) ≥ 0,

i = 1, . . . ,m,

Υ̂(ti−), Υ̂(ti−1+) ≤ 0, i = 1, . . . ,m,

Π̂(ti−)− Π̂(ti−1+) ≥ 0, i = 1, . . . ,m,

Π̂(ti+)− Π̂(ti−) ≥ 0, i = 1, . . . ,m− 1,

DT Π̂(t0+) ≥ Π̂(tm−).

We use the notation Θ̂ to denote a complete set of variables for APTD*(P ).
Now in [24] it was observed that AP*(P ), the dual of the discretization AP(P ) for

SCLP, was a discretization of SCLP*, the dual of SCLP. The only differences between
the duals of SCLP* and T2* are the extra constraints DTΠ(0) ≥ Π(1−) and the added
term Π(0)T d in the objective function. Similarly, the only differences between AP*(P )
and APTD*(P ) are the extra constraints DT Π̂(t0+) ≥ Π̂(tm−) and the added term
Π̂(t0+)T d in the objective function (there is also an additional term Π(t0+)TA(t0)
missing in the objective function of APTD*(P ), however, A(t0) = A(0) = 0 by
definition). Thus it is not difficult to see that APTD*(P ) is a discretization of T2* and
any result that is true between AP*(P ) and SCLP* is also true between APTD*(P )
and T2*. We now recall these results [24] and restate them in terms of SCLPTD.
Before doing this we define the natural connection between solutions to the dual
problems T2* and APTD*(P ).

Definition 6.5. Let P = {t0, t1, . . . , tm} be any refinement of the initial break-
point partition. Suppose that θ(t) is feasible for SCLPTD* and Θ(t) is piecewise
linear with breakpoints in P . We say that Θ̂, defined by

Θ̂(ti−1+) = Θ(ti−1+), i = 1, . . . ,m,

Θ̂(ti−) = Θ(ti−1−), i = 1, . . . ,m,

Θ̂(1) = Θ(1),

is the natural solution for APTD*(P ) (constructed from θ(t)).
Conversely, suppose now that Θ̂ is any feasible solution for APTD*(P ). Then we

say that θ(t), defined by

Θ(t) =

(
ti − t

ti − ti−1

)
Θ̂(ti−1+) +

(
t− ti−1

ti − ti−1

)
Θ̂(ti−)

for t ∈ [ti−1, ti) and i = 1, . . . ,m, and Θ(1)T = (Π(1)T ,Υ(1)T ) given by Π(1) = 0
and Υ(1) = Υ̂(tm−), is the natural solution for SCLPTD* (constructed from Θ̂).

We now have the following results.
Theorem 6.6. Let P be any refinement of the initial breakpoint partition. Sup-

pose that θ(t) is feasible for SCLPTD* and is piecewise linear with breakpoints in P .
Then the natural solution Θ̂ for APTD*(P ) is feasible for APTD*(P ), and the ob-
jective function values of the two solutions are the same in their respective linear
programs.

Conversely, suppose that Θ̂ is feasible for APTD*(P ). Then the natural solution
θ(t) for SCLPTD* is feasible for SCLPTD*, and the objective function values of the
two solutions are the same in their respective linear programs.
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Theorem 6.7. Let P be any partition of [0, T ] which contains the breakpoints of
the problem data. Then V [APTD(P )] ≤ V [SCLPTD*] ≤ V [SCLPTD].

Theorem 6.8. Suppose that ω(t) is feasible for SCLPTD and that the corre-
sponding Ω̂ is optimal for APTD(P ). Then ω(t) is optimal for SCLPTD.

Having discussed the properties of the discretizations DPTD(P ) and APTD(P )
we now extend the improvement step given in Pullan [24] to SCLPTD. Again, the
extension is quite trivial, so in most cases we merely state the results. As with the work
on SCLP, this step will form the basis of a class of algorithms for solving SCLPTD.

Let ω(t) be a feasible solution for SCLPTD such that x(t) is piecewise constant
and P any refinement of the breakpoint partition for Ω(t). Let Ω̂ be the natural
solution for APTD(P ). If Ω̂ is optimal for APTD(P ), then by Theorem 6.8, ω(t) is

optimal for SCLPTD. Otherwise we may construct an improved feasible solution ˆ̃Ω
for APTD(P ). Let

δ = ĈT ˆ̃Ω− ĈT Ω̂;

then δ < 0. Let ω̃(t) be the natural solution for SCLPTD constructed from ˆ̃Ω. Choose
ε ∈ [0, 1] and set εi = τiε. We now define a new feasible solution ω̄ε(t) for SCLPTD
by

X̄ε(t) =

{
X̃(t), t ∈ [ti−1, ti−1 + εi) ∪ [ti − εi, ti), i = 1, . . . ,m,

X(t), otherwise,

Ȳε(0) = (1− ε)Y (0) + εỸ (0),

with Ȳε(t) and Z̄ε(t) derived from the constraints of T2. We refer to this as patching
ω(t) and ω̃(t) together. The feasibility of ω̄ε(t) follows from the following theorem,
the proof of which is identical to the equivalent result in [24] (Lemma 4.1).

Theorem 6.9.

Ȳε(ti) = (1− ε)Y (ti) + εỸ (ti), i = 0, . . . ,m,

Ȳε(ti−1 + εi) = (1− ε)Y (ti−1) + εỸ (ui), i = 1, . . . ,m,

Ȳε(ti − εi) = (1− ε)Y (ti) + εỸ (ui), i = 1, . . . ,m.

Corollary 6.10. ω̄ε(t) is feasible for SCLPTD for all ε ∈ [0, 1].
Proof. By definition, Ω̄ε(t) satisfies all the constraints of T2 except possibly (3)

and the positivity constraints. However, the former is satisfied because it is satisfied
for both Ω(t) and Ω̃(t), and the above theorem shows that Ȳε(0) = (1−ε)Y (0)+εỸ (0)
and Ȳε(1) = (1− ε)Y (1) + εỸ (1). The positivity of Ω̄ε(t) also follows from the above
theorem and the positivity of Ω(t) and Ω̃(t).

Not only do we obtain a new feasible solution, but this solution also gives an
improvement over ω(t) in objective function value for appropriately chosen ε. Again
the proof is identical to corresponding ones in [24] (Lemma 4.3 and Corollary 4.5).

Theorem 6.11. For ε sufficiently small,
∫ T
0
c(t)T x̄ε(t) dt <

∫ T
0
x(t)Tx(t) dt and

min
ε

∫ T

0

c(t)T x̄ε(t) dt−
∫ T

0

c(t)Tx(t) dt =




δ2

4α
, α < 0 and

δ

2α
< 1,

δ − α, otherwise,
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where α = α( ˆ̃Ω) is given by (10), and occurs at

ε∗ =




δ

2α
, α < 0 and

δ

2α
< 1,

1, otherwise.

We refer to patching ω(t) and ω̃(t) together with ε = ε∗ above as patching ω(t)
and ω̃(t) together optimally.

We now have the following result.
Theorem 6.12. Let ω(t) be an optimal solution for SCLPTD and P be any

refinement of the breakpoint partition for Ω(t). Then the natural solution Ω̂ is optimal
for APTD(P ).

Proof. If not, then the algorithm above constructs an improved feasible solution
for T2 which gives an improved feasible solution for SCLPTD.

As with [24], strong duality under Assumption 6.1 is now immediate.
Theorem 6.13 (strong duality). Under Assumption 6.1, V [SCLPTD*] =

V [SCLPTD] and there exist a piecewise linear optimal solution for SCLPTD* and
an optimal extreme-point solution for SCLPTD in which x(t) is piecewise constant.

Proof. The existence of the appropriate optimal solution ω(t) for SCLPTD is given
by Theorem 4.1. Let P be the breakpoint partition for Ω(t). By Theorem 6.12 above,
the natural solution is optimal for APTD(P ). The result now follows by the strong
duality theorem for ordinary finite-dimensional linear programming and Theorems 6.6
and 6.7.

In Pullan [27] the equivalent result for SCLP was used as a starting point for the
development of an extensive duality theory for SCLP. In particular, strong duality
was proved under the assumption of piecewise analytic problem data. Such a result
is probably true for SCLPTD, however we do not pursue this matter here, as the
proof of the strong duality result in [27] is rather long and technical, and so a study
of duality for SCLPTD is best left as a topic for future research.

Instead, we now give a class of convergent algorithms for SCLPTD under Assump-
tion 6.1 based on the patching-together process above. The algorithms are similar to
those for SCLP in Pullan [29]. In particular, we propose the following class of algo-
rithms for SCLPTD.

0. Let P1 be the initial breakpoint partition and ω(0)(t) be any feasible solution
for SCLPTD such that Ω(0)(t) has breakpoints in P1. Let Ω̂(0) be the natural
solution for APTD(P1). Set n = 1.

1. If Ω̂(n−1) is optimal for APTD(Pn) then stop as ω(n−1)(t) is optimal for
SCLPTD (Theorem 6.8).

2. Optimize APTD(Pn) to produce ˆ̃Ω(n). Let ω̃(n)(t) be the natural solution for
SCLPTD.

3. Patch Ω(n−1)(t) and Ω̃(n)(t) together optimally to produce the improved so-
lution ω̄(n)(t) for SCLPTD.

4. Perform any other step to produce a feasible solution ω(n)(t) for SCLPTD
whose objective function value is at least as good as that of ω̄(n)(t).

5. Let Pn+1 be any refinement of the breakpoint partition for Ω(n)(t). Let Ω̂(n)

be the natural solution for APTD(Pn+1). Set n = n+1 and return to step 1.
We refer the reader to Pullan [29] for some suggestions for the general step 4.

The convergence of this general class of algorithms for SCLP was proved in [29].
The proof used the results from Pullan [24], most significantly, the formulae for the
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difference in objective function values of various solutions. In this section we have
given direct equivalents of all these results for SCLPTD. In particular, the formulae
in Theorems 6.4 and 6.11 are identical to those in [24] (that is, when the discretization
APTD(P ) is rewritten in the form of AP(P ) in Pullan [24], rather than in the form
of AP(P ) in Pullan [27] or Pullan [28]). Hence, convergence of the algorithm above
for SCLPTD follows by exactly the same proof as in [29]. We thus have the following
result.

Theorem 6.14. The algorithm above for SCLPTD converges for any implemen-
tation of step 4, i.e., either the algorithm converges in a finite number of steps with
an optimal solution, or

lim
n→∞

∫ T

0

c(t)x(n)(t) dt = V [SCLPTD].

7. Remarks. We now comment on the results obtained in this paper. From
a theoretical point of view they have been very satisfactory. It has been observed
that any theorem for SCLP can be extended with ease to give a similar theorem for
SCLPTD. While we have not extended all the results from SCLP, most notably the
extensive duality results in Pullan [27], we have no reason to suppose that they cannot
be extended. The main reason for not pursuing such matters here is to keep the length
of this paper to a manageable size.

There have also been several omissions in the extension of the work of SCLP to
SCLPTD from a more algorithmic point of view. Again, we envisage no problems
with such extensions. The omissions to which we are referring appear in Pullan [28],
Anderson and Pullan [9], Philpott and Craddock [23], and Pullan [30].

The first paper, Pullan [28], is concerned with an extended algorithm for SCLP
under the weaker assumption that the costs are general piecewise analytic functions,
rather than just piecewise linear. The algorithm in [28] is simplex-like in nature and
relies heavily on the duality theory in [27], which thus prevents any discussion of such
an algorithm for SCLPTD here.

The second paper, Anderson and Pullan [9], contains a purification algorithm
for SCLP, that is, an algorithm whereby a nonextreme-point solution is converted
into an extreme-point solution for SCLP without increasing the value of the objective
function. It has been observed that the use of a purification algorithm may be desirable
in solving SCLP efficiently under the standard assumption, Assumption 6.1, and, in
any case, it is necessary in the extended algorithm with piecewise analytic costs. Thus
purification for SCLPTD deserves attention.

The third paper, Philpott and Craddock [23], is concerned with a different class
of algorithms for solving SCLP than those in Pullan [24, 29] (although, strictly speak-
ing, [23] is only concerned with CNP). The authors call this class of algorithms adap-
tive discretization algorithms. This is because they use the properties of the dis-
cretization AP for SCLP to insert breakpoints at favorable times, thereby adapting
the discretization solved at each stage. The methods appear to give a fairly efficient
solution procedure. Similar adaptive discretization algorithms for SCLPTD, using the
properties of the discretization APTD, should be possible without much difficulty.

The final paper, Pullan [30], discusses a possible improved algorithm for SCLP
based on the previous work in Pullan [24, 29]. The initial study of this improved
algorithm suggests that it is very efficient. Again, a similar algorithm for SCLPTD
should be possible. The paper Pullan [30] also studies several SCLP-like problems
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which are converted into special cases of SCLP. They include SCLP with linear costs
on y(t), and SCLP with linear constraints on either y(t) or just y(T ). Equivalent
results in this area should also be possible for SCLPTD.

The results that we have presented in this paper of an algorithmic nature also
deserve further comment. In particular, we have extended the results in Pullan [24, 29]
without difficulty, and it may appear that we can solve SCLPTD with the same ease
as SCLP. However, we have to be a bit more cautious here. This is because the
algorithm is basically an algorithm for solving T2. A quick review of how this problem
was constructed will reveal that this problem could be very large in general. The first
stage of the transformation is to convert rational traversal times into integers by
scaling the time variable by some common denominator. This could make T very
large. The second stage then scales the dimensions of the variables by T , and so the
dimensions of the variables could also become very large. However, things might not
be as bad as they first seem.

First, in all the literature on discrete models of such problems, the traversal times
are integers. Thus no scaling is required in a continuous model of such a problem.
Second, the discrete model is always solved by solving the time-expanded network
problem, which is essentially DPTD(P ) with P set to the initial breakpoint partition.
The initial stages of our algorithm above will involve solving discretizations of roughly
the same size and, therefore, complexity. It is in the latter stages of the algorithm, as
more breakpoints are introduced, that we could have problems. However, if T is fairly
large to begin with (that is, in comparison with the traversal times), then we would
not expect the algorithm to introduce too many new breakpoints in order to produce
a near optimal solution, other than the points 1, 2, 3, . . . , T contained implicitly in T2.
Thus, in this case, we would expect that the time required to solve the continuous
problem is not excessively more than that required to solve the equivalent static one.
In any case, any algorithm for SCLPTD along the lines of those for SCLP developed
in previous work needs to be very careful in maintaining as few breakpoints as possible
in the current partition. We suspect that the extension of the algorithm in Pullan [30]
to SCLPTD offers the best chance of this. Any further discussion along these lines
obviously requires some numerical work.

Finally, we return to the starting point of this paper, namely network problems.
As was mentioned in the introduction, the general nature of SCLPTD meant that the
network structure of the problem was lost in the discussion. In order to regain this, we
could consider the results of this paper when SCLPTD is restricted to various network
problems, such as DNFP. Without going through several network problems in detail,
the main general comment that we can make concerns the algorithms of the previous
sections. This comment is that, in general, the discretizations DPTD and APTD
have the same structure as the continuous problem. Thus these discretizations are
single-commodity static network programs for the continuous problem DNFP. Simi-
larly, if the continuous problem is of a multicommodity or generalized network type,
then the discretizations will be static multicommodity or generalized network pro-
grams, respectively. Thus they can be solved efficiently using the specialized network
algorithms available for such problems.
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Abstract. The least mean squares (LMS) method for linear least squares problems differs
from the steepest descent method in that it processes data blocks one-by-one, with intermediate
adjustment of the parameter vector under optimization. This mode of operation often leads to faster
convergence when far from the eventual limit and to slower (sublinear) convergence when close to the
optimal solution. We embed both LMS and steepest descent, as well as other intermediate methods,
within a one-parameter class of algorithms, and we propose a hybrid class of methods that combine
the faster early convergence rate of LMS with the faster ultimate linear convergence rate of steepest
descent. These methods are well suited for neural network training problems with large data sets.
Furthermore, these methods allow the effective use of scaling based, for example, on diagonal or
other approximations of the Hessian matrix.
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1. Introduction. We consider least squares problems of the form

minimize f(x) =

m∑
i=1

fi(x)(1)

subject to x ∈ <n,

where <n denotes the n-dimensional Euclidean space and fi : <n → < are continu-
ously differentiable scalar functions on <n. A special case of particular interest to us
is the least squares problem

minimize
1

2

m∑
i=1

‖gi(x)‖2

subject to x ∈ <n,

where gi : <n → <ri , i = 1, . . . ,m, are continuously differentiable functions. Here we
write ‖z‖ for the usual Euclidean norm of a vector z; that is, ‖z‖ =

√
z′z, where prime

denotes transposition. We also write ∇f and ∇fi for the gradients of the functions
f and fi, respectively. Least squares problems often arise in contexts where the
functions gi correspond to data that we are trying to fit with a model parameterized
by x. Motivated by this context, we refer to each component fi as a data block , and
we refer to the entire collection (f1, . . . , fm) as the data set .

In problems where there are many data blocks, and particularly in neural network
training problems, gradient-like incremental methods are frequently used. In such
methods, one does not wait to process the entire data set before updating x; instead,
one cycles through the data blocks in sequence and updates the estimate of x after
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each data block is processed. Such methods include the Widrow–Hoff LMS algorithm
[WiH60], [WiS85], for the case of a linear least squares problem, and its extension to
nonlinear least squares problems. A cycle through the data set of this method starts
with a vector xk and generates xk+1 according to

xk+1 = ψm,

where ψm is obtained at the last step of the recursion

(2) ψ0 = xk, ψi = ψi−1 − αk∇fi(ψi−1), i = 1, . . . ,m,

and αk is a positive stepsize. Thus the method has the form

(3) xk+1 = xk − αk
m∑
i=1

∇fi(ψi−1).

We refer to this method, which is just the nonlinear version of the LMS algorithm, as
the incremental gradient method .

The above method should be contrasted with the steepest descent method, where
the data blocks fi and their gradients are evaluated at the same vector xk, that is,

(4) ψ0 = xk, ψi = ψi−1 − αk∇fi(xk), i = 1, . . . ,m,

so that the iteration consisting of a cycle over the entire data set starting from xk has
the form

(5) xk+1 = xk − αk
m∑
i=1

∇fi(xk) = xk − αk∇f(xk).

Incremental methods are supported by stochastic convergence analyses [PoT73],
[Lju77], [KuC78], [TBA86], [Pol87], [BeT89], [Whi89], [Gai94], [BeT96] as well as de-
terministic convergence analyses [Luo91], [Gri94], [LuT94], [MaS94], [Man93], [Ber95a],
[BeT96]. It has been experimentally observed that the incremental gradient method
(2)–(3) often converges much faster than the steepest descent method (5) when far
from the eventual limit. However, near convergence, the incremental gradient method
typically converges slowly because it requires a diminishing stepsize αk = O(1/k) for
convergence. If αk is instead taken to be a small constant, an oscillation within each
data cycle arises, as shown by [Luo91]. By contrast, for convergence of the steepest
descent method, it is sufficient that the stepsize αk is a small constant (this requires
that ∇f be Lipschitz continuous; see, e.g., [Pol87]). The asymptotic convergence rate
of steepest descent with a constant stepsize is typically linear and much faster than
that of the incremental gradient method.

The behavior described above is most vividly illustrated in the case of a linear
least squares problem where the vector x is one dimensional, as shown in the following
example.

Example 1. Consider the least squares problem

minimize f(x) =
1

2

m∑
i=1

(aix− bi)
2(6)

subject to x ∈ <,
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where ai and bi are given scalars with ai 6= 0 for all i. The minimum of each of the
data blocks

(7) fi(x) =
1

2
(aix− bi)

2

is

x∗i =
bi
ai
,

while the minimum of the least squares cost function f is

x∗ =

∑m
i=1 aibi∑m
i=1 a

2
i

.

It can be seen that x∗ lies within the range of the data block minima

(8) R =
[
min
i
x∗i , max

i
x∗i
]

and that for all x outside the range R the gradient

∇fi(x) = ai(aix− bi)

has the same sign as ∇f(x). As a result, the incremental gradient method given by

(9) ψi = ψi−1 − αk∇fi(ψi−1)

(cf. (2)) approaches x∗ at each step provided the stepsize αk is small enough. In fact
it is sufficient that

(10) αk ≤ min
i

1

a2
i

.

However, for x inside the region R, the ith step of a cycle of the incremental gradient
method, given by (9), need not make progress because it aims to approach x∗i but
not necessarily x∗. It will approach x∗ (for small enough stepsize αk) only if the
current point ψi−1 does not lie in the interval connecting x∗i and x∗. This induces
an oscillatory behavior within the region R, and as a result the incremental gradient
method will typically not converge to x∗ unless αk → 0. By contrast, it can be shown
that the steepest descent method, which takes the form

xk+1 = xk − αk
m∑
i=1

ai(aix
k − bi),

converges to x∗ for any constant stepsize satisfying

(11) αk ≤ 2∑m
i=1 a

2
i

.

However, unless the stepsize choice is particularly favorable, for x outside the region R,
a full iteration of steepest descent need not make more progress toward the solution
than a single step of the incremental gradient method. In other words, far from
the solution (outside R), a single pass through the entire data set by the incremental
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gradient method is roughly as effective as m passes through the data set by the steepest
descent method .

The analysis of the preceding example relies on x being one dimensional, but in
many multidimensional problems the same qualitative behavior can be observed. In
particular, a pass through the ith data block fi by the incremental gradient method
can make progress toward the solution in the region where the data block gradi-
ent ∇fi(ψi−1) makes an angle less than 90 degrees with the cost function gradient
∇f(ψi−1). If the data blocks fi are not “too dissimilar,” this is likely to happen in
a region that is not too close to the optimal solution set. For example, consider the
case of a linear least squares problem

(12) fi(x) =
1

2
‖Aix− bi‖2,

where the vectors bi and the matrices Ai are given. Then, it can be shown that
sufficiently far from the optimal solution, the direction ∇fi(x) used at the ith step
of a data cycle of the incremental gradient method will be a descent direction for the
entire cost function f if the matrix A′iAi

∑m
j=1A

′
jAj is positive definite in the sense

that

(13) x′A′iAi


 m∑

j=1

A′jAj


x > 0 ∀ x 6= 0.

This will be true if the matrices Ai are sufficiently close to each other with respect
to some matrix norm. One may also similarly argue on a heuristic basis that the
incremental gradient method will be substantially more effective than the steepest
descent method far from the solution if the above relation holds for a substantial
majority of the indices i.

It is also worth mentioning that a similar argument can be made in favor of incre-
mental versions of the Gauss–Newton method for least squares problems. These meth-
ods are closely related to the extended Kalman filter algorithm that is used extensively
in control and estimation contexts; see, e.g., [Ber95b], [Bel94], [Dav76], [WaT90].
However, like the incremental gradient method, incremental Gauss–Newton methods
also suffer from slow ultimate convergence because for convergence they require a di-
minishing stepsize [Ber95b]. Furthermore, for difficult least squares problems, such as
many neural network training problems, it is unclear whether Gauss–Newton methods
hold any advantage over gradient methods.

In this paper we introduce a class of gradient-like methods parameterized by a sin-
gle nonnegative constant µ. For the two extreme values µ = 0 and µ = ∞, we obtain
as special cases the incremental gradient and steepest descent methods, respectively.
Positive values of µ yield hybrid methods with varying degrees of incrementalism in
processing the data blocks. We also propose a time-varying hybrid method, where µ
is gradually increased from µ = 0 toward µ = ∞. This method aims to combine the
typically faster initial convergence rate of incremental gradient with the faster ulti-
mate convergence rate of steepest descent. It starts out as the incremental gradient
method (2)–(3), but gradually (based on algorithmic progress) it becomes less and
less incremental, and asymptotically it approaches the steepest descent method (5).
In contrast to the incremental gradient method, it uses a constant stepsize without
resulting in an asymptotic oscillation. We prove convergence and a linear rate of con-
vergence for this method in the case where the data blocks are positive semidefinite
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quadratic functions. Similar results can be shown for the case of nonquadratic data
blocks and a parallel asynchronous computing environment.

In addition to a linear convergence rate, the use of a constant stepsize offers
another important practical advantage: it allows a more effective use of scaling based,
for example, on approximations of the Hessian matrix. Our experience shows that our
method performs better than both the incremental gradient and the steepest descent
method, particularly when scaling is used.

2. The new incremental gradient method. We embed the incremental gra-
dient method (2)–(3) and the steepest descent method (5) within a one-parameter
family of methods for the least squares problem. Let us fix a scalar µ ≥ 0. Consider
the method which given xk generates xk+1 according to

(14) xk+1 = ψm,

where ψm is generated at the last step of the algorithm

(15) ψi = xk − αkhi, i = 1, . . . ,m,

and the vectors hi are defined as follows:

(16) hi =
i∑

j=1

wij(µ)∇fj(ψj−1), i = 1, . . . ,m,

where

(17) ψ0 = xk,

and

(18) wij(µ) =
1 + µ+ · · ·+ µi−j

1 + µ+ · · ·+ µm−j
, i = 1, . . . ,m, 1 ≤ j ≤ i.

It can be verified using induction that the vectors hi can be generated recursively
using the formulas

(19) hi = µhi−1 +

i∑
j=1

ξj(µ)∇fj(ψj−1), i = 1, . . . ,m,

where h0 = 0 and

(20) ξi(µ) =
1

1 + µ+ · · ·+ µm−i
, i = 1, . . . ,m.

Thus the computation of hi using (19) requires (essentially) no more storage or over-
head per iteration than either the steepest descent method (5) or the incremental
gradient method (2)–(3).

Note that since

wmj(µ) = 1, j = 1, . . . ,m,

it follows using (15)–(16) that the vector ψm obtained at the end of a pass through
all the data blocks is

(21) ψm = xk+1 = xk − αkhm = xk − αk
m∑
j=1

∇fj(ψj−1).
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In the special case where µ = 0, we have wij(µ) = 1 for all i and j, and by comparing
(15), (18), (2), and (3) we see that the method coincides with the incremental gradient
method (2)–(3). In the case where µ→∞, we have from (15), (18), and (19) wij(µ) →
0, hi → 0, and ψi → xk for i = 0, 1, . . . ,m− 1, so by comparing (21) and (5) we see
that the method approaches the steepest descent method (5). Generally, it can be
seen that as µ increases the method becomes “less incremental.”

We first prove a convergence result for the method (13)–(17) for the case where µ
is fixed and each data block fi is positive semidefinite quadratic. This covers the case
of a linear least squares problem. In particular, we show that if the stepsize αk is a
sufficiently small constant, the algorithm asymptotically oscillates around the optimal
solution. However, the “size” of the oscillation diminishes as either α → 0 and µ is
constant or as α is constant and µ → ∞. If the stepsize is diminishing of the form
αk = O(1/k), the method converges to the minimum for all values of µ.

Proposition 2.1. Suppose that the functions fi have the form

fi(x) =
1

2
x′Qix− c′ix, i = 1, . . . ,m,

where Qi are given positive semidefinite symmetric matrices and ci are given vectors.
Consider the algorithm (cf. (13)–(17))

(22) xk+1 = ψm,

where

(23) ψ0 = xk, ψi = xk − αkhi, i = 1, . . . ,m,

(24) h0 = 0, hi = µhi−1 +
i∑

j=1

ξj(µ)(Qjψj−1 − cj), i = 1, . . . ,m.

Assume that
∑m

j=1Qj is a positive definite matrix, and let x∗ be the optimal solution
of (1). Then the following hold:

(a) For each µ ≥ 0, there exists α(µ) > 0 such that if αk is equal to some constant
α ∈ (0, α(µ)] for all k, {xk} converges to some vector x(α, µ), and we have
limα→0+ x(α, µ) = x∗. Furthermore, there exists α > 0 such that α ≤ α(µ)
for all µ ≥ 0, and for all α ∈ (0, α] we have limµ→∞ x(α, µ) = x∗.

(b) For each µ ≥ 0, if αk > 0 for all k and

(25) αk → 0,
∞∑
k=0

αk = ∞,

then {xk} converges to x∗.
Proof. (a) We first note that from (21) we have

xk+1 = xk − α
m∑
j=1

(Qjψj−1 − cj),

so by using the definition ψj−1 = xk − αhj−1 we obtain

(26) xk+1 = xk − α
m∑
j=1

(Qjx
k − cj) + α2

m∑
j=1

Qjhj−1.
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We next observe that from (18) and the definition ψj−1 = xk − αhj−1 we have
for all i

hi =
i∑

j=1

wij(µ)(Qjψj−1 − cj)(27)

=
i∑

j=1

wij(µ)Qjx
k − α

i∑
j=1

wij(µ)Qjhj−1 −
i∑

j=1

wij(µ)cj .

From this relation it can be seen inductively that for all i, hi can be written as

(28) hi =
i∑

j=1

wij(µ)Qjx
k −

i∑
j=1

wij(µ)cj + αRi(α, µ)xk + αri(α, µ),

where Ri(α, µ) and ri(α, µ) are some matrices and vectors, respectively, depending
on α and µ. Furthermore, using (27) and the fact that wij(µ) ∈ (0, 1] for all i, j, and
µ ≥ 0, we have that for any bounded interval T of stepsizes α there exist positive
uniform bounds R and r for ‖Ri(α, µ)‖ and ‖ri(α, µ)‖; that is,

(29) ‖Ri(α, µ)‖ ≤ R, ‖ri(α, µ)‖ ≤ r ∀ i, µ ≥ 0, α ∈ T.

From (26), (28), and (29) we obtain

(30) xk+1 = A(α, µ)xk + b(α, µ),

where

(31) A(α, µ) = I − α

m∑
j=1

Qj + α2S(α, µ),

(32) b(α, µ) = α

m∑
j=1

cj + α2s(α, µ),

I is the identity matrix, and the matrix S(α, µ) and the vector s(α, µ) are uniformly
bounded over µ ≥ 0 and any bounded interval T of stepsizes α; that is, for some
scalars S and s,

(33) ‖S(α, µ)‖ ≤ S, ‖s(α, µ)‖ ≤ s ∀ µ ≥ 0, α ∈ T.

Let us choose the interval T to contain small enough stepsizes so that for all µ ≥ 0
and α ∈ T , the eigenvalues of A(α, µ) are all strictly within the unit circle; this is
possible since

∑m
j=1Qj is assumed positive definite and (31) and (33) hold. Define

(34) x(α, µ) =
(
I −A(α, µ)

)−1
b(α, µ).

Then b(α, µ) =
(
I − A(α, µ)

)
x(α, µ), and by substituting this expression in (30) it

can be seen that

xk+1 − x(α, µ) = A(α, µ)
(
xk − x(α, µ)

)
,
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from which

xk+1 − x(α, µ) = A(α, µ)k
(
x0 − x(α, µ)

) ∀ k.

Since all the eigenvalues ofA(α, µ) are strictly within the unit circle, we haveA(α, µ)k →
0, so xk → x(α, µ).

To prove that limα→0 x(α, µ) = x∗, we first calculate x∗. We set the gradient of
f to 0 to obtain

m∑
j=1

(Qjx
∗ − cj) = 0,

so that

(35) x∗ =


 m∑
j=1

Qj



−1

m∑
i=1

cj .

Then we use (34) to write x(α, µ) =
(
I/α−A(α, µ)/α

)−1(
b(α, µ)/α

)
, and we see from

(31) and (32) that

lim
α→0

x(α, µ) =


 m∑

j=1

Qj



−1

m∑
i=1

cj = x∗.

To prove that limµ→∞ x(α, µ) = x∗, we note that since limµ→∞ wij(µ) = 0 for
i = 1, . . . ,m−1, it follows from (16) that hj−1 tends to 0 as µ→∞ for j = 1, . . . ,m−1.
Using this fact in conjunction with (26) and (30)–(32) it follows that

lim
µ→∞S(α, µ) = 0, lim

µ→∞ s(α, µ) = 0.

From (31), (32), and (34) we then obtain

lim
µ→∞x(α, µ) =


α

m∑
j=1

Qj



−1
α

m∑
j=1

cj


 = x∗.

(b) We need the following well-known lemma (for a proof, see [Luo91], [Ber95a],
[BeT96]).

Lemma 2.1. Suppose that {ek} and {γk} are nonnegative sequences and c is a
positive constant such that

ek+1 ≤ (1− γk)ek + c(γk)2, γk ≤ 1, k = 0, 1 . . . ,

and

γk → 0,

∞∑
k=0

γk = ∞.

Then ek → 0.
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Returning to the proof of Proposition 2.1, from (21) and (30)–(32) we have

(36) xk+1 = xk − αk
m∑
j=1

(Qjx
k − cj) + (αk)2S(αk, µ)(xk − x∗) + (αk)2ek,

where

(37) ek = S(αk, µ)x∗ + s(αk, µ).

Using also the expression (35) for x∗, we can write (36) as

(38) xk+1 − x∗ =


I − αk

m∑
j=1

Qj + (αk)2S(αk, µ)


 (xk − x∗) + (αk)2ek.

For large enough k, the eigenvalues of αk
∑m

j=1Qj are bounded from above by 1, and

hence the matrix I − αk
∑m

j=1Qj is positive definite. Without loss of generality, we
assume that this is so for all k. Then we have

(39)

∥∥∥∥∥∥

I − αk

m∑
j=1

Qj


 (xk − x∗)

∥∥∥∥∥∥ ≤ (1− αkA)‖xk − x∗‖,

where A is the smallest eigenvalue of
∑m

j=1Qj . Let also B and δ be positive scalars
such that for all k we have

(40)
∥∥S(αk, µ)(xk − x∗)

∥∥ ≤ B‖xk − x∗‖, ‖ek‖ ≤ δ.

Combining (38)–(40), we have

(41)

‖xk+1 − x∗‖ ≤
∥∥∥∥∥∥

I − αk

m∑
j=1

Qj


 (xk − x∗)

∥∥∥∥∥∥+ (αk)2
∥∥S(αk, µ)(xk − x∗)

∥∥+ (αk)2‖ek‖

≤ (1− αkA+ (αk)2B)‖xk − x∗‖+ (αk)2δ.

Let k be such that αkB ≤ A/2 for all k ≥ k. Then from (41) we obtain

‖xk+1 − x∗‖ ≤ (1− αkA/2)‖xk − x∗‖+ (αk)2δ ∀ k ≥ k,

and Lemma 2.1 can be used to show that ‖xk − x∗‖ → 0.
The following proposition shows that if µ is increased toward ∞ at a sufficiently

fast rate, the sequence {xk} generated by the method with a constant stepsize con-
verges at a linear rate.

Proposition 2.2. Suppose that in the kth iteration of the method (14)–(18), a
k-dependent value of µ, say µ(k), and a constant stepsize αk = α are used. Under
the assumptions of Proposition 2.1, if for some q > 1 and all k greater than some
index k, we have µ(k) ≥ qk, then there exists α > 0 such that for all α ∈ (0, α] and k
we have ‖xk − x∗‖ ≤ p(α)β(α)k, where p(α) > 0 and β(α) ∈ (0, 1) are some scalars
depending on α.

Proof. We first note that the proof of Proposition 2.1(a) can be modified to show
that there exists α > 0 such that for all α ∈ (0, α] we have xk → x∗. We also note



922 DIMITRI P. BERTSEKAS

that if for some q > 1, we have µ(k) ≥ qk for k after some index k, then for all i < m
and j ≤ i we have

(42) wij
(
µ(k)

)
= O(γk),

where γ is some scalar with γ ∈ (0, 1).
We next observe that similar to the derivation of (38) we have

(43) xk+1 − x∗ =


I − α

m∑
j=1

Qj + α2S
(
α, µ(k)

) (xk − x∗) + α2ek,

where

(44) ek = S
(
α, µ(k)

)
x∗ + s

(
α, µ(k)

)
.

From (27), we see that hi can be written as a finite number of terms of bounded norm,
which are multiplied by some term wij(µ(k)). Thus, in view of (42), for i < m we
have ‖hi‖ = O(γk), which by comparing (27) and (28) implies that for all i

‖Ri

(
α, µ(k)

)‖ = O(γk), ‖ri
(
α, µ(k)

)‖ = O(γk).

It follows that

(45) ‖S(α, µ(k)
)‖ = O(γk), ‖s(α, µ(k)

)‖ = O(γk).

From (44) we then obtain

(46) ‖ek‖ = O(γk).

From (43), (45), and (46), we obtain

‖xk+1 − x∗‖ ≤ (|1− αδ|+O(γk)
)‖xk − x∗‖+ α2O(γk),

where δ is the minimum eigenvalue of
∑m

j=1Qj . This relation implies the desired rate
of convergence result.

There are a number of fairly straightforward extensions of the methods and the
results just presented.

(1) When the data blocks are nonquadratic, stationarity of the limit points of se-
quences {xk} generated by the method (13)–(17) can be shown under certain
assumptions (including Lipschitz continuity of the data block gradients) for
the case of a fixed µ and the stepsize αk = γ/(k+ δ), where γ and δ are posi-
tive scalars. Contrary to the case of quadratic data blocks, γ may have to be
chosen sufficiently small to guarantee boundedness of {xk}. The convergence
proof is similar to the one of the preceding proposition, but it is technically
more involved. In the case where the stepsize is constant, µ → ∞, and the
data blocks are nonquadratic, it is also possible to show a result analogous
to Proposition 2.2, but again the proof is technically complex and will not be
given.

(2) Convergence results for parallel asynchronous versions of our method can be
given, in the spirit of those in [TBA86], [BeT89, Chap. 7], and [MaS94]. These
results follow well-established methods of analysis that rely on the stepsize
being sufficiently small.
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(3) Variations of our method involving a quadratic momentum term are possible.
The use of such terms dates to the heavy ball method of Poljak (see [Pol64],
[Pol87], [Ber95a]) in connection with the steepest descent method and has be-
come popular in the context of the incremental gradient method, particularly
for neural network training problems (see [MaS94] for an analysis).

(4) Diagonal scaling of the iterations generating ψi is possible by replacing the
equation ψi = xk − αkhi (cf. (15)) with the equation

ψi = xk − αkDhi, i = 1, . . . ,m,

where D is a positive-definite symmetric matrix. A common approach is
to use a diagonal matrix D whose diagonal elements are the inverses of the
corresponding diagonal elements of the Hessian of the cost function

m∑
j=1

∇2fj(ψj−1).

An important advantage of this type of diagonal scaling is that it simplifies
the choice of a constant stepsize; a value of stepsize equal to 1 or a little
smaller typically works well. Diagonal scaling is often beneficial for steepest
descent-like methods that use a constant stepsize but is not as helpful for the
incremental gradient method because the latter uses a variable (diminishing)
stepsize. For this reason diagonal scaling should be typically more effective
for the constant stepsize methods proposed here than for the incremental
gradient method. This was confirmed in our computational experiments;
see also the discussion of the next section. For this reason, we believe that
for problems where diagonal scaling is important for good performance our
constant stepsize methods have a significant advantage over the LMS and the
incremental gradient methods.

3. Implementation and experimentation. Let us consider algorithms where
µ is iteration dependent and is increased with k toward ∞. While Proposition 2.2
suggests that a linear convergence rate can be obtained by keeping α constant, we have
found in our experimentation that it may be important to change α simultaneously
with µ when µ is still relatively small. In particular, as the problem of Example 1
suggests, when µ is near 0 and the method is similar to the incremental gradient
method, the stepsize should be larger, while when µ is large, the stepsize should be
of comparable magnitude to the corresponding stepsize of steepest descent.

The formula for ξi(µ) suggests that for µ ≤ 1 the incremental character of the
method is strong, so we have experimented with a µ-dependent stepsize formula of
the form

(47) α(µ) =

{
γ if µ > 1,(
1 + φ(µ)

)
γ if µ ∈ [0, 1].

Here γ is the stepsize that works well with the steepest descent method and should be
determined to some extent by trial and error (if diagonal scaling is used, then a choice
of γ close to 1 often works well). The function φ(µ) is a monotonically decreasing
function with

(48) φ(0) = ζ, φ(1) = 0,
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where ζ is a scalar in the range [0,m− 1]. Examples are

(49) φ(µ) = ζ(1− µ), φ(µ) = ζ(1− µ2), φ(µ) = ζ(1−√µ).

In some of the variations of the method that we experimented with, the scalar ζ
was decreased by a certain factor each time µ was increased. Generally, with µ-
dependent stepsize selection of the form (49) and diagonal scaling, we have found
the constant stepsize methods proposed here far more effective than the incremental
gradient method that uses the same diagonal scaling and a diminishing stepsize.

Regarding the rule for increasing µ, we have experimented with schemes that
start with µ = 0 and update µ according to a formula of the form

µ := βµ+ δ,

where β and δ are fixed positive scalars with β > 1. The update of µ takes place at
the start of a data cycle following the computation of xk+1 if either

(50) ‖xk+1 − xk‖ ≤ ε,

where ε is a fixed tolerance, or n̂ data cycles have been performed since the last update
of µ, where n̂ is an integer chosen by trial and error. This criterion tries to update µ
when the method appears to be making little further progress at the current level of
µ but also updates µ after a maximum specified number n̂ of data cycles have been
performed with the current µ.

We noted one difficulty with the method. When the number of data blocks m
is large, the calculation of ξi(µ) using (20) involves high powers of µ. This tends
to introduce substantial numerical error when µ is substantially larger than 1. To
get around this difficulty, we modified the method by lumping together an increasing
number of data blocks (the minimum number of terms in a data block was incre-
mented by 1) each time µ was increased to a value above 1. This device effectively
reduces the number of data blocks m and keeps the power µm bounded. In our com-
putational experiments, it has eliminated the difficulty with numerical errors without
substantially affecting the performance of the method.

Finally, let us try to compare the diagonally scaled version of our method with
the diagonally scaled incremental gradient method given by

(51) xk+1 = xk − αkD

m∑
j=1

∇fj(ψj−1),

where ψi is generated by

(52) ψi = xk − αkD
i∑

j=1

∇fj(ψj−1).

We assume that D is a diagonal approximation of the inverse Hessian of f . It is
difficult to draw definitive conclusions regarding the two methods because their per-
formance depends a lot on various tuning parameters. In particular, it is very difficult
to compare the methods using computational results with only a few test problems,
and this will not be attempted. On the other hand, it is helpful to consider some
extreme problem cases.
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(1) Problems where diagonal scaling is effective because the Hessian matrix of f
is nearly diagonal. For such problems, both methods can be very fast with
proper tuning of the stepsize parameters. On the other hand the incremental
gradient method after a few iterations slows down because of the diminishing
stepsize. By contrast, our method maintains its rate of convergence, and,
indeed, once µ reaches high values and when αk ≈ 1, it may become even
faster than in the early iterations where µ is small, because for large µ it
effectively approximates Newton’s method.

(2) Problems where diagonal scaling is ineffective because the Hessian matrix of
f is not nearly diagonal and is ill conditioned. Then both methods will likely
be slow regardless of how they are tuned. On the other hand the convergence
rate of the incremental gradient method will continually deteriorate because
of the diminishing stepsize, while our method will at least maintain a (slow)
linear convergence rate.

(3) Problems that do not fall in the preceding categories but which have “ho-
mogeneous” data blocks, that is, problems where the Hessian matrices ∇2fi
of the data blocks are not too dissimilar. Then incrementalism is likely to
be very beneficial (think of the extreme case where all the data blocks are
identical). For such problems the incremental gradient method may have an
edge in the early iterations because of its greater degree of incrementalism,
although asymptotically our method maintains the advantage of the linear
convergence rate.

(4) Problems that do not fall in the preceding categories, but which have “inho-
mogeneous” data blocks, where the Hessian matrices ∇2fi of the data blocks
are quite dissimilar. Then our method is likely to have an advantage over the
incremental gradient method, because it gradually becomes nonincremental,
while maintaining a nondiminishing stepsize and the attendant linear conver-
gence rate.

The preceding arguments, while speculative, are consistent with the results of
the author’s experimentation. However, a far more comprehensive experimentation
as well as experience with real-world problems is needed to support the preceding
conclusions and to assess more reliably the merits of the method proposed.
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Abstract. In a recent paper, Dennis, El-Alem, and Maciel proved global convergence to a sta-
tionary point for a general trust-region-based algorithm for equality-constrained optimization. This
general algorithm is based on appropriate choices of trust-region subproblems and seems particularly
suitable for large problems.

This paper shows global convergence to a point satisfying the second-order necessary optimality
conditions for the same general trust-region-based algorithm. The results given here can be seen as
a generalization of the convergence results for trust-regions methods for unconstrained optimization
obtained by Moré and Sorensen. The behavior of the trust radius and the local rate of conver-
gence are analyzed. Some interesting facts concerning the trust-region subproblem for the linearized
constraints, the quasi-normal component of the step, and the hard case are presented.

It is shown how these results can be applied to a class of discretized optimal control problems.

Key words. equality-constrained optimization, trust regions, SQP methods, second-order nec-
essary optimality conditions, local rate of convergence, hard case
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1. Introduction. Trust-region algorithms have been proved to be efficient and
robust techniques to solve unconstrained optimization problems. An excellent survey
in this area is Moré [22]. Other classical references for convergence results are Carter
[3], Moré and Sorensen [23], Powell [26], and Shultz, Schnabel, and Byrd [29]. The
standard techniques to handle the trust-region subproblems are the dogleg algorithm
(Powell [25]), conjugate gradients (Steihaug [32] and Toint [33]), and Newton-like
methods for the computation of locally constrained optimal steps (Gay [15], Moré
and Sorensen [23], and Sorensen [30]). See also the book of Dennis and Schnabel [9].
Recent new algorithms to compute a locally constrained optimal step (in other words a
step that satisfies a fraction of optimal decrease on the trust-region subproblem) that
are very promising for large problems have been proposed by Rendl and Wolkowicz
[28] and Sorensen [31].

Since the mid eighties a significant effort has been made to address the equality-
constrained optimization problem. References are Celis, Dennis, and Tapia [4], Vardi
[34] (see also El-Hallabi [14]), Byrd, Schnabel, and Shultz [2], Powell and Yuan [27],
and El-Alem [13]. The fundamental questions associated with the application of trust-
region algorithms to equality-constrained optimization are the decomposition of the
step, the choice of the trust-region subproblems, and the choice of the merit function.
During the first stages of the research conducted in this area it was not clear how to
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answer these questions properly. However, if we examine carefully the most recent
references (Byrd and Omojokon [24], Dennis, El-Alem, and Maciel [7], El-Alem [12],
[13], and Lalee, Nocedal, and Plantenga [21]) we can observe the same decomposition
of the step (in its normal, or quasi-normal, and tangential components) and the same
trust-region subproblems (the trust-region subproblem for the linearized constraints
and the trust-region subproblem for the Lagrangian reduced to the tangent subspace).
This is explained in great detail in section 2 of this paper. As in the unconstrained
case, the conditions that each component has to satisfy and the way they are computed
might of course differ from algorithm to algorithm. We can see also in these most
recent references that the merit function used is either the `2 penalty function without
constraint term squared (cases of [21], [24]) or the augmented Lagrangian function
(in [7], [12], [13]).

Consider now the equality-constrained optimization (ECO) problem

minimize f(x)

subject to C(x) = 0,
(1.1)

where f : R
n −→ R, ci : R

n −→ R, i = 1, . . . ,m, C(x) = (c1(x) · · · cm(x))T , and
m < n. The functions f and ci, i = 1, . . . ,m, are assumed to be at least twice
continuously differentiable in the domain of interest.

In [7], Dennis, El-Alem, and Maciel have considered a general trust-region-based
algorithm for the solution of the ECO problem (1.1). This general algorithm is very
much like the algorithm proposed by Byrd and Omojokon [24].1 As mentioned before,
each step s is decomposed as sn + st, where sn is the quasi-normal component of
the step, associated with the trust-region subproblem for the linearized constraints
and st is the tangential component, associated with the trust-region subproblem for
the Lagrangian reduced to the tangent subspace. Each component of the step is
required to satisfy only a fraction of Cauchy decrease on the corresponding trust-
region subproblem. Another key feature of this general algorithm is the choice of the
augmented Lagrangian as a merit function and the use of the El-Alem’s scheme [11]
to update the penalty parameter. Under appropriate assumptions, it can be shown
that there exists a subsequence of iterates driving to zero the norm of the residual of
the constraints and the norm of the gradient of the Lagrangian reduced to the tangent
subspace (see [7, section 8]). It is important to remark that this global convergence
result is obtained under very mild conditions on the components of the step, on the
multipliers estimates, and on the Hessian approximations. Thus, the Dennis, El-
Alem, and Maciel [7] result is similar to the global result given by Powell [26] for
unconstrained optimization.

One of the purposes of this paper is to show global convergence to a point sat-
isfying the second-order necessary optimality conditions for this class of algorithms.
Our result is similar to the results established by Moré and Sorensen [23], [30] for
trust-region algorithms for unconstrained optimization. We accomplish this here by
imposing a fraction of optimal decrease on the tangential component st of the step, by
using exact second-order information, and by imposing conditions on the quasi-normal
component sn and on the Lagrange multipliers.

In [2], Byrd, Schnabel, and Shultz have proposed a trust-region algorithm for
equality-constrained optimization and established global convergence to a point satis-
fying the second-order necessary optimality conditions. However, this algorithm does

1 The thesis [24] was directed by Professor R. H. Byrd. The trust-region algorithm proposed here
is usually referred as the Byrd and Omojokon algorithm.
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not belong to the class of trust-region algorithms considered here, and their result is
obtained with the use of the (exact) normal component and the least-squares multipli-
ers update which we do not require in this paper. Other differences are that they use
the `1 penalty function as the merit function and the analysis is carried out by using
an orthogonal null-space basis. In recent papers, Coleman and Yuan [6] and El-Alem
[12] have proposed trust-region algorithms for which they prove global convergence to
points satisfying first-order and second-order necessary optimality conditions. Their
algorithms use the (exact) normal component, an orthogonal null-space basis, and the
least-squares multipliers update.

The conditions we need to impose to assure that a limit point of the sequence of
iterates satisfies the second-order necessary optimality conditions are

∇x`(xk, λk)
T snk = O(δk‖C(xk)‖) and ‖∆λk‖ = ‖λk+1 − λk‖ = O(δk),

where `(x, λ) = f(x) + λTC(x), snk is the quasi-normal component of the step sk,
and δk is the trust-region radius. In the case where ‖C(xk)‖ is small compared
with δk, the first condition implies that any increase of the quadratic model of the
Lagrangian from xk to xk + snk is O(δ2

k). To see why this is relevant recall that a

fraction of optimal decrease is being imposed on the tangential component stk yielding
a decrease of O(δ2

k) on the quadratic model. The second condition is needed for the
same reasons because ∆λk also appears in the definition of predicted decrease. We
show that both conditions are satisfied when either (i) the (exact) normal component
and the least-squares multipliers are used; or (ii) the most reasonable choices of quasi-
normal component and multipliers are made for a class of discretized optimal control
problems. The former result is in agreement with the result obtained by El-Alem [12].

Gill, Murray, and Wright [17] and El-Alem [10] considered in their analyses that
∇x`(xk, λk) is O(‖sk‖). In the latter work this assumption is used to prove local con-
vergence results, and in the former to establish properties of an augmented Lagrangian
merit function. We point out that this assumption implies that ∇x`(xk, λk)

T snk is
O(δk‖C(xk)‖) since sk is O(δk) and we assume that snk is O(‖C(xk)‖).

We also prove that if the algorithm converges to a point where the reduced Hessian
is positive definite, then the penalty parameter ρk is uniformly bounded and the
trust-region radius δk is uniformly bounded away from zero, a desired property of a
trust-region algorithm. In this case, particular choices of the multipliers and of the
components sn and st lead us to a q-quadratic rate of convergence in x.

A detailed treatment of the global convergence theory is given in Vicente [35].
The structure of the trust-region subproblem for the linearized constraints can

be exploited to obtain some interesting results. We introduce a quasi-normal com-
ponent that satisfies a fraction of optimal decrease on the trust-region subproblem
for the linearized constraints. We show that the (exact) normal component shares
this property. We also prove that if the algorithm is well behaved (for instance, if
the trust radius is uniformly bounded away from zero), then this subproblem has a
natural tendency to fall into the so-called hard case.

We review the notation used in this paper. The Lagrangian function associated
with the ECO problem (1.1) is defined by `(x, λ) = f(x) + λTC(x), where λ ∈
R
m is the Lagrange multiplier vector. The matrix ∇C(x) is given by ∇C(x) =

(∇c1(x) · · · ∇cm(x)), where ∇ci(x) represents the gradient of the function ci(x). Let
∇2f(x) and ∇2ci(x) be the Hessian matrices of f(x) and ci(x), respectively. We use
subscripted indices to represent the evaluation of a function at a particular point of
the sequences {xk} and {λk}. For instance, fk represents f(xk) and `k is the same
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as `(xk, λk). The vector and matrix norms used are the `2 norms, and Il represents
the identity matrix of order l. Finally, λ1(A) denotes the smallest eigenvalue of the
symmetric matrix A.

The structure of this paper is as follows. In section 2, we introduce the trust-
region subproblems and outline the general trust-region algorithm and the general
assumptions. In section 3, we present the global convergence theory. A class of
discretized optimal control problems is introduced in section 4 as a justification for
the general form of our algorithms and theory. In sections 5 and 6, we analyze
respectively the behavior of the trust radius and the local rates of convergence. The
trust-region subproblem for the linearized constraints is studied in section 7. We end
this paper with some summary conclusions.

2. Algorithm and general assumptions. The trust-region algorithm ana-
lyzed by Dennis, El-Alem, and Maciel [7] for the solution of the ECO problem (1.1)
consists of computing, at each iteration k, a step sk decomposed as sk = snk + stk,

where the components snk and stk are required to satisfy given conditions. If the step
sk is accepted, the algorithm continues by setting xk+1 to xk + sk. If the step is
rejected then xk+1 = xk.

2.1. Decomposition of the step. Suppose that ‖Ck‖ 6= 0. The component
snk is called the quasi-normal (or quasi-vertical) component of sk and is required to
satisfy a fraction of Cauchy decrease on the trust-region subproblem for the linearized
constraints defined by

minimize 1
2‖∇CT

k s
n + Ck‖2

subject to ‖sn‖ ≤ rδk,

where r ∈ (0, 1) and δk is the trust radius. In other words, snk has to satisfy

‖Ck‖2 − ‖∇CT
k s

n
k + Ck‖2 ≥ σn (‖Ck‖2 − ‖∇CT

k cnk + Ck‖2
)
,(2.1)

where σn > 0 and cnk is the so-called Cauchy point for this trust-region subproblem,
i.e., cnk is the optimal solution of

minimize 1
2‖∇CT

k c
n + Ck‖2

subject to cn ∈ span{−∇CkCk},
‖cn‖ ≤ rδk,

and therefore

cnk =

{
− ‖∇CkCk‖2
‖∇CT

k
∇CkCk‖2∇CkCk if ‖∇CkCk‖3

‖∇CT
k
∇CkCk‖2 ≤ rδk,

− rδk
‖∇CkCk‖∇CkCk otherwise.

The component snk is also required to satisfy the condition

‖snk‖ ≤ κ1‖Ck‖,(2.2)

where κ1 is a positive constant independent of the iterate k of the algorithm. This
condition is saying that close to feasibility the quasi-normal component has to be
small.
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In this paper, we require the quasi-normal component snk also to satisfy

∇x`
T
k s

n
k ≤ κ2‖Ck‖δk,(2.3)

where κ2 is a positive constant independent of the iterates. The important conse-
quence of this condition is that if ‖Ck‖ is small compared with δk, then any increase
of the quadratic model of the Lagrangian along the quasi-normal component snk is of
O(δ2

k).
The two choices of snk given in sections 4.1 and 4.2 satisfy conditions (2.1), (2.2),

and (2.3). Other choices have been suggested in [7], [20].
The component stk is the tangential (or horizontal) component, and it must satisfy

∇CT
k s

t
k = 0;

i.e., it must lie in the null space N (∇CT
k ) of ∇CT

k . Let Wk be an n× (n−m) matrix
whose columns form a basis for N (∇CT

k ). Let also

qk(s) = `k +∇x`k
T s +

1

2
sTHks

be a quadratic model of ` at (xk, λk), where Hk is an approximation to ∇2
xx`(xk, λk).

Since for any st ∈ N (∇CT
k ), there exists a s̄t ∈ R

n−m such that st = Wks̄
t, we

consider also q̄tk(s̄
t), which is given by

q̄tk(s̄
t) = qk(s

n
k + Wks̄

t) = qk(s
n
k ) + ḡTk s̄

t +
1

2
(s̄t)T H̄k(s̄

t)

with H̄k = WT
k HkWk, ḡk = WT

k ∇qk(snk ) and qk(s
n
k ) = `k+∇x`k

T snk + 1
2 (snk )THk(s

n
k ).

If ‖ḡk‖ 6= 0, s̄tk is required to satisfy a fraction of Cauchy decrease for the trust-
region subproblem

minimize q̄tk(s̄
t)

subject to ‖snk + Wks̄
t‖ ≤ δk.

Note that this is not a standard trust-region subproblem because snk might not be

orthogonal to N (∇CT
k ) and hence s̄t = 0 might not be the center of the trust region.

The steepest-descent direction at s̄t = 0 associated with q̄tk(s̄
t) in the `2 norm is −ḡk.

If we take into account the scaling matrix Wk, then the steepest-descent direction
in the ‖Wk · ‖ norm is given by −(WT

k Wk)
−1ḡk. We consider the steepest-descent

direction −ḡk for q̄tk(s̄
t) on {s̄t ∈ R

n−m : ‖snk +Wks̄
t‖ ≤ δk} and require s̄tk to satisfy

qk(s
n
k )− qk(s

n
k + Wks̄

t
k) ≥ σ̄t

(
qk(s

n
k )− qk(s

n
k + Wk c̄

t
k)
)
,(2.4)

where σ̄t > 0, and c̄tk is the Cauchy point for the `2 norm given by

c̄tk =



− ‖ḡk‖2

ḡT
k
H̄kḡk

ḡk if ‖ḡk‖
2‖Wkḡk‖

ḡT
k
H̄kḡk

≤ δ̄k and ḡTk H̄kḡk > 0,

− δ̄k
‖Wkḡk‖ ḡk otherwise,

with δ̄k = ‖ − τmaxWkḡk‖ and

τmax = argmax{τ : ‖snk − τWkḡk‖ ≤ δk}.
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This is equivalent to saying that τmax is the maximum steplength along snk − τWkḡk
allowed inside the trust region defined by δk. It is easy to verify that

δ̄k ∈
(
(1− r)δk, (1 + r)δk

)
.

The results given in this paper hold also if c̄tk is defined along −(WT
k Wk)

−1ḡk
provided the sequence {‖(WT

k Wk)
−1‖} is bounded. They are valid also if the coupled

trust-region constraint ‖snk + Wks̄
t‖ ≤ δk is decoupled as ‖s̄t‖ ≤ δk. In this latter

case the parameter r defining the quasi-normal component snk can have any positive
value.

A step s̄tk that satisfies this requirement can be computed by using Powell’s dogleg
algorithm [25] or by the conjugate-gradient algorithm adapted for trust regions by
Steihaug [32] and Toint [33] (see also [7], [8], [21]).

In order to establish global convergence to a point satisfying the second-order
necessary optimality conditions, we need s̄tk to satisfy a fraction of optimal decrease
on the following trust-region subproblem:

minimize q̄tk(s̄
t)

subject to ‖Wks̄
t‖ ≤ δ̃k,

(2.5)

where

δ̃k =

{
δ̄k if ‖ḡk‖ 6= 0

(1− r)δk otherwise.

In other words, we require s̄tk to satisfy the following conditions:

q̄tk(0)− q̄tk(s̄
t
k) ≥ βt

1

(
q̄tk(0)− q̄tk(s̄

∗
k)
)
,

‖Wks̄
t
k‖ ≤ βt

2δ̃k,
(2.6)

where βt
1, β

t
2 > 0, and s̄∗k is the optimal solution of the trust-region subproblem (2.5).

This can be accomplished by applying the algorithm of Moré and Sorensen [23] or by
using the algorithms recently proposed by Rendl and Wolkowicz [28] and Sorensen
[31].

If s̄tk satisfies a fraction of optimal decrease on the trust-region subproblem (2.5),
then

‖sk‖ ≤ ‖snk‖+ ‖Wks̄
t
k‖ ≤ rδk + βt

2δ̃k ≤ (r + βt
2(1 + r))δk.

If s̄tk is required to satisfy only a fraction of Cauchy decrease, then ‖sk‖ = ‖snk +

Wks̄
t
k‖ ≤ δk. We can combine both cases and write

‖sk‖ = ‖snk + Wks̄
t
k‖ ≤ κ0δk,(2.7)

where κ0 = max{r + βt
2(1 + r), 1}.

It is also important to note that the definition of δ̃k assures that the fraction of
optimal decrease (2.6) implies the fraction of Cauchy decrease (2.4) provided βt

2 ≥ 1.
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2.2. General trust-region algorithm. We introduce now the merit function
and the corresponding actual and predicted decreases. The merit function used is the
augmented Lagrangian

L(x, λ; ρ) = f(x) + λTC(x) + ρC(x)TC(x),

where ρ is the penalty parameter. The actual decrease ared(sk; ρk) at the iteration k
is given by

ared(sk; ρk) = L(xk, λk; ρk)− L(xk+1, λk+1; ρk).

The predicted decrease (see [7]) is the following:

pred(sk; ρk) = L(xk, λk; ρk)−
(
qk(sk) + ∆λTk (∇CT

k sk + Ck) + ρk‖∇CT
k sk + Ck‖2

)
.

To update the penalty parameter ρk we use the scheme proposed by El-Alem [11].
The Lagrange multipliers λk are required to satisfy

‖∆λk‖ = ‖λk+1 − λk‖ ≤ κ3δk,(2.8)

where κ3 is a positive constant independent of k. This condition is not necessary for
global convergence to a stationary point.

The general trust-region algorithm is given below.

Algorithm 2.1 (general trust-region algorithm).
1 Choose x0, δ0, λ0, H0, and W0. Set ρ−1 ≥ 1. Choose α1, η1, δmin, δmax, ρ̄,

and r such that 0 < α1, η1 < 1, 0 < δmin ≤ δmax, ρ̄ > 0, and r ∈ (0, 1).
2 For k = 0, 1, 2, . . . do

2.1 If ‖Ck‖ + ‖WT
k ∇x`k‖ + γk = 0, where γk is given in (2.10), stop the

algorithm and use xk as a solution for the ECO problem (1.1).
2.2 Set snk = stk = 0.

If ‖Ck‖ 6= 0 then compute snk satisfying (2.1), (2.2), (2.3), and ‖snk‖ ≤
rδk.
If ‖WT

k ∇x`k‖+ γk 6= 0 then compute s̄tk satisfying (2.6).

Set sk = snk + stk = snk + Wks̄
t
k.

2.3 Compute λk+1 satisfying (2.8).
2.4 Compute pred(sk; ρk−1):

qk(0)− qk(sk)−∆λTk (∇CT
k sk +Ck) + ρk−1

(‖Ck‖2 − ‖∇CT
k sk + Ck‖2

)
.

If pred(sk; ρk−1) ≥ ρk−1

2

(‖Ck‖2 − ‖∇CT
k sk + Ck‖2

)
then set ρk = ρk−1.

Otherwise set

ρk = 2

(
qk(sk)− qk(0) + ∆λTk (∇CT

k sk + Ck)

‖Ck‖2 − ‖∇CT
k sk + Ck‖2

)
+ ρ̄.

2.5 If ared(sk;ρk)
pred(sk;ρk) < η1, set δk+1 = α1‖sk‖ and reject sk.

Otherwise accept sk and choose δk+1 such that

max{δmin, δk} ≤ δk+1 ≤ δmax.

2.6 If sk was rejected set xk+1 = xk and λk+1 = λk. Otherwise set xk+1 =
xk + sk and λk+1 = λk + ∆λk.
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It is important to understand that the role of δmin is just to reset δk after a step
sk has been accepted. During the course of finding such a step the trust radius can
be decreased below δmin. To our knowledge Zhang, Kim, and Lasdon [37] were the
first to suggest this modification. We remark that the rules to update the trust radius
in the previous algorithm can be much more complicated but those given suffice to
prove convergence results and to understand the trust-region mechanism.

As a direct consequence of the way the penalty parameter is updated, we have
the following result.

Lemma 2.1. The sequence {ρk} satisfies

ρk ≥ ρk−1 ≥ 1 and

pred(sk; ρk) ≥ ρk
2

(
‖Ck‖2 − ‖∇CT

k sk + Ck‖2
)
.(2.9)

In order to establish global convergence results, we use the general assumptions
given in [7]. These are Assumptions A.1–A.4. However, for global convergence to
a point that satisfies the second-order necessary optimality conditions, we also need
Assumption A.5. We assume that for all iterations k, xk and xk + sk are in Ω, where
Ω is an open subset of R

n.
General assumptions.
A.1 The functions f , ci, i = 1, . . . ,m, are twice continuously differentiable in Ω.
A.2 The gradient matrix ∇C(x) has full column rank for all x ∈ Ω.
A.3 The functions f , ∇f , ∇2f , C, ∇C, ∇2ci, i = 1, . . . ,m, are bounded in Ω.

The matrix (∇C(x)T∇C(x))−1 is uniformly bounded in Ω.
A.4 The sequences {Wk}, {Hk}, and {λk} are bounded.
A.5 The Hessian approximation Hk is exact, i.e., Hk = ∇2

xx`k, and ∇2f and ∇2ci,
i = 1, . . . ,m, are Lipschitz continuous in Ω.

Assumptions A.3 and A.4 are equivalent to the existence of positive constants
ν0, . . . , ν9 such that |f(x)| ≤ ν0, ‖∇f(x)‖ ≤ ν1, ‖∇2f(x)‖ ≤ ν2, ‖C(x)‖ ≤ ν3,
‖∇C(x)‖ ≤ ν4, ‖(∇C(x)T∇C(x))−1‖ ≤ ν5, ‖∇2ci(x)‖ ≤ ν6, i = 1, . . . ,m, for all
x ∈ Ω, and ‖Wk‖ ≤ ν7, ‖Hk‖ ≤ ν8, and ‖λk‖ ≤ ν9 for all k.

2.3. Predicted decrease along the tangential component. Consider again
the trust-region subproblem (2.5). We can use the general assumptions and the
structure of this subproblem to obtain a lower bound on the predicted decrease
qk(s

n
k )− qk(s

n
k + stk) along the tangential component of the step.

It follows from the Karush–Kuhn–Tucker conditions that there exists a γk ≥ 0
such that

H̄k + γkW
T
k Wk is positive semidefinite,(2.10) (

H̄k + γkW
T
k Wk

)
s̄∗k = −ḡk, and

γk

(
δ̃k − ‖Wks̄

∗
k‖
)

= 0.

(It turns out that these conditions are also sufficient for s̄∗k to solve the trust-region
subproblem (2.5); see Gay [15] and Sorensen [30].) As a consequence of this we can
write

q̄tk(0)− q̄tk(s̄
∗
k) =

1

2

(
‖Rks̄

∗
k‖2 + γk δ̃

2
k

)
≥ 1

2
γk δ̃

2
k,
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where H̄k + γkW
T
k Wk = RT

kRk. Hence, we have

qk(s
n
k )− qk(s

n
k + stk) = q̄tk(0)− q̄tk(s̄

t
k) ≥ βt

1

(
q̄tk(0)− q̄tk(s̄

∗
k)
)

≥ 1

2
βt

1(1− r)2γkδ
2
k.

(2.11)

3. Global convergence. Dennis, El-Alem, and Maciel [7] have proved under
Assumptions A.1–A.4 and conditions (2.1), (2.2), and (2.4) that

lim inf
k→+∞

(‖WT
k ∇x`k‖+ ‖Ck‖

)
= 0.(3.1)

In this section we assume that s̄tk satisfies the fraction of optimal decrease (2.6)
on the trust-region subproblem (2.5), as well as conditions (2.3), (2.8), and A.5 on
snk , λk, and Hk, respectively, and show that (3.1) can be extended to

lim inf
k→+∞

(‖WT
k ∇x`k‖+ ‖Ck‖+ γk

)
= 0.(3.2)

The proof of (3.2), although simpler, has the same structure as the proof given in [7].
We prove the result by contradiction, under the supposition that

‖WT
k ∇x`k‖+ ‖Ck‖+ γk > εtol(3.3)

for all k. We start by analyzing the fraction of Cauchy and optimal decrease condi-
tions.

Lemma 3.1. Let the general assumptions hold. Then

‖Ck‖2 − ‖∇CT
k sk + Ck‖2 ≥ κ4‖Ck‖min{κ5‖Ck‖, rδk}(3.4)

and

qk(s
n
k )− qk(sk) ≥ κ6‖ḡk‖min{κ7‖ḡk‖, κ8δk},(3.5)

and, moreover, since s̄tk satisfies a fraction of optimal decrease for the trust-region
subproblem (2.5),

qk(s
n
k )− qk(sk) ≥ κ9γkδ

2
k,(3.6)

where κ4, . . . , κ9 are positive constants independent of the iterate k.
Proof. The conditions (3.4) and (3.5) are an application of Powell’s result (see

[26, Theorem 4], [22, Lemma 4.8]) followed by the general assumptions. The condition
(3.6) is a restatement of (2.11) with κ9 = 1

2β
t
1(1− r)2.

The following inequality is needed in the forthcoming lemmas.
Lemma 3.2. If the general assumptions hold, then

qk(0)− qk(s
n
k )−∆λTk (∇CT

k sk + Ck) ≥ −κ10‖Ck‖δk,(3.7)

where κ10 is a positive constant independent of k.
Proof. The term qk(0)−qk(snk ) can be bounded using (2.2), (2.3), and Assumption

A.4 in the following way:

qk(0)− qk(s
n
k ) = −∇x`

T
k s

n
k −

1

2
(snk )THk(s

n
k )

≥ −κ2‖Ck‖δk − 1

2
‖Hk‖ ‖snk‖2

≥ −κ2‖Ck‖δk − 1

2
ν8rκ1‖Ck‖δk.
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On the other hand, it follows from (2.8) and ‖∇CT
k sk + Ck‖ ≤ ‖Ck‖ that

−∆λTk (∇CT
k sk + Ck) ≥ −κ3‖Ck‖δk.

If we combine these two bounds we get (3.7) with κ10 = κ2 + 1
2ν8rκ1 + κ3.

The following technical lemma gives us upper bounds on the difference between
the actual decrease and the predicted decrease. The proof follows similar arguments
as the proof of Lemma 6.3 in [11].

Lemma 3.3. Let the general assumptions hold. There exist positive constants
κ̄1, . . . , κ̄7 independent of k, such that

|ared(sk; ρk)− pred(sk; ρk)| ≤ κ̄1‖sk‖3 + κ̄2‖∆λk‖ ‖sk‖2

+ ρk

(
κ̄3‖sk‖3 + κ̄4‖Ck‖ ‖sk‖2

)(3.8)

and

|ared(sk; ρk)− pred(sk; ρk)| ≤ κ̄5‖∆λk‖ ‖sk‖2

+ ρk

(
κ̄6‖sk‖3 + κ̄7‖Ck‖ ‖sk‖2

)
.

(3.9)

Proof. If we add and subtract `(xk+1, λk) to ared(sk; ρk) − pred(sk; ρk) and
expand `(·, λk) around xk we get

ared(sk; ρk)− pred(sk; ρk) =
1

2
sTk

(
Hk −∇2

xx`(xk + π1
ksk, λk)

)
sk

+ ∆λTk (−Ck+1 + Ck +∇CT
k sk)

− ρk

(
‖Ck+1‖2 − ‖∇CT

k sk + Ck‖2
)

for some π1
k ∈ (0, 1). Again, using the Taylor expansion we can write

ared(sk; ρk)− pred(sk; ρk) =
1

2
sTk

(
Hk −∇2

xx`(xk + π1
ksk, λk)

)
sk

− 1

2

m∑
i=1

(∆λk)is
T
k∇2ci(xk + π2

ksk)sk

− ρk

(
m∑
i=1

ci(xk + π3
ksk)(sk)

T∇2ci(xk + π3
ksk)(sk)

+ (sk)
T∇C(xk + π3

ksk)∇C(xk + π3
ksk)

T (sk)

− (sk)
T∇C(xk)∇C(xk)

T (sk)

)
,

where π2
k, π3

k ∈ (0, 1). Now we expand ci(xk + π3
ksk) around ci(xk). This and the

general assumptions give us the estimate (3.8) for some positive constants κ̄1, . . . , κ̄4.
The inequality (3.9) follows from (3.8) and ρk ≥ 1.
The following three lemmas bound the predicted decrease. They correspond re-

spectively to Lemmas 7.6, 7.7, and 7.8 given in [7].
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Lemma 3.4. Let the general assumptions hold. Then the predicted decrease in
the merit function satisfies

pred(sk; ρ) ≥ κ6‖ḡk‖min{κ7‖ḡk‖, κ8δk} − κ10‖Ck‖δk
+ρ
(‖Ck‖2 − ‖∇CT

k sk + Ck‖
)2
,

(3.10)

and also

pred(sk; ρ) ≥ κ9γkδ
2
k − κ10‖Ck‖δk + ρ

(‖Ck‖2 − ‖∇CT
k sk + Ck‖

)2
,(3.11)

for any ρ > 0.
Proof. The two conditions (3.10) and (3.11) follow from a direct application of

(3.7) and from the two different lower bounds (3.5) and (3.6) on qk(s
n
k )−qk(sk).

Lemma 3.5. Let the general assumptions hold, and assume that ‖WT
k ∇x`k‖ +

‖Ck‖+ γk > εtol. If ‖Ck‖ ≤ αδk, where α satisfies

α ≤ min

{
εtol

3δmax
,

εtol
6ν7ν8κ1δmax

,
κ6εtol

12κ10δmax
min

{
κ7εtol
6δmax

, κ8

}
,
κ9εtol
6κ10

}
,(3.12)

then the predicted decrease in the merit function satisfies either

pred(sk; ρ) ≥ κ6

2
‖ḡk‖min{κ7‖ḡk‖, κ8δk}+ ρ

(‖Ck‖2 − ‖∇CT
k sk + Ck‖2

)
(3.13)

or

pred(sk; ρ) ≥ κ9

2
γkδ

2
k + ρ

(‖Ck‖2 − ‖∇CT
k sk + Ck‖2

)
(3.14)

for any ρ > 0.
Proof. From ‖WT

k ∇x`k‖ + ‖Ck‖ + γk > εtol and the first bound on α given by
(3.12), we get

‖WT
k ∇x`k‖+ γk >

2

3
εtol.

Thus either ‖WT
k ∇x`k‖ > 1

3εtol or γk >
1
3εtol. Let us first assume that ‖WT

k ∇x`k‖ >
1
3εtol. Then it follows from the second bound on α given by (3.12) that

‖ḡk‖ = ‖WT
k ∇x`k + WT

k Hks
n
k‖

≥ ‖WT
k ∇x`k‖ − ‖WT

k Hks
n
k‖

≥ 1

3
εtol − ν7ν8κ1‖Ck‖

≥ 1

6
εtol.

Using this, (3.10), δk ≤ δmax, and the third bound on α given by (3.12), we obtain

pred(sk; ρ) ≥ κ6

2
‖ḡk‖min{κ7‖ḡk‖, κ8δk}+

κ6εtol
12

min
{κ7εtol

6
, κ8δk

}
− κ10δmax‖Ck‖+ ρ

(‖Ck‖2 − ‖∇CT
k sk + Ck‖2

)
≥ κ6

2
‖ḡk‖min{κ7‖ḡk‖, κ8δk}+ ρ

(‖Ck‖2 − ‖∇CT
k sk + Ck‖2

)
.
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Now suppose that γk >
1
3εtol. To establish (3.14), we combine (3.11) and the last

bound on α given by (3.12) and get

pred(sk; ρ) ≥ κ9

2
γkδ

2
k +

(κ9

6
εtolδk − κ10‖Ck‖

)
δk + ρ

(‖Ck‖2 − ‖∇CT
k sk + Ck‖2

)
≥ κ9

2
γkδ

2
k + ρ

(‖Ck‖2 − ‖∇CT
k sk + Ck‖2

)
.

We can set ρ to ρk−1 in Lemma 3.5 and conclude that if ‖WT
k ∇x`k‖+‖Ck‖+γk >

εtol and ‖Ck‖ ≤ αδk, then the penalty parameter at the current iterate does not need
to be increased. See step 2.4 of Algorithm 2.1.

The proof of the next lemma follows the argument given in the proof of Lemma
3.5 to show that either ‖ḡk‖ > 1

6εtol or γk >
1
3εtol holds.

Lemma 3.6. Let the general assumptions hold, and assume that ‖WT
k ∇x`k‖ +

‖Ck‖+γk > εtol. If ‖Ck‖ ≤ αδk, where α satisfies (3.12), then there exists a constant
κ11 > 0 such that

pred(sk; ρk) ≥ κ11δ
2
k.(3.15)

Proof. By Lemma 3.5 we know that either (3.13) or (3.14) holds. Now we set
ρ = ρk. In the first case we use ‖ḡk‖ > 1

6εtol and get

pred(sk; ρk) ≥ κ6εtol
12

min
{κ7εtol

6
, κ8δk

}

≥ κ6εtol
12

min

{
κ7εtol
6δmax

, κ8

}
δk

≥ κ6εtol
12δmax

min

{
κ7εtol
6δmax

, κ8

}
δ2
k.

In the second case we use γk >
1
3εtol, to obtain

pred(sk; ρk) ≥ κ9εtol
6

δ2
k.

Hence (3.15) holds with

κ11 = min

{
κ6εtol
12δmax

min

{
κ7εtol
6δmax

, κ8

}
,
κ9εtol

6

}
.

Next we prove under the supposition (3.3) that the penalty parameter ρk is
bounded.

Lemma 3.7. Let the general assumptions hold. If ‖WT
k ∇x`k‖+ ‖Ck‖+ γk > εtol

for all k, then

ρk ≤ ρ∗,

where ρ∗ does not depend on k, and thus {ρk} and {Lk} are bounded sequences.
Proof. If ρk is increased at iteration k, then it is updated according to the rule

ρk = 2

(
qk(sk)− qk(0) + ∆λTk (∇CT

k sk + Ck)

‖Ck‖2 − ‖∇CT
k sk + Ck‖2

)
+ ρ̄.



CONVERGENCE THEORY FOR TRUST-REGION ALGORITHMS 939

We can write

ρk
2

(‖Ck‖2 − ‖∇CT
k sk + Ck‖2

)
= ∇x`(xk, λk)

T snk +
1

2
(snk )THk(s

n
k )

−(qk(s
n
k )− qk(sk)) + ∆λTk (∇CT

k sk + Ck)

+
ρ̄

2

(
‖Ck‖2 − ‖∇CT

k sk + Ck‖2
)
.

By applying (3.4) to the left-hand side and (3.5) and (3.7) to the right-hand side, we
obtain

ρk
2
κ4‖Ck‖min{κ5‖Ck‖, rδk} ≤ κ10δk‖Ck‖+

ρ̄

2

(
− 2(∇CkCk)

T sk − ‖∇CT
k sk‖2

)
≤ (κ10 + ρ̄κ0ν4)δk‖Ck‖.

If ρk is increased at iteration k, then from Lemma 3.5 we certainly know that ‖Ck‖ >
αδk, where α satisfies (3.12). Now we use this fact to establish that(κ4

2
min{κ5α, r}

)
ρk ≤ κ10 + ρ̄κ0ν4.

We have proved that {ρk} is bounded. From this and the general assumptions we
conclude that {Lk} is also bounded.

We can prove also under the supposition (3.3), that the trust radius is bounded
away from zero.

Lemma 3.8. Let the general assumptions hold. If ‖WT
k ∇x`k‖+ ‖Ck‖+ γk > εtol

for all k, then

δk ≥ δ∗ > 0,

where δ∗ does not depend on k.
Proof. If sk−1 was an acceptable step, then δk ≥ δmin. If not then δk = α1‖sk−1‖,

and we consider the cases ‖Ck−1‖ ≤ αδk−1 and ‖Ck−1‖ > αδk−1, where α satisfies
(3.12). In both cases we use the fact

1− η1 ≤
∣∣∣∣ared(sk−1; ρk−1)

pred(sk−1; ρk−1)
− 1

∣∣∣∣ .
Case I. ‖Ck−1‖ ≤ αδk−1. From Lemma 3.6, inequality (3.15) holds for k = k− 1.

Thus we can use ‖sk−1‖ ≤ κ0δk−1, (2.8), and (3.9) with k = k − 1 to obtain∣∣∣∣ared(sk−1; ρk−1)

pred(sk−1; ρk−1)
− 1

∣∣∣∣ ≤ (κ̄5κ0κ3δ
2
k−1 + ρ∗κ̄6κ

2
0δ

2
k−1 + ρ∗κ̄7ακ0δ

2
k−1)‖sk−1‖

κ11δ2
k−1

.

Thus δk = α1‖sk−1‖ ≥ α1(1−η1)κ11

κ̄5κ0κ3+ρ∗κ̄6κ2
0+ρ∗κ̄7ακ0

≡ κ12.

Case II. ‖Ck−1‖ > αδk−1. In this case from (2.9) and (3.4) with k = k− 1 we get

pred(sk−1; ρk−1) ≥ ρk−1

2
κ4‖Ck−1‖min{κ5‖Ck−1‖, rδk−1}

≥ ρk−1κ13δk−1‖Ck−1‖
≥ ρk−1ακ13δ

2
k−1,
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where κ13 = κ4

2 min{κ5α, r}. Again we use ρk−1 ≥ 1, (2.8), and (3.9) with k = k− 1,
and this time the last two lower bounds on pred(sk−1; ρk−1), and write∣∣∣∣ared(sk−1; ρk−1)

pred(sk−1; ρk−1)
− 1

∣∣∣∣ ≤ ρk−1(κ̄5κ0κ3 + κ̄6κ
2
0)δ

2
k−1‖sk−1‖

ρk−1ακ13δ2
k−1

+
ρk−1κ̄7κ0δk−1‖Ck−1‖ ‖sk−1‖

ρk−1κ13δk−1‖Ck−1‖

≤
(
κ̄5κ0κ3 + κ̄6κ

2
0 + κ̄7ακ0

ακ13

)
‖sk−1‖.

Hence δk = α1‖sk−1‖ ≥ α1(1−η1)ακ13

κ̄5κ0κ3+κ̄6κ2
0+κ̄7ακ0

≡ κ14.

The result follows by setting δ∗ = min{δmin, κ12, κ14}.
The next result is needed also for the forthcoming Theorem 3.10.
Lemma 3.9. Let the general assumptions hold. If ‖WT

k ∇x`k‖+ ‖Ck‖+ γk > εtol
for all k, then an acceptable step is always found in finitely many trial steps.

Proof. Let us prove the assertion by contradiction. Assume that for a given k̄,
xk = xk̄ for all k ≥ k̄. This means that limk→+∞ δk = 0 and all steps are rejected
after iteration k̄. See steps 2.5 and 2.6 of Algorithm 2.1. We can consider the cases
‖Ck‖ ≤ αδk and ‖Ck‖ > αδk, where α satisfies (3.12), and appeal to arguments
similar to those used in Lemma 3.8 to conclude that in any case∣∣∣∣ared(sk; ρk)pred(sk; ρk)

− 1

∣∣∣∣ ≤ κ15δk, k ≥ k̄ ,

where κ15 is a positive constant independent of the iterates. Since we are assuming

that limk→+∞ δk = 0, we have limk→+∞
ared(sk;ρk)
pred(sk;ρk) = 1, and this contradicts the

rules that update the trust radius. See step 2.5 of Algorithm 2.1.
Now we finally can state our first asymptotic result.
Theorem 3.10. Under the general assumptions, the sequence of iterates {xk}

generated by the Algorithm 2.1 satisfies

lim inf
k→+∞

(‖WT
k ∇x`k‖+ ‖Ck‖+ γk

)
= 0.(3.16)

Proof. Suppose that there exists an εtol > 0 such that ‖WT
k ∇x`k‖+ ‖Ck‖+ γk >

εtol for all k.
At each iteration k either ‖Ck‖ ≤ αδk or ‖Ck‖ > αδk, where α satisfies (3.12). In

the first case we appeal to Lemmas 3.6 and 3.8 and obtain

pred(sk; ρk) ≥ κ11δ
2
∗.

If ‖Ck‖ > αδk, we have from ρk ≥ 1, (2.9), (3.4), and Lemma 3.8 that

pred(sk; ρk) ≥ κ4

2
αmin{κ5α, r}δ2

∗.

Hence there exists a positive constant κ16 not depending on k such that pred(sk; ρk) ≥
κ16. From Lemma 3.9, we can ignore the rejected steps and work only with successful
iterates. So, without loss of generality, we have

Lk − Lk+1 = ared(sk; ρk) ≥ η1pred(sk; ρk) ≥ η1κ16.
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Now, if we let k go to infinity, this contradicts the boundedness of {Lk}.
From this result we can state our global convergence result: existence of a limit

point of the sequence of iterates generated by the algorithm satisfying the second-
order necessary optimality conditions. This result generalizes those obtained for un-
constrained optimization by Sorensen [30] and Moré and Sorensen [23].

Theorem 3.11. Let the general assumptions hold. Assume that W (x) and λ(x)
are continuous functions and λk = λ(xk) for all k.

If {xk} is a bounded sequence generated by Algorithm 2.1, then there exists a limit
point x∗ such that

• C(x∗) = 0,
• W (x∗)T∇f(x∗) = 0, and
• ∇2

xx`(x∗, λ(x∗)) is positive semidefinite on N (∇C(x∗)T ).
Moreover, if λ(x∗) is such that ∇x`(x∗, λ(x∗)) = 0 then x∗ satisfies the second-order
necessary optimality conditions.

Proof. Let {ki} be the index subsequence considered in (3.16). Since {xki} is
bounded, it has a subsequence {xkj} that converges to a point x∗ and for which

lim
j→+∞

(
‖WT

kj∇x`kj‖+ ‖Ckj‖+ γkj

)
= 0.(3.17)

Now from this and the continuity of C(x), we get C(x∗) = 0. Then we use the
continuity of W (x) and ∇f(x) to obtain

W (x∗)T∇f(x∗) = 0.

Since λ1(·) is a continuous function, we can use (2.10), limj→+∞ γkj = 0, the
continuity of W (x), λ(x), and of the second derivatives of f(x) and ci(x), i = 1, . . . ,m,
to obtain

λ1

(
W (x∗)T∇2

xx`(x∗, λ(x∗))W (x∗)
) ≥ 0.

This shows that ∇2
xx`(x∗, λ(x∗)) is positive semidefinite on N (∇C(x∗)T ).

The continuity of an orthogonal null-space basis has been discussed in [1], [5],
[16]. A class of nonorthogonal null-space basis is described in section 4.1.

The equation ∇x`(x∗, λ(x∗)) = 0 is satisfied for consistent updates of the La-
grange multipliers like the least-squares update (4.7) or the adjoint update (4.3).

4. Examples.

4.1. A class of discretized optimal control problems. We now introduce
an important class of ECO problems where we can find convenient matrices Wk, quasi-
normal components snk , and multipliers λk satisfying all the requirements needed for
our analysis. The numerical solution of many discretized optimal control problems
involves solving the ECO problem

minimize f(y, u)

subject to C(y, u) = 0,
(4.1)

where y ∈ R
m, u ∈ R

n−m and x = ( yu ) (see [8], [19], [20]). The variables in y are the
state variables and the variables in u are the control variables. Other applications
include parameter identification, inverse, and flow problems and design optimization.
In many situations there are bounds on the control variables, but this is not considered
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here. Another interesting aspect of these problems is that ∇C(x)T can be partitioned
as

∇C(x)T =
(
Cy(x) Cu(x)

)
,

where Cy(x) is a square matrix of order m.
In this class of problems the following assumption traditionally is made:

The partial Jacobian Cy(x) is nonsingular and its inverse is uniformly
bounded in Ω.

(4.2)

As a consequence of this, the columns of

W (x) =

( −Cy(x)−1Cu(x)
In−m

)

form a basis for the null space of ∇C(x)
T
.

The usual choice for λk in these problems is the so-called adjoint multipliers

λk = −Cy(xk)
−T∇yf(xk).(4.3)

It follows directly from the continuity of ∇C(x) and the uniformly boundedness of
Cy(x)−1 that W (x) varies continuously with x. Furthermore, λ(x) = −Cy(x)−T∇yf(x)
is a continuous function of x with bounded derivatives.

Using the structure of the problem we can define the quasi-normal component snk
(see references [8], [19], [20]) as

snk =

( −ςkCy(xk)
−1Ck

0

)
,(4.4)

where

ςk =




1 if ‖Cy(xk)
−1Ck‖ ≤ rδk,

rδk
‖Cy(xk)−1Ck‖ otherwise.

As we will see in section 7, the quasi-normal component (4.4) satisfies a fraction of op-
timal decrease and hence a fraction of Cauchy decrease on the trust-region subproblem
for the linearized constraints.

Other choices for quasi-normal components are given in [20]. All these quasi-
normal components are of the form

snk =

(
(snk )y

0

)
.(4.5)

Lemma 4.1. If snk verifies (4.5) and λk is given by (4.3), then conditions (2.3)
and (2.8) are satisfied.

Proof. From (4.3) and (4.5) we can see that

∇x`
T
k s

n
k =

(
0

∇uf(xk) + Cu(xk)
Tλk

)T (
(snk )y

0

)
= 0

and condition (2.3) is trivially satisfied. Condition (2.8) follows from the existence of
bounded derivatives for λ(x) = −Cy(x)−T∇yf(x) in Ω.
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4.2. The normal component and the least-squares multipliers. Consider
again the general ECO problem (1.1). If the component snk of the step sk is orthogonal
to the null space of ∇CT

k , then it is a multiple of ∇Ck(∇CT
k ∇Ck)

−1Ck. If we also
require that snk lies inside the trust region of radius rδk, then it is given by

snk =

{
−∇Ck(∇CT

k ∇Ck)
−1Ck if ‖∇Ck(∇CT

k ∇Ck)
−1Ck‖ ≤ rδk,

−ξk∇Ck(∇CT
k ∇Ck)

−1Ck otherwise,
(4.6)

where ξk = rδk
‖∇Ck(∇CT

k
∇Ck)−1Ck‖ . If the quasi-normal component snk of the step is

given by (4.6), then it is called normal. As we will see in the section 7, the normal
component (4.6) satisfies a fraction of optimal decrease and hence a fraction of Cauchy
decrease on the trust-region subproblem for the linearized constraints.

Lemma 4.2. The quasi-normal component (4.6) and the least-squares update

λk = −(∇CT
k ∇Ck)

−1∇CT
k ∇fk(4.7)

satisfy conditions (2.3) and (2.8).
Proof. It can be easily confirmed that ∇x`

T
k s

n
k = 0. The condition (2.8) holds

since λ(x) = −(∇C(x)T∇C(x))−1∇C(x)T∇f(x) has bounded derivatives in Ω.

5. The behavior of the trust radius. In sections 5 and 6 we no longer need
to consider that the tangential component s̄tk satisfies a fraction of optimal decrease
on the trust-region subproblem (2.5). It suffices to assume the fraction of Cauchy
decrease condition (2.4). We assume that the component snk satisfies conditions (2.1)
and (2.2).

We need to strengthen conditions (2.3) and (2.8) in the following way:

∇x`
T
k s

n
k ≤ κ′2‖Ck‖ ‖sk‖,(5.1)

‖∆λk‖ = ‖λk+1 − λk‖ ≤ κ′3‖sk‖,(5.2)

‖snk‖ ≤ κ′4‖sk‖,(5.3)

where κ′2, κ
′
3, and κ′4 are positive constants independent of the iterates. The choices

of snk and λk suggested in section 4 satisfy these requirements as well. See Lemmas
4.1 and 4.2 for the first two conditions. It is obvious that the normal component (4.6)
satisfy (5.3). The quasi-normal component (4.4) also satisfies (5.3) (see [35, Lemma
5.6.1]).

The next theorems show that if limk→+∞ xk = x∗ and ∇2
xx`(x∗, λ(x∗)) is positive

definite on N (∇C(x∗)T ), then the penalty parameter ρk is uniformly bounded and
the trust radius δk is uniformly bounded away from zero.

Theorem 5.1. Let the general assumptions hold and W (x) and λ(x) be continu-
ous. If {xk} converges to x∗ and ∇2

xx`(x∗, λ(x∗)) is positive definite on N (∇C(x∗)T ),
then {ρk} is a bounded sequence.

Proof. First since∇2
xx`(x∗, λ(x∗)) is positive definite onN (∇C(x∗)T ) and∇2f(x),

∇2ci(x), i = 1, . . . ,m, W (x), and λ(x) are continuous functions of x, there exists a
neighborhood N (x∗) of x∗ and a γ̄ > 0 such that for any x in N (x∗),

λ1

(
W (x)T∇2

xx`(x, λ(x))W (x)
) ≥ γ̄.

Since q̄tk(s̄
t
k)− q̄tk(0) ≤ 0 we can write

1

2
(s̄tk)

T H̄k(s̄
t
k) ≤ −(s̄tk)

T ḡk ≤ ‖s̄tk‖ ‖ḡtk‖.
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Thus for all k such that xk ∈ N (x∗) we have

1

2
γ̄‖s̄tk‖2 ≤ ‖s̄tk‖ ‖ḡk‖,

and this implies

‖stk‖ ≤
2ν7

γ̄
‖ḡk‖.(5.4)

Now by using (3.5) and (5.4), we have for all k such that xk ∈ N (x∗) that

qk(s
n
k )− qk(sk) ≥ κ6‖ḡk‖min{κ7‖ḡk‖, κ8δk}

≥ κ17‖stk‖2,
(5.5)

where κ17 = κ6γ̄
2ν7

min{κ7γ̄
2ν7

, κ8

1+r}.
Now let ‖Ck‖ ≤ α′‖sk‖ where the positive constant α′ is defined later. Using

similar arguments as in Lemma 3.2, it follows from (2.2), (5.1), (5.2), ‖Ck‖ ≤ α′‖sk‖,
and Assumption A.4 that

qk(0)− qk(s
n
k )−∆λTk (∇CT

k sk + Ck) ≥ −κ′10‖Ck‖ ‖sk‖,(5.6)

where κ′10 = κ′2 + 1
2ν8κ

2
1α
′ + κ′3.

From (2.2) and ‖Ck‖ ≤ α′‖sk‖ we also get

‖sk‖2 ≤
(
‖snk‖+ ‖stk‖

)2

≤ 2‖snk‖2 + 2‖stk‖2
≤ 2α′κ2

1‖Ck‖ ‖sk‖+ 2‖stk‖2,
which together with (5.5) and (5.6) implies

pred(sk; ρ) ≥ 1

4
κ17‖sk‖+

(
1

4
κ17‖sk‖ − (α′κ2

1κ17 + κ′10)‖Ck‖
)
‖sk‖

+ ρ
(‖Ck‖2 − ‖∇CT

k sk + Ck‖2
)(5.7)

for all ρ > 0. We now need to impose the following condition on α′:

α′ ≤ κ17

4α′κ2
1κ17 + 4κ′10

.(5.8)

Now we set ρ = ρk−1 in (5.7) and conclude that the penalty parameter does not
need to be increased if ‖Ck‖ ≤ α′‖sk‖ (see step 2.4 of Algorithm 2.1). Hence, if ρk is
increased, then ‖Ck‖ > α′‖sk‖ holds, and by using (5.1)–(5.3) we obtain

qk(0)− qk(s
n
k )−∆λTk (∇CT

k sk + Ck) ≥ −κ′′10‖Ck‖ ‖sk‖,(5.9)

with κ′′10 = κ′2 + 1
2ν8κ1κ

′
4 + κ′3. Recall from the proof of Lemma 3.7 that if ρk is

increased, then

ρk
2
κ4‖Ck‖min

{
κ5‖Ck‖, r

κ0
‖sk‖

}
≤ (κ′′10 + ρ̄ν4)‖sk‖ ‖Ck‖,

which in turn implies(
κ4

2
min

{
κ5α

′,
r

κ0

})
ρk ≤ κ′′10 + ρ̄ν4 ⇐⇒ ρk ≤ ρ′∗.
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This completes the proof of the theorem.
Theorem 5.2. Let the general assumptions hold and W (x) and λ(x) be continu-

ous. If {xk} converges to x∗ and ∇2
xx`(x∗, λ(x∗)) is positive definite on N (∇C(x∗)T ),

then δk is uniformly bounded away from zero and eventually all iterations are success-
ful.

Proof. The proof of the theorem is based on the boundedness of {ρk}. We consider
the cases ‖Ck‖ > α′‖sk‖ and ‖Ck‖ ≤ α′‖sk‖, where α′ satisfies (5.8).

If ‖Ck‖ > α′‖sk‖, then from (2.7), (2.9), and (3.4), we find that

pred(sk; ρk) ≥ ρk
κ4

2
‖Ck‖min{κ5‖Ck‖, rδk} ≥ ρkκ18‖sk‖2,(5.10)

where κ18 = κ4α
′

2 min{κ5α
′, r
κ0
}. In this case it follows from (3.9), (5.10), and ρk ≥ 1

that ∣∣∣∣ared(sk; ρk)pred(sk; ρk)
− 1

∣∣∣∣ ≤
(
κ̄5κ

′
3

κ18
+

κ̄6

κ18

)
‖sk‖+

κ̄7

κ18
‖Ck‖.(5.11)

Now, suppose that ‖Ck‖ ≤ α′‖sk‖. From (5.7) with ρ = ρk we obtain

pred(sk; ρk) ≥ κ17

4
‖sk‖2.

Now we use (3.9) and ρk ≤ ρ∗ to get∣∣∣∣ared(sk; ρk)pred(sk; ρk)
− 1

∣∣∣∣ ≤
(

4κ̄5κ
′
3

κ17
+

4κ̄6ρ∗
κ17

)
‖sk‖+

4κ̄7ρ∗
κ17

‖Ck‖.(5.12)

It follows from Theorem 8.4 in [7] that

lim inf
k→+∞

(‖WT
k ∇x`k‖+ ‖Ck‖

)
= 0.

From this result, the continuity of C(x), and the convergence of {xk} we obtain
limk→+∞ ‖Ck‖ = 0.

Finally from (5.11), (5.12), and the limits limk→+∞ xk = x∗, limk→+∞ λk =
λ(x∗), and limk→+∞ ‖Ck‖ = 0, we finally get

lim
k→+∞

∣∣∣∣ared(sk; ρk)pred(sk; ρk)

∣∣∣∣ = 1,

which by the rules for updating the trust radius in step 2.5 of Algorithm 2.1 shows
that δk is uniformly bounded away from zero.

6. Local rate of convergence. In order to obtain q-quadratic local rates of
convergence, we require the reduced tangential component s̄tk to satisfy (2.4) and the
following condition:

if H̄k is positive definite and ‖H̄−1
k ḡk‖ ≤ δ̄k then s̄tk = −H̄−1

k ḡk.(6.1)

6.1. Discretized optimal control formulation. Consider again problem (4.1)
and assume that this problem has the structure described in section 4.1. We can now
use Theorem 5.2 to obtain a local rate of convergence.

Theorem 6.1. Suppose that the ECO problem is of the form (4.1). Let the general
assumptions and Assumption (4.2) hold and assume that {xk} converges to x∗. In
addition to this, let s̄tk, s

n
k , and λk be given by (6.1), (4.4), and (4.3).
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If ∇2
xx`(x∗, λ∗) is positive definite on N (∇C(x∗)T ), where

λ∗ = −Cy(x∗)−T∇yf(x∗),

then xk converges q-quadratically to x∗.
Proof. It can be shown by appealing to Theorem 8.4 in [7] that ∇x`(x∗, λ∗) = 0.

It follows from Theorem 5.2 that δk is uniformly bounded away from zero. Thus
there exists a positive integer k̄ such that for all k ≥ k̄, s̄tk = −H̄−1

k ḡk and snk =

(−Cy(xk)−1Ck

0 ). Now the rate of convergence follows from [19].

6.2. Normal component and least-squares multipliers. Consider the gen-
eral ECO problem (1.1) again, and suppose that the quasi-normal component is the
normal component (4.6) and λk is given by (4.7).

We can now use Theorem 5.2 to obtain the desired local rate of convergence. It
is assumed that the orthogonal null-space basis is a continuous function of x.

Theorem 6.2. Let the general assumptions hold and assume that {xk} converges
to x∗. In addition to this, let s̄tk, s

n
k , and λk be given by (6.1), (4.6), and (4.7).

If ∇2
xx`(x∗, λ∗) is positive definite on N (∇C(x∗)T ), where

λ∗ = − (∇C(x∗)T∇C(x∗)
)−1∇C(x∗)T∇f(x∗),

then xk converges q-quadratically to x∗.
Proof. It can be shown by appealing to Theorem 8.4 in [7] that ∇x`(x∗, λ∗) = 0.

It follows from Theorem 5.2 that δk is uniformly bounded away from zero.
Thus there exists a positive integer k̄ such that for all k ≥ k̄, s̄tk = −H̄−1

k ḡk
and snk = −∇Ck(∇CT

k ∇Ck)
−1Ck. The q-quadratic rate of convergence follows from

[18], [36].

7. The trust-region subproblem for the linearized constraints. In this
section we investigate a few aspects of the trust-region subproblem for the linearized
constraints

minimize
1

2
‖∇CT

k s
n + Ck‖2

subject to ‖sn‖ ≤ rδk.

(7.1)

First we prove that the normal component (4.6) and the quasi-normal component
(4.4) always give a fraction of optimal decrease on this trust-region subproblem.

Theorem 7.1. Let the general assumptions hold. Then
(i) The normal component (4.6) satisfies a fraction of optimal decrease on the

trust-region subproblem for the linearized constraints; i.e., there exists a pos-
itive constant βn

1 such that

‖Ck‖2 − ‖∇CT
k s

n
k + Ck‖2 ≥ βn

1

(‖Ck‖2 − ‖∇CT
k s
∗
k + Ck‖2

)
,(7.2)

where s∗k is the optimal solution of (7.1).
(ii) In addition, assume Assumption (4.2). The quasi-normal component (4.4)

satisfies the fraction of optimal decrease (7.2).
Proof. (i) If ‖∇Ck(∇CT

k ∇Ck)
−1Ck‖ ≤ rδk, then snk solves (7.1) and the result

holds for any positive value of βn
1 in (0, 1]. If this is not the case, then

‖Ck‖2 − ‖∇CT
k s

n
k + Ck‖2 = ξk(2− ξk)‖Ck‖2 ≥ ξk‖Ck‖2 ≥ rδk

ν4ν5
‖Ck‖,(7.3)



CONVERGENCE THEORY FOR TRUST-REGION ALGORITHMS 947

since ‖∇Ck(∇CT
k ∇Ck)

−1Ck‖ ≤ ν4ν5‖Ck‖ and ξk ≤ 1.
We also have

‖Ck‖2 − ‖∇CT
k s
∗
k + Ck‖2 = −2(∇CkCk)

T s∗k − (s∗k)
T (∇Ck∇CT

k )(s∗k)

≤ 2ν4‖Ck‖ ‖s∗k‖+ ν2
4‖s∗k‖2

≤ 2ν4rδk‖Ck‖+ ν2
4rδk‖s∗k‖

≤ (2ν4r + ν3
4ν5r)δk‖Ck‖,

since ‖∇Ck(∇CT
k ∇Ck)

−1‖‖Ck‖ > rδk ≥ ‖s∗k‖. Combining this last inequality with
(7.3) we get

‖Ck‖2 − ‖∇CT
k s

n
k + Ck‖2 ≥ 1

ν2
4ν5(2 + ν2

4ν5)

(‖Ck‖2 − ‖∇CT
k s
∗
k + Ck‖2

)
and this completes the proof of (i).

(ii) If ‖Cy(xk)
−TCk‖ ≤ rδk then snk solves (7.1) and (7.2) holds for any positive

value of βn
1 . If this is not the case, we have

‖Ck‖2 − ‖∇CT
k s

n
k + Ck‖2 = ‖Ck‖2 − ‖ − ςk∇CT

k

(
Cy(xk)

−1Ck

0

)
+ Ck‖2

= ςk(2− ςk)‖Ck‖2(7.4)

≥ rδk
ν10

‖Ck‖,

where ν10 is the uniform bound on ‖Cy(xk)
−1‖. Now the rest of the proof follows as

in (i).
As a consequence of this theorem, we have immediately that the normal compo-

nent (4.6) and the quasi-normal component (4.4) give a fraction of Cauchy decrease
on the trust-region subproblem for the linearized constraints.

To compute a step snk that gives a fraction of optimal decrease on the trust-region
subproblem for the linearized constraints we can also use the techniques proposed in
[23], [28], [31].

In the next theorem we show that the trust-region subproblem (7.1), due to its
particular structure, tends to fall in the hard case in the latest stages of the algorithm.
This result is relevant in our opinion since the algorithms proposed in [23], [28], [31]
deal with the hard case.

The trust-region subproblem (7.1) can be rewritten as

minimize
1

2
CT
k Ck + (∇CkCk)

T sn +
1

2
(sn)T (∇Ck∇CT

k )(sn)

subject to ‖sn‖ ≤ rδk.

(7.5)

The matrix ∇Ck∇CT
k is always positive semidefinite and, under the general assump-

tions, has rank m. Let Ek(0) denote the eigenspace associated with the eigenvalue
0, i.e., Ek(0) = {vk ∈ R

n : ∇Ck∇CT
k vk = 0}. The hard case is defined by the two

following conditions:
(a) (vk)

T (∇CkCk) = 0 for all vk in Ek(0) and
(b) ‖(∇Ck∇CT

k + µIn)−1∇CkCk‖ < rδk for all µ > 0.

Theorem 7.2. Under the general assumptions, if limk→+∞
‖Ck‖
δk

= 0 then there

exists a kh such that, for all k ≥ kh, the trust-region subproblem (7.5) falls in the hard
case as defined above by (a) and (b).
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Proof. First we show that (a) holds at every iteration of the algorithm. If vk ∈
Ek(0),

∇Ck∇CT
k vk = 0.

Multiplying both sides by (∇CT
k ∇Ck)

−1∇CT
k gives us

∇CT
k vk = 0.

Thus (vk)
T (∇CkCk) = 0 for all vk in Ek(0).

Now we prove that there exists a kh such that (b) holds for every k ≥ kh. Since
gk(µ) = ‖(∇Ck∇CT

k + µIn)−1∇CkCk‖ is a monotone strictly decreasing function of
µ for µ > 0,

lim
µ→0+

gk(µ) < rδk

is equivalent to gk(µ) < rδk, for all µ > 0. Also, from the singular value decomposition
of ∇Ck, we obtain

lim
µ→0+

gk(µ) = ‖ lim
µ→0+

(∇Ck∇CT
k + µIn)−1∇CkCk‖ = ‖∇Ck(∇CT

k ∇Ck)
−1Ck‖.

Hence gk(µ) < rδk holds for all µ > 0 if and only if ‖∇Ck(∇CT
k ∇Ck)

−1Ck‖ < rδk.

Now since limk→+∞
‖Ck‖
δk

= 0, there exists a kh such that ‖Ck‖ < r
ν4ν5

δk for all

k ≥ kh. Thus ‖∇Ck(∇CT
k ∇Ck)

−1Ck‖ ≤ ν4ν5‖Ck‖ < rδk for all k ≥ kh, and this
completes the proof of the theorem.

We complete this section with the following corollary.
Corollary 7.3. Under the general assumptions, if limk→+∞ ‖Ck‖ = 0 and the

trust radius is uniformly bounded away from zero, then there exists a kh such that, for
all k ≥ kh, the trust-region subproblem (7.5) falls in the hard case as defined above by
(a) and (b).

Proof. If limk→+∞ ‖Ck‖ = 0 and the trust radius is uniformly bounded away

from zero, then limk→+∞
‖Ck‖
δk

= 0 and Theorem 7.2 can be applied.

8. Concluding remarks. In Theorems 3.10 and 3.11 we have established global
convergence to a point satisfying the second-order necessary optimality conditions
for the general trust-region-based algorithm considered in this paper. In Theorem
5.2 we have proved that the trust radius is, under sufficient second-order optimality
conditions, bounded away from zero. With the help of this result we analyzed local
rates of convergence for different choices of steps and multipliers. We believe that
these results complement the theory developed by Dennis, El-Alem, and Maciel in [7]
that proves global convergence to a stationary point. We have also given a detailed
analysis of the trust-region subproblem for the linearized constraints.
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REFERENCES

[1] R. H. Byrd and R. B. Schnabel, Continuity of the null space basis and constrained optimiza-
tion, Math. Programming, 35 (1986), pp. 32–41.



CONVERGENCE THEORY FOR TRUST-REGION ALGORITHMS 949

[2] R. H. Byrd, R. B. Schnabel, and G. A. Shultz, A trust region algorithm for nonlinearly
constrained optimization, SIAM J. Numer. Anal., 24 (1987), pp. 1152–1170.

[3] R. G. Carter, On the global convergence of trust region algorithms using inexact gradient
information, SIAM J. Numer. Anal., 28 (1991), pp. 251–265.

[4] M. Celis, J. E. Dennis, and R. A. Tapia, A trust region strategy for nonlinear equality
constrained optimization, in Numerical Optimization 1984, SIAM, Philadelphia, PA, 1985,
pp. 71–82.

[5] T. F. Coleman and D. C. Sorensen, A note on the computation of an orthonormal basis for
the null space of a matrix, Math. Programming, 29 (1984), pp. 234–242.

[6] T. F. Coleman and W. Yuan, A New Trust Region Algorithm for Equality Constrained Opti-
mization, Tech. report TR95–1477, Department of Computer Science, Cornell University,
Ithaca, NY, 1995.

[7] J. E. Dennis, M. El-Alem, and M. C. Maciel, A global convergence theory for general trust-
region–based algorithms for equality constrained optimization, SIAM J. Optim., 7 (1997),
pp. 177–207.

[8] J. E. Dennis, M. Heinkenschloss, and L. N. Vicente, Trust-Region Interior-Point SQP
Algorithms for a Class of Nonlinear Programming Problems, Tech. report TR94–45, De-
partment of Computational and Applied Mathematics, Rice University, Houston, TX, 1994
(revised January 1997).

[9] J. E. Dennis and R. B. Schnabel, Numerical Methods for Unconstrained Optimization and
Nonlinear Equations, Prentice-Hall, Englewood Cliffs, NJ, 1983.

[10] M. El-Alem, A Global Gonvergence Theory for a Class of Trust Region Algorithms for Con-
strained Optimization, Tech. report TR88–5, Ph.D. thesis, Department of Computational
and Applied Mathematics, Rice University, Houston, TX, 1988.

[11] M. El-Alem, A global convergence theory for the Celis–Dennis–Tapia trust–region algorithm
for constrained optimization, SIAM J. Numer. Anal., 28 (1991), pp. 266–290.

[12] M. El-Alem, Convergence to a Second-Order Point for a Trust-Region Algorithm with a Non-
monotonic Penalty Parameter for Constrained Optimization, Tech. report TR95–28, De-
partment of Computational and Applied Mathematics, Rice University, Houston, TX, 1995.

[13] M. El-Alem, A robust trust–region algorithm with a non-monotonic penalty parameter scheme
for constrained optimization, SIAM J. Optim., 5 (1995), pp. 348–378.

[14] M. El-Hallabi, A Global Convergence Theory for Arbitrary Norm Trust-Region Algorithms
for Equality Constrained Optimization, Tech. report TR93–60, Department of Computa-
tional and Applied Mathematics, Rice University, Houston, TX, 1993 (revised May 1995).

[15] D. M. Gay, Computing optimal locally constrained steps, SIAM J. Sci. Statist. Comput., 2
(1981), pp. 186–197.

[16] P. E. Gill, W. Murray, M. Saunders, G. W. Stewart, and M. H. Wright, Properties of a
representation of a basis for the null space, Math. Programming, 33 (1985), pp. 172–186.

[17] P. E. Gill, W. Murray, and M. H. Wright, Some Theoretical Properties of an Augmented
Lagrangian Merit Function, Tech. report SOL 86–6, Systems Optimization Laboratory,
Department of Operations Research, Stanford University, Stanford, CA, 1986.

[18] J. Goodman, Newton’s method for constrained optimization, Math. Programming, 33 (1985),
pp. 162–171.

[19] M. Heinkenschloss, Projected sequential quadratic programming methods, SIAM J. Optim., 6
(1996), pp. 373–417.

[20] M. Heinkenschloss and L. N. Vicente, Analysis of Inexact Trust-Region Interior-Point SQP
Algorithms, Tech. report TR95–18, Department of Computational and Applied Mathemat-
ics, Rice University, Houston, TX, 1995 (revised April 1996).

[21] M. Lalee, J. Nocedal, and T. Plantenga, On the implementation of an algorithm for
large-scale equality constrained optimization, SIAM J. Optim., 8 (1998), to appear.
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Abstract. We consider a mixed problem composed in part of finding a zero of a maximal
monotone operator and in part of solving a monotone variational inequality problem. We propose a
solution method for this problem that alternates between a proximal step (for the maximal monotone
operator part) and a projection-type step (for the monotone variational inequality part) and analyze
its convergence and rate of convergence. This method extends a decomposition method of Chen
and Teboulle [Math. Programming, 64 (1994), pp. 81–101] for convex programming and yields, as a
by-product, new decomposition methods.
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1. Introduction. Since its proposal by Martinet and its comprehensive study
by Rockafellar [24], [25], the proximal point method and its dual version in the context
of convex programming, the method of multipliers, have received much study (see [1],
[2], [11], [14] and references therein). One major direction of study has been in the
development of decomposition methods for convex programming, as exemplified by
the method of partial inverse [30], the alternating direction method of multipliers [6],
[7], [15], and the alternating minimization algorithm [9], [12], [32]. Recently, Chen
and Teboulle [5] proposed a new proximal-based decomposition method for solving
convex programs with the separable structure:

minimize f1(x1) + f2(x2)(1)

subject to Ax1 − x2 = 0,

where f1 and f2 are closed proper convex functions on, respectively, <l and <m and
A ∈ <m×l. In their method, proximal point iterations are applied to the subdifferen-
tial of the Lagrangian L(x1, x2, y) = f1(x1) + f2(x2) + yT (Ax1 − x2) alternately with
the multipliers y fixed and with the variables (x1, x2) fixed. More specifically, the
exact version of their method generates a sequence {(xk1 , xk2 , yk, ŷk)}k=0,1,... according
to the iteration (cf. [5, (2.9)–(2.12)]):

ŷk = yk + αk(Ax
k
1 − xk2),(2)

xk+1
1 = arg min

x1∈<l
{f1(x1) + (ŷk)TAx1 + ‖x1 − xk1‖2/(2αk)},(3)

xk+1
2 = arg min

x2∈<m
{f2(x2)− (ŷk)Tx2 + ‖x2 − xk2‖2/(2αk)},(4)

yk+1 = yk + αk(Ax
k+1
1 − xk+1

2 )(5)

for k = 0, 1, .... The method has convergence properties similar to those of the
proximal point method but with the additional requirement that αk be less than
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1/(2 max{‖A‖, 1}). More importantly, it has nice features not known in previous de-
composition methods: its subproblem decomposes into two disjoint problems, one in
x1 and the other in x2 (see (3), (4)), both of which have strongly convex objective
function and decompose according to the separable structure of f1 and f2, respec-
tively. Curiously, despite its striking proximal features, the method of Chen and
Teboulle did not appear to fit into any of the known algorithmic frameworks such as
the proximal point method or operator splitting methods.

Motivated by the work of Chen and Teboulle, in this paper we show that their
method may be viewed naturally as an alternating version of the proximal point
method and the extragradient method [13], [17]. Moreover, their method can be gener-
alized to solve much broader classes of problems and to yield new decomposition meth-
ods for convex programming and variational inequalities. Specifically, we consider the
general problem of finding a zero of a multivalued function T : <n ×<m →→ <n ×<m
of the special form

T (x, y) = F (x, y)× (G(x, y) +NY (y)),(6)

where Y is a nonempty closed convex set in <m (NY denotes the normal cone mapping
to Y ); F : <n×<m →→ <n and G : <n×<m →→ <m are multivalued functions such that
G is single valued and continuous on <n × Y , (x, y) 7→ F (x, y) × G(x, y) is maximal
monotone; and ri{y : F (x, y) × G(x, y) 6= ∅ for some x} ⊇ Y . (It follows from the
results in [22] that T is maximal monotone.) We consider a general method whereby,
for any initial (x, y) ∈ <n × Y and any continuous function G1 : <n × Y 7→ <m such
that G1(x, ·) is monotone for all x, we iteratively update (x, y) by solving

ŷ = [y − α(G1(x, ŷ)−G1(x, y) +G(x, y))]+Y(7)

for some ŷ, and then solving

x− xnew ∈ αF (xnew, ŷ)(8)

for xnew and setting

ynew = [y − αG(xnew, ŷ)]+Y ,(9)

where α is a chosen positive stepsize and [·]+Y denotes the orthogonal projection onto
Y . Thus, the idea of the method is to alternately apply one backward Euler step (i.e.,
proximal step) to the general multivalued part of T (namely F ) and two forward–
backward Euler steps (i.e., projection-type step) to the part of T with the variational
inequality structure (namely G + NY ). The method of Chen and Teboulle may be
viewed as a special case of this method with G1 ≡ 0 and applied to the case of T with

x = (x1, x2), F (x1, x2, y) = ∂x1,x2
L(x1, x2, y),

Y = <m, G(x1, x2, y) = −∂yL(x1, x2, y)

(see the remark following Theorem 2.4 for detailed discussions).
A key advantage of this method over existing proximal-based methods [6], [9],

[12], [15], [30], [32] is that it can readily exploit separable structures that occur,
for example, in large-scale problems with a dynamic or a stochastic nature [28]. In
particular, equations (7) and (9) (with G1 suitably chosen) decompose according to
the Cartesian product structure of Y , and the inclusion (8) decomposes according to
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the separable structure of F (e.g., F (x, y) = F1(x1, y)×· · ·×Fn(xn, y)). To illustrate,
consider the minimax problem

min
x∈<n

max
y∈Y

{f(x)− g(y) + yT (Ax− b)},

where f is a closed proper convex function on <n, g is a continuously differentiable
convex function on <m, Y is a nonempty closed convex set in <m, and A ∈ <m×n,
b ∈ <m. Suppose that f is separable, i.e., f(x1, ..., xn) = f1(x1) + · · · + fn(xn) for
some closed proper convex functions f1, ..., fn on <, and Y is a box (i.e., the Cartesian
product of closed intervals). Problems possessing such a separable structure arise in
discrete-time deterministic optimal control [4], [28] and in the scheduling of hydro-
electric power generation under uncertainty [29], with x comprising certain state and
control variables and Ax = bmodeling the linear dynamic linking the state and control
variables. The minimax problem corresponds to 0 ∈ T (x, y) with

F (x, y) = ∂f(x) +AT y, G(x, y) = b−Ax+∇g(y).
Applying (7)–(8) with G1 ≡ 0 to this special case of T yields a method that iteratively
updates (x, y) according to the equations:

ŷ = [y − α(b−Ax+∇g(y))]+Y ,
xnew = arg min

ξ∈<n
{f(ξ) + ŷTAξ + ‖ξ − x‖2/(2α)},

ynew = [y − α(b−Axnew +∇g(ŷ))]+Y .
Since f is separable, the computation of xnew decomposes into n independent convex
programs in one variable with a strongly convex objective function. In fact, if f1, ..., fn
are quadratic functions defined on closed intervals, then xnew is obtainable in closed
form. Also, due to the product structure of Y , both ŷ and ynew are obtainable in
closed form. To our knowledge, existing proximal-based methods cannot decompose
the computation of xnew at such a fine level, due to the presence of a quadratic term
of the form ‖Aξ− b‖2 in the computation. In addition to G1 ≡ 0, many other choices
of G1 are possible. If we had instead chosen G1 ≡ G, then ŷ would be computed
according to

ŷ = arg min
ψ∈Y

{
(b−Ax)Tψ + g(ψ) + ‖ψ − y‖2/(2α)

}
.

This is a strongly convex program with box constraints, and if g is separable, then it
decomposes into m independent convex programs in one variable. If we had instead
chosen G1(x, y) = c− Ax+Qy for some symmetric positive semidefinite Q ∈ <m×m
and some c ∈ <m, then ŷ would be computed according to

ŷ = arg min
ψ∈Y

{
(c−Ax)Tψ + ψTQψ/2 + ‖ψ − y‖2/(2α)

}
.

This is a strongly convex quadratic program with box constraints, and if Q is a
diagonal matrix, then ŷ is obtainable in closed form. In general, choosing G1 entails a
tradeoff between the work in computing ŷ and the speed of convergence. For further
discussions of applications, see Examples 3–5.

Throughout, we denote by <n the space of n-dimensional real column vectors
and by superscript T the transpose (of vectors or matrices). We denote by ‖x‖ the

2-norm of a vector x (i.e., ‖x‖ =
√
xTx) and, for any A ∈ <m×n, by ‖A‖ the 2-norm
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of A induced by the vector 2-norm (i.e., ‖A‖ = maxx:‖x‖=1 ‖Ax‖). We denote by I
either the identity matrix or the identity mapping, and by linear convergence we mean
R-linear convergence as defined in [19]. We say that a function φ : Z 7→ <, where
Z ⊆ <n, is locally bounded on Z if φ(zk), k = 0, 1, ... is bounded for every convergent
sequence zk ∈ Z, k = 0, 1....

2. Algorithm description and convergence analysis. In this section we for-
mally describe our method, based on alternating between two projection-type steps
and one proximal step, for finding a zero of T of the form (6), and we present associ-
ated convergence and rate of convergence analysis.

Alternating projection-proximal (APP) method. Choose any continuous
function G1 : <n×Y 7→ <m such that G1(x, ·) is monotone for all x ∈ <n and choose
any (x0, y0) ∈ <n × Y . For k = 0, 1, ..., we generate (xk+1, yk+1) from (xk, yk) by
choosing an αk ∈ (0,∞) and letting

xk+1 = ξk(αk), yk+1 = ψk(αk),(10)

where, for each α ∈ (0,∞), ψ̂k(α) denotes the unique vector in <m satisfying

ψ̂k(α) = [yk − α(G1(x
k, ψ̂k(α))−G1(x

k, yk) +G(xk, yk))]+Y ,(11)

ξk(α) denotes the unique vector in <n satisfying

xk − ξk(α) ∈ αF (ξk(α), ψ̂k(α)),(12)

and ψk(α) is the vector in <m given by

ψk(α) = [yk − αG(ξk(α), ψ̂k(α))]+Y .(13)

It can be seen that ψ̂k(α) is the result of applying one iteration of the proximal
point method (with stepsize α) at yk to the maximal monotone operator

y 7→ G1(x
k, y)−G1(x

k, yk) +G(xk, yk) +NY (y),(14)

so ψ̂k(α) is well defined and unique (see [24]). Similarly, ξk(α) is the result of applying
one iteration of the proximal point method (with stepsize α) at xk to the maximal
monotone operator

x 7→ F (x, ψ̂k(α)),(15)

so ξk(α) is well defined and unique. That the mapping (15) is maximal monotone

follows from ψ̂k(α) ∈ Y ⊆ ri{y : F (x, y)×G(x, y) 6= ∅ for some x} and the following
result suggested by Rockafellar [27].

Lemma 2.1. Let F : <n × <m →→ <n and G : <n × <m →→ <m be multivalued
functions such that (x, y) 7→ F (x, y) × G(x, y) is maximal monotone. For any ȳ ∈
ri({y : F (x, y) × G(x, y) 6= ∅ for some x}), the mapping x 7→ F (x, ȳ) is maximal
monotone.

Proof. Let M = {(x, ȳ) : x ∈ <n} and let

T1(x, y) = F (x, y)×G(x, y) and T2(x, y) =

{
M⊥ if (x, y) ∈M,
∅ else.
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Also, denote D = domT1 and C = clD. Since T1 is maximal monotone, by a result of
Minty [18] (also see [3, Remark 2.1]), C is convex and C ⊇ D ⊇ riC. Thus,

ȳ ∈ ri({y : (x, y) ∈ D for some x}) ⊆ ri({y : (x, y) ∈ C for some x}),
so, for any x̄ ∈ ri({x : (x, ȳ) ∈ C}), applying [23, Theorem 6.8] yields that (x̄, ȳ) ∈
riC = riD. Since (x̄, ȳ) ∈M trivially, it follows that

ri(domT1) ∩ ri(domT2) = riD ∩M 6= ∅.
Then, since both T1 and T2 are maximal monotone, Theorem 2 in [22] yields
that T1 + T2 is maximal monotone or, equivalently, x 7→ F (x, ȳ) is maximal mono-
tone.

The choice of the function G1 (which affects the choice of ψ̂k(α) and the work

in computing ψ̂k(α)) and the stepsizes αk, k = 0, 1, ... (which affects the convergence
of the method) are key to the performance of the APP method. A choice of G1 that

yields the least amount of work in computing ψ̂k(α) is

G1 ≡ 0.(16)

A choice of G1 that requires more work in computing ψ̂k(α) is

G1 ≡ G.(17)

An intermediate choice is

G1(x, y) = By ∀y ∈ <m,(18)

where B ∈ <m×m is positive semidefinite. If Y is a box, we can choose B to be either
upper or lower triangular (such as the upper or lower triangular part of the Jacobian

of G1 with respect to y at (xk, yk), assuming G1 is differentiable), in which case ψ̂k(α)
may be computed via back-solve in the order of m2 arithmetic operations. In general,
one may need to experiment with a number of choices of G1 before settling on one
that is suitable for the intended application.

The choice of αk is trickier for it cannot be too large (or the APP method might
diverge) and it cannot be too small (or the convergence might be too slow). In
certain applications, an estimate of a “reasonable” αk may be obtained (see Theorem
2.4(b)). However, in practice, a form of Armijo–Goldstein line search (cf. [1], [10],
[17]) would be more useful. Specifically, we will consider choosing αk to be the largest

α ∈ {σ, σβ, σβ2, ...} such that (ψ̂k(α), ξk(α), ψk(α)) given by (11)–(13) satisfies

(19)

2α‖ψk(α)− ψ̂k(α)‖‖G1(x
k, ψ̂k(α))−G1(x

k, yk) +G(xk, yk)−G(ξk(α), ψ̂k(α))‖
≤ (1− ε)(‖xk − ξk(α)‖2 + ‖yk − ψ̂k(α)‖2 + ‖ψ̂k(α)− ψk(α)‖2),

where β and ε are chosen scalars in (0, 1) and σ is a chosen scalar in (0,∞). (A variant
is to choose αk (for k > 0) to be the largest α ∈ {αk−1, αk−1β, αk−1β

2, ...} satisfying
(19). The resulting αk, though more conservative, is cheaper to find since typically
α = αk−1 will satisfy (19). The convergence results below hold for this variant also.)

We will show that (19) is satisfied by all α sufficiently small, so αk chosen in
the above manner is well defined. To this end, we need the following lemma, stating
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a basic property of the proximal mapping (see [3, Proposition 2.6]), whose proof is
included for completeness.

Lemma 2.2. Let S be any maximal monotone operator on <l. For any x ∈
dom S, we have

‖x− (I + αS)−1(x)‖/α ≤ min
u∈S(x)

‖u‖ ∀α > 0.(20)

Proof. Fix any x ∈ dom S and, for each α > 0, let zα = (I + αS)−1(x). Then we
have (x− zα)/α ∈ S(zα) so that, for any u ∈ S(x),

‖x− zα‖2/α = (x− zα)T (x− zα)/α

= (x− zα)T [(x− zα)/α− u] + (x− zα)Tu

≤ (x− zα)Tu

≤ ‖x− zα‖‖u‖,
where the first inequality follows from S being monotone. Thus,

‖x− zα‖ ≤ α‖u‖ ∀u ∈ S(x),

and (20) is proven. (The minimum in (20) is attained since S(x) is a closed
set.)

The inequality in (20) is sharp as α → 0. To see this, note that, by (20), zα =
(I + αS)−1(x) → x as α → 0, so it follows from (x − zα)/α ∈ S(zα) and the closed
property of S [3, Proposition 2.5] that any cluster point of (x− zα)/α as α→ 0 is in
S(x), implying

lim
α→0

inf ‖x− (I + αS)−1(x)‖/α ≥ min
u∈S(x)

‖u‖.(21)

By (20), the inequality in (21) holds with equality.
We will also need the following lemma stating some known properties of the

projection mapping [·]+Y . Parts (a), (b), (c) and (d) of this lemma are borrowed from,
respectively, [34, Equation (1.8)], [34, Lemma 1.1], [10, Lemma 1], and [17, Appendix].

Lemma 2.3. For Y a nonempty closed convex set in <m, the following hold.
(a) For any u ∈ <m and any v ∈ <m, ‖[u]+Y − [v]+Y ‖ ≤ ‖u− v‖.
(b) For any u ∈ <m, z = [u]+Y satisfies 0 ≤ (y − z)T (z − u) for all y ∈ Y .
(c) For any y ∈ Y , any d ∈ <m, and any α ∈ (0, 1], ‖y − [y − αd]+Y ‖/α ≥

‖y − [y − d]+Y ‖.
(d) For any u ∈ <m and any v ∈ Y , ‖[u]+Y − v‖2 ≤ ‖u− v‖2 − ‖u− [u]+Y ‖2.
Below we state and prove our main convergence result, showing that, under mild

assumptions, the aforementioned Armijo–Goldstein line search rule (see (19)) is well
defined and that the APP method using this stepsize rule is convergent. Moreover,
if Y = <m and T−1 is locally upper Lipschitzian (see (24)), the method is linearly
convergent. The convergence analysis is based on those for the proximal point method
[24] and the extragradient method [17]. The rate of convergence analysis is based on
that for certain projection-type methods for monotone variational inequalities [33]. A
key to these analyses is a certain Féjer-convergence property of {(xk, yk)}; namely,
the square of the Euclidean distance from (xk, yk) to any solution is monotonically
decreasing with k and the amount of decrease is proportional to ‖(xk+1, yk+1) −
(xk, yk)‖2 (see (23)).

Theorem 2.4. Consider a multivalued function T : <n × <m →→ <n × <m of
the form (6), where Y is a nonempty closed convex set in <m, F : <n × <m →→ <n
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and G : <n × <m →→ <m are multivalued functions such that G is single valued and
continuous on <n × Y , (x, y) 7→ F (x, y) × G(x, y) is maximal monotone, and ri{y :
F (x, y)×G(x, y) 6= ∅ for some x} ⊇ Y . Assume that, for every x ∈ <n, the function
y 7→ minu∈F (x,y) ‖u‖ is locally bounded on its domain {y : F (x, y) 6= ∅}. Denote

Σ = T−1(0) = {(x, y) : 0 ∈ T (x, y)}. Let G1 and {(xk, yk)}k=0,1,... be generated
by the APP method with αk chosen to be the largest α ∈ {σ, σβ, σβ2, ...} such that

(ψ̂k(α), ξk(α), ψk(α)) given by (11)–(13) satisfies (19), where β ∈ (0, 1), ε ∈ (0, 1) and
σ ∈ (0,∞). Then the following hold.

(a) αk is well defined for all k.
(b) If G1 and G are Lipschitz continuous on <n × Y (with constants L1 ≥ 0 and

L ≥ 0, respectively), then {αk} is bounded below by a positive scalar and, in particular,

αk ≥
{
σ if σ ≤ (1− ε)/

√
(L1 + L)2 + L2,

β(1− ε)/
√

(L1 + L)2 + L2 otherwise.
(22)

(c) If Σ is nonempty, then for any (x∗, y∗) ∈ Σ and any k ∈ {0, 1, ...} we have

‖xk+1 − x∗‖2 + ‖yk+1 − y∗‖2
≤ ‖xk − x∗‖2 + ‖yk − y∗‖2 − ε(‖xk − xk+1‖2 + ‖yk − ŷk‖2 + ‖ŷk − yk+1‖2).(23)

If in addition either (i) {αk} is bounded below by a positive scalar or (ii) the function
(x, y) 7→ minu∈F (x,y) ‖u‖ is locally bounded on its domain {(x, y) : F (x, y) 6= ∅}, then

{(xk, yk)} converges to an element of Σ.
(d) If Σ is nonempty, Y = <m and there exists τ > 0 and δ > 0 such that

T−1(u) ⊆ T−1(0) + τ‖u‖B ∀u with ‖u‖ ≤ δ,(24)

where B = {x : ‖x‖ ≤ 1}, and {αk} is bounded below by a positive scalar, then
d((xk, yk),Σ) → 0 linearly as k →∞, where we denote d(z,Σ) = minz∗∈Σ ‖z − z∗‖.

Proof. (a) Fix any k ∈ {0, 1, ...}. To see that αk is well defined, note that if
(xk, yk) ∈ Σ, then αk = σ (since both sides of (19) equal zero for any α > 0),
so it suffices to assume that (xk, yk) 6∈ Σ, i.e., minu∈F (xk,yk) ‖u‖2 + ‖yk − [yk −
G(xk, yk)]+Y ‖2 > 0. We have from applying Lemma 2.2 with S being the maximal

monotone operator (14) that ψ̂k(α) → yk as α → 0. We also have from applying
Lemma 2.2 with S being the maximal monotone operator (15) that

‖xk − ξk(α)‖/α ≤ min
u∈F (xk,ψ̂k(α))

‖u‖,

so the assumption that y 7→ minu∈F (x,y) ‖u‖ is locally bounded on its domain yields

lim
α→0

sup ‖xk − ξk(α)‖/α <∞,

implying ξk(α) → xk as α → 0. We also have from (11) and (13) and Lemma 2.3(a)
that

‖ψk(α)− ψ̂k(α)‖/α
= ‖[yk − αG(ξk(α), ψ̂k(α))]+Y

− [yk − α(G1(x
k, ψ̂k(α))−G1(x

k, yk) +G(xk, yk))]+Y ‖/α
≤ ‖ −G(ξk(α), ψ̂k(α)) +G1(x

k, ψ̂k(α))−G1(x
k, yk) +G(xk, yk)‖,
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so, since G1 and G are continuous on <n×Y , we see that the right-hand side tends to
zero as α→ 0. Thus, the left-hand side of (19) divided by α2 tends to zero as α→ 0.
On the other hand, we have from (13) and Lemma 2.3(c) that, for all α ∈ (0, 1],

‖yk − ψ̂k(α)‖/α = ‖yk − [yk − α(G1(x
k, ψ̂k(α))−G1(x

k, yk) +G(xk, yk))]+Y ‖/α
≥ ‖yk − [yk − (G1(x

k, ψ̂k(α))−G1(x
k, yk) +G(xk, yk))]+Y ‖

→ ‖yk − [yk −G(xk, yk)]+Y ‖ as α→ 0.

We also have from (12), the fact (ξk(α), ψ̂k(α)) → (xk, yk) as α → 0, and the closed
property of F [3, Proposition 2.5] that any cluster point of (xk − ξk(α))/α as α→ 0
is in F (xk, yk), yielding (cf. (21))

lim
α→0

inf ‖xk − ξk(α)‖/α ≥ min
u∈F (xk,yk)

‖u‖.

So we have limα→0 inf{‖xk− ξk(α)‖2/α2 + ‖yk− ψ̂k(α)‖2/α2} > 0. This implies that
the right-hand side of (19) divided by α2 does not tend to zero as α→ 0. Hence, (19)
holds whenever α is sufficiently small, implying αk is well defined.

(b) Suppose that G1 and G are Lipschitz continuous on <n × Y with Lipschitz
constant L1 ≥ 0 and L ≥ 0, respectively. Then, for any k ∈ {0, 1, ...}, we have for
each α ∈ (0,∞) that the left-hand side of (19) is bounded above by

2α‖ψk(α)− ψ̂k(α)‖[L1‖ψ̂k(α)− yk‖+ L‖(xk, yk)− (ξk(α), ψ̂k(α))‖]
≤ 2α‖ψk(α)− ψ̂k(α)‖[(L1 + L)‖ψ̂k(α)− yk‖+ L‖xk − ξk(α)‖]
≤ α

√
(L1 + L)2 + L2[‖ψk(α)− ψ̂k(α)‖2 + ‖ψ̂k(α)− yk‖2 + ‖xk − ξk(α)‖2],

where the second inequality uses the inequality 2a[µb+ λc] ≤
√
µ2 + λ2[a2 + b2 + c2].

Thus, (19) holds whenever the right-hand side of the above inequality is below the
right-hand side of (19), which in turn holds whenever α ≤ (1− ε)/

√
(L1 + L)2 + L2.

Since αk is the largest α ∈ {σ, σβ, ...} for which (19) holds, it follows that (22) holds.

(c) Fix any (x∗, y∗) ∈ Σ and any k ∈ {0, 1, ...}. Let ŷk = ψ̂k(αk), so that, by (10)
and (12)–(13) with α = αk,

xk − xk+1 ∈ αkF (xk+1, ŷk),(25)

yk+1 = [yk − αkG(xk+1, ŷk)]+Y .(26)

We have from (11) with α = αk and Lemma 2.3(b) that

0 ≤ (y − ŷk)T (αk(G1(x
k, ŷk)−G1(x

k, yk) +G(xk, yk)) + ŷk − yk) ∀y ∈ Y.
Similarly, since (x∗, y∗) ∈ Σ so that y∗ = [y∗ − αkG(x∗, y∗)]+Y , we have from Lemma
2.3(b) that

0 ≤ αk(y − y∗)TG(x∗, y∗) ∀y ∈ Y.
Taking y = yk+1 in the first inequality and y = ŷk in the second inequality, we obtain,
respectively,

0 ≤ (yk+1 − ŷk)T (αk(G1(x
k, ŷk)−G1(x

k, yk) +G(xk, yk)) + ŷk − yk)

= αk(y
k+1 − ŷk)T (G1(x

k, ŷk)−G1(x
k, yk) +G(xk, yk)−G(xk+1, ŷk))

+ αk(y
k+1 − ŷk)TG(xk+1, ŷk) + (yk+1 − ŷk)T (ŷk − yk),
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and

0 ≤ αk(ŷ
k − y∗)TG(x∗, y∗).

Also, we have trivially that

‖xk+1 − x∗‖2 = ‖xk − x∗‖2 − ‖xk − xk+1‖2 + 2(xk+1 − xk)T (xk+1 − x∗)

and from (26) and Lemma 2.3(d) that

‖yk+1 − y∗‖2 = ‖[yk − αkG(xk+1, ŷk)]+Y − y∗‖2
≤ ‖yk − αkG(xk+1, ŷk)− y∗‖2 − ‖yk − αkG(xk+1, ŷk)− yk+1‖2
= ‖yk − y∗‖2 − ‖yk − yk+1‖2 + 2αk(y

∗ − yk+1)TG(xk+1, ŷk)

= ‖yk − y∗‖2 − ‖yk − yk+1‖2 + 2αk(y
∗ − ŷk)TG(xk+1, ŷk)

+ 2αk(ŷ
k − yk+1)TG(xk+1, ŷk).

Multiplying the first two of the previous four inequalities by 2 and adding them to
the last two of the previous four inequalities yields

‖xk+1 − x∗‖2 + ‖yk+1 − y∗‖2
≤ ‖xk − x∗‖2 + ‖yk − y∗‖2 − ‖xk − xk+1‖2 − ‖yk − yk+1‖2
+ 2(xk+1 − xk)T (xk+1 − x∗) + 2αk(y

∗ − ŷk)T (G(xk+1, ŷk)−G(x∗, y∗))
+ 2αk(y

k+1 − ŷk)T (G1(x
k, ŷk)−G1(x

k, yk) +G(xk, yk)−G(xk+1, ŷk))

+ 2(yk+1 − ŷk)T (ŷk − yk)

≤ ‖xk − x∗‖2 + ‖yk − y∗‖2 − ‖xk − xk+1‖2 − ‖yk − yk+1‖2
+ 2αk(y

k+1 − ŷk)T (G1(x
k, ŷk)−G1(x

k, yk) +G(xk, yk)−G(xk+1, ŷk))

+ 2(yk+1 − ŷk)T (ŷk − yk)

= ‖xk − x∗‖2 + ‖yk − y∗‖2 − ‖xk − xk+1‖2 − ‖yk − ŷk‖2 − ‖ŷk − yk+1‖2
+ 2αk(y

k+1 − ŷk)T (G1(x
k, ŷk)−G1(x

k, yk) +G(xk, yk)−G(xk+1, ŷk))

≤ ‖xk − x∗‖2 + ‖yk − y∗‖2 − ‖xk − xk+1‖2 − ‖yk − ŷk‖2 − ‖ŷk − yk+1‖2
+ 2αk‖yk+1 − ŷk‖‖G1(x

k, ŷk)−G1(x
k, yk) +G(xk, yk)−G(xk+1, ŷk)‖,

where the second inequality follows from using (25) and 0 ∈ αkF (x∗, y∗) (since
(x∗, y∗) ∈ Σ) as well as the monotone property of F × G. This, together with (10)
and (19) with α = αk, yields (23).

Since (23) holds for k = 0, 1, ... and any (x∗, y∗) ∈ Σ, the sequence {(xk, yk)}k=0,1,...

is bounded and hence contains a subsequence {(xk, yk)}k∈K , where K ⊆ {0, 1, 2, ...},
converging to some limit point (x∞, y∞). If (x∞, y∞) ∈ Σ, then, by letting (x∗, y∗) =
(x∞, y∞) in (23), we would obtain that {‖(xk, yk) − (x∞, y∞)‖} is monotonically
decreasing and contains a subsequence tending to zero, so the entire sequence must
converge to zero. Below, we show that (x∞, y∞) ∈ Σ if either (i) {αk} is bounded be-
low by a positive scalar or (ii) the function (x, y) 7→ minu∈F (x,y) ‖u‖ is locally bounded

on its domain {(x, y) : F (x, y) 6= ∅}. In case (i), since (see (23)) {‖xk − xk+1‖2 +
‖yk − ŷk‖2 + ‖ŷk − yk+1‖2} → 0 and F ×G is a closed mapping [3, Proposition 2.5],
we would then have from (25)–(26) that

0 ∈ α∞F (x∞, y∞), y∞ = [y∞ − α∞G(x∞, y∞)]+Y ,

where α∞ denotes any cluster point of {αk}k∈K . This implies (x∞, y∞) ∈ Σ. In case
(ii), if {αk}k∈K contains a subsequence that is bounded below by a positive scalar,
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then an argument analogous to that used in case (i) would yield (x∞, y∞) ∈ Σ.
Otherwise, {αk}k∈K → 0 and we will argue that (x∞, y∞) ∈ Σ by contradiction.
Suppose (x∞, y∞) 6∈ Σ, i.e., minu∈F (x∞,y∞) ‖u‖2 + ‖y∞ − [y∞ −G(x∞, y∞)]+Y ‖2 > 0.
Since {αk}k∈K → 0, then for all k ∈ K sufficiently large we have αk < σ, so our

choice of αk implies (ψ̂k(α), ξk(α), ψk(α)) given by (11)–(13) does not satisfy (19) for
α = ᾱk, where ᾱk = αk/β, i.e.,

(27)

2ᾱk‖ψk(ᾱk)− ψ̂k(ᾱk)‖‖G1(x
k, ψ̂k(ᾱk))−G1(x

k, yk) +G(xk, yk)−G(ξk(ᾱk), ψ̂
k(ᾱk))‖

> (1− ε)(‖xk − ξk(ᾱk)‖2 + ‖yk − ψ̂k(ᾱk)‖2 + ‖ψ̂k(ᾱk)− ψk(ᾱk)‖2).

Applying Lemma 2.2 with S being the maximal monotone operator (14) with α = ᾱk,
we obtain

‖yk − ψ̂k(ᾱk)‖/ᾱk ≤ min
u∈G(xk,yk)+NY (yk)

‖u‖ ≤ ‖G(xk, yk)‖,

where the second inequality follows from the fact that 0 ∈ NY (yk). Since {ᾱk}k∈K →
0 and {(xk, yk)}k∈K → (x∞, y∞) and G is continuous on <n × Y , this implies

{ψ̂k(ᾱk)}k∈K → y∞.

We also have from applying Lemma 2.2 with S being the maximal monotone operator
(15) that

‖xk − ξk(ᾱk)‖/ᾱk ≤ min
u∈F (xk,ψ̂k(ᾱk))

‖u‖

so the assumption that (x, y) 7→ minu∈F (x,y) ‖u‖ is locally bounded on its domain
yields

lim
k→∞,k∈K

sup ‖xk − ξk(ᾱk)‖/ᾱk <∞,

implying {ξk(ᾱk)}k∈K → x∞. We have from (11) and (13) and Lemma 2.3(a) that

‖ψk(ᾱk)− ψ̂k(ᾱk)‖/ᾱk
= ‖[yk − ᾱkG(ξk(ᾱk), ψ̂

k(ᾱk))]
+
Y

− [yk − ᾱk(G1(x
k, ψ̂k(ᾱk))−G1(x

k, yk) +G(xk, yk))]+Y ‖/ᾱk
≤ ‖ −G(ξk(ᾱk), ψ̂

k(ᾱk)) +G1(x
k, ψ̂k(ᾱk))−G1(x

k, yk) +G(xk, yk)‖,

so, since G1 and G are continuous on <n × Y , we see that the right-hand side tends
to zero as k →∞, k ∈ K. Thus, the left-hand side of (27) divided by ᾱ2

k tends to zero
as k →∞, k ∈ K. On the other hand, we have from (11) and Lemma 2.3(c) that, for
all k ∈ K sufficiently large so that ᾱk ∈ (0, 1],

‖yk − ψ̂k(ᾱk)‖/ᾱk
= ‖yk − [yk − ᾱk(G1(x

k, ψ̂k(ᾱk))−G1(x
k, yk) +G(xk, yk))]+Y ‖/ᾱk

≥ ‖yk − [yk − (G1(x
k, ψ̂k(ᾱk))−G1(x

k, yk) +G(xk, yk))]+Y ‖
→ ‖y∞ − [y∞ −G(x∞, y∞)]+Y ‖ as k →∞, k ∈ K.
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We also have from (12), the fact {(ξk(ᾱk), ψ̂k(ᾱk))}k∈K → (x∞, y∞), and the closed
property of F [3, Proposition 2.5] that any cluster point of {(xk − ξk(ᾱk))/ᾱk}k∈K is
in F (x∞, y∞), yielding

lim
k→∞,k∈K

inf ‖xk − ξk(ᾱk)‖/ᾱk ≥ min
u∈F (x∞,y∞)

‖u‖.

So we have limk→∞,k∈K inf{‖xk − ξk(ᾱk)‖2/(ᾱk)2 + ‖yk − ψ̂k(ᾱk)‖2/(ᾱk)2} > 0,
implying the right-hand side of (27) divided by (ᾱk)

2 does not tend to zero as k →
∞, k ∈ K, a contradiction of (27) holding for all k ∈ K sufficiently large.

(d) Suppose that Y = <m and there exist τ > 0 and δ > 0 such that (24) holds.
It can be seen that (24) is equivalent to

d(z,Σ) ≤ τ min
u∈T (z)

‖u‖ ∀z ∈ dom T with min
u∈T (z)

‖u‖ ≤ δ.(28)

(The minimum is attained by the closed property of T [3, Proposition 2.5].) Also,
since Y = <m, we have from (10) and (12)–(13) with α = αk that

(xk − xk+1, yk − yk+1)/αk ∈ (F (xk+1, ŷk), G(xk+1, ŷk)) = T (xk+1, ŷk)

for all k, where we denote ŷk = ψk(αk). Since {αk} is bounded away from zero and
(see (23)) {(xk−xk+1, yk−yk+1)} → 0, we have that the norm of the above left-hand
side is below δ for all k sufficiently large, in which case (28) yields

d((xk+1, ŷk),Σ) ≤ τ‖(xk − xk+1, yk − yk+1)‖/αk,

implying

d((xk+1, yk+1),Σ)2

≤ [d((xk+1, ŷk),Σ) + ‖ŷk − yk+1‖]2
≤ [τ‖(xk − xk+1, yk − yk+1)‖/αk + ‖ŷk − yk+1‖]2
≤ 2[τ‖(xk − xk+1, yk − yk+1)‖/αk]2 + 2‖ŷk − yk+1‖2
= 2(τ/αk)

2‖xk − xk+1‖2 + 2(τ/αk)
2‖yk − yk+1‖2 + 2‖ŷk − yk+1‖2

≤ 2(τ/αk)
2‖xk − xk+1‖2 + 4(τ/αk)

2‖yk − ŷk‖2 + [4(τ/αk)
2 + 2]‖ŷk − yk+1‖2,

where the last two inequalities use the identity (a+ b)2 ≤ 2a2 + 2b2. Since (23) holds
for any k and any (x∗, y∗) ∈ Σ, by letting (x∗, y∗) be the element of Σ nearest to
(xk, yk) in Euclidean norm, we obtain from (23) and the above inequality that

d((xk+1, yk+1),Σ)2

≤ ‖xk+1 − x∗‖2 + ‖yk+1 − y∗‖2
≤ ‖xk − x∗‖2 + ‖yk − y∗‖2
− ε(‖xk − xk+1‖2 + ‖yk − ŷk‖2 + ‖ŷk − yk+1‖2)
= d((xk, yk),Σ)2 − ε(‖xk − xk+1‖2 + ‖yk − ŷk‖2 + ‖ŷk − yk+1‖2)
≤ d((xk, yk),Σ)2 − εd((xk+1, yk+1),Σ)2/[4(τ/αk)

2 + 2]

and hence

[ε/[4(τ/αk)
2 + 2] + 1]d((xk+1, yk+1),Σ)2 ≤ d((xk, yk),Σ)2.



962 PAUL TSENG

This holds for all k sufficiently large and, since {αk} is bounded away from zero, it
follows that d((xk, yk),Σ) → 0 linearly as k →∞.

The assumptions on F and G in Theorem 2.4 are quite mild and, in particular,
the assumption that y 7→ minu∈F (x,y) ‖u‖ is locally bounded on its domain is satisfied
for all our applications (see Examples 1–5) in which F has the special form

F (x, y) = F1(x) + F2(y)

with F1 : <n →→ <n and F2 : <m →→ <n lower semicontinuous (in fact, affine) on
Y . If in addition F1 = Φ1 + NX , with Φ1 : <n →→ <n maximal monotone and X
a nonempty closed convex subset of int(dom Φ1), then (x, y) 7→ minu∈F (x,y) ‖u‖
is locally bounded on its domain (since Φ1 is locally bounded on int(dom Φ1) [3,
Proposition 2.9], 0 ∈ NX(x) for all x ∈ X, and F2 is lower semicontinuous on Y ).

We remark that part (d) of Theorem 2.4 still holds if G1 and G are assumed
to be Lipschitz continuous only on (<n × Y ) ∩ (Σ + δ′B) for some δ′ > 0. (This
is because, by part (c), (xk, yk) is in this set for all k sufficiently large.) Also, we
note that the assumption of part (d) (see (24)) is weaker than [5, Assumption B]
since it does not assume in addition T−1(0) is a singleton. (The assumption that
T−1(0) is a singleton precludes the possibility of multiple solutions.) The locally upper
Lipschitzian property of T−1 (as embodied by (24)) and its equivalent formulation as
a local error bound (see (28)) are discussed in [16], [20], [21]. It is an open question
whether the results of part (d) can be extended to the case where Y 6= <m. Finally,
as in [5], [6], [24], Theorem 2.4 can be extended to hold for an inexact version of the
APP method and to a Hilbert space setting, but for simplicity we do not consider
this more general case.

As we noted in the introduction, the exact version of the decomposition method
of Chen and Teboulle (2)–(5) may be viewed as a special case of the APP method
with G1 ≡ 0 and applied to the special case of T with

F (x1, x2, y) =

[
∂f1(x1) +AT y
∂f2(x2)− y

]
, G(x1, x2, y) = x2 −Ax1, Y = <m.

Noting that G1 and G are Lipschitz continuous on <2n × Y with Lipschitz constants
of L1 = 0 and L = ‖[−A I]‖ =

√
1 + ‖A‖2 ≤ √

2 max{‖A‖, 1}, respectively, we see
that the upper bound of (1− ε)/(2 max{‖A‖, 1}) on αk, as specified in [5], is less than
or equal to the constant (1−ε)/√(L1 + L)2 + L2 specified in (22). Thus, the stepsize
choice in [5] corresponds to a conservative version of the Armijo–Goldstein stepsize
choice considered in Theorem 2.4.

The APP method is also closely related to many well-known methods for varia-
tional inequality and for finding zero of a maximal monotone operator.

Example 1. In the special case where m = 0 (i.e., no y term), the APP method
reduces to the proximal point method for solving 0 ∈ F (x) [11], [14], [24], [25]:

xk+1 = (I + αkF )−1(xk),

for k = 0, 1, ....
Example 2. In the special case where n = 0 (i.e., no x term), the APP method

reduces to a function-splitting method for solving 0 ∈ G(y) +NY (y):

ŷk = [yk − αk(G1(ŷ
k)−G1(y

k) +G(yk))]+Y ,

yk+1 = [yk − αkG1(ŷ
k)]+Y



ALTERNATING PROJECTION-PROXIMAL METHODS 963

for k = 0, 1, .... Moreover, in the case G1 is chosen according to (16), (17), or (18),
this method reduces to, respectively, the extragradient method, the proximal point
method, and a certain matrix-splitting method (see [16] and [33] for discussions of
related methods).

In addition to the decomposition method of Chen and Teboulle, we can also derive
new decomposition methods by applying the APP method appropriately.

Example 3. Consider the special case of T with

x = (x1, x2), F (x1, x2, y) =

[
T1(x1) +AT y
T2(x2) +BT y

]
, G(x1, x2, y) = b−Ax1−Bx2, Y = <m,

where T1 and T2 are maximal monotone operators on <n1 and <n2 , respectively, and
A ∈ <m×n1 , B ∈ <m×n2 , b ∈ <m. The special case where T1 = ∂f1, T2 = ∂f2,
B = −I, and b = 0 yields the convex program (1). The special case where n1 = n2,
A = −B = I, and b = 0 yields the problem of finding a zero of T1 + T2. Applying
the APP method with, say, G1 ≡ 0 to this special case of T yields the new splitting
method:

ŷk = yk + αk(Ax
k
1 +Bxk2 − b),

xk+1
1 = (I + αkT1)

−1(xk − αkA
T ŷk),

xk+1
2 = (I + αkT2)

−1(xk − αkB
T ŷk),

yk+1 = yk + αk(Ax
k+1
1 +Bxk+1

2 − b)

for k = 0, 1, .... In contrast to the Douglas–Rachford method (see [6], [15]), this
method takes backward steps for T1 and T2 simultaneously (rather than serially) and,
in contrast to the forward–backward method (see [4], [9], [32]), this method does not
require either T1 or T2 or their inverse to be single valued and strongly monotone.

Example 4. Consider the minimax problem discussed in section 1:

min
x∈<n

max
y∈Y

{f(x)− g(y) + yTAx},

where f is a closed proper convex function on <n, g is a continuously differentiable
convex function on <m, Y is a nonempty closed convex set in <m, and A ∈ <m×n
(assuming, without loss of generality, that b = 0). This problem corresponds to
0 ∈ T (x, y) with

F (x, y) = ∂f(x) +AT y, G(x, y) = ∇g(y)−Ax

and applying the APP method with, say, G1 ≡ 0 to this special case of T yields the
new method:

ŷk = [yk + αk(Ax
k −∇g(yk))]+Y ,

xk+1 = arg min
x∈<n

{f(x) + (ŷk)TAx+ ‖x− xk‖2/(2αk)},
yk+1 = [yk + αk(Ax

k+1 −∇g(ŷk))]+Y
for k = 0, 1, .... In cases where Y has a Cartesian product structure or f has a sep-
arable structure (as in certain discrete time deterministic optimal control problems
[28]), the above computation further decomposes. In contrast to previous decomposi-
tion methods for the extended linear-quadratic programming problem [26], [31], [35],
the above method does not require f and g to be strongly convex or to be convex
quadratic on some closed convex set.
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Example 5. Consider the problem studied in [8] of minimizing f(x) + g(x) over
x ∈ <n, where f is a closed proper convex function on <n and g is a continuously
differentiable convex function on <n. We can rewrite this problem in the form

minimize f(x1) + g(x2)

subject to x1 − x2 = 0

and apply the Chen–Teboulle method (2)–(5). However, this would require solving
two minimization problems per iteration. Instead, we rewrite this problem in the form
0 ∈ T (x, y) with

y = (y1, y2), F (x, y1, y2) = ∂f(x)+y2, G(x, y1, y2) =

[∇g(y1)− y2
−x+ y1

]
, Y = <2n,

and applying the APP method with, say, G1 ≡ 0 to this special case of T yields the
new decomposition method:

ŷk1 = yk1 + αk(y
k
2 −∇g(yk1 )),

ŷk2 = yk2 + αk(x
k − yk1 ),

xk+1 = arg min
x∈<n

{f(x) + (ŷk2 )Tx+ ‖x− xk‖2/(2αk)},
yk+1
1 = yk1 + αk(ŷ

k
2 −∇g(ŷk1 )),

yk+1
2 = yk2 + αk(x

k+1 − ŷk1 )

for k = 0, 1, .... In cases where f has a separable structure, the above computation
further decomposes. The above method has similar subproblems as the trust-region
method of [8] but differs from the latter in the stepsize rule and the assumptions
needed for convergence (see Theorem 2.4(c)).

Under additional assumptions on the problem (such as Lipschitz continuity of ∇g
on Y ), convergence and/or linear convergence of the methods in Examples 4 and 5
can be established by applying Theorem 2.4. Finally, we remark that there recently
has been much study of proximal point methods using a nonquadratic proximal term,
and it may be that the APP method and the associated convergence results extend
to this setting.

Acknowledgment. I thank the two referees for their helpful comments which
led to significant improvements on the original paper.
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Abstract. In this paper we study differentiable convex inequalities and prove that metric
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1. Introduction. Consider a nonempty convex subset S of R
n defined by the

following convex inequalities:

g(x) ≤ 0,(1)

where g(x) is a mapping from R
n to R

m and each component gi(x) of g(x) is a
convex function on R

n. Most likely one has to resort to some iterative method for
finding an approximate solution of (1). One important criterion for accuracy of an
approximate solution x is the amount of constraint violation: ‖(g(x))+‖. Here z+ is
a vector whose ith component is max{0, zi} and ‖ · ‖ denotes the 2-norm on R

m (i.e.,
‖x‖2 =

∑n
i=1 |xi|2). There are both practical and theoretical reasons for studying the

following estimate of the distance from any point x in R
n to the feasible set S:

dist(x, S) ≤ γ · ‖(g(x))+‖,(2)

where γ is a positive constant and dist(x, S) := miny∈S ‖x − y‖. When g(x) is
affine, (2) is Hoffman’s error estimate for approximate solutions of a system of lin-
ear inequalities [10]. Error estimation was crucial for establishing linear convergence
of various descent methods for solving linearly constrained optimization problems
[21, 22, 23, 24, 25, 26, 28, 19, 14, 16, 17, 18]. From a practical point of view, (2)
guarantees that the distance from an approximate solution x to S is bounded by a
multiple of ‖(g(x))+‖, an explicit measurement of infeasibility. Roughly speaking, one
might expect that dist(x, S) decreases proportionally as ‖(g(x))+‖. However, the pro-
portional constant γ might be large and result in an undesirable situation: ‖(g(x))+‖
is quite small, but x might be far away from the feasible set S. This is similar to
the ill conditioning of a system of linear equations. Therefore, in order to know the
accuracy of an approximate solution in terms of its distance to the feasible set, it
is important to know what is the exact value of γ in estimation (2). Mangasarian
defined the conditioning number of the inequality system (1) as the smallest γ for
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which estimation (2) holds for all x [27]. There are quite a few papers devoted to
the study of the conditioning number of a system of linear equalities and inequalities
[7, 29, 4, 15, 5, 12, 13].

Generally, (2) does not hold if g(x) is not affine. Robinson proved that (2) holds
if S is bounded and has a nonempty interior [30]. For an unbounded feasible set S,
Mangasarian [27] established (2) under the assumption that gi(x) are differentiable
convex functions and (1) satisfies Slater’s condition (i.e., there exists a point x̄ such
that g(x̄) < 0) as well as an asymptotic CQ. Auslender and Crouzeix extended both
Robinson’s and Mangasarian’s results by introducing a more general asymptotic CQ
that can be applied to nondifferentiable convex functions gi(x). They derived (2)
under Slater’s condition and their asymptotic CQ [2]. However, asymptotic CQs are
difficult to verify. It was not clear from Auslender and Crouzeix’s result whether or
not (2) holds if gi(x) are convex quadratic functions. It was proved recently by Luo
and Luo [20] that (2) holds if gi(x) are convex linear/quadratic functions and there
exists a feasible point x̄ of (1) such that gi(x̄) < 0 whenever gi(x) is not affine. That
is, for convex linear/quadratic functions, (2) holds when Slater’s condition holds for
nonlinear constraints. Shortly after, Pang and Wang showed that (2) might not hold
for convex quadratic inequalities if Slater’s condition fails [33]. They introduced an
interesting concept called the degree of singularity of an inequality system and proved
that if gi(x) are convex linear/quadratic functions and the degree of singularity of (1)
is d, then

dist(x, S) ≤ ρ ·
(
‖(g(x))+‖+ ‖(g(x))+‖2−d

)
for x ∈ R

n.(3)

They also showed by examples that the above estimate is sharp in the sense that for
each d = 0, 1, . . . , there exists a convex quadratic inequality system such that [33]

inf
ε>0

sup
0<dist(x,S)≤ε

dist(x, S)

‖(g(x))+‖+ ‖(g(x))+‖2−d
= 1.

Note that the degree of singularity of (1) is always bounded by (m+1). Therefore, (3)
always holds with d = m+1 [33]. This provides a general error bound for approximate
solutions of a convex quadratic inequality system, even though it might not be as sharp
as one expects.

From Luo–Luo’s and Wang–Pang’s works [20, 33] we can appreciate the im-
portance of Slater’s condition in error estimate (2) for approximate solutions of a
convex quadratic inequality system. However, one can easily construct a convex
quadratic inequality system that satisfies (2) but does not satisfy Slater’s condition:
g1(x1, x2) = x1 + x2, g2(x1, x2) = −(x1 + x2) and g3(x1, x2) = (x1 + x2)

2. (It is a
trivial case since the nonlinear constraint is superfluous. For nontrivial examples, see
section 4.) This simple example raises a natural question: what is the characteriza-
tion of a convex quadratic inequality system that satisfies (2)? It was this question
that led us to the discovery of some intrinsic connections among several seemingly
unrelated concepts: Abadie’s CQ, metric regularity, global error bounds, and weak
sharp minimum property.

The paper is organized as follows. In section 2, we give a detailed discussion of
Abadie’s CQ since it plays a key role in this paper. The main result in section 3
is the equivalence of Abadie’s CQ and metric regularity for a differentiable convex
inequality system. In section 4, we apply this characterization of metric regularity to
derive a characterization of a convex quadratic inequality system that satisfies (2):
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error estimate (2) holds if and only if Abadie’s CQ is satisfied at every feasible point.
Since we can reformulate a constrained minimization problem as an inequality system,
weak sharp minimum property may be considered as a weaker form of error estimate
(2). From this point of view, we establish two new characterizations of weak sharp
minimum property of a convex quadratic program. Finally, a conclusion is included
in section 5.

2. Abadie’s CQ. In this section, we review CQs for (1), especially Abadie’s CQ.
First, Abadie’s CQ is a representation of the tangent cone by the gradients of active
constraints, which can also be described by a representation of the normal cone by
the gradients of active constraints. For differentiable convex optimization problems,
Abadie’s CQ is the weakest condition that ensures the characterization of an optimal
solution by Karush–Kuhn–Tucker (KKT) conditions.

For a point x in a convex set S, the normal cone of S at x [32, 3, 9] is defined by

NS(x) := {z ∈ R
n : zT (y − x) ≤ 0 for y ∈ S}.

The tangent cone TS(x) of S at x is the polar of the normal cone NS(x). That is,
y ∈ TS(x) if and only if yT z ≤ 0 for every z ∈ NS(x). The tangent cone TS(x) can
also be defined as the closed convex cone generated by the elements in S − x.

Definition 2.1. We say that the system (1) satisfies Abadie’s CQ at x ∈ S [1, 3]
if

TS(x) = {y ∈ R
n : g′i(x)T y ≤ 0 for i ∈ I},

where I := {i : gi(x) = 0} is the set of indices of active constraints at x. If Abadie’s
CQ holds at every point in S, then we say that (1) satisfies Abadie’s CQ.

Note that we always have TS(x) ⊂ {y ∈ R
n : g′i(x)T y ≤ 0 for i ∈ I} [9, Lemma

2.1.3]. By duality, we can also use the normal cone to describe Abadie’s CQ (cf. the
proof of Theorem 2.1.4 in [9]).

Lemma 2.2. For the inequality system (1), Abadie’s CQ is satisfied at a point
x ∈ S if and only if

NS(x) =

{∑
i∈I

λig
′
i(x) : λi ≥ 0 for i ∈ I

}
,(4)

where I := {i : gi(x) = 0} is the index set of active constraints at x.
Note that (4) is also called the basic CQ (BCQ) condition (cf. (2.2.1) in [9]).

Thus, BCQ is equivalent to Abadie’s CQ. The following result about various CQs
is well-known, which implies that Abadie’s CQ is the weakest one among them (cf.
Figure 2.4.2 on p. 317 of [9]).

Lemma 2.3. Consider the following CQs at a point x ∈ S:
(LICQ): {g′i(x) : i ∈ I} is linearly independent,
(SCQ): there exists x̄ such that gi(x̄) < 0 for i = 1, . . . ,m,
(MFCQ): there exists a vector u such that g′i(x)Tu < 0 for i ∈ I,
(ACQ): TS(x) =

{
y ∈ R

n : g′i(x)T y ≤ 0 for i ∈ I
}
,

where I := {i : gi(x) = 0} is the index set of active constraints at x. Then

(LICQ) ⇒ (SCQ) ⇔ (MFCQ) ⇒ (ACQ).

In general, (ACQ) 6⇒ (MFCQ) and (SCQ) 6⇒ (LICQ). Any CQ condition weaker
than Abadie’s CQ is not very useful since Abadie’s CQ is the weakest condition that
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ensures the KKT characterization for an optimal solution of a differentiable convex
optimization problem (cf. Lemma 2.4).

Consider the minimization of a differentiable convex function f(x) on R
n subject

to inequality constraints (1):

min f(x) subject to gi(x) ≤ 0 for i = 1, . . . ,m.(5)

We say that x̄ is a KKT point of (5) [32, 3, 9] if there exist nonnegative scalars λi
such that

f ′(x̄) +
∑
i∈I

λig
′
i(x̄) = 0,

where I := {i : gi(x̄) = 0} is the index set of active constraints at x̄. Then one can use
the KKT characterization for solutions of (5) to describe Abadie’s CQ [9, Proposition
2.2.1].

Lemma 2.4. The following two statements are equivalent.
(2.4.1) The system (1) satisfies Abadie’s CQ.
(2.4.2) For any differentiable convex function f(x) on R

n, x̄ is an optimal solution
of (5) if and only if x̄ is a KKT point of (5).

Finally we list a commonly used Slater-type CQ that implies Abadie’s CQ (cf.
section 2 of Chapter VII or Figure 2.4.2 of [9]).

Lemma 2.5. Suppose that there exists a point x̄ such that gi(x̄) ≤ 0 for i =
1, . . . ,m and gi(x̄) < 0 if gi(x) is not an affine function. Then (1) satisfies Abadie’s
CQ.

3. Metric regularity and Abadie’s CQ. It is well known that metric regular-
ity is related to Slater’s condition and MFCQ [30, 31, 6]. In this section we prove that
Abadie’s CQ is equivalent to metric regularity for a convex differentiable inequality
system.

Following the definition of metric regularity for set-valued mappings (or
multifunctions) (cf. [6, Definition 2.1] or [11, Definition 1.1]) we give a definition
of metric regularity for (1).

Definition 3.1. We say that the system (1) is metrically regular at a point x̄ ∈ S
if there exist positive constants γ and δ such that

dist(x, S) ≤ γ ·
m∑
i=1

(gi(x))+ when ‖x− x̄‖ ≤ δ.

We say that the system (1) is metrically regular if it is metrically regular at every
point in S.

Note that we are interested in metric regularity of (1) at every point in S. In
general, one needs Slater’s condition to ensure such a metric regularity as shown in
the following lemma that follows from a more general result by Robinson (cf. section
3 of [30]).

Lemma 3.2. If there exists x̄ ∈ R
n such that gi(x̄) < 0 for i = 1, . . . ,m, then (1)

is metrically regular.
Remark. In fact, in section 3 of [30], Robinson proved the following inequality:

dist(x, S) ≤ γ‖x− x̄‖ ·
m∑
i=1

(gi(x))+ for x ∈ R
n,(6)
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where γ is a positive scalar. Note that (6) implies the metric regularity of (1). From
(6) we obtain error bounds for infeasible solutions of (1) on bounded subsets of R

n:

dist(x, S) ≤ γr ·
m∑
i=1

(gi(x))+ when ‖x‖ ≤ r,(7)

where γr is a positive scalar depending on r. This shows that metric regularity is
closely related to error bounds. In fact, metric regularity of (1) is equivalent to error
bounds for infeasible solutions of (1) on bounded subsets of R

n.
Theorem 3.3. The system (1) is metrically regular if and only if for any scalar

r > 0 there exists a positive constant γr such that

dist(x, S) ≤ γr ·
m∑
i=1

(gi(x))+ when ‖x‖ ≤ r.(8)

Proof. Obviously, (8) implies metric regularity of (1). Now assume that (1) is
metrically regular. Then, for each x̄ ∈ S, there exist positive scalars δx̄ and γx̄ such
that

dist(x, S) ≤ γx̄ ·
m∑
i=1

(gi(x))+ when ‖x− x̄‖ ≤ δx̄.(9)

Let x∗ ∈ S and Sr := {x ∈ S : ‖x‖ ≤ 2r + ‖x∗‖}. Then Sr is compact. Moreover,

Sr ⊂
⋃
x̄∈Sr

B(x̄, δx̄),(10)

where B(x̄, δx̄) := {x ∈ R
n : ‖x − x̄‖ < δx̄} is the open ball in R

n with center x̄ and
radius δx̄. By the compactness of Sr and (10), there exist points {x1, . . . , xk} ⊂ Sr
such that

Sr ⊂
k⋃

j=1

B(xj , δxj ).(11)

For x ∈ R
n with ‖x‖ ≤ r, let PS(x) be the projection of x onto S; i.e., PS(x) ∈ S

with dist(x, S) = ‖x− PS(x)‖. Then

‖PS(x)‖ ≤ ‖x‖+ ‖x− PS(x)‖ ≤ r + ‖x− x∗‖ ≤ r + ‖x‖+ ‖x∗‖ ≤ 2r + ‖x∗‖.
Thus, PS(x) ∈ Sr. By (11), PS(x) ∈ B(xj , δxj ) for some xj . Since B(xj , δxj ) is open,
there exists 0 < θ < 1 such that

xθ := θx + (1− θ)PS(x) ∈ B(xj , δxj ).

By (9), we obtain

dist(xθ, S) ≤ γxj ·
m∑
i=1

(gi(xθ))+.(12)

By the convexity of gi and gi(PS(x)) ≤ 0, we get

gi(xθ) ≤ θgi(x) + (1− θ)gi(PS(x)) ≤ θgi(x),
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which implies

(gi(xθ))+ ≤ (θgi(x))+ = θ(gi(x))+.(13)

By the definition of xθ, we have

‖x− PS(x)‖ ≤ ‖x− PS(xθ)‖
≤ ‖x− xθ‖+ ‖xθ − PS(xθ)‖
= (1− θ)‖x− PS(x)‖+ ‖xθ − PS(xθ)‖,

which implies

θdist(x, S) ≤ dist(xθ, S).(14)

It follows from (12), (13), and (14) that

dist(x, S) ≤ 1

θ
dist(xθ, S) ≤ γr

θ
·
m∑
i=1

(gi(xθ))+ ≤ γr ·
m∑
i=1

(gi(x))+,

where γr := max{γxj : 1 ≤ j ≤ k}.
Before we prove the equivalence of metric regularity and Abadie’s CQ for (1), we

need the following simple fact about nonnegative linear combination of vectors in R
n

[32, Corollary 17.1.2].
Lemma 3.4. Suppose that y, ui ∈ R

n and y =
∑r

i=1 αiu
i 6= 0 for some nonnega-

tive scalars αi. Then there exist nonnegative scalars λ1, . . . , λr such that
(3.4.1) y =

∑r
i=1 λiu

i,
(3.4.2) {ui : λi 6= 0} are linearly independent.
Now we are ready to prove the main theorem in this section.
Theorem 3.5. The system (1) is metrically regular if and only if (1) satisfies

Abadie’s CQ.
Proof. First we show that metric regularity of (1) implies Abadie’s CQ.
Let S := {x ∈ R

n : g(x) ≤ 0} be the set of all feasible points of (1). If there
is x̄ ∈ R

n such that g(x̄) < 0, then (1) satisfies the Slater condition; hence, it also
satisfies Abadie’s CQ (cf. Lemma 2.3). Otherwise, for any point x̄ ∈ S, consider the
set

S̄ := {x ∈ R
n : g′i(x̄)T (x− x̄) ≤ 0 for i ∈ I},

where I := {i : gi(x̄) = 0}. Since S̄ is a polyhedral set, by Proposition 2.2.2 in [9],

NS̄(x̄) =

{∑
i∈I

λig
′
i(x̄) : λi ≥ 0

}
.

Since S ⊂ S̄, the normal cone NS̄(x̄) is a subset of the normal cone NS(x̄). In view of
Lemma 2.2, our goal is to show that NS(x̄) = NS̄(x̄). We prove this by contradiction.
If there is u ∈ NS(x̄) \NS̄(x̄), then there exists z ∈ S̄ such that

uT (z − x̄) > 0,(15)

while

uT (x− x̄) ≤ 0 for x ∈ S.(16)
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Since z ∈ S̄, we have

g′i(x̄)T (z − x̄) ≤ 0 for i ∈ I.(17)

Let 0 < α < 1 and x(α) = αz + (1− α)x̄. Then, for any x ∈ S,

‖x(α)− x̄‖ = α‖z − x̄‖
= αγuT (z − x̄) = γuT (x(α)− x̄)

= γ
(
uT (x(α)− x) + uT (x− x̄)

)
≤ γuT (x(α)− x) ≤ γ‖u‖ · ‖x(α)− x‖,

where γ := ‖z−x̄‖
uT (z−x̄)

> 0, the first inequality follows from (16), and the last inequality

is by the Cauchy–Schwarz inequality. As a consequence,

dist(x(α), S) ≥ 1

γ‖u‖‖x(α)− x̄‖ > 0.(18)

By the assumption, we have metric regularity at x̄ ∈ S. That is, there exist positive
constants λ and ε such that

dist(x, S) ≤ λ
m∑
i=1

(gi(x))+ when ‖x− x̄‖ ≤ ε.(19)

Since x(α) → x̄ as α→ 0+, it follows from (19) that

lim sup
α→0+

∑m
i=1(gi(x(α)))+
dist(x(α), S)

≥ 1

λ
> 0.(20)

Since limα→0+ gi(x(α)) = gi(x̄) < 0 when i 6∈ I, we have

lim
α→0+

(gi(x(α)))+
dist(x(α), S)

= 0 for i 6∈ I.(21)

Let ei(α) := gi(x(α)) − gi(x̄) − g′i(x̄)T (x(α) − x̄). By the differentiability of gi, we
have

lim
α→0+

|ei(α)|
‖x(α)− x̄‖ = 0.

From (18) and the above limit, we get

lim sup
α→0+

|ei(α)|
dist(x(α), S)

≤ lim
α→0+

γ‖u‖ |ei(α)|
‖x(α)− x̄‖ = 0.(22)

However, for i ∈ I, it follows from (17) that gi(x(α)) = gi(x(α))− gi(x̄) ≤ ei(α) and,
as a consequence, (gi(x(α)))+ ≤ |ei(α)|. By (22), we have

lim
α→0+

(gi(x(α)))+
dist(x(α), S)

= 0 for i ∈ I.(23)

The limits (21) and (23) imply that

lim sup
α→0+

∑m
i=1(gi(x(α)))+
dist(x(α), S)

= 0,
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which contradicts the inequality (20). Thus, by contradiction, we have proved that
the system (1) satisfies Abadie’s CQ.

Now we prove that Abadie’s CQ implies metric regularity of (1).
Let x̄ ∈ S and I := {i : gi(x̄) = 0}. Since gi(x̄) < 0 for each i 6∈ I and gi are

continuous, there exists a positive constant δ0 such that

gi(x) < 0 when i 6∈ I, ‖x− x̄‖ ≤ 2δ0.(24)

Let I be the collection of all nonempty index sets J(⊂ I) such that the inequality
system gi(x) ≤ 0 for i ∈ J satisfies the Slater condition.

Assume that I is not empty. Let J ∈ I. By Lemma 3.2, there exist positive
constants γ(J) and δ(J) such that

dist(x, S(J)) ≤ γ(J) ·
∑
i∈J

(gi(x))+ when ‖x− x̄‖ ≤ δ(J),

where S(J) := {x : gi(x) ≤ 0 for i ∈ J}. Let δ := min{δ0, δ(J) : J ∈ I} and
γ := max{γ(J) : J ∈ I}. Since I is a finite set, δ > 0 and γ > 0. Moreover,

dist(x, S(J)) ≤ γ ·
∑
i∈J

(gi(x))+ when ‖x− x̄‖ ≤ δ, J ∈ I.(25)

For any point x 6∈ S with ‖x − x̄‖ ≤ δ, there exists a unique point x∗ ∈ S such
that

1

2
‖x− x∗‖2 =

1

2
dist(x, S)2 = min

z∈S
1

2
‖x− z‖2 > 0.

Since (1) satisfies Abadie’s CQ, by Lemma 2.4 there exist nonnegative scalars αi such
that

x− x∗ =
∑
i∈I∗

αig
′(x∗) 6= 0,

where I∗ := {i : gi(x
∗) = 0} is the set of indices of active constraints at x∗. By

Lemma 3.4, there exists an index set J ⊂ I∗ and nonnegative scalars λi such that

x− x∗ =
∑

i∈J λig
′
i(x

∗) 6= 0,

{g′i(x∗) : i ∈ J} are linearly independent.
(26)

By Lemma 2.3, the above linear independence CQ implies the Slater condition for the
inequality system gi(x) ≤ 0 for i ∈ J .

Since

‖x∗ − x̄‖ ≤ ‖x∗ − x‖+ ‖x− x̄‖ ≤ 2‖x− x̄‖ ≤ 2δ ≤ 2δ0,

by (24), gi(x
∗) < 0 for i 6∈ I. Thus, J ⊂ I. As a consequence, J ∈ I and I is not

empty. By (25),

dist(x, S(J)) ≤ γ
∑
i∈J

(gi(x))+.(27)

It follows from the first equation in (26), x∗ ∈ S(J), and Lemma 2.4 that

dist(x, S(J)) = ‖x− x∗‖ = dist(x, S).
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Therefore, we derive from (27) that

dist(x, S) ≤ γ

m∑
i=1

(gi(x))+ when ‖x− x̄‖ ≤ δ, x 6∈ S,

which implies

dist(x, S) ≤ γ

m∑
i=1

(gi(x))+ when ‖x− x̄‖ ≤ δ.(28)

Note that if I is empty, then the above proof shows

{x ∈ R
n : ‖x− x̄‖ ≤ δ0} ⊂ S.

Thus, (28) also holds with γ = 1 and δ = δ0.
Since (28) holds for any x̄ ∈ S, the system (1) is metrically regular at every point

x̄ ∈ S. This proves the metric regularity of (1).

4. Error bounds. We want to apply the main theorem in the previous section
(Theorem 3.5) to a special case: (1) with convex linear/quadratic functions gi(x). In
this case, the metric regularity is equivalent to the existence of a global error bound
for infeasible solutions of (1). As a consequence, we obtain that Abadie’s CQ is a
necessary and sufficient condition for a global error bound given in (2). Our result
complements the study done by Luo and Luo [20] as well as Wang and Pang [33] on
error bounds for convex quadratic inequalities.

Consider the following system of convex quadratic inequalities:

gi(x) ≤ 0 for i = 1, . . . ,m,(29)

where gi(x) are either affine or convex quadratic functions on R
n.

The essence of our proof is to reduce the problem to the case that Slater’s condi-
tion holds. Then we can use the following result by Luo and Luo [20, Lemma 3.5] to
get (2).

Lemma 4.1. If the system (29) satisfies the Slater condition, then there exists a
positive constant γ such that∥∥∥∥∥∥

∑
i∈I(x)

λig
′
i(x)

∥∥∥∥∥∥ ≥ γ
∑
i∈I(x)

λi for x ∈ R
n, λi ≥ 0,(30)

where I(x) := {i : gi(x) = 0}.
It is obvious that (2) implies metric regularity. Therefore, the main effort in

proving the equivalence of (2) and metric regularity is to show that metric regularity
implies (2) for convex quadratic inequalities.

Theorem 4.2. The convex quadratic inequality system (29) satisfies Abadie’s
CQ if and only if there exists a positive constant γ such that

dist(x, S) ≤ γ
m∑
i=1

(gi(x))+ for x ∈ R
n,(31)

where S := {x ∈ R
n : gi(x) ≤ 0 for i = 1, . . . ,m}.
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Proof. Since (31) implies the metric regularity of (29), by Theorem 3.5 (29)
satisfies Abadie’s CQ. On the other hand, if (29) satisfies Abadie’s CQ, then for any
x ∈ R

n the KKT conditions hold for the projection x∗ from x onto S (cf. Lemma
2.4):

x∗ − x +
∑
i∈I

λig
′
i(x

∗) = 0,(32)

where x∗ ∈ S with ‖x∗ − x‖ = dist(x, S), λi are nonnegative scalars, and I := {i :
gi(x

∗) = 0}. By Lemma 3.4, we may assume that {g′i(x∗) : i ∈ I, λi 6= 0} are linearly
independent. Let Ī := {i ∈ I : λi 6= 0}. It follows from Lemma 2.3 that the system
gi(x) ≤ 0 for i ∈ Ī satisfies the Slater CQ. By Lemma 4.1, we have

dist(x, S) = ‖x∗ − x‖ =

∥∥∥∥∥∥
∑
i∈Ī

λig
′
i(x

∗)

∥∥∥∥∥∥ ≥ γ(Ī)
∑
i∈Ī

λi,(33)

where γ(Ī) is a positive constant depending only on {gi : i ∈ Ī}. As a consequence,

dist(x, S)2 = (x− x∗)T (x− x∗) =


∑

i∈Ī
λig

′
i(x

∗)



T

(x− x∗)

=
∑
i∈Ī

λig
′
i(x

∗)T (x− x∗) ≤
∑
i∈Ī

λigi(x) ≤

∑

i∈Ī
λi


 m∑

i=1

(gi(x))+,

where the second equality is from (32), the first inequality follows from convexity of
gi, and the second inequality is derived from λi ≥ 0 and gi(x) ≤ (gi(x))+. The above
estimate of dist(x, S), along with (33), yields

dist(x, S) ≤ 1

γ(Ī)

m∑
i=1

(gi(x))+.

Since there are only finitely many different Ī, (31) holds with

γ := max

{
1

γ(Ī)

}
<∞.

This completes the proof of Theorem 4.2.

Note that Luo and Luo [20, Theorem 3.1] proved a special case of Theorem 4.2:
(31) holds if there exists a vector x̄ such that g(x̄) ≤ 0 and gi(x̄) < 0 whenever gi(x)
is not an affine function (cf. Lemma 2.5).

Theorem 4.2 not only gives a characterization of the existence of global error
bound (2) for convex quadratic inequalities but also reveals why there exist weak sharp
minima for convex quadratic programming problems [8], as shown in the following
theorem.

Theorem 4.3. Assume that f(x) is a convex quadratic function bounded below
on {x ∈ R

n : Ax ≤ b}. Let fmin := minAx≤b f(x) and S := {x ∈ R
n : Ax ≤ b, f(x) =

fmin}. Then the following statements are equivalent.
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(4.3.1) Abadie’s CQ is satisfied at every feasible point of the following inequality
system:

f(x)− fmin ≤ 0 and Ax− b ≤ 0.(34)

(4.3.2) The convex quadratic programming problem minAx≤b f(x) has weak sharp
minima. That is, there exists a positive constant γ such that

f(x) ≥ fmin + γ · dist(x, S) when Ax ≤ b.(35)

(4.3.3) There exists a positive constant λ such that

dist(x, S) ≤ λ ((f(x)− fmin)+ + ‖(Ax− b)+‖) for x ∈ R
n.(36)

Proof. By Theorem 4.2, (4.3.1) ⇔ (4.3.3). Obviously, (4.3.3) ⇒ (4.3.2). It suffices
to prove that (4.3.2) ⇒ (4.3.1).

Now assume that (35) holds for some γ > 0. For any x̄ ∈ S, let

S̄ := {x ∈ R
n : f ′(x̄)T (x− x̄) ≤ 0, Ax ≤ b}

and I := {i : Aix̄− bi = 0}, where Ai is the ith row of A and bi is the ith component
of b. Then, by Proposition 2.2.2 in [9],

NS̄(x̄) =

{
λ0f

′(x̄) +
∑
i∈I

λiA
T
i : λ0, λi ≥ 0

}
.

Since f(x̄)− fmin = 0, by Lemma 2.2 (34) satisfies Abadie’s CQ at x̄ if and only if

NS(x̄) = NS̄(x̄).(37)

However, by Ferris and Mangasarian’s characterization of weak sharp minima for
convex quadratic programs, (35) implies S = S̄ [8, Theorem 6]. Hence, (37) holds.
This proves the implication (4.3.2) ⇒ (4.3.1).

Note that various characterizations of weak sharp minima of a convex quadratic
programming problem were given by Ferris and Mangasarian [8, Theorem 6]. Theorem
4.2 leads us to two new characterizations (4.3.1) and (4.3.3) in Theorem 4.3. Weak
sharp minimum inequality (35) estimates how far away a feasible solution is from the
solution set. The inequality (36) actually provides an estimate of the distance from
any approximate solution of the quadratic programming problem to its solution set,
which is more desirable when infeasible approximate solutions are involved. Even
though (36) fails to be true if (34) does not satisfy Abadie’s CQ, one could still have
the following inequality [18, Corollary 2.8]:

dist(x, S) ≤ γ
(
f(x)− fmin +

√
f(x)− fmin

)
for Ax− b ≤ 0,

where f(x) is a convex piecewise quadratic function.

5. Conclusion. We have shown that the concepts of metric regularity, error
bounds, and weak sharp minimum are closely related. The essence of these concepts
is to estimate the distance from an approximate solution to the solution set of the
underlying problem, locally or globally. For metric regularity of parametric systems,
MFCQ was proven to be a necessary and sufficient condition [31, Theorem 1] (cf.
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also Corollary 2.2 and the comments after it in [6]). However, for the nonparametric
version of metric regularity defined in this paper, Abadie’s CQ is a necessary and
sufficient condition. As applications, we prove that Abadie’s CQ is a characterization
for the existence of a global error bound (2) for convex quadratic inequalities, which
leads to a global error bound (36) for approximate solutions of a convex quadratic
programming problem with weak sharp minima.

Acknowledgment. The author would like to thank Ivan Singer for helpful com-
ments that simplify the presentation of section 2.
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Abstract. The optimal power flow problem involves setting the voltage and power delivered at
the nodes of an electrical network in order to minimize the loss of power over the lines. This paper
is the first of a series dedicated to the mathematical study of this problem. We use an asymptotic
analysis in which the small parameter is the inverse of the reference voltage of the network. We call
this scheme the very high voltage approximation. Here we deal with the case of direct current. We
obtain an analytic expansion for the optimal value and the solution.

Key words. electrical networks, nonlinear optimization, asymptotic analysis, sensitivity analy-
sis, expansion of solutions, directional constraint qualification
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Notation.
F (P), set of feasible points of an optimization problem (P),
S(P), set of solutions of an optimization problem (P),
v(P), optimal value of an optimization problem (P),
S, set of nodes of the network, numbered from 1 to n, excluding the reference node 0,
n, cardinality of S, (n = |S|),
Yk`, admittance between nodes k and `,
Ik`, current from node k to node `,
Vk, voltage at node k,
V R, voltage at reference node,
Jk, input of current at node k,
Pk, input of power at node k; Pk := VkJk,
Z, admittance matrix.

1. Introduction. The optimal power flow problem is an important issue, which
involves setting in an optimal way the voltage and power delivered at the nodes of an
alternating current (AC) network. The distribution of voltage and power is subject to
certain bounds and must comply with Kirchhoff’s and Ohm’s laws. A typical criterion
is to minimize the loss of energy over the network (see, e.g., Blanchon, Bonnans, and
Dodu [3]).

This paper is the first of a series dedicated to the mathematical study of this
problem. We use an asymptotic analysis in which the small parameter is, roughly
speaking, the inverse of the square root of the nominal voltage of the network. We
call this scheme the high voltage approximation. This choice of a small parameter is
natural, as industrial networks use very high values for the voltage. The approxima-
tion scheme gives considerable insight into the problem, as the limit problem (which,
after a proper scaling, is well defined) has its active and reactive parts decoupled.
This means that for a sufficiently high voltage the coupling between active and reac-
tive parts is weak, a property that can be very useful for numerical purposes. Indeed,
on the basis of our perturbation analysis, one can prove the rapid convergence of
some algorithms with decoupled equations (this was the original motivation of our

∗ Received by the editors December 1, 1994; accepted for publication (in revised form) June 20,
1996. This study was supported by Electricité de France.
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study). These algorithms can be used for solving the power flow problem (without
optimization) as well as for the optimal power flow problem.

The main mathematical tool of these papers is the perturbation theory for
nonlinear programming, a subject in which significant progress has been made in
the last few years, e.g., [2], [6], [10], [15], and the review [7]. Indeed, this study can
be viewed as a real-world application of the above-mentioned theory.

While the application deals with AC, it is useful to consider first the analogous
problem with direct current. This allows us to study a problem with much simpler
equations that nevertheless retains some of the flavor of the real application. Even for
readers whose primary interest lies only in real world applications, it is advisable to
read this paper first in order to get accustomed to some basic tools of the perturbation
theory for nonlinear programming, whereas mathematicians will be pleased, as always,
to deal with a simplified model that allows a complete mathematical discussion.

The other parts of this study are devoted to AC networks. Part II [16] discusses
the power flow problem (without optimization) for which an early reference is Aubin
and Raviart [1]. There the high voltage approximation is combined with the hypoth-
esis of small real part of impedances. In part III [17] we obtain our final results,
namely the expansion of solutions, by applying the perturbation theory for nonlinear
programming to the AC optimal power flow problem in the framework of the high
voltage approximation.

The present paper is structured as follows. In section 2, we review the equation
of the direct current power network and state the problem of minimizing the loss of
power over the network. Section 3 introduces the high voltage approximation. We
show that, after a proper scaling, the limit problem is well posed, and we exhibit its
solution. In section 4, we review the mathematical tools (Auslender and Cominetti
[2], Bonnans and Sulem [8]) from the perturbation theory for nonlinear programming
that are needed. We combine these two results in order to state a third. Section 5
is devoted to the analysis of the limit problem. We note that the limiting problem
has nonqualified constraints, although there exist multipliers associated with the so-
lution. In section 6, we obtain the analytic expansion for the optimal value and the
solution. We ultimately give physical interpretations of the expansion of the solution
in section 7.

2. Presentation of the optimal direct current power flow problem. We
consider a network composed of passive elements, namely resistances, with a possible
injection of current at the nodes. The voltages and currents are subject to Kirchhoff’s
and Ohm’s laws. The problem is to minimize the energy losses while respecting
some bound constraints on the voltages and injection of power at the nodes. In the
discussion below, we use some of the definitions given in the notation section. We
may write Ohm’s law as

Ik` = Yk`(Vk − V`), 0 ≤ k 6= ` ≤ n.(1)

The matrix Y is symmetric with a zero diagonal and nonnegative elements. We may
interpret a zero value of Yk` as the absence of a line between nodes k and `. We
assume that the network is connected in the sense that any two nodes can be linked
by a path consisting of lines with positive values of Yk. The current Jk injected at
node k satisfies Kirchhoff’s law

Jk =

n∑
`=0

Ik` =

n∑
`=0

Yk`(Vk − V`).(2)
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Thus the power injected at node k is

Pk := JkVk = Vk

n∑
`=0

Yk`(Vk − V`).(3)

Whenever Vk 6= 0, equation (3) is equivalent to what we call the power equation at
node k

n∑
`=0

Yk`(Vk − V`)− Pk
Vk

= 0.(4)

Let Z be the (n+ 1)× (n+ 1) impedance matrix, defined by

Zkk :=
n∑

`=0

Yk`; Zk` := −Yk`, 0 ≤ k 6= ` ≤ n.

We note that Z is positive semidefinite since

V tZV =
∑

0≤k 6=`≤n
Yk`(Vk − V`)

2 ≥ 0

is the sum of the loss of power over all lines linking nodes of S ∪ {0}. We may write
the power equation over nodes of S as1

ZV − P

V
= 0 over S.(5)

(By “over S” we mean that we take the restriction of the (n+1)-dimensional equality
to nodes of S.)

We will refer to (5) as the power equation. Reference [4] studies (5) for the case
where the value of either V or P is given at each node. One of the results of [4] is
that (5) may have multiple solutions. For instance, denoting by SP the set of nodes

over which P is fixed when P > 0 over SP and SP
6=⊂ S then there exist exactly 2|SP |

solutions, each of them being associated with a convention of sign of the components
of V over SP . In the sequel, we limit ourselves to the study of the solutions close to
a certain nominal value.

We consider the problem of minimizing the losses in which (Z, V R, V [, V ], P [, P ])
are given parameters:

(P)
Min
V,P

1

2
V tZV ; ZV − P

V
= 0 over S; V0 = V R;

V [ ≤ V ≤ V ]; P [ ≤ P ≤ P ].

In this problem V R ∈ R+∗ (the set of positive real numbers) is the reference value
for the voltage and V [, V ], P [, and P ] are given n-dimensional vectors that satisfy
V [ ≤ V ] and P [ ≤ P ]. The bound constraints for V and P are understood for indices
1 to n. The components of the lower bounds V [ and P [ have values in R ∪ {−∞},
whereas those of the upper bounds P ] and V ] have values in R ∪ {∞}. An infinite
value simply means an absence of lower or upper bound constraint.

1 The division of vectors, as well as their multiplication, is to be understood componentwise.
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It seems difficult to determine if the above problem is well posed and stable with
respect to perturbations. First, the power equation is not itself well posed, unless
we make specific assumptions about the data. In addition, some conditions on the
bounds should be added in order to make them compatible with the power equation.
We conclude that, to be able to conduct an analysis of this problem, we have to make
some assumptions. Because some of the real-world networks have very high voltage
values, a natural possibility is to consider the square root of the inverse of the reference
value of the voltage as a small parameter and to let this small parameter go to zero.

3. The very high voltage approximation. We introduce the very high voltage
approximation by embedding (P) in the family of problems

(Pε)

Min
V,P

1

2
V tZV ; ZV − P

V
= 0 over S; V0 =

1√
ε
;

V [

√
ε
≤ V ≤ V ]

√
ε
; P [ ≤ P ≤ P ],

where ε > 0 is a small parameter. Our aim is to compute an asymptotic expansion
of the solution of the above problem when ε → 0 (we will see in a moment that for
technical reasons it is more convenient to introduce the square root of the inverse of
the nominal value as a small parameter rather than the inverse of the nominal value).
It is also convenient to make the following change of variables:

Ṽ :=
√
εV ; P̃ := εP.

Since the cost function is nonnegative and positively homogeneous of degree 2,
an equivalent problem obtained after this change of variables is

(P̃ε)
Min
Ṽ ,P̃

1

2
Ṽ tZṼ ; ZṼ − P̃

Ṽ
= 0 over S; Ṽ0 = 1;

V [ ≤ Ṽ ≤ V ]; εP [ ≤ P̃ ≤ εP ].

We call (Ṽ ε, P̃ ε) a possible solution of (P̃ε). We observe that, except for the
bound constraints on P̃ in which ε appears, this new problem is identical to (P).
From a mathematical point of view, it is equivalent to either making the voltage go
to infinity with a fixed range of delivered power or making the power go to zero with
a fixed range of voltage. In other words, the high voltage approximation is nothing
but a small power approximation.

By elementary case we mean the following situation:2 V [ = −∞ and V ] = +∞
over the network; i.e., there are no bound constraints on the voltage. This is a simple
situation for which various hypotheses can be easily checked.

The limit problem, obtained for ε = 0, is

(P̃0)
Min
Ṽ ,P̃

1

2
Ṽ tZṼ ; ZṼ − P̃

Ṽ
= 0 over S; Ṽ0 = 1;

V [ ≤ Ṽ ≤ V ]; 0P [ ≤ P̃ ≤ 0P ],

where for writing the bound constraints on P̃ , we use the convention

0× (−∞) = −∞, 0× (+∞) = +∞,

2 Sometimes we write an equality between a vector and a scalar value: this means that each
component of the vector is equal to the scalar value.
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and 0P [ (resp., 0P ]) is the n-dimensional vector with kth component 0 × P [
k (resp.,

0×P ]
k). The physical motivation for designing high voltage networks is to reduce the

currents, hence the power lost along the lines. In order to achieve this, the bound
constraints on the voltage must not forbid values that are close to the reference value,
so that we assume that V [ ≤ 1 ≤ V ], where 1 is a vector of ones whose dimension
is determined by the context. Also, if k ∈ S is such that V [

k = 1 = V ]
k , then we may

identify node k with node 0. Consequently, we assume that

(H1) V [ ≤ 1 ≤ V ] and V [ < V ],

where the strict inequality between vectors means strict inequality between all com-
ponents.

Lemma 3.1. Assume that (H1) holds. Then the limit problem has a unique
solution (Ṽ 0, P̃ 0) defined as follows:

Ṽ 0 = 1 and P̃ 0 = 0.

Proof. We first check that (Ṽ 0, P̃ 0) defined as above is feasible for (P̃0). As Ṽ 0 is
constant over the network, we have ZṼ 0 = 0. Because Ṽ 0 = 1 > 0, the term P̃ 0/Ṽ 0

is well defined and has value 0. Therefore the power equation is satisfied. The bound
constraints are also satisfied, thanks to (H1).

Now (Ṽ 0, P̃ 0) is associated with a zero cost. The cost function being nonnegative,
(Ṽ 0, P̃ 0) is a solution of (P̃0). Any other solution (V, P ) is also associated with a zero
cost and hence must satisfy ZV = 0. It follows that V = Ṽ 0, and we deduce from the
power equation that P = P̃ 0 as well.

4. Mathematical tools. This section presents some mathematical tools that
we need from the perturbation theory for nonlinear programming. It is devoted to
the presentation of two known results and to the derivation of a third one. The first
result gives the second-order expansion of the cost and the first-order expansion of the
solution under weak hypotheses. The second one needs much stronger hypotheses but
gives the analytic expansion of the cost and solution. Combining these two results,
we obtain the analytic expansion of the cost and solution under weaker hypotheses
than for the second result.

We consider an abstract finite-dimensional nonlinear optimization problem

(Pε) Min
x∈Rn

f(x, ε); gi(x, ε) = 0, i = 1, . . . , q; gi(x, ε) ≤ 0, i = q + 2, . . . , p,

where f : R
n × R → R and g : R

n × R → R
p are C2 mappings. We consider (P0) as

the unperturbed problem and ε ∈ R+ as the perturbation parameter. Our aim is to
compute the expansion of the cost and solution of the problem.

We assume in this section that (P0) has a unique solution x0 and that for ε > 0
small enough, the set of solutions of (Pε) is nonempty and uniformly bounded. This
kind of condition can be checked by ad hoc conditions on specific examples, as is the
case in the optimal power flow problem (see Lemma 6.1).

We denote the set of active inequality constraints, the Lagrangian function associ-
ated with (Pε), and the set of Lagrange multipliers associated with x0 as, respectively,

I(x, ε) := {j = q + 1, . . . , p; gj(x, ε) = 0},
L(x, λ, ε) := f(x, ε) + λtg(x, ε),

Λ := {λ ∈ R
p; L′x(x

0, λ, 0) = 0; λj ≥ 0, λjgj(x
0, 0) = 0, j > q}.
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An important constraint qualification, due to Mangasarian and Fromovitz [12], is the
following:

(MF )




(i) {∇xgi(x, 0)}, i = 1, . . . , q are linearly independent,

(ii) ∃d ∈ R
n

{
g′i(x, 0)(d, 0) = 0, i = 1, . . . , q;
g′i(x, 0)(d, 0) < 0, i ∈ I(x, 0).

This constraint qualification holds if and only if the set of Lagrange multipliers is
nonempty and bounded (Gauvin [9]) and is also equivalent to a certain stability prop-
erty of the feasible set (Robinson [13]). It therefore seems natural to assume that the
constraint qualification holds in order to conduct a perturbation analysis. However,
in the specific application we have in mind, (MF ) is not satisfied. Consequently we
will rely on the directional constraint qualification due to Gollan [11]

(DQ)




(i) {∇xgi(x, 0)}, i = 1, . . . , q are linearly independent,

(ii) ∃d ∈ R
n

{
g′i(x, 0)(d, 1) = 0, i = 1, . . . , q;
g′i(x, 0)(d, 1) < 0, i ∈ I(x, 0).

It is easily checked that (MF ) implies (DQ).
Now consider the linearization of the data with respect to (x, ε) at (x0, 0). If

(d, 1) denotes the direction, we get the linearized problem

(L̂)

{
Min
d∈Rn

f ′(x0, 0)(d, 1); g′i(x, 0)(d, 1) = 0, i = 1, . . . , q;

g′i(x, 0)(d, 1) ≤ 0, i ∈ I(x, 0).

If (DQ) holds, then (L̂) is feasible. A nice interpretation of condition (DQ) is that it is
equivalent to the condition of Mangasarian and Fromovitz for the linearized problem.
It follows from (DQ) that the (standard) dual of (L̂), whose expression is

(D) Max
λ

L′ε(x
0, λ, 0) ; λ ∈ Λ,

has, if Λ is nonempty, a nonempty and bounded set of solutions S(D). In this case
S(L̂) is nonempty. In short, if (DQ) holds and Λ is nonempty, then both S(L̂) and
S(D) are nonempty and S(D) is bounded.

We need some second-order analysis. The critical cone is defined as

C(x) := {d ∈ R
n; f ′x(x, 0)d ≤ 0; g′i(x, 0)(d, 0) = 0, i = 1, . . . , q;

g′i(x, 0)(d, 0) ≤ 0, i ∈ I(x, 0)}.
The directional second-order condition, due to Shapiro [15], is as follows:

sup
λ∈S(D)

L′′x2(x0, λ, 0)dd > 0 ∀d ∈ C(x0)\{0}.

Note that, the supremum over an empty set being −∞, the directional second-
order condition implies that the set of multipliers is nonempty (except in the spe-
cial case C(x0) = {0}, but it is also true in this case that the set of multipliers is
nonempty).

We say that a map R+ → R
n, ε → xε, is a path if xε → x0 when ε ↓ 0 (we do

not require continuity of ε → xε). A path of o(ε2) solutions is a path xε such that,
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for ε > 0 small enough, xε is feasible for (Pε) and f(xε, ε) ≤ v(Pε) + o(ε2). We say
that d ∈ R

n is a first-order term associated with a path xε if d is a limit point of
(xε − x0)/ε. We define the following subproblem

(Q) Min
d∈S(L̂)

max
λ∈S(D)

L′′(x0, λ, 0)(d, 1)(d, 1).

As S(L̂) is a polyhedron, if S(D) is a singleton then (Q) is a quadratic optimization
problem (a problem with quadratic cost and linear constraints).

The result below, due to Bonnans, Ioffe, and Shapiro [6], has its origins in the
work of Shapiro [15] and Auslender and Cominetti [2].

Theorem 4.1. Assume that the directional constraint qualification hypothesis is
satisfied, as well as the directional second-order condition. Then

(i) (Stability) Any path xε of o(ε2) solutions satisfies x(ε) = x0 +O(ε).
(ii) (Expansion of solutions) The union of all first-order terms associated with

o(ε2) solutions is equal to S(Q). In particular, if S(Q) = {d}, then any path
of exact solutions xε satisfies xε = x0 + εd+ o(ε).

(iii) With any solution of (Pε), there is associated, for ε small enough, a nonempty
and uniformly bounded set of multipliers. The set of limit points of these mul-
tipliers (when ε ↓ 0) is included in S(D).

We now state a second abstract result based on stronger hypotheses. The condi-
tion of linear independence (of gradients of active constraints at x0) is

(LI) {∇xgi(x
0, 0); i ∈ {1, . . . , q} ∪ I(x0, 0)} is linearly independent.

This condition implies that x0 is associated with a unique multiplier λ0. We define
the enlarged critical cone (which is a vector subspace) as

C](x0, λ0) := {d ∈ R
n; g′i(x

0, 0)(d, 0) = 0, i ∈ {1, . . . , q} ∪ {j ∈ I(x0, 0); λ0
j > 0}}.

It is easily checked that C(x0) ⊂ C](x0). Both sets coincide if (x0, λ0) is a
strictly complementary pair in the sense that λ0

j > 0 whenever j ∈ I(x0, 0). The
strong second-order condition, due to Robinson [14], assumes that a unique multiplier
λ0 is associated with x0 such that

L′′x2(x0, λ0, 0)dd > 0 ∀d ∈ C](x0, λ0)\{0}.(6)

The theorem below is due to Bonnans and Sulem [8].
Theorem 4.2. Assume that (x0, λ0) satisfy the condition of linear independence

as well as the strong second-order condition. Then in a certain neighborhood of x0 for
ε > 0 small enough, (Pε) has a unique solution xε and the mapping ε→ (xε, λε, v(Pε))
is (real) analytic. The coefficients of the expansion of xε and λε can be computed by
expanding the optimality system as in [8]. The first-order expansion is xε = x0 + εd+
O(ε2), where d is the unique solution of S(Q).

We now combine the above two results in order to deduce a third. We say that
the directional linear independence qualification condition holds if (L̂) is feasible and
satisfies the hypothesis of linear independence at each solution of (Q). We say that
the strong directional second-order condition holds if (D) has a unique solution λ0,
such that (6) holds.

Theorem 4.3. Assume that x0 is a local solution of (P0) satisfying
(i) the directional linear independence qualification condition, and
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(ii) the strong directional second-order condition.
Then the conclusion of Theorem 4.2 holds.

Proof. By (i), the linearized problem is qualified, i.e., (DQ) holds. Condition
(ii) implies the directional second-order condition (which therefore involves only the
multiplier λ0). We may apply Theorem 4.1. Problem (Q) consists of minimizing a
quadratic cost over S(L̂). By (ii), the Hessian of the cost function is positive definite
over the vector space parallel to the affine hull of S(L̂) (note that as λ0 solves the
dual of (L̂), the constraints associated with nonzero components of λ0 are active at
any solution of (L̂)). Therefore problem (Q) has a unique solution d. Let us denote
by I∗ the set of active inequality constraints for (L̂) associated with d. Let {xε} be
a path of solutions. The inequality constraints in I\I∗ are not active for ε > 0 small
enough. Therefore, xε is (for positive ε) a local solution of

(P̂ε) Min
x∈Rn

f(x, ε); gi(x, ε) = 0, i = 1, . . . , q; gi(x, ε) ≤ 0, i ∈ I∗.

Now x0 is a local solution of (P̂0) associated with a unique multiplier λ0 (as can be
checked with the second-order sufficient conditions), and we may apply Theorem 4.2
to problem (P̂0) in order to get the conclusion.

5. Study of the limit problem. Let us return to the optimal power flow prob-
lem. We observe that the limit problem is in general not qualified in the sense that
(MF ) does not hold. Indeed, if there exists k ∈ S such that both P [

k and P ]
k have

finite but different values, then we get the constraint 0 ≤ P̃k ≤ 0, and these two
inequalities cannot be strictly satisfied.

We need the following notation for the active constraints: V̄ [, V̄ ] are n-dimensional
vectors related to the active constraints such that for all k ∈ S,

V̄ [
k =

{
V [
k if V [

k = 1
−∞ otherwise.

and V̄ ]
k =

{
V ]
k if V ]

k = 1
+∞ otherwise.

(Recall that Ṽ 0 = 1.)
Linearizing the data of (P̃ε) with respect to (Ṽ , P̃ , ε) at (Ṽ 0, P̃ 0, 0) we obtain the

linearized problem

(L)




Min
dV,dP

(Ṽ 0)tZdV ; ZdV = dP/Ṽ 0 over S; dV0 = 0;

V̄ [ ≤ 1 + dV ≤ V̄ ]; P [ ≤ dP ≤ P ].

As Ṽ 0 is constant, we have (Ṽ 0)tZdV = (ZṼ 0)tdV = 0. The equality S(L) =
F (L) follows. In the lemma below, we use hypothesis (H1) defined just before Lemma
3.1. Denote by S=

P the set of nodes over which the lower and upper bound on P̃ are
equal. In order to apply the theoretical result, we view the bound constraints on P̃
over S=

P as equalities over S=
P .

Lemma 5.1. Assume that (H1) holds. Then
(i) the gradients of the equality constraints are linearly independent ;
(ii) the limit problem is directionally qualified if and only if there exists (dV, dP )

in F (L) with each component strictly between the bounds whenever they are
not equal ;

(iii) if the limit problem is directionally qualified, then (D) has a unique solution,
namely the zero multiplier.
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Proof. (i) Checking (i) amounts to checking that the linearized equality con-
straints are onto, i.e., checking that the system

dV0 = W 0; ZdV − dP

V
= W 1 over S; dP = W 2 over S=

P ,

has at least one solution for any (W 0,W 1,W 2). Set dP to 0 over S\S=
P . With respect

to V , it remains to solve the system

dV0 = W 0; ZdV =
dP

V
+W 1 overS,

which is the equation of a linear DC network with given voltage at node 0 and given
inputs of current at other nodes. This problem has a unique solution.

(ii) This is an immediate consequence of part (i) and the definition of (DQ).
(iii) As the gradient of the cost of problem P̃0 is zero, the set of Lagrange multi-

pliers is a cone. Problem (D) consists of maximizing a linear cost over this cone. It
follows that S(D) is itself a cone. We know that if directional qualification holds, then
the set of solutions is nonempty and bounded. Being a cone, this set can be nothing
else than {0}.

Remark. In the elementary case (i.e., when the voltage is unconstrained) Lemma
5.1(i) is satisfied. Therefore, the limit problem is directionally qualified. Another
situation where directional qualification can be checked is when the upper bounds on
the voltage are strictly greater than 1, and there is no upper bound on the power. It
follows that problem (L) has no upper bound. Now we can take dP = α(1, . . . , 1)t

with α > 0 large enough to obtain dP > P [. Then dV , the solution of the linearized
power equation, is positive; hence, (dV, dP ) satisfies the condition for directional qual-
ification.

We may have a better insight into these qualification conditions by making an
analogy with the optimal control theory. See dP as the control and dV as the state.
What we call the elementary case occurs when there is no state constraint. In the
case of one-sided constraints for the control and state, where we have taken advantage
of the positivity of the mapping “control → state,” the discussion parallels the one
for the control of nonlinear elliptic equations (see, e.g., Bonnans and Casas [5]).

We assume in the sequel that the directional qualification hypothesis holds. As
S(D) = {0}, the cost of the quadratic subproblem reduces in our application to the
Hessian of the cost. Using S(L) = F (L), we can reformulate this problem as

(SP ) Min
dV,dP

1

2
(dV )tZdV ; (dV, dP ) ∈ F (L).

Let ZR be obtained by deleting the first row and column of Z. As the network is
connected, ZR is invertible. Because dV0 is set to 0, the system ZdV = dP/Ṽ 0 has
a unique solution dV = (ZR)−1(dP/Ṽ 0). Introducing the auxiliary variable h :=
dP/Ṽ 0, and substituting in (SP ), we obtain the equivalent problem

Min
h

1

2
ht(ZR)−1h; dV0 = 0; V̄ [ ≤ (ZR)−1h ≤ V̄ ]; P [ ≤ h ≤ P ].

This problem has a unique solution, namely the projection, along the norm associated
with (ZR)−1, of the origin over the feasible set. We call (dV , dP ) the solution of (SP ).

The following lemma allows us to check the second-order conditions.
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Lemma 5.2. Consider the limit problem (P̃0). Then the Hessian of the cost is
positive definite over the space tangent to the equality constraints.

Proof. The quadratic form (dV )tZdV is positive semidefinite, and its null space is
the kernel of Z, which is known to be the space of vectors with all equal components.
As dV0 = 0, it follows that (dV )tZdV > 0 unless dV is zero. In the latter case, set
dP to zero whenever the linearized power equation is satisfied. As a consequence,
if (dV, dP ) is tangent to the linearized equality constraints, then the quadratic form
associated with the Hessian of the cost is positive unless (dV, dP ) = 0, as was to be
proved.

6. Expansion of the solution and multipliers. We start with a technical
lemma allowing us to check some of the hypotheses of the results of section 4.

Lemma 6.1. The set of solutions of (P̃ε) for ε small enough is nonempty and
uniformly bounded.

Proof. By directional qualification, we know that

v(P̃ε) ≤ v(P̃0) + εv(L) + o(ε) ≤ O(ε).

Due to the condition Ṽ0 = 1, the cost function of v(P̃ε) satisfies for some α > 0 and
any feasible Ṽ the relation 1

2 Ṽ
tZṼ ≥ α‖Ṽ −1‖2. Denoting by “.” the componentwise

multiplication of vectors, we have ‖P‖ = ‖Ṽ .ZṼ ‖ = O(‖Ṽ −1‖2), where from these re-
lations we deduce for ε small enough the uniform boudedness of minimizing sequences.
In addition, if (Ṽ k, P̃ k) is a minimizing sequence, then from ‖Ṽ k − 1‖2 ≤ O(ε) we
deduce (for k large enough and ε small enough) that the limit points of Ṽ k have
positive values. Consequently, these limit points are solutions of (P̃ε). As the same
estimates hold for the limit points, the conclusion follows.

Theorem 6.2. Assume that (H1) and (P̃0) are directionally qualified. Then,
for ε small enough, (P̃ε) has a unique solution (Ṽ ε, P̃ ε) and the following expansions
hold:

v(P̃ε) = v(P̃0) + ε2v(SP ) + o(ε2),

(Ṽ ε, P̃ ε) = (Ṽ 0, P̃ 0) + ε(dV , dP ) + o(ε).

Associated with (Ṽ ε, P̃ ε) is a nonempty and uniformly bounded set of multipliers Λε.
This set of multipliers converges to 0 in the sense that if λε ∈ Λε and ε ↓ 0 then
λε → 0.

Proof. Apply Theorem 4.1, using Lemmas 5.1, 5.2, and 6.1.
We now study the higher-order expansion of the solution of (P̃ε) and its asso-

ciated multipliers. We observe that the result of Bonnans and Sulem [8] cannot be
used directly because problem (P̃0) is not in general qualified, as already observed.
However, we may apply Theorem 4.3, if the hypothesis below holds.

(H2) Linear independence of gradients of active constraint for (L) at (dV , dP ).

Let us state first a natural sufficient condition for (H2).
Lemma 6.3. Assume that the bound constraints on dV and dP are never simul-

taneously active at a node of the network. Then (H2) holds.
Proof. Let the bound constraints on the voltage (resp., power) be active on SaV

(resp., SaP ). By hypothesis, SaV ∩ SaP = φ. Set dP to 0 over S\(SaV ∪ SaP ). We must
check that it is possible to solve a linear DC problem with voltage fixed over SaV as
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well as the reference node and the injection of current fixed over the other nodes. This
problem is known to have a unique solution.

Theorem 6.4. Assume that (H1) and (H2) hold. Then the mapping ε →
(Ṽ ε, P̃ ε, λε, v(P̃ε)), where (Ṽ ε, P̃ ε) ∈ S(P̃ε) and λε is the multiplier associated with
the power equation, is real analytic for small enough ε.

Proof. By (H2), Lemmas 5.1, 5.2, and 6.1, the hypotheses of Theorem 4.3 are
satisfied. The conclusion follows.

7. Back to the physical problem. In this section we return to the physical
variables (V ε, P ε) and give simple interpretations of the above results. Restating
Theorem 6.2, we obtain the following theorem.

Theorem 7.1. Assume that (P̃0) is directionally qualified. Then, for ε small
enough, (Pε) has a unique solution (V ε, P ε), and the following expansions hold:

v(Pε) = εv(SP ) + o(ε),

V ε =
1√
ε
1 +

√
ε dV + o(

√
ε),

P ε = dP + o(ε).

In particular, we deduce that if the nominal value is very high and if the bound
constraints are compatible, in the sense that (H1) holds, then

(a) the loss of power is of the order of the square of the inverse of the average
value of the network,

(b) the difference between the average value and the actual value of the voltage
is of the order of the inverse of the average value, and

(c) the distribution of power over the network has a limit.

Concluding remark. There are two possible uses of our technical results. The
first one is the above set of qualitative remarks (a) to (c), which are of interest by
themselves. The second possibility is to use the first-order expansion as the starting
point of a numerical algorithm, dedicated to a quantitative resolution of the optimal
power flow problem. Still, the most important aspect of the result is that it suggests
a possible extension to the AC power flow problem, whose importance was stressed
in the introduction.
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Abstract. We present and motivate a new model of the truss topology design problem, where
the rigidity of the resulting truss with respect both to given loading scenarios and small “occasional”
loads is optimized. It is shown that the resulting optimization problem is a semidefinite program. We
derive and analyze several equivalent reformulations of the problem and present illustrative numerical
examples.
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1. Introduction. Truss topology design (TTD) deals with the selection of op-
timal configuration for structural systems (mechanical, civil engineering, aerospace)
and constitutes one of the newest and most rapidly growing fields of structural de-
sign (see the excellent survey paper by Rozvany, Bendsøe, and Kirsch [12]). The
TTD problem was studied extensively, both mathematically and algorithmically, in
[1, 2, 3, 4, 5].

In this paper we bring forth the issue of the robustness of the truss; here we say
that a truss is robust if it is reasonably rigid with respect both to the given set of
loading scenarios and to all small uncertain (in size and direction) loads, which may
act at any of the active nodes of the truss, i.e., those which are linked at least by one
bar. In the engineering literature, rigidity is modeled by considering different loading
scenarios on the structure (the multiload TTD problem) or by imposing upper and
lower bounds on nodal displacements. The first approach depends on the engineer’s
ability to “guess right” the relevant scenarios, while the second approach leads to a
mathematical problem which is not tractable computationally. Here we suggest a new
modeling approach, which circumvents both of the above mentioned difficulties.

The paper is organized as follows. Section 2 describes the modeling approach in
question. The preliminary section 2.1 presents the basic notions related to the TTD
problem and the traditional formulations of the problem. We demonstrate by simple
example (section 2.2) that robustness restrictions (which are basically ignored in the
traditional formulations) are critical to obtain reasonable designs; this observation mo-
tivates our modeling approach presented in section 2.3. Its computational tractability
is demonstrated in section 2.4, where we show that the TTD problem in our new for-
mulation can be equivalently cast as a semidefinite program. This brings the problem
into the realm of convex programming for which efficient (polynomial time) interior
point algorithms can be employed. Sections 3–5 are devoted to mathematical pro-
cessing of the semidefinite program of section 2.4; the goal is to get a program better
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suited for interior point algorithms. Possibilities for robust truss topology design by
these algorithms are discussed in section 6. We end up (section 7) with illustrating
usefulness of our approach by considering several examples of optimal trusses with
and without robustness considerations. We show that at least for these examples
robustness can be gained without sacrificing much in the optimality of the resulting
trusses. Concluding section 8 contains remarks on the possibility to extend the idea
of “robust reformulation” of an optimization program from the particular case of the
TTD problem to other problems of mathematical programming.

2. Truss topology design with robustness constraints.

2.1. Trusses, loads, compliances. Informally, a truss is a 2D or 3D construc-
tion composed of thin elastic bars linked with each other at nodes—points from finite
nodal set V given in advance in 2D plane (respectively, 3D) space. When subjected to
a given load—distribution of external forces applied at the nodes—the construction
deformates until the reaction forces caused by deformations of the bars compensate
the external load. The deformated truss capacitates certain potential energy, and this
energy, the compliance, measures stiffness of the truss, its ability to withstand the
load; the less is compliance, the more rigid is the truss with respect to the load.

In the usual TTD problem we are given the nodal set and one (single-load TTD) or
several (multi-load TTD) loads along with total volume of the bars. The displacements
of some of the nodes are completely or partially fixed, so that the space Rv of virtual
displacements of node v is certain linear subspace and the problem is to distribute the
given volume of the truss between the bars in order to get the most rigid construction,
i.e., the one which minimizes the maximal compliance over the given set of loads. Some
of the bars can get zero volume, i.e., be eliminated from the resulting construction,
so that in fact the topology of the construction is optimized as well (this is the origin
of the term “topology design”).

The mathematical formulation of the problem, in its simplest form, is as follows.
Given are

(i) graph (V,B) (ground structure) with the nodal set V ⊂ RD (D = 2, 3)
composed of n̂ nodes and with arc set B of m tentative bars;

(ii) collection of linear subspaces Rv ⊂ RD, v ∈ V—the spaces of virtual dis-
placements of the nodes.
We refer to the quantity n =

∑
v∈V dimRv as the number of degrees of freedom of

the nodal set and call the space Rn =
∏

v∈V Rv the space of nodal displacements. A
vector x ∈ Rn can be naturally interpreted as collection of virtual displacements of
the nodes. Similarly, a load—collection of external forces applied at the nodes – can
be interpreted as a vector from Rn. (One can ignore the components of the forces
orthogonal to the subspaces of virtual nodal displacements, since these components
are compensated by supports restricting virtual displacements of nodes; the remaining
components of the forces can be naturally assembled in a vector from Rn.)

(iii) When designing the truss, we are given a finite set F ⊂ Rn of loading
scenarios; the truss should be able to carry the load for each of the scenarios.

(iv) The design variables in the problem are bar volumes ti, i = 1, ...,m; along
with the nodal set V, they completely determine the truss. We allow ourselves, for
the sake of brevity, truss t. We are given the total volume V > 0 of the bars, so that
the set of all admissible vectors of bar volumes is the simplex

T =

{
t ∈ Rm| t ≥ 0,

m∑
i=1

ti = V

}
.
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With the elastic model of the bars, deformation of truss accompanied by displacement
x ∈ Rn of the nodes results in the vector of reaction forces A(t)x, where t is the vector
of bar volumes and

A(t) =
m∑
i=1

tiAi

is the n × n bar-stiffness matrix of the truss. The bar-stiffness matrix Ai of the ith
bar is readily given by the geometry of the nodal set and involves the Young modulus
of the material. What is crucial for us is that for all i,

Ai = bib
T
i(2.1)

is a rank 1 positive semidefinite symmetric matrix (for explanations and details, see,
e.g., [1, 2, 3]).

Given t ∈ T and a load f ∈ F , one can associate with this pair the equilibrium
equation

A(t)x = f.(2.2)

(As was explained, x is the vector of nodal displacements caused by the load f ,
provided that the vector of bar volumes is t.) Solvability of this equation means that
the truss is capable of carrying the load f , and if this is the case, then the compliance1

cf (t) ≡ fTx = sup
u∈Rn

[
2fTu− uTA(t)u

]
(2.3)

is regarded as a measure of internal work done by the truss with respect to the load f ;
the smaller is the compliance, the larger is the stiffness of the truss. If the equilibrium
equation (2.2) for a given t is unsolvable, then it is convenient to define the compliance
cf (t) as +∞, which is compatible with the second equality in (2.3).

The problem of optimal minmax TTD is to find the vector of bar volumes which
results in the smallest possible worst-case compliance:

(TDminmax) : find t ∈ T which minimizes the worst-case compliance
cF (t) = supf∈F cf (t).

From now on we assume that the problem is well posed, i.e., that
A. The matrix

∑m
i=1 Ai is positive definite.

(This actually means that the supports prevent rigid body motion of the truss.)

2.2. Robustness constraint: Motivation. The “standard” case of problem
(TDminmax) is the one when F is a singleton (single-load TTD problem) or a finite
set composed of small number (3-5) of loads (multiload TTD problem). An evident
shortcoming of both these settings is that they do not take “full” care of the robustness
of the resulting truss. The associated optimal design ensures reasonable (in fact the
best possible) behavior of the truss under the loads from the list of scenarios F ;
it may happen, however, that a load not from this set, even a “small” one, will
cause an inappropriately large deformation of the truss. Consider, e.g., the following
toy example. Figure 2.1 represents a six-element nodal set with two fixed nodes
(Rv = {0}) and four free nodes (Rv = R2), the “ground structure”—the set of all
tentative bars and the load f which is the unique element of F .

1The “true” compliance, as defined in mechanics, is one half of the quantity given by (2.3); we
rescale the compliance in order to avoid multiple fractions 1

2
.
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Fig. 2.1. Ground structure and loading scenario * – free nodes; # – fixed nodes; arrows – forces.
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Fig. 2.2. Optimal single-load design.

Figure 2.2 shows the results of the usual single-load design, which results in the
optimal compliance 16.000. Note that the resulting truss is completely unstable; e.g.,
the bar linking nodes 5 and 6 can rotate around node 5, so that arbitrarily small
nonhorizontal force applied at node 6 will cause infinite compliance.

It seems that a “good” design should ensure reasonable compliances under all
tentative loads of reasonable magnitude acting at the nodes of the resulting truss,
not only “the best possible” compliance under the small list of loads in F of primary
interest.

The indicated requirement can be modeled as follows. When formulating the
problem, the engineer embeds a small finite set of loads F = {f1, ..., fq} he is especially
interested in (“primary” loads) into a “more massive” set M containing F , but also
“occasional loads” of perhaps much smaller magnitude (“secondary” loads), and looks
for the truss t ∈ T which minimizes the worst-case compliance cM (t) taken with
respect to this extended set M of loading scenarios.

In order to get a computationally tractable problem, in what follows we restrict
ourselves to the case where M is an ellipsoid centered at the origin.2

M = QWq ≡ {Qe| e ∈ Rq, eT e ≤ 1}.

Here Q is a given n× q “scale” matrix and Wq is the unit Euclidean ball in Rq. Note
that we allow the case q < n as well, where M is a “flat” q-dimensional ellipsoid.

The corresponding modification of (TDminmax) is as follows:

2The only other case when the indicated problem is computationally tractable seems to be that
one of a polytope M given by the list of its vertices. This case hardly deserves a special consideration,
since it leads to the standard multiload TTD problem.
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(TDrobust) : find t ∈ T which minimizes the compliance

cM (t) = max
eT e≤1

max
x∈Rn

[
2(Qe)Tx− xTA(t)x

]
.

2.3. Selection of scale matrix Q. Problem (TDrobust) takes care of all loads
f ∈M , M being the image of the unit q-dimensional Euclidean ball under the mapping
e 7→ Qe. It follows that if a load f ∈ M has a nonzero force acting at certain
node l, then this node will for sure be present in the resulting construction. This
observation means that we should be very careful when forming Q; otherwise we
enforce incorporating into the final construction the nodes which in fact are redundant.
There are two ways to meet the latter requirement.

A. We could use the indicated approach as a postoptimality analysis; after we
have found the solution to the usual multiload TTD problem, given the resulting nodal
structure, we can improve the robustness of the solution by solving (TDrobust) associated
with this nodal structure.

B. We know in advance some nodes which for sure will be present in the solution
(certainly the nodes where the forces from the given loading scenarios are applied)
and it seems to be natural to require rigidity with respect to all properly scaled forces
acting at these “active” nodes.

Let us discuss in more detail the latter possibility. Let F = {f1, ..., fk} be the
given set of loading scenarios. We say that a node v ∈ V is active with respect to F
if the projection of certain load fj on the space Rv of virtual displacements of the
node is nonzero. Let V∗ be the set of all active nodes. Our goal is to embed F into
a “reasonably chosen” ellipsoid M in the space Rq =

∏
v∈V∗ Rv (which for sure will

be the part of the displacement space in the final construction). According to our
motivation, M should contain

(i) the set F of given loads;
(ii) the ball B = {f ∈ Rq| fT f ≤ r2} of all “occasional” loads of prescribed

magnitude r.
The setup M = F ∪ B most adequate to our motivation is inappropriate; as it was
explained, we need M to be an ellipsoid in order to get a computationally tractable
problem, so that we should look for “the smallest possible” ellipsoid M containing
F ∪ B. The simplest interpretation of “the smallest possible” here is in terms of
q-dimensional volume. Thus, it is natural to choose as M the ellipsoid in Rq centered
at the origin and containing F ∪ B of the minimum q-dimensional volume. To form
the indicated ellipsoidal envelope M of F and B is a convex problem; since normally
q is not large, there is no difficulty to solve the problem numerically. Note, however,
that there exists an “easy case” where M can be pointed out explicitly. Namely, let
L(F ) ⊂ Rk be the linear span of F . Assume that

1. the loads f1, ..., fk are linearly independent;
2. the convex hull F̂ of the set F ∪ (−F ) contains the k-dimensional ball B′ =

B ∩ L(F ).
Note that in actual design both these assumptions normally are satisfied.

Lemma 2.1. Under the indicated assumptions the ellipsoidal envelope of F and
B is

M = QWq, Q = [f1; ...; fk; re1; ...; req−k] ,(2.4)

where e1, ..., eq−k is an orthonormal basis in the orthogonal complement to L(F ) in
Rq.
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Proof. We can choose an orthonormal basis in Rq in such a way that the first
k vectors of the basis span L(F ) and the rest q − k vectors span the orthogonal
complement L⊥(F ) to L(F ) in Rq. Let x = (u, v) be the coordinates of a vector in
this basis (u are the first k and v are the rest q − k coordinates). A centered at the
origin ellipsoid E in Rq can be parameterized by a positive definite symmetric q × q
matrix A:

E = {x|xTAx ≤ 1};
the squared volume of E is inversely proportional to detA. The matrix A∗ corre-
sponding to the minimum volume centered at the origin ellipsoid containing F and B
is therefore an optimal solution to the following convex program:

ln detA→ max |A = AT > 0, xTAx ≤ 1 ∀x ∈ B ∪ F̂ .(2.5)

The problem clearly is solvable, and since its objective is strictly concave on the cone
of positive definite symmetric q×q matrices, the solution is unique. On the other hand,
let J be the matrix of the mapping (u, v) 7→ (u,−v); then the mapping A 7→ JTAJ
clearly is a symmetry of (2.5). This mapping preserves feasibility and does not vary
the value of the objective. We conclude that the optimal solution is invariant with
respect to the indicated mapping: A∗ = JA∗J , whence A∗ is block diagonal with
k × k diagonal block U∗ and (q − k) × (q − k) diagonal block V∗. Since the ellipsoid
{x|xTA∗x ≤ 1} contains B ∪ F̂ , the k-dimensional ellipsoid M ′ = {u|uTU∗u ≤ 1}
in L(F ) contains F̂ , while the (q − k)-dimensional ellipsoid M ′′ = {v| vTV∗v ≤ 1} in
L⊥(F ) contains the ball B′′ centered at the origin of the radius r in L⊥(F ).

Now let U = UT > 0 and V = V T > 0 be k × k and (q − k) × (q − k) matrices
such that the ellipsoids E′ = {u|uTUu ≤ 1} and E′′ = {v| vTV v ≤ 1} contain F̂ and
B′′, respectively. We claim that then the ellipsoid {x|xTAx ≤ 1}, A = Diag(U, V ),
contains B ∪ F̂ . Indeed, the ellipsoid clearly contains F̂ , and all we need is to verify
that if x = (u, v) ∈ B, i.e., uTu+vT v ≤ r2, then uTUu+vTV v ≤ 1. This is immediate:
since E′ ⊃ F̂ ⊃ B′, we have uTUu ≤ 1 whenever uTu ≤ r2, or, which is the same,
uTUu ≤ r−2uTu for all u. Similarly, E′′ ⊃ B′′ implies that vTV v ≤ r−2vT v, so that
uTu+ vT v ≤ r2 indeed implies uTUu+ vTV v ≤ 1.

The above observations combined with the identity ln detA = ln detU + ln detV
for positive definite symmetric A = Diag(U, V ) demonstrate that the block U∗ of the
optimal solution to (2.5) corresponds to the minimum volume ellipsoid in L(F ) con-
taining F̂ , and similarly for V∗, L⊥(F ) and B′′. In other words, M is the “ellipsoidal
product” of the ellipsoid M ′ of the minimum volume in L(F ) containing F ∪ (−F )
and the ball B′′ in L⊥(F ). If M ′ = Q′Wk, then

M = [Q′; re1; ...; req−k]Wq.

To conclude the proof, it suffices to verify that one can choose, as Q′, the matrix
[f1; ...; fk], which is immediate. Indeed, let s1, ..., sk be an orthonormal basis in L(F ),
and let D be the linear transformation of L(F ) which maps si onto fi, i = 1, ..., k.
Since the ratio of k-dimensional volumes of solids in L(F ) remains invariant under the
transformation D, M ′ = DN ′, where N ′ is the minimum volume ellipsoid centered at
the origin in L(F ) containing s1, ..., sk. The latter ellipsoid is clearly [s1; ...; sk]Wk,
whence

M ′ = DN ′ =

{
D

(
k∑
i=1

λisi

)
|λ ∈Wk

}
=

{
k∑
i=1

λifi|λ ∈Wk

}
= [f1; ...; fk]Wk.
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Remark 2.1. Evident modification of the proof of Lemma 2.1 demonstrates that
the minimum volume ellipsoid in Rq centered at the origin and containing F∪B always
is the “ellipsoidal product” of the minimum volume ellipsoid M ′ in L(F ) containing

F ∪ (−F ) ∪ B′ and the ball B′′ in L⊥(F ). If M ′ = Q′W
k̂
, k̂ = dim L(F ), then

M = [Q′; re1, ..., req−k̂]Wq, e1, ..., eq−k̂ being an orthonormal basis in L⊥(F ). Thus,

to find M is, basically, the same as to find M ′, and this latter convex problem is
normally of quite a small dimension, since k̂ ≤ k and typically k ≤ 5.

The outlined way of modeling the robustness constraint is, perhaps, more reason-
able than the usual multiload setting of the TTD problem. Indeed, the new model
enforces certain level of rigidity of the resulting construction with respect not only to
the primary loads, but also to loads associated with “active” nodes. At the same time,
it turns out, as we are about to demonstrate, that the resulting problem (TDrobust) is
basically not more computationally demanding than the usual multiload TTD prob-
lem of the same size (i.e., with the same ground structure and the number of scenario
loads equal to the dimension of the loading ellipsoid used in (TDrobust)).

2.4. Semidefinite reformulation of (TDrobust) . Our goal now is to rewrite
(TDrobust) equivalently as a so-called semidefinite program. To this end we start with
the following simple result.

Lemma 2.2. Let A be a positive semidefinite n× n matrix, and let

c = max
x∈Rn;e∈Rq :eT e≤1

[
2(Qe)Tx− xTAx

]
.(2.6)

Then the inequality c ≤ τ is equivalent to positive semidefiniteness of the matrix

A =

(
τIq QT

Q A

)
,

Iq being the unit q × q matrix.
Proof. We have

c ≤ τ ⇔ ∀(x ∈ Rn, e ∈ Rq, eT e ≤ 1) : τ − 2(Qe)Tx+ xTAx ≥ 0 ⇔
[by homogeneity reasons]

∀(λ > 0, x ∈ Rn, e ∈ Rq, eT e ≤ 1) : τλ2 − 2(Qλe)T (λx) + (λx)TA(λx) ≥ 0 ⇔
[set λe = f, λx = y]

∀(λ > 0, y ∈ Rn, f ∈ Rq, fT f ≤ λ2) : τλ2 − 2(Qf)T y + yTAy ≥ 0 ⇒
∀
((

f
y

)
∈ Rq+n

)
:

(
f
y

)T (
τIq QT

Q A

)(
f
y

)
≡ τfT f − 2(Qf)T y + yTAy ≥ 0.

Thus, τ ≥ c ⇒ A ≥ 0. Vice versa, if A ≥ 0, then clearly τ ≥ 0, and, therefore, the
implication ⇒ in the above chain can be inverted.

Remark 2.2. It is well known that a symmetric matrix
(
U QT

Q A

)
with positive defi-

nite U is positive semidefinite if and only if A ≥ QU−1QT . Applying this observation
to the case of U = τIq, we can reformulate the result of Lemma 2.2 as follows:

The compliance c of a truss t, with respect to the ellipsoid of loads M = QWq is
≤ τ if and only if A(t) ≥ τ−1QQT .
In the particular case when QQT is the orthoprojector P onto the linear span L of
the columns of Q, the above observation can be reformulated as follows:

c ≤ τ if and only if the minimum eigenvalue of the restriction of A(t) onto L is
≥ τ−1.
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(In the general case, the interpretation is similar, but instead of the usual minimum
eigenvalue of the restriction we should speak about minimum eigenvalue of the matrix
pencil (A|L, QQT |L) on L.)

In view of Lemma 2.2, problem (TDrobust) can be rewritten equivalently as the
following semidefinite program:

(TDsd)
min

t∈Rm,τ∈R
τ

subject to (
τIq QT

Q A(t)

)
≥ 0,

t ≥ 0,
m∑
i=1

ti = V.

(Here and in what follows the inequality A ≥ B between symmetric matrices means
that the matrix A−B is positive semidefinite.)

3. Deriving a dual problem to (TDsd) . Here we derive the Fenchel–Rocka-
fellar [11] dual to the problem (TDsd) . The latter problem is of the form

min{τ : A(τ, t) +B ∈ S+, t ∈ T},
where

A(τ, t) =

(
τIq 0
0 A(t)

)
is a linear mapping from R×Rn to the space S of symmetric (n+q)×(n+q) matrices
equipped with the standard Frobenius Euclidean structure 〈X,Y 〉 = Tr(XY ), S+ is
the cone of positive semidefinite matrices from S and

B =

(
0 QT

Q 0

)
∈ S.

We write the problem in the Fenchel–Rockafellar primal scheme:
(P) min {f(τ, t)− g(A(τ, t))} ,
where

f(τ, t) = τ + δ(t|T ), g(X) = −δ(X +B|S+)

and δ(x|W ) is the indicator function of a set W . To derive the dual to (P), we need to
compute the conjugates f∗ and g∗ of the convex function f and the concave function
g, which is quite straightforward:

f∗(σ, s) = supτ,t{στ + sT t− τ | t ∈ T} =

{
V max1≤i≤n si, σ = 1,
+∞ otherwise,

g∗(R) = infS{Tr(SR)|S +B ∈ S+} = inf{Tr((Z −B)R)|Z ∈ S+}
=

{
−Tr(BR), R ∈ S+,
−∞ otherwise.

(We have used the well-known fact that the cone of positive semidefinite matrices is
self-conjugate with respect to the Frobenius Euclidean structure.)
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The Fenchel–Rockafellar dual to (P) is

(D) supR∈S {g∗(R)− f∗(A∗R)} ,
where A∗ : S → R×Rn is the adjoint to A.

Representing R ∈ S in the block form

R =

(
Λ XT

X Y

)
(Λ is q × q, Y is n× n), we get

A∗R =


τ = Tr Λ

t1 = Tr(A1Y )
...

tn = Tr(AnY )

 .

Substituting the resulting expressions for f∗, g∗, and A∗, we come to the following
explicit formulation of the dual problem (D):
(D) max

[−2 Tr(QXT )− V maxi=1,...,m[Tr(AiY )]
]
,

s.t. (
Λ XT

X Y

)
≥ 0, Tr Λ = 1,

the design variables being symmetric q× q and n×n matrices Λ, Y , respectively, and
n× q matrix X.

Note that the functions f and g in (P) are clearly closed convex and concave,
respectively. Moreover, from the well-posedness assumption A, it immediately fol-
lows that (P) is strictly feasible (i.e., the relative interiors of the domains of f(τ, t)
and φ(τ, t) = g(A(τ, t)) have nonempty intersection, and the image of the mapping
A intersects the interior of the domain of g); to see this, choose arbitrary positive
t ∈ T and enforce τ to be large enough. Of course (P) is bounded below (the compli-
ance always is nonnegative); thus, all requirements of the Fenchel–Rockafellar duality
theorem are satisfied, and we come to the following.

Proposition 3.1. (D) is solvable, and the optimal values in (P) and (D) are
equal to each other.

Remark 3.1. Until now, we dealt with the TTD problem with simple constraints
on the bar volumes:

t ∈ T =

{
t ∈ Rn| t ≥ 0,

n∑
i=1

ti = V

}
.

In the case when there are also lower and upper bounds on the bar volumes so that
the constraints on t are

t ∈ T+ = {t ∈ T |L ≤ t ≤ U}
(U > L ≥ 0 are given n-dimensional vectors), the above derivation results in a dual
problem as follows:
(Db) max

[−2 Tr(QXT )− λV −∑n
i=1 max [(Tr(Y Ai)− λ)Li; (Tr(Y Ai)− λ)Ui]

]
s.t. (

Λ XT

X Y

)
≥ 0, Tr Λ = 1,

the design variables being real λ, symmetric q × q matrix Λ, symmetric n× n matrix
Y , and n× q matrix X.
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4. A simplification of the dual problem (D). Our next goal is to simplify
problem (D), derived in the previous section, by eliminating the matrix variable Y .
To this end it suffices to note that (D) can be rewritten as

(TDdl)

min
X∈Rn×q,Λ=ΛT∈Rq×q,Y=Y T∈Rn×n,ρ∈R

[2 Tr(QXT ) + V ρ]

s.t.
(α) Tr(Y Ai) ≤ ρ, i = 1, . . . ,m,

(β)

(
Λ XT

X Y

)
≥ 0,

(γ) Tr(Λ) = 1.

(We have replaced the maximization problem (D) by an equivalent minimization one.)
Note that (TDdl) is strictly feasible—there exists a feasible solution where all scalar
inequality constraints and the matrix inequality one are strict (take Λ = q−1Iq, Y =
In, and enforce ρ to be large enough).

The matrix inequality (β) clearly implies that Λ is positive semidefinite. Thus,
we do not vary (TDdl) when adding (in fact, redundant) inequality Λ ≥ 0. Now let
us strengthen, for a moment, the latter inequality to

Λ > 0,(4.1)

i.e., to positive definiteness of Λ; it is immediately seen from strict feasibility of
(TDdl) that the transformation does not violate the optimal value of the problem,
although it may cut off the optimal solution (anyhow, from the computational view-
point the exact solution is nothing but a fiction). Thus, we may focus on the problem
(TD′dl) obtained from (TDdl) by adding to the list of constraints inequality (4.1).

The pair of matrix inequalities (β), (4.1), which are present among the constraints
of (TD′dl) , is equivalent to the pair of matrix inequalities

Λ > 0; Y ≥ Y ∗(Λ, X) = XΛ−1XT .

Now let (Λ, X, Y, ρ) be a feasible solution to (TD′dl) ; then, as we have just men-
tioned, Y ≥ Y ∗(Λ, X) and the collection (Λ, X, Y ∗ = Y ∗(Λ, X), ρ) satisfies (β), (γ)
and (4.1). Moreover, since Ai are symmetric positive semidefinite and Y ≥ Y ∗,
we have Tr(Y Ai) ≥ Tr(Y ∗Ai) so that the updated collection satisfies (α) as well,
and (Λ, X, Y ∗, ρ) is feasible for (TD′dl) . Note that the transformation (Λ, X, Y, ρ) 7→
(Λ, X, Y ∗(Λ, X), ρ) does not affect the objective function of the problem. We conclude
that (TD′dl) can be equivalently rewritten as

minX∈Rn×q,Λ=ΛT∈Rq×q,ρ∈R 2 Tr(QXT ) + V ρ
s.t.

Λ > 0, Tr(Λ) = 1, ρ ≥ Tr(XΛ−1XTAi), i = 1, ...,m.

Substituting Ai = bib
T
i (see (2.1)), we can rewrite the constraints

ρ ≥ Tr(XΛ−1XTAi)

as

ρ ≥ (XT bi)
TΛ−1(XT bi),
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which is the same (since Λ = ΛT > 0) as(
Λ XT bi

bTi X ρ

)
≥ 0.

With this substitution, the problem (TD′dl) becomes

minX∈Rn×q,Λ=ΛT∈Rq×q,ρ∈R 2 Tr(QXT ) + V ρ
s.t.

Λ > 0, Tr(Λ) = 1,

(
Λ XT bi

bTi X ρ

)
≥ 0, i = 1, ...,m.

When replacing the strict inequality Λ > 0 in the latter problem with the nonstrict
one Λ ≥ 0, we clearly do not vary the optimal value of the problem; in the modified
problem, the inequality Λ ≥ 0 is in fact redundant (it follows from positive semidefi-

niteness of any of the matrices
(

Λ XT bi

bT
i
X ρ

)
). With these modifications, we come to

the final formulation of the problem dual to (TDrobust) :

(TDfn)

min
Λ=ΛT∈Rq×q,X∈Rn×q,ρ∈R

2 Tr(QXT ) + V ρ

s.t. (
Λ XT bi

bTi X ρ

)
≥ 0, i = 1, ...,m,

Tr(Λ) = 1.

Note that (TDfn) is very similar to the standard multiload TTD problem in dual
setting [5]; the only difference is that in the latter problem Λ is further restricted to
be diagonal.

5. Recovering the bar volumes. Until now, the only relation between the
initial primal problem (TDrobust) and the dual one (TDfn) is that their optimal values
are negations of each other (note that when coming to (TDfn) from the maximization
problem (TDdl) , which has the same optimal value as (TDsd) , we have changed
the sign of the objective and have replaced maximization with minimization). Thus,
the problem arises: how to restore good approximate solutions to (TDrobust) via good
approximate solutions to (TDfn) . To resolve this problem, we first derive the Fenchel–
Rockafellar dual (TD∗fn) to (TDfn) and recognize in it the initial problem (TDrobust) ,
and then use the well-known relation in interior point theory between “central path”
approximate solutions to (TDfn) and approximate solutions to (TD∗fn) .

5.1. A dual problem to (TDfn) . Similar to the above, we represent problem
(TDfn) in the Fenchel–Rockafellar scheme:

(PI) min {f(Λ, X, ρ)− g(A(Λ, X, ρ))} ,
where

f(Λ, X, ρ) = 2 Tr(QXT ) + V ρ+ δ(Tr(Λ)|{1}),

A(Λ, X, ρ) = Diag

{(
Λ XT bi

bTi X ρ

)
, i = 1, ...,m

}
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is the linear mapping from the space of design variables of (TDfn) to the space S of
block-diagonal symmetric matrices with m diagonal blocks of the sizes (q+1)×(q+1)
each, and

g(W ) = −δ(W |S+),

S+ being the cone of positive semidefinite matrices from S.
The dual to (P) is

(DI) maxR∈S {g∗(R)− f∗(A∗R)} ,
where A∗ is the operator adjoint to A. Here

f∗(L,Ξ, r) = supΛ,X,ρ

[
Tr(ΛL) + Tr(ΞXT ) + rρ− f(Λ, X, ρ)

]
= supΛ [Tr(ΛL)− δ(Tr(Λ)|{1})] + supX

[
Tr(ΞXT )− 2 Tr(QXT )

]
+ supρ [rρ− V ρ]

=
1

q
Tr(L) + δ((L,Ξ, r)|{(L = λIq, 2Q,V )|λ ∈ R})

=
{
λ if L = λIq for some λ ∈ R and Ξ = 2Q, r = V,
∞ otherwise

and

g∗(R) = inf
S

[Tr(SR) + δ(S|S+)] = −δ(R|S+).

(Here we again used the fact that the cone S+ is self-dual with respect to the Frobenius
Euclidean structure of S.)

Denoting a generic element of S as

R = Diag

{(
Li di
dTi ti

)
, i = 1, ...,m

}
(Li are symmetric q × q matrices, di are q-dimensional vectors, ti are reals) it can be
seen that

A∗R =

(
L =

m∑
i=1

Li,Ξ = 2
m∑
i=1

bid
T
i , r =

m∑
i=1

ti

)
.

With these relations, the dual (DI) to (PI) becomes

(TD∗fn)
min

λ∈R,Li=LTi ∈Rq×q,di∈Rq,ti∈R
λ

s.t.

(α)

m∑
i=1

Li = λIq,

(β)
m∑
i=1

bid
T
i = Q,

(γ)
m∑
i=1

ti = V,

(δ)

(
Li di
dTi ti

)
≥ 0, i = 1, ...,m.



ROBUST TRUSS DESIGN VIA SEMIDEFINITE PROGRAMMING 1003

(We again have replaced a maximization problem with the equivalent minimization
one.)

Problem (TDfn) clearly satisfies the assumption of the Fenchel–Rockafellar duality
theorem, and this together with Proposition 3.1 proves the following.

Proposition 5.1. Problem (TD∗fn) is solvable, and its optimal value λ∗ is equal
to the optimal value c∗ of the initial problem (TDrobust) .

It is not difficult to guess that the variables ti involved into (TD∗fn) can be inter-
preted as our initial bar volumes ti. The exact statement is given by the following
theorem.

Theorem 5.2. Let R = {λ;Li, di, ti, i = 1, ...,m} be a feasible solution to
(TD∗fn) . Then the vector t = (t1, ..., tm) is a feasible solution to (TDrobust) , and
the value of the objective of the latter problem at t is less than or equal to λ. In
particular, if R is an ε-solution to (TD∗fn) (i.e., λ− λ∗ ≤ ε), then t is an ε-solution to
(TDrobust) (i.e., cM (t)− c∗ ≤ ε).

Proof. The “in particular” part of the statement follows from its first part
due to Proposition 5.1, and all we need is to prove the first part. From the posi-
tive semidefiniteness constraints (δ) in (TD∗fn) it follows that t ≥ 0, which combined
with (γ) implies the inclusion t ∈ T . To complete the proof, we should verify that
cM (t) ≤ λ.

Let e ∈ Rq, eT e ≤ 1. From (β) we have

Qe =
m∑
i=1

(dTi e)bi.

Let x ∈ Rn. Due to Ai = bib
T
i , we have

φe(x) ≡ 2(Qe)Tx− xTA(t)x

=
m∑
i=1

2(dTi e)(b
T
i x)− ti

m∑
i=1

(bTi x)2

=
m∑
i=1

[
2(dTi e)(b

T
i x)− ti(b

T
i x)2

]
[denoting si = −bTi x]

= −
m∑
i=1

[
eTLie+ 2(dTi e)si + tis

2
i

]
+

m∑
i=1

eTLie

= −
m∑
i=1

(
e
si

)T (
Li di
dTi ti

)(
e
si

)
+

m∑
i=1

eTLie

[by (δ)]

≤
m∑
i=1

eTLie

[by (α)]
= λ.

Thus, φe(x) ≤ λ for all x. By definition, cM (t) is the upper bound of φe(x) over x,
and the inequality cM (t) ≤ λ then follows.

Remark 5.1. Note that (TD∗fn) is a natural modification of the “bar-forces” for-
mulation of the usual multiload TTD problem; see [5].
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6. Solving (TDfn) and (TD∗
fn) via interior point methods. Among numer-

ical methods available for solving semidefinite programs like (TDfn) and (TD∗fn) , the
most attractive (and, in fact, the only meaningful in the large scale case) are the
recent interior point algorithms (for relevant general theory, see [10]). Here we dis-
cuss the corresponding possibilities. In what follows we restrict ourselves to outlining
the main elements of the construction, since our goal now is not to present detailed
description of the algorithms, but to demonstrate the following.

(i) From the above semidefinite programs related to truss topology design with
robustness constraints, the most convenient for numerical processing by interior point
methods is the problem (TDfn) .

(ii) Solving (TDfn) by interior point path-following methods, one has the possibility
of generating, as a byproduct, good approximate solutions to the problem of interest
(TD∗fn), i.e., of recovering the primal design variables (bar volumes).

When solving a generic semidefinite program

(SP) σT ξ → min | A(ξ) ∈ S+,

ξ ∈ RN being the design vector, A(ξ) being an affine mapping from RN to the space S
of symmetric matrices of certain fixed block-diagonal structure, and S+ being the cone
of positive semidefinite matrices from S, by a path-following interior point method,
one defines the family of barrier-type functions

Fs(ξ) = sσT ξ + Φ(A(ξ)), Φ(Ξ) = − ln Det Ξ,

and traces the central path—the path of minimizers

ξ∗(s) = argmin
ξ∈DomFs

Fs(ξ).

If (SP) is strictly feasible (i.e., A(ξ) is positive definite for certain ξ) and the level
sets

{ξ ∈ RN | A(ξ) ∈ S+, σ
T ξ ≤ a},

a ∈ R, are bounded, then the path ξ∗ is well defined and converges, as s → ∞, to
the optimal set of the problem. In the path-following scheme, one generates close
(in certain exact sense) approximations ξi to the points ξ∗(si) along certain sequence
{si} of penalty parameters “diverging to ∞ fast enough,” thus generating a sequence
of strictly feasible approximate solutions converging to the optimal set. Updating
(si, ξi) 7→ (si+1, ξi+1) is as follows: first, we increase, according to certain rule, the
current value si to a larger value si+1. Second, we restore closeness to the path of the
new point ξ∗(si+1) by running the damped Newton method—the recurrence

y 7→ y+ = y − (1 + λ(Fs, y))
−1[∇2

yFs(y)]
−1∇yFs(y),

λ(Fs, y) =
√
∇T
y Fs(y)[∇2

yFs(y)]
−1∇yFs(y),

(6.1)

with s set to si+1. The recurrence is started at y = ξi and is terminated when, for
the first time, it turns out that λ(Fsi+1 , y) ≤ κ, κ ∈ (0, 1) being a once forever fixed
threshold. (Thus, the exact meaning of “closeness of a point ξ to the point ξ∗(s)” is
given by the inequality λ(Fs, ξ) ≤ κ. In what follows, for the sake of definiteness, it is
assumed that κ = 0.1.) The resulting y is chosen as ξi+1, and the process is iterated.

The following is known:
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(i) it is possible to trace the path “quickly”: with reasonable policy of updating
the values of the penalty parameter, it takes, for any T > 2, no more than

M = M(T ) = O(1)
√
µ lnT

Newton steps (6.1) to come from a point ξ0 close to ξ∗(s0) to a point ξM close to
ξ∗(sM ) with sM ≥ Ts0; here µ is the total row size of the matrices from S and O(1)
is an absolute constant;

(ii) if ξ is close to ξ(s), then the quality of ξ as an approximate solution to (SP)
can be expressed via the value of s alone:

σT ξ − σ∗ ≤ 2µ

s
,(6.2)

σ∗ being the optimal value in (SP);
(iii) being close to the path, it is easy to come “very close” to it; if λ ≡ λ(Fs, y) ≤

0.1, then (6.1) results in

λ+ ≡ λ(Fs, y
+) ≤ 2.5λ2.(6.3)

Although the indicated remarks deal with the path-following scheme only, the con-
clusions related to the number of “elementary steps” required to solve a semidefinite
program to a given accuracy and to the complexity of a step (dominated by the com-
putational cost of the Newton direction; see (6.1)) are valid for other interior point
methods for semidefinite programming. The “integrated” complexity characteristic
of an interior point method for (SP) is the quantity

C =
√
µCNwt,

where CNwt is the arithmetic cost of computing the Newton direction. Indeed, accord-
ing to the above remarks, it takes O(1)

√
µ Newton steps to increase the value of the

penalty by an absolute constant factor, or, which is the same, to reduce by the same
factor the (natural upper bound for) inaccuracy of the current approximate solution.

Now let us look at the complexity characteristic C for the semidefinite programs
related to (TDrobust) . In the table below we write down the principal terms of the
corresponding quantities (omitting absolute constant factors); it is assumed (as it is
normally the case for TTD) that

m = O(n2); q << n.

The expression for CNwt corresponds to the “explicit” policy when we first assemble, in
the natural manner, the Hessian matrix ∇2

ξFs(·) and then solve the resulting Newton
system by traditional direct linear algebra routines like Choleski decomposition. It
turns out that the specific structure of matrix inequalities in our problems3 allows us
to assemble the Hessians at a relatively low cost, so that the cost of a single Newton
step is dominated by the complexity of Choleski factorization of the Hessian, i.e., by
cube of the design dimension of the corresponding problem. With this remark, we
come to the results as follows:

3In particular, the fact that in TTD design each of the vectors bi has O(1) nonzero entries—at
most four in the case of 2D and at most six in the case of 3D trusses.
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Model µ CNwt C
(TDsd) m m3 m3.5 ≈ n7

(TDdl) m m3 m3.5 ≈ n7

(TDfn) qm q3n3 q3.5n4

(TD∗
fn) qm q6m3 q6.5m3.5 ≈ q6.5n7

The reader should be aware that there are “implicit” schemes of computing the
Newton direction in (TD∗fn) with arithmetic cost O(q3n3) (the same as in (TDfn)).
Thus, in fact, the primal and dual problems in primal-dual pairs ((TDsd) , (TDdl) ),
((TDfn) , (TD∗fn) ) are theoretically equivalent in complexity; moreover, there are
“symmetric” primal-dual methods which solve simultaneously the primal-dual pair
of the problems at the complexity, respectively, O(n7) and O(q3.5n4). Nevertheless,
we believe that at the moment practical considerations still are in favor of “purely pri-
mal” methods as applied to (TDsd) in the first primal-dual pair and to (TDfn) in the
second pair. The reason is that the feasible planes L in the “unfavorable” problems
of the above pairs are given by linear equalities, while in the “favorable” components
of the pairs they are parameterized (from the very beginning they are represented as
images of affine mappings). Now, the theoretically efficient way to compute the New-
ton direction for an “unfavorable” problem represents the direction as the difference
of a certain “exactly known” vector and its projection on the orthogonal complement
to L. Such a computation is relatively unstable—rounding errors make the actually
computed Newton directions nonparallel to L, and the iterates eventually become far
from the feasible plane. In order to overcome this instability, in the existing software
for semidefinite problems, “expensive” linear algebra routines, like QR factorization,
are used, at least at the final phase of computations. In contrast to this, in the
“favorable” problems the Newton direction is computed in the space of parameters
identifying a point on the feasible plane, so that there is no danger of being kicked off
this plane.

With the above remarks, it is clear that among the semidefinite programs we
introduced, the most convenient for numerical processing by interior point methods
is (TDfn) , as it was claimed in I. There is, however, an a priori drawback of this
approach; what we need are the bar volumes, and they “are not seen” at all in (TDfn) .
We are about to demonstrate that in order to overcome this difficulty it suffices to
solve (TDfn) not by an arbitrary interior point method, but with a path-following one.

Assume that we are applying a path-following method to (TDfn) and have com-
puted a point ξ = (Λ, X, ρ) close (in the aforementioned sense) to the point ξ∗(s).
From (6.3) it follows that a small number of steps of the recurrence (6.1) started at ξ
allows to come “very close” to ξ∗(s) (six steps of the recurrence restore ξ∗(s) within
machine accuracy). We may, therefore, assume for the sake of simplicity that we can
“stand at the path,” i.e., operate with ξ∗(s) itself rather than with a tight approxima-
tion of the point.4 It turns out that given ξ∗(s), one can explicitly generate a feasible
solution to (TD∗fn) of inaccuracy ≤ O(1/s). The exact statement is as follows.

Proposition 6.1. Let s > 0, and let ξ∗(s) = (Λs, Xs, ρs) be the minimizer of
the function

Fs(Λ, X, ρ) = s
[
2 Tr(QXT ) + V ρ

]
+ Φ(A(Λ, X, ρ))(6.4)

4This is an idealization, of course, but it is as well motivated as the standard model of precise
real arithmetic. We could replace in the forthcoming considerations ξ∗(s) by its tight approximation,
with minor modification of the construction, but we do not think it makes sense.
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over the set of strictly feasible solutions to (TDfn) . Here

Φ(S) = − ln DetS : int S+ → R.(6.5)

S is the space of block-diagonal symmetric matrices with m diagonal blocks of the size
(q + 1)× (q + 1) each, and

A(Λ, X, ρ) = Diag

{(
Λ XT bi

bTi X ρ

)
, i = 1, ...,m

}
.(6.6)

Then the matrix

R(s) ≡ Diag

{(
Li di
dTi ti

)
i = 1, ...,m

}
= s−1A−1(Λs, Xs, ρs)

[
= −s−1∇S |S=A(Λs,Xs,ρs)Φ(S)

](6.7)

is such that
∑m

i=1 Li = λsIq for some real λs, and
(R(s), λs) is a feasible solution to (TD∗fn)with the value of the objective

λs ≤ c∗ +
µ

s
,(6.8)

where c∗ is the optimal value in (TD∗fn) and µ = m(q + 1) is the total row size of the
matrices from S.

The proposition is an immediate consequence of general results of [10]; to make
the paper self-contained, below we present a direct proof.

Let us set Y = A(Λs, Xs, ρs), Z = Y −1, so that

R(s) = s−1Z; ∇Φ(Y ) = −Z.
The set G of strictly feasible solutions to (TDfn) is comprised of all triples ξ =
(Λ, X, ρ), which correspond to positive definite A(ξ) and are such that Tr Λ = 1;
this is an open convex subset in the hyperplane given by the equation Tr Λ = 1. Since
ξ∗(s) = (Λs, Xs, ρs) is the minimizer of Fs over G, we have, for certain real p,

∇ΛFs(ξ
∗(s)) = pIq; ∇XFs(ξ

∗(s)) = 0; ∇ρFs(ξ
∗(s)) = 0.

Substituting the expression for Fs and A, we obtain

m∑
i=1

Li ≡ [A∗R(s)]Λ ≡ −s−1 [A∗∇Φ(Y )]Λ = −s−1pIq,

2
m∑
i=1

bid
T
i ≡ [A∗R(s)]X ≡ −s−1 [A∗∇Φ(Y )]X = 2Q,

m∑
i=1

ti ≡ [A∗R(s)]ρ ≡ −s−1 [A∗∇Φ(Y )]ρ = V.

(Here [·]Λ, [·]X and [·]ρ denote, respectively, the Λ-, the X-, and the ρ-component of
the design vector of (TDfn).) Note also that Y (and therefore Z) is positive definite.
We see that (R(s), λ ≡ −s−1p) indeed is a feasible solution of (TD∗fn) .

Now, if (Λ, X, ρ) is a feasible solution to (TDfn) , and(
R ≡ Diag

{(
Mi ci
cTi ri

)
, i = 1, ...,m

}
, λ

)



1008 A. BEN-TAL AND A. NEMIROVSKI

is a feasible solution to (TD∗fn) , then

2 Tr(QXT ) + V ρ =
[
Tr([A∗R]XX

T ) + [A∗R]ρρ+ Tr([A∗R]ΛΛ)
]− λ

[since [A∗R]Λ = λIq, [A∗R]X = 2Q, [A∗R]ρ = V by the
constraints of (TD∗fn) and Tr Λ = 1
by the constraints of (TDfn) ]

= Tr(RA(Λ, X, ρ))− λ,

whence

[2 Tr(QXT ) + V ρ] + λ = Tr(RA(Λ, X, ρ)).

Since the optimal values in (TDfn) and (TD∗fn) , by the Fenchel–Rockafellar duality
theorem, are negations of each other, we come to

ε[Λ, X, ρ] + ε∗[R, λ] = Tr(RA(Λ, X, ρ));(6.9)

here ε[Λ, X, ρ] is the accuracy of the feasible solution (Λ, X, ρ) of (TDfn) (i.e., the value
of the objective of (TDfn) at (Λ, X, ρ) minus the optimal value of the problem), and
ε∗[·] is similar accuracy in (TD∗fn) .

Specifying (Λ, X, ρ) as (Λs, Xs, ρs) and (R, λ) as (R(s), λs), we make the right-
hand side of (6.9) equal to

Tr(R(s)Y ) = s−1 Tr(ZY ) = s−1 Tr(Y −1Y ) = s−1µ,

and with this equality (6.9) implies (6.8).

7. Numerical examples. Let us illustrate the developed approach by a few
examples.

Example 1. Our first example deals with the toy problem presented in Fig. 2.1;
as was explained in section 2.2, here the single-load optimal design results in an
unstable truss capable of carrying only very specific loads; the compliance of the
truss with respect to the given load is 16.000. Now let us apply approach B from
section 2.3, where the robustness constraint is imposed before solving the problem
and corresponds to “active” nodes—those where the given load is applied. When
imposing robustness requirement, we choose Q as explained in section 2.3. Namely,
in our case we have 2 fixed and 4 free nodes, so that the dimension n of the space of
virtual nodal displacements is 2× 4 = 8. Since all free nodes are active, the ellipsoid
of loads in robust setting is full-dimensional (q = n = 8); this ellipsoid is chosen as
explained in section 2.3—one of the half-axes is the given load, and the remaining
7 half-axes are 10 times smaller. The corresponding matrix (rounded to 3 decimal
places after the dot) is

Q =



2.000 0.014 −0.026 0.117 −0.063 0.170 −0.264 −0.054
0 0.235 0.216 0.125 −0.032 −0.161 −0.070 0.104
0 −0.040 −0.107 0.099 0.311 −0.158 −0.117 −0.035

2.000 0.045 0.137 −0.263 0.162 0.039 0.002 0.043
0 −0.202 0.148 −0.081 −0.111 −0.190 −0.124 −0.164

−2.000 0.149 −0.108 −0.203 −0.030 0.006 −0.210 −0.009
−2.000 −0.089 0.219 0.057 0.129 0.203 −0.052 −0.003

0 0.173 0.028 0.020 0.042 0.035 0.098 −0.341


.
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Fig. 7.1. Optimal design without (left) and with (right) robustness constraints.

Table 7.1
Optimal designs for Example 1.

Problem setting Compliance Bars, node : node Bar volumes, %
1 : 2 25.00
4 : 5 25.00

without robustness constraints 16.000 3 : 5 25.00
5 : 6 12.50
2 : 3 12.50
4 : 5 24.48
1 : 2 24.48
3 : 5 23.68

with robustness constraints 17.400 2 : 3 11.95
5 : 6 11.95
2 : 4 1.27
1 : 5 1.27
2 : 6 0.92

(To relate Q to the nodal structure presented on Fig. 2.1, note that the coordinates
of virtual displacements are ordered as 2X,2Y,3X,3Y,5X,5Y,6X,6Y, where, say, 3X
corresponds to the displacement of node #3 along the X-axis.)

The result of “robust” design is presented in Fig. 7.1 and Table 7.1.
Now the maximum over the 8-dimensional loading ellipsoid compliance becomes

17.400 (8.75% growth). But the compliance of the truss with respect to the load f is
16.148; i.e., it is only larger by 0.9% than for the truss given by single-load setting.

Example 2 (Console). The second example deals with approach A from section
2.3, where the robustness constraint is used for postoptimality analysis. The left part
of Fig. 7.2 represents optimal single-load design for a 9× 9 nodal grid on a 2D plane;
nodes from the very left column are fixed, the remaining nodes are free, and the load is
the unit force acting down and applied at the midnode of the very right column (long
arrow). The compliance of the resulting truss with respect to f∗, in appropriate scale,
is 1.00. Now note that the compliance of t with respect to very small (of magnitude
0.005‖f∗‖) “occasional” load (short arrow) applied at properly chosen node is > 8.4 !
Thus, in fact, t is highly unstable.

The right part of Fig. 7.2 represents the truss obtained via postoptimality design
with robustness constraint. We marked the nodes incident to the bars of t (there were
only 12 of them) and formed a new design problem with the nodal set composed of
these marked nodes, and the tentative bars given by all 66 possible pair connections
in this nodal set (in the original problem, there were 2040 tentative bars). The truss
represented in the right part corresponds to optimal design with robustness constraint
imposed at all 10 free nodes of this ground structure in the same way as in the previous
example (i.e., the first column in the 20× 20 matrix Q is the given load f∗, and the
remaining 19 columns formed orthogonal basis in the orthogonal complement to f∗

in of 20-dimensional space of virtual displacements of the construction; the Euclidean
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lengths of these additional columns were set to 0.1 (10% of the magnitude of f∗).
The maximal compliance, over the resulting ellipsoid of loads, of the “robust”

truss is now 1.03, and its compliance with respect to f is 1.0024—i.e., it is only
larger by 0.24% than the optimal compliance c∗ given by the single-load design; at
the same time, the compliance of the new truss with respect to all “occasional” loads
of magnitude 0.1 is at most by 3% greater than c∗.
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Fig. 7.2. Single-load optimal design (left) and its postoptimal “robust correction” (right).

Example 3 (N ×2-truncated pyramids). The examples below deal with simple 3D
trusses. The nodal set is composed of 2N points. N “ground” nodes are the vertices
of equilateral N -polygon in the plane z = 0:

xi = cos(2πi/N), yi = sin(2πi/N), zi = 0, i = 1, . . . , N,

and N “top” nodes are the vertices of twice smaller concentric polygon in the plane
z = 2:

xi =
1

2
cos(2πi/N), yi =

1

2
sin(2πi/N), zi = 2, i = N + 1, . . . , 2N.

The ground nodes are fixed, and the top ones are free. The ground structure is
composed of all pair connections of the nodes, except connections between the ground-
fixed ones.

We dealt with two kinds of loading scenarios, referred to, respectively, as “N×2s”-
and “N × 2m”-design data. N × 2s-data corresponds to a singleton scenario set,
where the load is composed of N nearly horizontal forces acting at the top nodes and
“rotating” the construction. The force acting at the ith node, i = N + 1, ..., 2N , is

fi = α(sin(2πi/N),− cos(2πi/N),−ρ), i = N + 1, . . . , 2N,(7.1)

where ρ is a small parameter and α is a normalizing coefficient which makes the
Euclidean length of the load equal to 1 (i.e., α = 1/

√
N(1 + ρ2)). N × 2m-data

correspond to N -scenario design where the forces (7.1) act nonsimultaneously (and

are renormalized to be of unit length, i.e., α = 1/
√

1 + ρ2).
Along with the traditional “scenario design” (single load in the case of s-data and

multiload in the case of m-data), we carried out “robust design” where we minimized
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Table 7.2
Compliances in Example 3.

Design data Scenario design Robust design
Compl(Scen) Compl(0.1) Compl(0.3) Compl(Scen) Compl(0.3)

3x2s 1.0000 7.5355 67.820 1.0029 1.0029
4x2s 1.0000 12.209 109.88 1.0028 1.0028
5x2s 1.0000 2.7311 24.580 1.0022 1.0022
3x2m 1.0000 1.2679 1.2679 1.0942 1.0943
4x2m 1.0000 4.1914 37.722 1.2903 1.2903
5x2m 1.0000 1.5603 1.6882 1.5604 1.5604

the maximum compliance with respect to a full-dimensional ellipsoid of loads Mθ—the
“ellipsoidal envelope” of the unit ball in the linear span L(F ) of the scenario loads and
the ball of radius θ in the orthogonal complement of L(F ) in the 3N -dimensional space
of virtual displacements of the nodal set. In other words, dim L(F ) of the principal
half-axes of Mθ are of unit length and span L(F ), and the remaining principal half-
axes are of length θ. In our experiments with robust design, we used θ = 0.3 and
measured the worst-case compliance of the resulting trusses, same as those given by
the usual scenario design, with respect to three sets of loads:

(i) the original set of scenarios,
(ii) the ellipsoid of loads M0.1,
(iii) the ellipsoid of loads M0.3.

The resulting structures are shown in Fig. 7.3 (data N × 2s) and Fig. 7.4 (data
N × 2m), and the corresponding compliances are seen in Table 7.2. In Table 7.2,
Compl(Scen) means the maximum compliance of the designed structure with respect
to the set of loading scenarios given by the corresponding data, while Compl(θ),
θ = 0.1, 0.3 is the maximum compliance with respect to the ellipsoid Mθ. In order
to make the comparison more clear, we normalize the data in each row to make the
compliance of the truss given by scenario design with respect to the underlying set of
scenarios equal to 1.

The summary of the numerical results in question is as follows.

1. N ×2s design data. The trusses given by the scenario and the robust designs
have the same topology and differ only in bar volumes; the difference basically is in
the thickness of the “top” – horizontal – bars (see Fig. 7.3): for the “robust” truss
they are approximately 80 times larger in volume than for the “scenario” one (0.1%
of the total bar volume instead of 0.0012% for N = 3). Although this difference in
sizing seems small, it is in fact quite significant. The scenario design results in highly
unstable constructions: appropriately chosen “occasional” loads with magnitude only
10% of the scenario load, result in 2.6–13.0 times larger compliance than the “scenario”
one. When the occasional load is allowed to be 30% of the scenario one, the ratio in
question may become 15–100. Note that bad robustness of the trusses given by the
scenario design has very simple origin: in the limiting case of ρ = 0 (purely horizontal
rotating load—the torque) the top bars disappear at all, and the optimal truss given
by the usual single-load design becomes completely unstable.

The robust design associated with the ellipsoid M0.3 (“occasional” loads may be
as large as 30% of the scenario one) results in trusses nearly optimal with respect
to the scenario load (“nonoptimality” is at most 0.3%). Surprisingly enough, for
the trusses given by the robust design the maximum compliance with respect to the
ellipsoid of loads is the same as their compliance with respect to the scenario load.
Thus, in the case in question, the robustness is “almost costless.”



1012 A. BEN-TAL AND A. NEMIROVSKI

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
0

0.5

1

1.5

2

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
0

0.5

1

1.5

2

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
0

0.5

1

1.5

2

3x2s 4x2s 5x2s

Fig. 7.3. Scenario and robust design, single “rotating” load (ρ = 0.001 for 3 × 2s and 4 × 2s,
ρ = 0.01 for 5× 2s).
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2. N × 2m design data. Here the trusses given by the scenario design are of
course much more stable than in the case of N × 2s data, and both kinds of design
possess their own advantages and drawbacks. On one hand, the maximum compliance,
over the ellipsoid M0.3 of loads, of the truss given by the scenario design is considerably
larger than the optimal value of this quantity (by 27% for N = 3, by 3670 % for
N = 4,5 and by 69% for N = 5). On the other hand, the maximum compliance,
over the scenario set, of the truss given by robust design is also considerably larger
than the optimal value of this quantity (by 9% for N = 3, by 29% for N = 4, and by
56% for N = 5). Thus, it is difficult to say which design—the scenario or the robust
one—results in better construction.

The results in question suggest a seemingly better approach to ensuring robustness
than those mentioned in section 2.3, namely, as follows. Given a scenario set F ,
we embed it into an ellipsoid M (see section 2.3) and solve the resulting problem
(TDrobust) ; let c∗robust be the corresponding optimal value. After this value is found,
we increase it in certain fixed proportion 1 + χ, say, by 10%, and solve the problem

find t ∈ T which minimizes the compliance cF (t) = maxf∈F cf (t)
s.t. cM (t) ≡ maxf∈M cf (t) ≤ (1 + χ)c∗robust.

Note that the latter problem can be posed as a semidefinite program, which only
slightly differs from (TDsd) :

min
t∈Rm,τ∈R

τ

s.t. (
τ fT

f
∑m

i=1 tiAi

)
≥ 0, ∀f ∈ F

(
a QT

Q
∑m

i=1 tiAi

)
≥ 0,

where

a = (1 + χ)c∗robust.

The dual to the latter problem is the computationally more convenient program

min

aTr(Λ) + 2 Tr(QXT ) + 2
∑
f∈F

fTxf + V ρ


s.t. (

Λ XT bi
bTi X σi

)
≥ 0, i = 1, . . . ,m,

σi +
∑
f∈F

(bTi xf )
2

λf
≤ ρ, i = 1, . . . ,m,

λf ≥ 0, f ∈ F,
k∑

f∈F
λf = 1,

5This huge difference mainly comes not from the difference in the topology of trusses but from
different sizing of the bars linking bottom nodes with “the same” top ones; for the robust design
these bars are approximately 30 times thicker than for the scenario design (1.5% of the total bar
volume vs. 0.05%, resp.).
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Table 7.3
Computational performance.

Problem Scenario design Robust design
(Ndsg, NLMI, Nimg) Nwt CPU (Ndsg, NLMI, Nimg) Nwt CPU

Example 2 (146,2041,6121) 75 3′58′′ (611,67,15247) 95 24′42′′
3x2s (11,13,37) 14 0.2′′ (127,13,661) 62 14.5′′
4x2s (14,23,67) 16 0.4′′ (223,23,2003) 77 1′18′′
5x2s (17,36,106) 17 0.6′′ (346,36,4761) 59 3′13′′
3x2m (31,13,121) 16 0.4′′ (127,13,661) 101 24′′
4x2m (53,23,331) 23 1.5′′ (223,23,2003) 65 1′6′′
5x2m (81,36,736) 23 3′′ (346,36,4761) 65 3′32′′

In the table:
Ndsg – number of design variables in (TDfn) ,
NLMI – number of linear matrix inequalities in (TDfn) ,
Ning – total image dimension of (TDfn) , i.e., the dimension

of the corresponding semidefinite cone,
Nwt – number of Newton steps performed by the interior point solver

when solving (TDfn) ,
CPU – solution time (workstation RS 6000).

the design variables being Λ ∈ Sk, X ∈ Rn×q, σ ∈ Rn, {(λf , xf ) ∈ R×Rn}f∈F , and
ρ ∈ R.

The reported numerical experiments were carried out with the LMI Control Tool-
box [7], the only software for semidefinite programming available to us at the moment.
The projective interior point method [10, Chapter 5], implemented in the Toolbox is
of the potential reduction rather than of the path-following type, and we were forced
to add to the Toolbox solver a “centering” interior point routine which transforms a
good approximate solution to (TDfn) into another solution of the same quality belong-
ing to the central path, which enabled us to recover the optimal truss, as is explained
in section 6. The time of solving (TDfn) by the Toolbox solver was moderate, as it is
seen in Table 7.3.

8. Concluding remarks. Uncertainty of the data is a generic property associ-
ated with optimization problems of real world origin. Accordingly, “robust reformu-
lation” of an optimization model as a way to improve applicability of the resulting
solution is a very traditional idea in mathematical programming, and different ap-
proaches to implement this idea were proposed. One of the best-known approaches is
stochastic programming, where uncertainty is assumed to be of stochastic nature. An-
other approach is robust optimization (see [9] and references therein); here, roughly
speaking, the “robust solution” should not necessarily be feasible for all “allowed”
data, and the “optimal robust solution” minimizes the sum of the original objective
and a penalty for infeasibilities, the infeasibilities being taken over a finite set of
scenarios. The approach used in our paper is somewhat different: a solution to the
“stabilized” problem should be feasible for all allowed data. This approach is exactly
the one used in robust control. The goal of this concluding section is to demonstrate
that the approach developed in the paper can be naturally extended to other mathe-
matical programming problems. To this end let us look at what in fact was done in
section 2.

(ii) We start with an optimization program in the “conic” form

(P) cTu→ min | Au ∈ K, u ∈ E,

where u is the design vector, A is M ×N matrix, K is closed convex cone in RM , and
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E is an affine plane in RN .
This is exactly the form of a single-load TTD problem min{σ | σ ≥ cf (t), t ∈ T}

(see section 2.1): to cast TTD as (P) it suffices to specify (P) as follows:
• u = (t, τ, σ) ∈ Rm ×R×R;
• E = {(t, τ, σ) | τ = 1,

∑m
i=1 ti = V };

• K is the direct product of the cone of positive semidefinite symmetric (n +
1)× (n+ 1) matrices (“matrix part”) and Rm

+ (“vector part”);
• the “vector” part of the linear mapping (t, τ, σ) 7→ A(t, τ, σ) is t, and the

“matrix” part is
(
σ τfT

τf A(t)

)
, f being the load in question.

(ii) We say that the data in (P)(entries in the data matrix A) are inexact (in TTD,
these are entries associated with the load vector f). We model the corresponding
uncertainty by the assumption that A ∈ U , where U is certain ellipsoid in the space
of M ×N matrices.6 Accordingly, we impose on the decision u the requirement to be
robust feasible, i.e., to satisfy the inclusions u ∈ E and Au ∈ K for all possible data
matrices A ∈ U . This leads to our robust reformulation of (P):

(Pst) cTu→ min | u ∈ E, Au ∈ K ∀A ∈ U .
Note that this is a general form of the approach we have used in section 2; and

the goal of the remaining sections was to realize, for the case when (P) is the single
load TTD problem, what is (Pst) as a mathematical programming problem and how
to solve it efficiently.

Problem (P) is a quite general form of a convex programming problem; the ad-
vantage of this conic form is that it allows to separate the “structure” of the problem
(c,K,E) and the “data” (A).7 The data now become a quite tractable entity—simply
a matrix. Whenever a program in question can be naturally posed in the conic form,
we can apply the above approach to get a “robust reformulation” of (P). Let us look
at some concrete examples.

Robust linear programming. Let K in (P) be the nonnegative orthant; this
is exactly the case when (P) is a linear programming problem in the canonical form.8

It is shown in [6] that (Pst) is a conic quadratic program (i.e., a conic program with
K being a direct product of the second order cones).

Robust quadratic programming. Let K be a direct product of the second
order cones, so that (P) is a conic quadratic program (a natural extension of the usual
quadratically constrained convex quadratic program). It can be verified (see [6]) that
in this case, under mild restrictions on the structure of the uncertainty ellipsoid U ,
the problem (Pst) can be equivalently rewritten as a semidefinite program (a conic
program with K being the cone of positive semidefinite symmetric matrices).

Note that in these examples (Pst) is quite tractable computationally, in particular,
it can be efficiently solved by interior point methods.

6Here, as in the main body of the paper, a k-dimensional ellipsoid in RM is, by definition, the
image of the unit Euclidean ball in Rk under an affine embedding of Rk into RM .

7In some applications, the objective c should be treated as a part of the data rather than the
structure. One can easily reduce this case to the one in question by evident equivalent reformulation
of (P).

8Up to the fact that the mapping u 7→ Au is assumed to be linear rather than affine. This
assumption does not restrict generality, since we incorporate into the model the affine constraint
u ∈ E; at the same time, the homogeneous form Au ∈ K of the nonnegativity constraints allows
us to handle both uncertainties in the matrix of the linear inequality constraints and those in the
right-hand side vector.
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A somewhat “arbitrary” element in the outlined general approach is that we model
uncertainty as an ellipsoid. Note, anyhow, that in principle the above scheme can
be applied to any other uncertainty set U , and the actual “bottleneck” is our ability
to solve efficiently the resulting problem (Pst). Note that the robust problem (Pst)
always is convex, so that there is a sufficient condition for its “efficient solvability.”
The condition, roughly speaking (for the details, see [8]), is that we should be able to
equip the feasible domain

G = {u | u ∈ E,Au ∈ K ∀A ∈ U}
of (Pst) with a separation oracle—a “computationally efficient” routine which, given
on input u, reports on output whether u ∈ G, and if it is not the case, returns a
linear form which separates G and u. Whether this sufficient condition is satisfied
or not depends on the geometry of U and K, and the “more complicated” U is, the
“simpler” K should be. When U is very simple (a polytope given as a convex hull of
a finite set), K could be an arbitrary “tractable” cone (one which can be equipped
with a separation oracle); when U is an ellipsoid, K could be for sure the nonnegative
orthant or a direct product of the second order cones. On the other hand, if K
is simple (the nonnegative orthant, as in the linear programming case), U could be
more complicated than an ellipsoid—e.g., it could be an intersection of finitely many
ellipsoids. Under mild regularity assumptions, in the latter case (Pst) turns out to
be a conic quadratic program [6]. In other words, there is a “tradeoff” between the
flexibility and the tractability, i.e., between the ability to express uncertainties, on
one hand and the ability to produce computationally tractable problems (Pst) on the
other hand.

We strongly believe that the approach advocated here is promising and is worthy
of investigation, and we intend to devote a separate paper to it.
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Abstract. In recent years rich theories on polynomial-time interior-point algorithms have been
developed. These theories and algorithms can be applied to many nonlinear optimization problems
to yield better complexity results for various applications. In this paper, the problem of minimizing
a sum of Euclidean norms is studied. This problem is convex but not everywhere differentiable. By
transforming the problem into a standard convex programming problem in conic form, we show that
an ε-optimal solution can be computed efficiently using interior-point algorithms. As applications
to this problem, polynomial-time algorithms are derived for the Euclidean single facility location
problem, the Euclidean multifacility location problem, and the shortest network under a given tree
topology. In particular, by solving the Newton equation in linear time using Gaussian elimination
on leaves of a tree, we present an algorithm which computes an ε-optimal solution to the shortest
network under a given full Steiner topology interconnecting N regular points, in O(N

√
N(log(c̄/ε)+

logN)) arithmetic operations where c̄ is the largest pairwise distance among the given points. The
previous best-known result on this problem is a graphical algorithm which requires O(N2) arithmetic
operations under certain conditions.

Key words. polynomial time, interior-point algorithm, minimizing a sum of Euclidean norms,
Euclidean facilities location, shortest networks, Steiner minimum trees
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1. Introduction. The motivation to write this paper was to apply new tech-
niques—polynomial time interior-point algorithms for convex programming—to solve
two old problems: the Euclidean facilities location problem and the Steiner minimal
tree (SMT) problem. The first problem, studied by researchers in location science,
has applications in transportation and logistics. The second problem, studied by re-
searchers in combinatorial optimization, has applications in communication networks.
Both problems can be described as the minimization of a sum of Euclidean norms and
they both trace back to an ancient problem studied by Fermat in the 17th century.

At the end of his celebrated essay on maxima and minima, in which he presented
precalculus rules for finding tangents to a variety of curves, Fermat threw out this
challenge: “Let he who does not approve of my method attempt the solution of the
following problem: Given three points in the plane, find a fourth point such that the
sum of its distances to the three given points is at minimum!” The solution to the
original Fermat problem is either the Torricelli point—an interior point which opens
an angle of 120o to each of the three sides of the triangle—or one of the given points
whose inner angle is no less than 120o. This problem has been generalized into the
Euclidean facilities location problem and the SMT problem.

The facilities location problem is one of locating N new facilities with respect
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to M existing facilities, the locations of which are known. The problem consists of
finding locations of new facilities which will minimize a total cost function. This total
cost function consists of a sum of costs directly proportional to the distances between
the new facilities and costs directly proportional to the distances between new and
existing facilities. If there is only one new facility (N = 1), the problem is called
a Euclidean single facility location (ESFL) problem. If there is more than one new
facility (N ≥ 2), the problem is called a Euclidean multifacility location (EMFL)
problem.

For the general ESFL problem, Weiszfeld [30] gave a simple closed form iterative
algorithm in 1937. Later, it was proved by numerous authors [18, 24, 29] that the
algorithm converges globally and, under certain conditions, linearly. Chandrasekaran
and Tamir [5, 6] exhibited a solution to the strong separation problem associated with
the ESFL problem which shows that an ε-optimal solution (i.e., a feasible solution
whose absolute error in the objective function is within ε to the optimal objective
function value) to the ESFL problem can be constructed in polynomial time using
the ellipsoid method.

Miehle [21] was the first to propose an extension of the Weiszfeld algorithm for
ESFL to solve EMFL problems. Ostresh [24] proved that Miehle’s algorithm is a
descending one. However, Miehle’s algorithm may converge to a nonoptimal point;
see [26, 31]. Eyster, White, and Wierwille [9] proposed a hyperboloid approximation
procedure (HAP) for solving the perturbed EMFL problem. Rosen and Xue [31, 27]
proved that the HAP always converges from any initial point. Calamai and Conn
[3, 4] and Overton [25] proposed projected Newton algorithms for minimizing a sum of
Euclidean norms and proved that the algorithms have quadratic rate of convergence
provided the sequence of points generated by the algorithm converges to a strong
minimizer. For more details, see the books by Francis, McGinnis, and White [11] and
by Love, Morris, and Wesolowsky [19].

Recently, Xue, Rosen, and Pardalos [32] showed that the dual of the EMFL
problem is the minimization of a linear function subject to linear and convex quadratic
constraints and can therefore be solved by the interior-point techniques in polynomial
time. den Hertog [8] (and see references therein) also presented a polynomial-time
interior-point Newton barrier method for solving (2.1). More recently, Andersen [1]
used the HAP idea [9] to smooth the objective function by introducing a perturbation
ε > 0 and applied a Newton barrier method to solving the problem. Andersen and
Christiansen [2] and Conn and Overton [7] also proposed a primal–dual method based
on the ε-perturbation and presented impressive computational results, although no
complexity result is established for their method at this moment. None of the above
formulations is in conic form.

The SMT problem [12, 20] is concerned with interconnecting a set of given points
on the Euclidean plane with a shortest network. The shortest network is always a
tree network and may contain some additional points called Steiner points. The SMT
problem is NP-hard. Recently, there have been increased interests in the computation
of a shortest interconnection network after the connections among the points (which
is called a topology, to be defined in section 6.3) are specified. Hwang [14] proposed a
linear-time algorithm for computing the shortest network under a full Steiner topology
when the shortest network is a nondegenerate full Steiner tree. Hwang and Weng
[15] proposed an O(N2) arithmetic operation algorithm for computing the shortest
network under a Steiner topology when the shortest network is a tree whose vertex
degrees are all less than or equal to 3. Smith [28] used an EMFL approach to compute
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the shortest network under a given topology. His algorithm is essentially a first-order
method.

In this paper, we first transform the basic problem of minimizing a sum of Eu-
clidean norms into a standard convex programming problem in conic form and present
an interior-point algorithm that can compute an ε-optimal solution inO(

√
m(log(c̄/ε)+

logm)) iterations, where m is the number of norms in the summation and c̄ is
a constant that is not less than the Euclidean norm of any of the given vectors
ci, i = 1, 2, . . . ,m. We then study several applications of the basic problem and show
improved computational complexity results wherever possible. In particular, we show
that an ε-optimal solution to the shortest network under a given tree topology for a
set of N points can be computed in O(N

√
N(log(c̄/ε)+ logN)) arithmetic operations

where c̄ is the largest pairwise distance among the given points.
The rest of this paper is organized as follows. In section 2, we describe the basic

problem of minimizing a sum of Euclidean norms. In section 3, the basic problem is
transformed into a standard convex programming problem in conic form. In section
4, we present a primal–dual potential reduction algorithm for solving the problem. In
section 5, we discuss the computational complexity and simplifications of the potential
reduction algorithm. In section 6, we present applications to the ESFL problem, the
EMFL problem, and the SMT problem. In section 7, we present some computational
examples of SMT problems. We conclude this paper in section 8.

2. Minimizing a sum of Euclidean norms. Let c1, c2, . . . , cm ∈ Rd be column
vectors in the Euclidean d-space and A1, A2, . . . , Am ∈ Rn×d be n-by-d matrices with
each having full column rank. We want to find a point u ∈ Rn such that the following
sum of Euclidean norms is minimized:

min
∑m

i=1 ||ci −AT
i u||

s.t. u ∈ Rn.
(2.1)

It is clear that u = 0 is an optimal solution to (2.1) when all of the ci are zero. There-
fore, we will assume in the rest of this paper that not all of the ci are zero. Problem
(2.1) is a convex programming problem, but its objective function is not everywhere
differentiable. Two special cases of this problem are the Euclidean facilities location
problem and the SMT problem under a given topology.

We will call problem (2.1) the basic problem in the rest of our paper. This problem
can be formulated as the maximization of a linear function subject to affine and convex
cone constraints as follows:

max −∑m
i=1 ti

s.t. t1 ≥ ||c1 −AT
1 u||,

t2 ≥ ||c2 −AT
2 u||,

...
tm ≥ ||cm −AT

mu||,

(2.2)

where ti ∈ R, i = 1, 2, . . . ,m.
Problem (2.1) and problem (2.2) are equivalent in the following sense. If (t1; t2; · · · ;

tm;u) is the optimal solution to (2.2), then u is the optimal solution to (2.1). If u is the
optimal solution to (2.1), then (t1; t2; · · · ; tm;u) is the optimal solution to (2.2), where
ti = ||ci−AT

i u||, i = 1, 2, . . . ,m and (t1; t2; · · · ; tm;u) is an (m+n)-dimensional col-
umn vector whose first m elements are ti, i = 1, 2, . . . ,m and whose last n elements
are the elements of u.
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In the rest of this paper, when we represent a large matrix with several small
matrices, we will use semicolons “;” for column concatenation and commas “,” for
row concatenation. This notation also applies to vectors. We will use 0n to represent
an n-dimensional column vector whose elements are all zero. We will also use Id to
represent the d-by-d identity matrix.

3. Conic formulation. In this section, we will transform our basic problem
(2.1) into a standard convex programming problem in conic form, where the cone
and its associated barrier are self-scaled (or homogeneous and self-dual); see Nesterov
and Nemirovskii [22], Nesterov and Todd [23], and Güler [13]. Because of the special
constraints in problem (2.2), the cone of our choice is the second-order cone or the
Lorentz cone. For definitions and theory about the second-order cone, self-scaled
barriers, and related theory, see [22, 23, 13].

Let the cone be

K := {(t; s) ∈ Rd+1 : t ≥ ‖s‖}.
Then its interior is

intK := {(t; s) ∈ Rd+1 : t > ‖s‖}.
Let

δ(t; s) =
√
t2 − ‖s‖2,

and

f(t; s) = − log δ2(t; s).

Then, for any (t; s) ∈ intK we have

f ′(t; s) =
2

δ2(t; s)

( −t
s

)

and

f ′′(t; s) =
2

δ2(t; s)

( −1 0
0 Id

)
+

4

δ4(t; s)

(
t2 −tsT
−ts ssT

)
,(3.1)

which is positive definite. Its inverse is

(f ′′(t; s))−1 =
δ2(t; s)

2

( −1 0
0 Id

)
+

(
t2 tsT

ts ssT

)
.(3.2)

Also note that

(f ′′(t; s))−1f ′(t; s) = −(t; s).(3.3)

Now let

B =




−1
−1
...
−1
0n


 ∈ Rm+n, C =




(0; c1)
(0; c2)

...
(0; cm)


 ∈ Rm+md,
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and

AT =




−1 0 · · · 0 0
0 0 · · · 0 AT

1

0 −1 · · · 0 0
0 0 · · · 0 AT

2

. . .

0 0 · · · −1 0
0 0 · · · 0 AT

m



∈ R(m+md)×(m+n).

Then, problem (2.1) or (2.2) can be written in the standard (dual) form

max BT (t1; t2; · · · ; tm;u)

s.t.




(t1; s1)
(t2; s2)

...
(tm; sm)


 = C − AT (t1; t2; · · · ; tm;u),

(ti; si) ∈ K, i = 1, 2, . . . ,m.

(3.4)

Let (τ1;x1), (τ2;x2), . . . , (τm;xm) ∈ Rd+1. Then its corresponding primal problem is

min CT ((τ1;x1); (τ2;x2); · · · ; (τm;xm))
s.t. A((τ1;x1); (τ2;x2); · · · ; (τm;xm)) = B,

(τi;xi) ∈ K, i = 1, 2, . . . ,m.
(3.5)

Thus, using X := ((τ1;x1); (τ2;x2); · · · ; (τm;xm)), S := ((t1; s1); (t2; s2); · · · ; (tm; sm)),
Y := (t1; t2; · · · ; tm;u), and K := Km := K×K×· · ·×K, we can write the two prob-
lems (3.5) and (3.4) as
(P ) min CTX

s.t. AX = B,
X ∈ K

and
(D) max BTY

s.t. S = C − ATY,
S ∈ K.

This is the pair of problems (P ) and (D) in Nesterov and Nemirovskii [22] and Nes-
terov and Todd [23]. Since K is a convex self-dual and self-scaled cone with ν = 2,
K is a convex self-dual and self-scaled cone with ν = 2m. Thus, we can use an
interior-point algorithm to compute an ε-optimal solution of the problem in polyno-
mial time.

Kojima [16] recently pointed out to us that problem (2.2) can be formulated as a
positive semidefinite program:

max −∑m
i=1 ti

s.t.

(
ti (ci −AT

i u)T

(ci −AT
i u) tiId

)
positive semidefinite for

i = 1, 2, . . . ,m.

(3.6)

However, as we will illustrate later, the complexity bound for solving positive semidef-
inite program (3.6) will be

√
d factor higher than that for solving problem (3.4).
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4. A primal–dual potential reduction algorithm. Let

F (X ) =

m∑
i=1

f(τi;xi) and F (S) =
m∑
i=1

f(ti; si).(4.1)

A primal–dual potential function for the pair (P ) and (D) is

φρ(X ,S) := ρ log(〈X ,S〉) + F (X ) + F (S),(4.2)

where ρ = 2m+ γ
√

2m, γ ≥ 1. Note that

〈X ,S〉 = X TS = CTX − BTY
and

φ2m(X ,S) := 2m log(〈X ,S〉) + F (X ) + F (S) ≥ 2m logm.(4.3)

The central trajectory for this pair is {X (µ),Y(µ),S(µ)}, for any given µ > 0,
such that X = X (µ) is primal feasible and (Y;S) = (Y(µ);S(µ)) is dual feasible, and(

τi
xi

)
+ µf ′(ti; si) = 0, i = 1, 2, . . . ,m,(4.4)

or (
ti
si

)
+ µf ′(τi;xi) = 0, i = 1, 2, . . . ,m.(4.5)

The main iteration of a potential reduction algorithm starts with a strictly feasible
primal–dual pair X and (Y;S); i.e.,

AX = B, S = C − ATY,
X ∈ intK, and S ∈ intK.

It computes a search direction (dX , dY , dS) via solving a system of linear equations.
After obtaining (dX , dY , dS), a new strictly feasible primal–dual pair X+ and (Y+;S+)
is generated from

X+ = X + αdX , Y+ = Y + βdY , S+ = S + βdS ,

for some step-sizes α and β, and

φρ(X+,S+) ≤ φρ(X ,S)− Ω(1).

The search direction (dX , dY , dS) is determined by the following equations.

AdX = 0, dS = −AT dY (feasibility)(4.6)

and

dX + F ′′(S)dS = − ρ

X TSX − F ′(S) (dual scaling),(4.7)

or

dS + F ′′(X )dX = − ρ

X TS S − F ′(X ) (primal scaling),(4.8)
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or

dS + F ′′(Z)dX = − ρ

X TS S − F ′(X ) (joint scaling),(4.9)

where Z is chosen to satisfy

S = F ′′(Z)X .(4.10)

(These directions were presented for linear and quadratic programming in Ye [33].) We
will discuss each of these three cases in the next three subsections. The differences
among the three algorithms are the computation of the search direction and their
theoretical close-form step-sizes. All three generate an ε-optimal solution (X ,Y,S);
i.e.,

〈X ,S〉 ≤ ε

in a guaranteed O(γ
√

2m log(〈X 0,S0〉/ε) + φ2m(X 0,S0)− 2m logm) iteration. (Note
from (4.3) that φ2m(X 0,S0)− 2m logm) ≥ 0.)

In practice, one usually finds the largest step-sizes ᾱ and β̄ such that

X + ᾱdX ∈ K, and S + β̄dS ∈ K(4.11)

then takes α ∈ [0, ᾱ] and β ∈ [0, β̄], via a line search, to minimize φρ(X+,S+), or
simply chooses

α = (0.5 ∼ 0.99)ᾱ and β = (0.5 ∼ 0.99)β̄(4.12)

as long as φρ is reduced.

4.1. Dual scaling. The theoretical potential reduction algorithm using dual
scaling can be described as follows.

Algorithm PDD.

{γ and ∆ are fixed constants such that γ ≥ 1, 0 < ∆ < 1, and γ(γ(1−∆)−∆)
1+γ > ∆2

2(1−∆)2 }.
Step 1 Compute the search direction (dX , dY , dS) using (4.6) and (4.7).

Step 2 Compute λ =
√
dTSF ′′(S)dS .

If λ > ∆ then
X+ = X , (primal step-size α = 0)
S+ = S + 1

1+λdS , (dual step-size β = 1
1+λ )

else

X+ = X + 〈S,X〉
ρ dX , (primal step-size α = 〈S,X〉

ρ )

S+ = S. (dual step-size β = 0)
endif

According to Nesterov and Nemirovskii [22], we have the following theorem.
Theorem 4.1. Starting from any strictly feasible primal solution X 0 and strictly

dual feasible solution (Y0;S0), an ε-optimal solution to problem (2.2) can be obtained
by repeated application of Algorithm PDD for at most O(γ

√
2m log(〈X 0,S0〉/ε) +

φ2m(X 0,S0)− 2m logm) iterations. 2

At first glance, it seems that the dimension of the system of linear equations
defined by (4.6) and (4.7) is very large. However, the system is structured and its
solution can be simplified.
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Consider the dual-scaling form (4.7). Using dS = −AT dY , we have

dX − F ′′(S)AT dY = − ρ

X TSX − F ′(S).

Multiplying A on both sides and noting that AdX = 0, we have

AF ′′(S)AT dY =
ρ

X TSAX +AF ′(S),

or

AF ′′(S)AT dY =
ρ

X TS B +AF ′(S),

which is a least-squares problem where A is scaled to A(F ′′(S))1/2.
Therefore, the search direction dX , dY , dS determined by dual scaling can be com-

puted by solving the following system of linear equations:

AF ′′(S)AT dY = ρ
XTSB +AF ′(S),

dX = F ′′(S)AT dY − ρ
XTSX − F ′(S),

dS = −AT dY .

(4.13)

4.2. Primal scaling. The theoretical potential reduction algorithm using primal-
scaling can be described as follows.

Algorithm PDP.

{γ and ∆ are fixed constants such that γ ≥ 1, 0 < ∆ < 1, and γ(γ(1−∆)−∆)
1+γ > ∆2

2(1−∆)2 }.
Step 1 Compute the search direction (dX , dY , dS) using (4.6) and (4.8).

Step 2 Compute λ =
√
dTXF ′′(X )dX .

If λ > ∆ then
X+ = X + 1

1+λdX , (primal step-size α = 1
1+λ )

S+ = S. (dual step-size β = 0)
else
X+ = X , (primal step-size α = 0)

S+ = S + 〈S,X〉
ρ dS , (dual step-size β = 〈S,X〉

ρ )

endif
According to Nesterov and Nemirovskii [22], we have the following theorem.
Theorem 4.2. Starting from any strictly feasible primal solution X 0 and strictly

dual feasible solution (Y0;S0), an ε-optimal solution to problem (2.2) can be obtained
by repeated application of Algorithm PDP for at most O(γ

√
2m log(〈X 0,S0〉/ε) +

φ2m(X 0,S0)− 2m logm) iterations. 2

As in the dual-scaling case, we can also simplify the system of linear equations
defined by (4.6) and (4.8) as follows.

Consider the primal form. Using dS = −AT dY , we have

−AT dY + F ′′(X )dX = − ρ

X TS S − F ′(X )

or

dX − (F ′′(X ))−1AT dY = − ρ

X TS (F ′′(X ))−1S − (F ′′(X ))−1F ′(X )

= − ρ

X TS (F ′′(X ))−1S + X .
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Here we have used relation (3.3) implying

(F ′′(X ))−1F ′(X ) = −X .
Also note that there is a close form for (F ′′(X ))−1 given by (3.2). Multiplying A on
both sides and noting AdX = 0, we have

A(F ′′(X ))−1AT dY =
ρ

X TSA(F ′′(X ))−1S −AX ,
or

A(F ′′(X ))−1AT dY =
ρ

X TSA(F ′′(X ))−1S − B,

which again is a least-squares problem where A is scaled to A(F ′′(X ))−1/2.
Therefore, the search direction dX , dY , dS determined by primal scaling can be

computed by solving the following system of linear equations:

A(F ′′(X ))−1AT dY = ρ
XTSA(F ′′(X ))−1S − B,

dX = (F ′′(X ))−1AT dY − ρ
XTS (F ′′(X ))−1S + X ,

dS = −AT dY .

(4.14)

4.3. Joint scaling. The theoretical potential-reduction algorithm using primal–
dual joint scaling generates the search direction from

dS + F ′′(Z)dX = − ρ

X TS S − F ′(X ),

where Z is chosen to satisfy

S = F ′′(Z)X .
According to Nesterov and Todd [23], there is a unique Z := ((κ1; z1); . . . ; (κm; zm))
such that

(ti; si) = f ′′(κi; zi)(τi;xi), i = 1, . . . ,m.

In fact, for any (τ ;x) ∈ intK and (t; s) ∈ intK we have a unique (κ; z) ∈ intK with

(t; s) = f ′′(κ; z)(τ ;x),

where

κ = ζτ + ηt and z = ζx− ηs,

where

ζ =
1√

δ(τ ;x)δ(t; s) + τt+ xT s
and η = ζ

δ(τ ;x)

δ(t; s)
.

One can verify that

δ2(κ; z) =
2δ(τ ;x)

δ(t; s)
,
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so that from (3.1) and (3.2)

f ′′(κ; z) =
δ(t; s)

δ(τ ;x)

( −1 0
0 Id

)
+

δ2(t; s)

δ2(τ ;x)

(
κ2 −κzT
−κz zzT

)
,

and

(f ′′(κ; z))−1 =
δ(τ ;x)

δ(t; s)

( −1 0
0 Id

)
+

(
κ2 κzT

κz zzT

)
.

The joint-scaling algorithm can be described as follows.
Algorithm PDJ.

Step 1 Compute the scaling point Z := ((κ1; z1); (κ2; z2); . . . ; (κm; zm)) from
κ = ζτ + ηt and zi = ζixi − ηisi, i = 1, 2, . . . ,m

where

ζi = 1√
δ(τi;xi)δ(ti;si)+τiti+xTi si

and ηi = ζi
δi(τi;xi)
δ(ti;si)

, i = 1, 2, . . . ,m.

Step 2 Compute the search direction (dX , dY , dS) using (4.6), (4.9), and (4.10).
Step 3 Let σ(Z) be the largest primal feasible step-size form X along direction Z.

Let σ(dX ) be the largest primal feasible step-size form X along direction dX .
Let σ(dS) be the largest dual feasible step-size form S along direction dS .
Choose the joint step-size ᾱ by

ᾱ = min{ 1
σ(Z)2+σ(dX ) ,

1
σ(Z)2+σ(dS)}.

Step 4 Update the approximate solution by
X+ = X + ᾱdX , S+ = S + ᾱdS , Y+ = Y + ᾱdY .

According to Nesterov and Todd [23], we have the following theorem.
Theorem 4.3. Starting from any strictly feasible primal solution X 0 and strictly

dual feasible solution (Y0;S0), an ε-optimal solution to problem (2.2) can be obtained
by repeated application of Algorithm PDJ for at most O(γ

√
2m log(〈X 0,S0〉/ε) +

φ2m(X 0,S0)− 2m logm) iterations. 2

As in the cases of dual scaling and primal scaling, we can simplify the system of
linear equations defined by (4.6) and (4.9) as follows.

Using dS = −AT dY , we have

−AT dY + F ′′(Z)dX = − ρ

X TS S − F ′(X )

or

dX − (F ′′(Z))−1AT dY = − ρ

X TS (F ′′(Z))−1S − (F ′′(Z))−1F ′(X )

= − ρ

X TSX − F ′(S).

Here we have used relations

(F ′′(Z))−1S = X
and

(F ′′(Z))−1F ′(X ) = F ′(S).

Multiplying A on both sides and noting AdX = 0 and AX = B, we have

A(F ′′(Z))−1AT dY =
ρ

X TS B +AF ′(S),
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which again is a least-squares problem where A is scaled to A(F ′′(Z))−1/2.
Therefore, the search direction dX , dY , dS determined by joint scaling can be

computed by solving the following system of linear equations:

A(F ′′(Z))−1AT dY = ρ
XTSB +AF ′(S),

dX = (F ′′(Z))−1AT dY − ρ
XTSX − F ′(S),

dS = −AT dY .

(4.15)

5. Complexity and implementation. As we have seen, the number of itera-
tions required (as stated in Theorems 4.1–4.3) to compute an ε-optimal solution to
problem (2.2) depends on the initial point (X 0,S0,Y0). In this section, we discuss
initial point selection and other computational issues for solving problem (2.2) using
the algorithms presented in section 3.

5.1. Initial point. The algorithms discussed in the previous section all require
a pair of strictly primal–dual interior feasible solutions. In the following, we give one
such pair.

Let

c̄ = max
1≤i≤m

‖ci‖,

and

u0 = 0, s0i = ci, t0i =
√
‖ci‖2 +mc̄2, i = 1, 2, . . . ,m,

and

τ0
i = 1, x0

i = 0, i = 1, 2, . . . ,m.

Then, one can verify that X is an interior feasible solution to (P ) and S and Y form
an interior feasible solution to (D). One can also verify that

〈X 0,S0〉 = (X 0)TS0 =
m∑
i=1

t0i τ
0
i =

m∑
i=1

√
‖ci‖2 +mc̄2 ≤ c̄m

√
1 +m

and the initial value

φ2m(X 0,S0)− 2m logm = 2m log(〈X 0,S0〉) + F (X 0) + F (S0)− 2m logm

= 2m log(〈X 0,S0〉) + F (S0)− 2m logm

= 2m log(〈X 0,S0〉)−m log(mc̄2)− 2m logm

≤ 2m log(m
√

1 +mc̄)−m log(mc̄2)− 2m logm

= m log(1 +m)−m logm

= m log(1 + 1/m)

≤ 1.

With this initial point, we have the following corollary.
Corollary 5.1. Let the initial feasible primal solution X 0 and dual feasible

solution (Y0;S0) be given as above. Then, an ε-optimal solution to problem (2.2) can
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be obtained by the potential reduction algorithms in at most O(γ
√
m(log(c̄/ε)+logm))

iterations, where

c̄ = max
1≤i≤m

‖ci‖.

Note that if positive semidefinite program (3.6) is solved, the iteration complexity
bound will be O(γ

√
md(log(c̄/ε)+ logmd)), which is

√
d higher than the bound given

by the above corollary.

5.2. Search direction. At each step of the potential-reduction algorithm, we
need to compute the search direction dX , dS , and dY by solving a system of linear
equations. In what follows, we will show that this can be further simplified, taking
advantage of the special structure of the problem.

Consider the search direction defined by dual scaling (4.7). For i = 1, . . . ,m, it
can be decomposed as(

dτi
dxi

)
+

(
2

δ2(ti; si)

( −1 0
0 Id

)
+

4

δ4(ti; si)

(
(ti)

2 −ti(si)T
−tisi si(si)

T

))(
dti
dsi

)

= − ρ

X TS
(

τi
xi

)
− 2

δ2(ti; si)

( −ti
si

)
.(5.1)

Note that si = ci−AT
i u, dsi = −AT

i du, τi = 1, and dτi = 0 for i = 1, . . . ,m. The
system can be written as(

− 2

δ2(ti; si)
+

4(ti)
2

δ4(ti; si)

)
dti +

4ti
δ4(ti; si)

(si)
TAT

i du = − ρ

X TS +
2

δ2(ti; si)
ti,

dxi −
2

δ2(ti; si)
AT
i du +

4

δ4(ti; si)
(−tidtisi − si(si)

TAT
i du) =− ρ

X TS xi −
2

δ2(ti; si)
si.

From the first equation we have

dti =
δ2(ti; si)ti − ρδ4(ti;si)

2XTS − 2ti(si)
TAT

i du

2(ti)2 − δ2(ti; si)
.

Substituting this relation into the second equation, we have

dxi +
2

δ2(ti; si)

(
2

2(ti)2 − δ2(ti; si)
si(si)

T − Id

)
AT
i du

= − ρ

X TS xi +

(
2(1− ρ

XTS ti)
2(ti)2 − δ2(ti; si)

)
si.

Moreover, since

m∑
i=1

Aixi = 0,
m∑
i=1

Aidxi = 0,
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we have (
m∑
i=1

2

δ2(ti; si)

(
2

2(ti)2 − δ2(ti; si)
Aisi(si)

TAT
i −AiA

T
i

))
du

=
m∑
i=1

(
2(1− ρ

XTS ti)
2(ti)2 − δ2(ti; si)

)
Aisi.(5.2)

Note that the system for computing du may not have full rank. If that is the case,
any feasible solution is acceptable.

It requires O(mn2d) operations to set up the system (5.2) for computing du. Solv-
ing the system requires O(n3) operations. Once du is computed, O(mnd) operations
are required to compute dx and ds. Therefore, the number of arithmetic operations
in each iteration is bounded by O(n3 + mn2d). The following theorem follows from
Corollary 5.1 and the above analysis.

Theorem 5.2. Let the initial feasible primal solution X 0 and dual feasible solu-
tion (Y0;S0) be given as above. Then, an ε-optimal solution to problem (2.1) can be
obtained by the potential reduction algorithms in at most O(γ

√
m(log(c̄/ε) + logm))

iterations, where

c̄ = max
1≤i≤m

‖ci‖,

and each iteration requires O(n3 +mn2d) arithmetic operations. 2

Note that if γ is chosen as a constant and the problem is normalized such that
c̄ = 1, i.e., all of ci is within the unit ball in Rd, then the iteration bound is
O(
√
m(log(1/ε)+ logm)). We will further discuss this issue in following applications.

6. Applications. In this section, we will apply the algorithms presented in the
previous sections to solve the ESFL problem, the EMFL problem, and the SMT prob-
lem under a given topology. We will also take advantage of the special structures of
these special problems and obtain improved computational complexity results wher-
ever possible.

6.1. The ESFL problem. Let a1, a2, . . . , aM be M points in Rd, the d-dimen-
sional Euclidean space. Let w1, w2, . . . , wM be M positive weights. Find a point
x ∈ Rd that will minimize

f(x) =

M∑
i=1

wi||x− ai||.(6.1)

This is called the ESFL problem.
In the ESFL problem, a1, a2, . . . , aM represent the respective locations of M

clients in a given region and x represents the location of a prospective service center.
w1, w2, . . . , wM represent the respective amount of service requests of the clients to
the service center. The ESFL problem is concerned with finding the location for the
service center to minimize the sum of weighted Euclidean distances from the service
center to each of the clients. For more information on this problem, see [17, 19].

The ESFL problem can be easily transformed into a special case of problem (2.1)
where m = M , n = d and ci = wiai, A

T
i = wiId, i = 1, 2, . . . ,M . It follows from

Theorem 5.1 that Theorem 6.1 holds.
Theorem 6.1. An ε-optimal solution to the ESFL problem (6.1) can be computed

using any of our potential reduction algorithms in O(
√
M(log(c̄/ε)+logM)) iterations
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where c̄ = max1≤i≤m ‖wiai‖, and each iteration requires O(d3 + d2M) arithmetic
operations. 2

6.2. The EMFL problem. Let a1, a2, . . . , aM be M points in Rd, the d-dimen-
sional Euclidean space. Let wji, j = 1, 2, . . . , N , i = 1, 2, . . . ,M , and vjk, 1 ≤ j < k ≤
N be given nonnegative numbers. Find a point x = (x1;x2; . . . ;xN ) ∈ RdN that will
minimize

f(x) =
N∑
j=1

M∑
i=1

wji||xj − ai||+
∑

1≤j<k≤N
vjk||xj − xk||.(6.2)

This is the so-called EMFL problem. For ease of notation, we assume that vjj = 0
for j = 1, 2, . . . , N and that vjk = vkj for 1 ≤ k < j ≤ N .

In the EMFL problem, a1, a2, . . . , aM represent the locations of M existing facil-
ities; x1, x2, . . . , xN represent the locations of N new facilities; the objective function
f(x) is the sum of weighted Euclidean distances from each new facility to each existing
facility and those between each pair of new facilities; and our goal is to find optimal
locations for the new facilities, i.e., to minimize f(x).

In problem (6.2), some of the weights wji and vjk may be zero. Let m be the
number of nonzero weights in (6.2). Then the EMFL problem (6.2) is the minimization
of m Euclidean norms. Without loss of generality, we assume that for each j ∈
{1, 2, . . . , N} there exists a nonzero wji for some i ∈ {1, 2, . . . ,M} or a nonzero vjk
for some k ∈ {1, 2, . . . , N}.

To transform the EMFL problem (6.2) into an instance of problem (2.1), we
simply do the following. Let u = (x1;x2; . . . ;xN ). It is clear that u ∈ Rn where
n = dN . For each nonzero wji, there is a corresponding term of Euclidean norm
||c(wji) − A(wji)

Tu|| where c(wji) = wjiai, and A(wji)
T is a row of N blocks of d-

by-d matrices whose jth block is wjiId and whose other blocks are all zero. For each
nonzero vjk, there is a corresponding term of Euclidean norm ||c(vjk) − A(vjk)

Tu||
where c(vjk) = 0, and A(vjk)

T is a row of N blocks of d-by-d matrices whose jth and
kth blocks are −vjkId and vjkId, respectively, and whose other blocks are all zero.

Now it is clear that we have transformed the EMFL problem (6.2) into an instance
of (2.1) where n = dN , and m is the number of nonzero weights wji and vjk. Note
that the system (5.2) can be set up with O(md2) operations. Therefore, it follows
from Theorem 5.1 that we have the following theorem.

Theorem 6.2. An ε-optimal solution to the EMFL problem (6.2) can be computed
using any of our algorithms in O(

√
MN(log(c̄/ε) + log(MN))) iterations where c̄ =

max1≤j≤n 1≤i≤m ‖wjiai‖, and each iteration requires O(d3N3 + MNd2) arithmetic
operations. 2

6.3. The SMT problem. The Euclidean SMT problem is given by a set of
points P = {p1, p2, . . ., pN} in the Euclidean plane and asks for the shortest planar
straight-line graph spanning P . The solution takes the form of a tree, called the SMT,
that includes all the given points, called regular points, along with some extra vertices,
called Steiner points. It is known that there are at most N − 2 Steiner points and the
degree of each Steiner point is at most 3. See [12, 20] for details.

Definition 6.3 (see [12, 14, 15]). A full Steiner topology of point set P is a tree
graph whose vertex set contains P and N − 2 Steiner points and that the degree of
each vertex in P is exactly 1 and that the degree of each Steiner vertex is exactly 3.

Computing an SMT for a given set of N points in the Euclidean plane is NP-hard.
However, the problem of computing the shortest network under a given full Steiner
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topology can be solved efficiently. Recently, there have been increased interests in
this latter problem, and several algorithms have been proposed [14, 15, 28]. We will
formulate this problem as a special case of problem (2.1).

Let m = 2N − 3, d = 2, and n = 2N − 4. Let u ∈ R2N−4 represent the locations
of the N − 2 Steiner points. Without loss of generality, we may order the edges in
the given full Steiner topology in such a way that each of the first N edges connects a
regular point to a Steiner point. For i = 1, 2, . . . , N , ci is pi1 where i1 is the index of
the regular point on the ith edge; AT

i ∈ R2×n is a row of N − 2 2-by-2 block matrices
where only the i2th block is I2 and the rest are all zero, where i2 is the index of the
Steiner point on the ith edge. For i = N + 1, N + 2, . . . ,m, ci = 0 and AT

i ∈ R2×n

is a row of N − 2 2-by-2 block matrices where the i1st block is −I2, the i2nd block is
I2, and the rest of the blocks are all zero, where i1 and i2 are the indices of the two
Steiner points on the ith edge. It is clear that we have transformed the problem of
computing a shortest network under a full Steiner topology into an instance of (2.1),
where d = 2, n = 2N − 4, and m = 2N − 3. Therefore, it can be solved efficiently
using our interior-point algorithm.

Note that we can move the point set P so that its gravitational center is the ori-
gin. Therefore, the Euclidean norms of the regular points are bounded by the largest
pairwise distance among the points in P which corresponds to the constant c̄ in pre-
vious theorems. Furthermore, we will show in the following that the search direction
can be computed in O(N) arithmetic operations using a technique known as Gaussian
elimination on leaves of a tree [28].

Since AT
i ∈ R2×N contains at most two nonzero 2-by-2 blocks, the system (5.2)

can be set up in O(N) operations. The left-hand-side matrix of (5.2) (call it H)
consists of (N − 2)-by-(N − 2) blocks of 2-by-2 matrices. The (i, j) block of H is
nonzero only if there is an edge in the topology which connects the ith and the jth
Steiner points. Now consider the tree spanning the N − 2 Steiner points. We may
delete a leaf vertex ea in the tree as follows: let eb be the (unique) vertex in the tree
that is connected to ea by an edge in the tree. We delete the vertex ea and the edge
(ea, eb) from the tree by choosing H(2 ∗ ea − 1, 2 ∗ ea − 1) as the pivot element
and eliminate the entries H(2 ∗ ea − 0, 2 ∗ ea − 1), H(2 ∗ eb − 1, 2 ∗ ea − 1), and
H(2 ∗ eb− 0, 2 ∗ ea− 1). Then use H(2 ∗ ea− 0, 2 ∗ ea− 0) as the pivot element and
eliminate the entries H(2 ∗ eb − 1, 2 ∗ ea − 0) and H(2 ∗ eb − 0, 2 ∗ ea − 0). All of
this can be done in O(1) operations and will not make a zero block nonzero. In other
words, deleting a leaf vertex in the tree requires O(1) operations. Therefore, Gaussian
elimination on leaves of a tree requires O(N) operations. In the reverse order, back
substitution can be done in O(N) operations, too. Therefore, we have Theorem 6.4.

Theorem 6.4. An ε-optimal solution to the shortest network under a given full
Steiner topology of N regular points in the Euclidean plane can be computed using our
potential-reduction algorithms in O(

√
N(log(c̄/ε) + logN)) iterations where c̄ is the

largest pairwise distance among the regular points and each iteration requires O(N)
arithmetic operations. Therefore, the computation of an ε-optimal solution requires
O(N

√
N(log(c̄/ε) + logN)) arithmetic operations. 2

The problem of computing the shortest network under a full Steiner topology
was first studied by Hwang [14], Hwang and Weng [15], and Smith [28]. Hwang [14]
presented a linear time exact algorithm that can output the shortest network under a
given full Steiner topology if there exists a nondegenerate SMT corresponding to that
given topology and quits otherwise. Hwang and Weng [15] presented an O(N2) time
graphical algorithm that can output the shortest network under a given full Steiner
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topology if the shortest network under the given topology is a tree with maximum
vertex degree 3 and quits otherwise. Our algorithm can always output an ε-optimal
network under the given topology in O(N

√
N(log(c̄/ε)+logN)) operations where c̄ is

the largest pairwise distance among the given points. This resolves an open problem
of [15].

7. Computational examples. We have implemented all three versions of our
algorithm using Matlab. From our preliminary implementation, it seems that the
one using dual scaling is numerically simpler and stabler. Therefore, we implemented
that algorithm for computing the shortest network under a tree topology in Fortran
77, using Gaussian elimination on leaves of the topology tree. In the following, we
present some preliminary computational results on the shortest network problem.
Extensive computational study of the algorithms will be given in a separate paper.

Table 7.1
The coordinates of the 10 regular points in example 1.

index x-coordinate y-coordinate index x-coordinate y-coordinate
9 2.30946900 9.20821100 14 7.59815200 0.61583600

10 0.57736700 6.48093800 15 8.56812900 3.07917900
11 0.80831400 3.51906200 16 4.75750600 3.75366600
12 1.68591200 1.23167200 17 3.92609700 7.00879800
13 4.11085500 0.82111400 18 7.43649000 7.68328400

The program was run on a Silicon Graphics Indy workstation. In our implementa-
tion, we used γ = 2m to take long steps instead of using the conservative theoretical
parameter γ = 1. Also, we used 0.9 times the largest feasible step-size as the ac-
tual step-size rather than using the theoretical step-size or a line search. For our
implementation, we index the Steiner points first, followed by the regular points.

Table 7.2
The tree topology for example 1.

edge-index ea-index eb-index edge-index ea-index eb-index
1 9 7 10 18 8
2 10 1 11 5 6
3 11 2 12 6 4
4 12 3 13 4 3
5 13 4 14 3 2
6 14 5 15 2 1
7 15 5 16 1 7
8 16 6 17 7 8
9 17 8

Our first example contains 10 regular points. The coordinates of the 10 regular
points are given in Table 7.1. The tree topology is given in Table 7.2 where for
each edge, indices of its two vertices are shown next to the index of the edge. This
topology is the best topology obtained by a branch-and-bound algorithm. Therefore,
the shortest network under this topology is actually the SMT for the given 10 regular
points.

Our algorithm solves this problem to 10−8 in 0.045 seconds and a total of 23
iterations. Table 7.3 shows the computer output of this test run. The second column
in Table 7.3 shows the cost of the current network (i.e., the sum of Euclidean norms
in the current network). The third column shows the duality gap, which is an upper
bound of the error in the cost of the current network to the cost of the optimal
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Table 7.3
Output of our algorithm for example 1.

iteration network-cost duality-gap pstep-max dstep-max
1 67.4046273974 755.3696677104 28.8384401017 0.1356841643
2 55.4697474888 195.1824411479 3.4806842442 0.1032272123
3 27.4932167097 101.3496514586 0.4832738411 0.1638326757
4 27.0322340903 26.0099590874 0.1113384478 0.1119122550
5 26.1012759902 9.1871566968 0.0403664605 0.1191177601
6 25.6601657571 2.5422959471 0.0099090385 0.1017762723
7 25.4826595690 0.8430133790 0.0022051467 0.0996860187
8 25.3997342761 0.3156519930 0.0006569311 0.1251074829
9 25.3713549379 0.1277519346 0.0001667930 0.1478311776

10 25.3613423325 0.0715146951 0.0002153768 0.3040757280
11 25.3575447731 0.0263880927 0.0000626213 0.3321649420
12 25.3565967482 0.0128961955 0.0000577043 0.5297753443
13 25.3562709801 0.0021763160 0.0000098621 0.1682928011
14 25.3561300062 0.0004901604 0.0000020309 0.1142469220
15 25.3560841523 0.0001476805 0.0000006305 0.1145905399
16 25.3560721582 0.0000397667 0.0000001962 0.1007746545
17 25.3560692545 0.0000107249 0.0000000618 0.0897091127
18 25.3560681805 0.0000026435 0.0000000156 0.0732031761
19 25.3560678856 0.0000008525 0.0000000057 0.0818257275
20 25.3560678157 0.0000002438 0.0000000015 0.0789620241
21 25.3560677874 0.0000000757 0.0000000005 0.0834184991
22 25.3560677824 0.0000000206 0.0000000001 0.0763003478
23 25.3560677802 0.0000000065 0.0000000000 0.0825900991
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Fig. 7.1. The shortest network for 10 regular points in example 1.
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Table 7.4
The topology and the coordinates of the four regular points in example 2.

point-index x-coord y-coord point-index x-coord y-coord
3 −100.0 1.0 5 −100.0 −1.0
4 100.0 1.0 6 100.0 1.0

edge-index ea-index eb-index edge-index ea-index eb-index
1 3 1 4 6 2
2 4 1 5 1 2
3 5 2

Table 7.5
Output of our algorithm for example 2.

iteration network-cost duality-gap pstep-max dstep-max
1 40.1995024845 120.9404740550 0.8445579680 0.0492658697
2 41.3468150068 13.7530974274 0.0724695587 0.0339618552
3 40.2654764899 3.0068405143 0.0185627882 0.0299007875
4 40.2539043360 0.4948832387 0.0027833196 0.0183486445
5 40.2010107181 0.1731075550 0.0015791427 0.0255792520
6 40.2020816006 0.0325421036 0.0002280125 0.0173067376
7 40.2001533446 0.0115207903 0.0001157000 0.0248950063
8 40.1997465956 0.0022693804 0.0000146742 0.0171813134
9 40.1995061111 0.0008119015 0.0000084984 0.0253539092

10 40.1995148034 0.0001551869 0.0000010559 0.0173411905
11 40.1995055233 0.0000546467 0.0000005664 0.0248868315
12 40.1995036402 0.0000107280 0.0000000713 0.0171141485
13 40.1995024994 0.0000038458 0.0000000411 0.0253093321
14 40.1995025427 0.0000007393 0.0000000049 0.0173829301
15 40.1995024992 0.0000002599 0.0000000027 0.0249213172
16 40.1995024900 0.0000000508 0.0000000003 0.0170733567
17 40.1995024846 0.0000000183 0.0000000002 0.0252981953
18 40.1995024848 0.0000000035 0.0000000000 0.0174074280

(shortest) network. The last two columns show the largest primal and dual feasible
step-sizes.

The final solution is shown in Figure 7.1, where regular points are labeled by “+”
and Steiner points are labeled by “o.” We can see from Figure 7.1 that the shortest
network is degenerate [15] where five edges (each connecting a regular point to a
Steiner point) shrink. This problem can be solved using the graphical method of [15]
but is very difficult for algorithms like HAP [9]. For comparison, we have used HAP
to solve the same problem by setting ε = 10−8 and using the locations of Steiner
points generated by one step of our algorithm as the starting point for HAP. Because
the problem is degenerate, HAP ran poorly compared with our algorithm. To get
a solution as good as the one obtained using 10 iterations of our algorithm, HAP
used 39.512 seconds and 248500 iterations. No matter how long we let it run, HAP
failed to find a solution whose cost function is better than 25.3561402805 which can
be obtained by our algorithm in 14 iterations.

Our second example has four regular points. The purpose of this example is to
show that our algorithm can compute the shortest network under a tree topology
where two Steiner points coincide. The algorithm in [15] will quit on this problem
before it finds the shortest network. The coordinates of the four regular points and
the tree topology in this example are given in Table 7.4. This topology is not the best
topology. Therefore, the shortest network under this topology is not the SMT for the
given four regular points.
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Fig. 7.2. The shortest network for four regular points in example 2.
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Fig. 7.3. The SMT for four regular points in example 2.

Our algorithm solves the second problem to 10−8 in 0.022 seconds and a total of
18 iterations. Table 7.5 shows the computer output of this test run. The shortest
network under this topology has a cost of 40.1995 and is illustrated in Figure 7.2.

Figure 7.3 shows the SMT, which is the shortest network under a different topol-
ogy. The corresponding cost is 23.4641. We would like to point out that the algorithms
of [14] and [15] can both find the shortest network under this topology.

8. Conclusions. In this paper, we have transformed the problem of minimiz-
ing a sum of Euclidean norms into a standard convex programming problem in its
dual conic form where the cone and its associated barrier are self-scaled [23]. We
then presented an efficient primal–dual potential reduction algorithm for solving this
problem. In applications, we have shown that computing an ε-optimal solution of
the shortest network under a tree topology interconnecting N regular points requires
only O(N

√
N(log(c̄/ε)+logN)) arithmetic operations, where c̄ is the largest pairwise

distance among the given point set.
When applied to compute the shortest network under a tree topology intercon-

necting N regular points, our algorithm does not suffer from degeneracies and it
compares favorably with the O(N2) algorithm of [15] in both theoretical complex-
ity and ease of implementation. When applied to EMFL problems, our algorithm
compares favorably with the algorithm of [32] because our algorithm has a better
complexity result and stores the locations of the new facilities in the dual variable u
while the latter does not provide such information directly. Our implementation is
only preliminary. Computational issues of our algorithm are under investigation and
will be reported in another paper.
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Abstract. The Steiner problem is an NP-hard optimization problem which consists of finding
the minimal-length tree connecting a set of N points in the Euclidean plane. Exact methods of
resolution currently available are exponential in N , making exact minimal trees accessible for only
small size problems (up to N ≈ 100). An acceptable suboptimal solution is provided by the mini-
mum spanning tree (MST) which has been shown computable in an O(N logN) step. We propose
here an O(N) process that is able to relax a given initial Steiner tree into a local minimum of its
length. This process, based on a physical analogy, simulates the dynamics of a fluid film which re-
laxes under surface tension forces and stabilizes in an equilibrium configuration minimizing its total
length, through purely local interactions. To improve the solution to the Steiner problem, this O(N)
relaxation scheme is applied to reduce the length of the MST. This results in a heuristic of a very low
O(N logN) complexity for the Steiner problem, whose performance is shown to compare quite favor-
ably with that of the best available heuristics. Large problem sizes up to N = 10000 were successfully
tackled. A characterization of the asymptotic behavior of the solution of the Steiner problem shows
a stabilization to a nonvanishing positive value of the average length reduction achieved over the
MST and predicts an average length for the minimal Steiner tree of about 3% below 0.65N1/2 for
large N .

Key words. Steiner problem, minimal tree, minimum spanning tree, optimization, relaxation
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1. Introduction. The Steiner problem is an optimization problem which con-
sists of finding the shortest possible tree connecting a given finite set of N points
in the Euclidean plane [1], [2]. A concrete embodiment of this problem is to devise
the shortest road network connecting a given set of cities. For this reason, we shall
call here cities the points that have to be connected in the Steiner problem. The
expression of the solution requires one, in general, to introduce additional points, the
Steiner points. The solution of the problem is the minimal Steiner tree, and it is
given as a set of linear edges connecting the cities through the medium of the Steiner
points. Although very simple to state, the Steiner problem has been proven NP-hard
when defined on the usual continuous Euclidean metric. It becomes NP-complete if
the Euclidean metric is discretized. The Euclidean Steiner problem is thus at least
as difficult as any NP-complete problem [3]. Available algorithms yielding the exact
minimal Steiner tree are exponential in N and are now limited to problem sizes of
about N = 100 cities [4]. In order to tackle larger size problems, heuristic algorithms,
leading only to suboptimal Steiner trees, have been developed for the Steiner problem.
An acceptable suboptimal solution is provided by the MST of the set of cities, which
can be computed in an O(N logN) procedure [41], [31]. The MST also serves as a
basis for many heuristics that implement further improvements upon it [26].

In another area of optimization, new algorithms have recently appeared that
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mimic the evolution of physical systems in order to solve optimization problems. Ex-
amples are offered by simulated annealing [5], Brownian motion or diffusion [6], neural
network models [7], [8], elastic net methods [9], and genetic algorithms [10]. These
new approaches have been applied mainly to combinatorial optimization problems,
the prototype being the traveling salesman problem [11]. The Steiner problem is not,
strictly, a combinatorial optimization problem because the Steiner points that need
be introduced for its resolution have positions which, a priori, can vary continuously
in the Euclidean plane. This mixed character of the Steiner problem, which exhibits
both combinatorial and continuous optimization aspects, adds a special difficulty to its
treatment. From an applied standpoint, many practical applications are faced with
the Steiner minimal tree problem, as for instance the definition of communication
networks or the wiring of electric devices; these can benefit greatly from an efficient
resolution of the Steiner problem. In addition, minimal trees can serve as tools for
the quantitative characterization of complex sets, branching architectures, or frac-
tally growing structures [12]–[15]. They can also play a role in the representation and
processing of data for pattern recognition tasks [16], [17].

In this paper, we propose an O(N) relaxation scheme, inspired from the evolution
of a physical system, which is able to relax a given initial Steiner tree into a local
minimum of its length. The approach consists of the simulation, in an adapted way,
of the dynamics of a fluid film (a soap film) which relaxes under forces due to surface
tension, to a configuration that minimizes its total length. When associated with an
explicit procedure to construct an initial Steiner tree, the relaxation scheme offers a
complete heuristic for the Steiner problem. The relaxation scheme is applied here
to an initial tree derived from the MST. The performance of the resulting heuristic
is then analyzed and compared for the resolution of Steiner problems with up to
N = 10000 cities.

2. The Steiner problem. For the Steiner problem as stated in section 1, the
lengths are evaluated by means of the usual Euclidean distance. We shall use here the
term node to indifferently designate a city or a Steiner point as defined in section 1.
We define a Steiner tree as a network of linear edges, which forms a connected graph
without a cycle, and connects the given set of nodes. The solution of the Steiner
problem is given by the Steiner tree of minimal length or minimal Steiner tree. General
properties can be established for the minimal Steiner tree of an N -city set in the
Euclidean plane [1]:

(a) Any angle between two edges has to be at least 120◦; consequently every node
is connected to the minimal tree by at most three edges.

(b) A Steiner point is connected to the minimal tree by exactly three edges, which
together form three 120◦ angles.

(c) The number of Steiner points is at most N − 2.
Exact algorithms have been proposed that determine the minimal Steiner tree

for a set of N cities [18]–[25] and [4]. See [26], [27], and [4] for recent surveys. All
these exact algorithms have exponential complexity in N , making them usable only
for small size problems. To date, an upper limit is set in [4] where problems of size
up to N = 100 are exactly solved.

For larger size problems, heuristics have been proposed [28]–[40] that yield only
suboptimal Steiner trees with lengths slightly larger than that of the minimal Steiner
tree. See also [26] and [27] for a recent survey.

To evaluate the quality of the solution tree produced by a given algorithm it is
useful to compare its length with the length of the MST of the corresponding set of
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cities. The MST of a set of N cities is the shortest possible tree formed by connecting
the cities with N − 1 linear edges with no addition of Steiner points. An algorithm
is available (see [41] and [31]), which relies on the Delaunay triangulation and the
Voronoi diagram of the N -city set, to yield its MST in an O(N logN) procedure.
The length reduction R achieved by a given suboptimal Steiner tree over the MST is
defined as the ratio

R =
length of MST− length of suboptimal Steiner tree

length of MST
.

Different upper bounds have been conjectured and tested for the length reduction
R [1], [42]. Recently, a general proof has been given [43] that no tree can be found
that achieves a length reduction R larger than 1−√3/2 (roughly 13.398%). However,
for actual Steiner problems that were exactly solved, the length reductions obtained
were significantly smaller than this theoretical upper bound. In the exact resolution
of [22], the maximum reduction reported is 7.55% for an N = 5 city problem, and it
drops to 5.77% for an N = 15 city problem; the average reduction is 3.08% for N = 5
and 3.24% for N = 15. In view of these results, it seems that for large values of N the
average length reduction R of the exact minimal Steiner tree cannot be expected to
be larger than about 3.5%. We shall show in the following that the relaxation scheme
we propose, when applied to the MST, achieves length reductions that come close to
this value.

3. Description of the relaxation scheme.

3.1. Physical analogy. The relaxation scheme we propose is based on a physical
analogy, which is also presented in [44], and which refers to the following phenomenon.
A fluid film with high surface tension (typically a soap film) is hooked between pins
(the cities of a Steiner problem) and its width is kept constant. Forces due to surface
tension are unit forces exerted along the film. Under these forces the film relaxes to an
equilibrium configuration that minimizes the potential energy associated with surface
tension (gravity is neglected). In the presence of a constant width for the film, this
minimum of energy corresponds to a minimum of the length of the film between the
pins.

3.2. Initialization. For application to the Steiner problem, the relaxation scheme
we propose has to be provided with an initial Steiner tree that will be relaxed into
a local minimum of its length. A Steiner tree, in general, incorporates the set of N
cities connected through a certain number of Steiner points. The relaxation scheme
operates on a special class of initial Steiner trees that conform with a general property
of the minimal Steiner tree. In this condition, the final Steiner tree obtained after
relaxation of such an initial Steiner tree will generally provide a good approximate
solution to the Steiner problem. This special class is defined by the property that
each Steiner point in an initial Steiner tree is endowed with exactly three incoming
edges connecting it to other nodes of the initial Steiner tree and possibly to itself in
some situations.

When provided with such an initial Steiner tree, the relaxation scheme then con-
sists of the iterative implementation of two basic processes: an evolution process and
an interaction process.

3.3. Evolution process. Each Steiner point S in the Steiner tree is allowed to

move under the resultant
−→
F (as defined in Fig. 3) of the three surface tension forces
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exerted by the three edges incoming on S. The displacement of S is proportional to
−→
F , with a proportionality coefficient λ. To improve the stabilization in a suboptimal

Steiner tree when
−→
F decreases while the algorithm converges, the parameter λ is

gradually reduced to zero with iterations. This prevents the oscillation of a Steiner
point S about its equilibrium position in the event that an edge of S with one of its

three neighbors has a length approaching zero. The resultant force
−→
F on S represents

the opposite of the gradient (relative to the coordinates of S) of the sum of the lengths
between S and its three neighbors and consequently the opposite of the gradient
relative to S of the total length of the tree. The evolution process can thus be viewed
as a gradient descent displacing the Steiner point S in the direction yielding, locally,
the maximum length reduction to the tree. This gradient descend operates with a
fixed topology for the connections between the nodes of the tree. In general, it would
terminate early in a poor local minimum of the length of the tree since the topology of
connections is not optimized. We shall now introduce the interaction process, which
aims at reorganizing the topology of connections to give access to trees with small
total length.

3.4. Interaction process. This process consists of the possibility of a reorga-
nization of the connections between two neighboring Steiner points. The interaction
process is illustrated in Fig. 1 and takes place as follows. Let us consider a Steiner
point S approaching, in the evolution process, another Steiner point S′ to which
it is connected. Before interaction each one of these two Steiner points possesses
three connections, among which is the connection SS′ which will remain untouched
in the interaction process. The triplet of connections for S are with the set of nodes
{A1, A2, S

′} and for S′ with the nodes {A3, A4, S}. If, in its approach, S comes within
a distance of T from S′, then an interaction will be allowed. In the interaction process,
S considers the eventuality of exchanging one of its neighbors {A1, A2} for one of the
neighbors {A3, A4} of S′. For S, to decide this exchange three possible triplets of
connections are examined, the current one {A1S,A2S, S

′S} and two potential ones,
{A3S,A2S, S

′S} and {A1S,A4S, S
′S}. The configuration {A3S,A4S, S

′S} is not in-
teresting since it represents a simple permutation of the situations of S and S′ in the
tree with no change to its topology of connections. For each of the three possible
triplets of connections for S, the resultant force on S is computed (as defined in the
evolution process of section 3.3). These three forces are compared based on their mag-
nitudes, and the triplet of connections that produced the maximum resultant force, be
it the current configuration, is retained for S. The resulting, complementary, change
of node in the exchange is applied to S′. This completes the interaction process.

For the relaxation of a fluid film under surface tension forces, a minimal energy at
equilibrium is equivalent to a minimal total length. In such a situation where length
is energy, the interaction distance T can be interpreted as a physical temperature
for the Steiner tree. One can consider that the Steiner points, around their actual
positions in the tree, experience a permanent random thermal motion of magnitude T .
Interaction then takes place when the two clouds of diameter T associated with two
Steiner points collide. The temperature T of the Steiner tree is gradually decreased to
zero during operation in order to gradually reduce the possibility of interaction and
to freeze the tree in a minimum of energy.

Within the physical analogy of the relaxation of a fluid film, both the evolution
and interaction processes seek to imitate different aspects of the deformation which
minimizes the potential energy or total length of the film. The evolution process alone
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Fig. 1. Interaction process: reorganization of the two triplets of connections of two neighboring
Steiner points S and S′ coming within a distance of T and showing the topology before and after
interaction.

displaces the Steiner points along the resultant force, which represents a displacement
of the Steiner points in the direction of the maximum length reduction, in the presence
of a fixed topology of connections. The interaction process changes the topology of
connections to induce locally the maximum resultant force, which represents a change
of topology in the direction of the maximum length reduction.

It can be noted that our algorithm bears some similarity with cellular automata
[45]. A Steiner point can be considered as an automaton whose state is made up with
both the position and the 3-connectivity of the Steiner point. These automata are
organized in a network, and they change their state through local interactions with
neighbors in the net. The usefulness lies in the collective behavior of the system, which
leads, through “microscopic” interactions, to a “macroscopic” configuration realizing
a global performance or condition.

4. Application of the relaxation scheme to the MST. When the relaxation
scheme is complemented by an explicit procedure to construct an initial Steiner tree,
the resulting algorithm offers a complete heuristic for the Steiner problem. We show
in the following that a heuristic leading to good suboptimal trees can be obtained
when the relaxation scheme is applied to an initial Steiner tree derived from the MST
as we now explain.

4.1. An initial Steiner tree derived from the MST. In the MST of the set
of N cities, Steiner points are added in order to transform it into the initial Steiner
tree that will undergo the relaxation. Figure 2 illustrates how this creation of the
Steiner points is performed. In the MST, every city is considered once and processed
as follows. For a city with only one incoming edge, no Steiner point is created. For a
city with two incoming edges (thus with two neighboring nodes), one Steiner point is
created and connected to the city (Fig. 2a). The two neighboring nodes of this city are
disconnected from the city and reconnected to the newly created Steiner point. The
original city ends up connected to the same pair of neighboring nodes but through the
medium of a Steiner point receiving a total of three edges. In a similar way, for a city
connected to n neighboring nodes, n− 1 Steiner points are created. The connections
are redistributed between these 1 + n + (n − 1) nodes in order for the original city
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to end up connected to the same n original nodes but through the medium of the
n − 1 Steiner points, each of them receiving a total of three edges. For illustration,
this redistribution of the connections is depicted in Fig. 2a for n = 2, in Fig. 2b for
n = 3, and in Fig. 2c for n = 4. A simple geometric argument shows that n cannot
be larger than 6, and in practice cities with n = 5 or 6 incoming edges are very rare
in the MST. In practice, the newly created Steiner points are not stacked on top of
one another at the location of the original city, but they are distributed around the
original city, a very small distance (in comparison with the length scale set by λ)
apart from one another and from the city, much like the way they appear in Fig. 2,

this in order to avoid a temporary singularity of the type
−→
0 /0 when computing the

resultant force on them for the first time. When every city of the initial MST has
been processed once as explained, the MST has become the initial Steiner tree, which
serves as the starting tree for the relaxation scheme. For an N -city problem, this
initialization process creates a total of N − 2 Steiner points.

Fig. 2. Initialization process which transforms the MST into an initial Steiner tree: creation
of the Steiner points (solid circles) for a city (solid square) of the MST, with n = 2 in (a), n = 3 in
(b), and n = 4 in (c), incoming edges.

4.2. Operation of the complete heuristic formed by the relaxation of
the MST. The relaxation scheme applied to the initial Steiner tree leads to the
algorithm described in Fig. 3.

We want to show that the algorithm of Fig. 3, when applied to the initial Steiner
tree derived from the MST, provides a good solution tree to the Steiner problem.
In the N -city Steiner problems that are considered, the cartesian coordinates of the
cities in the Euclidean plane are randomly drawn, with uniform probability, in the
unit square [0, 1] × [0, 1]. In an N -city problem, a natural unit of length is provided
by σN = N−1/2. Such a σN gives an image of the average separation between a
city and its nearest neighboring city in the unit square for an N -city problem. The
definition of σN allows one to express the parameters λ and T as used in Fig. 3
with numerical values (in units of σN ) that keep the same meaning whatever the size
N of the problem. An initial value for λ that we found satisfactory and that we
retained for operation of the algorithm is 0.02σN . A larger initial value for λ could
make the Steiner tree relax more rapidly to equilibrium, but at the same time useful
interactions between Steiner points coming close enough could be missed, leading to
an equilibrium Steiner tree of lower quality (of greater length). The initial value for
T was selected as 0.15σN . Larger values would tend to disorganize the Steiner tree
too much, while lower values do not allow enough useful interactions between Steiner
points (see Table 1 and its explanation given below).

The schedule that has been used to decrease parameters T and λ is a simple one,
consisting of a succession of plateaus of descending values. T is first reduced to zero,
at constant λ, in five steps of the same magnitude (equal to one-fifth of the initial
value of T ): the first step is taken at iteration k = 100, the four last steps at iterations
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Fig. 3. Complete algorithm for the N-city Steiner problem, which results from the application
of the relaxation scheme to an initial Steiner tree.

k = 120, 140, 160, and 180, respectively. Then, λ is allowed to decay. Starting at
iteration k = 200, the value of λ is divided by two each time 20 new iterations have
been performed. Such a process is applied until iteration k = 400 is reached. At
this point λ has been reduced below 10−5σN . This sets the criterion of convergence,
marking the end of the algorithm. The overall convergence for an N -city problem
can thus be obtained after an absolute number of iterations of 400, whatever the size
N of the city set. We did not address the question of optimizing the schedule for
decreasing T and λ. The value of 400 iterations for convergence can probably be
reduced without degrading the quality of the solution tree. What we aimed at with
the presented schedule was to have a simple procedure leading to good equilibrium
Steiner trees while preserving a complexity of O(N) for the relaxation scheme when
performed until convergence.

The importance of allowing, by means of a nonzero temperature T , interactions
between Steiner points is demonstrated in Table 1. We show in Table 1, for problems
of various sizes N , the length reduction R (in percents) achieved by the solution tree
obtained with different initial values for the temperature T . For each condition, the
value of R given in Table 1 has been averaged over 100 different problems of size N .
With a zero initial value for T , no interaction is allowed and the length reduction R
remains small; as already mentioned R passes through a maximum for an initial T
around 0.15σN . The role of the interaction process can be interpreted as the ability
to select, among the various Steiner tree topologies that are accessible in the vicinity
of the initial tree, topologies that can induce local length reductions to the tree.

The relaxation scheme is devised to produce local length reductions to the initial
tree through displacements of Steiner points (evolution process) and changes in the
topology of connections (interaction process). It can thus be reasonably expected
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Table 1
Influence of the initial temperature T (leftmost column) for various problem sizes N , and

showing the average length reduction R in percents. The initial value of 0.15σN is the one we
retained for T in the application of the relaxation scheme to the MST.

N = 50 N = 100 N = 500
T = 0 1.762 1.665 1.663
T = 0.01σN 2.530 2.598 2.621
T = 0.15σN 2.754 2.824 2.812
T = 0.25σN 1.894 2.003 1.913

(prior to the experimental verification that will follow) that the scheme will converge
to a good solution tree with reduced length relative to the initial tree. We empha-
size that an important property, which justifies that a fixed number of iterations is
appropriate for good convergence, is that the parameters T and λ, which control the
local transformations of the tree, scale as O(N−1/2). With this property, what our
algorithm basically does is to apply, to the MST in which neighboring nodes are sep-
arated by distances of O(N−1/2), a fixed number of local length reductions at the
O(N−1/2) scale. This appears to be a reasonable strategy to converge to a solution
tree with reduced length relative to the initial MST, without the need to resort to a
number of local length reductions that would scale with N instead of being constant.
We shall see that this reasonable a priori expectation concerning the convergence is
totally confirmed by the experimental evaluation of the algorithm that will follow.

4.3. Algorithmic complexity. The relaxation scheme, formed by the evolution
and interaction processes described in section 3, involves only local calculations in the
tree at the level of each Steiner point and its three neighbors. For the relaxation
of the MST, the initial Steiner tree that is constructed in section 4.1 incorporates a
number of Steiner points that is no larger than N . It follows then that the relaxation
scheme alone, when performed until the convergence obtained after a fixed number of
iterations, has a complexity of O(N).

The transformation of the MST into the initial Steiner tree as described in sec-
tion 4.1 is also O(N).

Now if we turn to the complete heuristic for the Steiner problem that results from
the O(N) relaxation of the MST, the overall complexity obviously will depend on the
complexity of the determination of the MST.

An algorithm exists (see [41], [31]) that uses the Delaunay triangulation and the
Voronoi diagram of the N -city set to construct its MST in an O(N logN) procedure.

In this work, to test the quality of the solution trees provided by our O(N) relax-
ation of the MST, we constructed the MST with the very simple algorithm consisting
of growing the MST by incorporating to it at each step the unconnected point that
has the shortest distance with the points already connected in the MST. This method
is O(N3); at the same time it is straightforward to implement, and it allowed us to
concentrate our effort on the relaxation scheme which forms the original contribu-
tion of this work. However, the MST determined for every N -city set is the same,
whether computed with the straightforward O(N3) method we use or the more elab-
orate O(N logN) procedure. In the following, we evaluate and compare the quality
of the suboptimal trees resulting from the O(N) relaxation of the MST. The associ-
ation of our O(N) relaxation scheme to the O(N logN) determination which exists
for the MST offers an O(N logN) heuristic for the Steiner problem that shares the
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Fig. 4. The MST, with length 6.485, for a typical N = 100 city problem. The small black
squares represent the 100 cities randomly distributed in the unit square [0, 1]× [0, 1].

Fig. 5. The suboptimal Steiner tree, with length 6.294, obtained after application of the re-
laxation scheme to the problem of Fig. 4 and achieving a length reduction of R = 2.945% over the
MST. A Steiner point is located in every place where three edges meet at 120◦.

performance we report in the following.

We experimentally verified that the relaxation procedure we propose, by itself,
requires a computer time which is, as expected, linear in N . When run on an Intel 486
processor with 33 MHz clock, typical computer times for the complete relaxation pro-
cedure alone up to convergence (not including the initialization process that computes
the MST) are 4 seconds for N = 100, 20 seconds for N = 500, 40 seconds for N = 1000,
200 seconds for N = 5000, 400 seconds for N = 10000, and with a dispersion among
different runs being less than 2%.
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4.4. Experimental conditions. For illustration of the method, Fig. 4 shows,
for a typical Steiner problem with N = 100 cities, the MST (of length 6.485) which
serves both as a starting point to construct the initial Steiner tree and as a reference
to evaluate the reduction in length reached by the suboptimal Steiner tree.

Fig. 6. Mean length of the MST as a function of the size N of the city set, and fitted to a law
of the form 0.65N1/2 (solid line) with a correlation coefficient better than 0.99.

We then show, in Fig. 5, the suboptimal Steiner tree (of length 6.294) obtained
after convergence of the relaxation scheme and achieving here a length reduction of
R = 2.945%.

With this method that relaxes the MST, we have performed resolution of Steiner
problems with sizes up to N = 10000 cities. For each tested size N , many different
problems were generated by random selection of the N cities as explained in section
4.2, and in order to form a statistical ensemble ΩN of problems with a given size of N
cities. Statistics were then performed over ΩN which yielded the following quantities:

i) for the MSTs constructed over the N -city problems of ΩN : the mean and
standard deviation for their length distribution;

ii) for the suboptimal Steiner trees obtained after application of the relaxation
scheme for the N -city problems of ΩN : the mean, standard deviation, and minimum
and maximum values of the length reduction R.

The evolution of these quantities was then studied as a function of the number of
cities N in the Steiner problems. For the statistics, card(ΩN ), the cardinality of ΩN

(the number of problems in ΩN ), was chosen as card(ΩN ) = 104N−1/2 for N ≤ 300,
card(ΩN ) = 103N−1/2 for 300 < N ≤ 1000, and card(ΩN ) = 5 for N > 1000.

In these conditions for performing the statistics, Fig. 6 shows the mean of the
length of the MST as a function of N . Table 2 displays typical values evaluated for
the mean and standard deviation of this length. The data of Fig. 6 and Table 2 give
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Table 2
Mean and standard deviation for the length of the MST for various problem sizes N .

N 10 50 100 500 1000 5000 10000
mean 2.092 4.825 6.736 14.826 20.776 46.174 65.028
st. dev. 0.281 0.225 0.217 0.210 0.199 0.145 0.138

an image of the (low) dispersion of the results in the averaging procedure over the
statistical ensembles ΩN . We were able to fit the variation of the mean length of the
MST to a law of the form 0.65N1/2 with a correlation coefficient better than 0.99.

The quality of the solution trees we obtained for the Steiner problems of the
statistical ensembles ΩN is illustrated by the data in the last row of Tables 3 and 4
and in Fig. 7.

5. Evaluation and comparison. In Table 3, the quality of the suboptimal
Steiner trees resulting from the relaxation of the MST is compared with that of the
solution trees yielded by other resolution methods for the Steiner problem.

As a basis for comparison, we selected
– the exact method of [22], which offers results up to N = 15, knowing that for

the exact resolutions extended up to N = 100 in [4] quantitative data that would fit
into our comparison were not available;

– the O(N logN) heuristic of [31], which represents, among the efficient heuristics,
the one with the smallest algorithmic complexity;

– two heuristics of [36] and [37], which represent, among the efficient heuristics,
the ones that generally yield the shortest suboptimal trees. No exact algorithmic
complexities are derived in [36] or [37] for these two methods, but estimations are
proposed, O(N1.317) and O(N2.19), that result from the average computation time on
a Cray X-MP/28.

Table 3 gives, for all these different methods, the maximum value, the mean and
the standard deviation of the length reduction R, and the number of problems of size
N that were considered for the statistics.

For the maximum length reduction R in Table 3, it can be noticed that, in every
condition, the best maximum was always found by our relaxation of the MST. This
is certainly because we explored much larger populations of problems. Over the more
than 20000 problem instances that we solved in this study, the maximum R that we
report come close (11.909% for N = 5) but always conform with the theoretical upper
bound of 13.398% established in [43].

When compared with the O(N logN) heuristic of [31], our approach leads in
general to solution trees of better quality. This applies except for the mean R in the
case N = 30 and in the limit case N = 10. However, in this last condition the mean
length reduction of [31] is found larger than that of the exact method of [22], and it
is also the case with the heuristics of [36] and [37]. As there is no possibility that a
heuristic yields better results than an exact method, we suggest that the mean value
of R for N = 10 in [31], as well as in [36] and [37], obtained by averaging over a small
population of problems and associated with a relatively high standard deviation, is
marked with statistical fluctuations. The heuristic proposed in [31] is tested therein
up to N = 50. For increasing N approaching N = 50, this heuristic of [31] seems to
entail a steady decay for the mean R, while our resolution (and that of [36] and [37])
maintain a mean R constantly above 2.710%. This saturation to a constant value as
N increases, rather than a steady decay of the mean R, is a trend that will appear
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Table 3
Maximum value, mean and standard deviation of the length reduction R (in percents) achieved

over the MST, and the number of problems tested with different algorithms for the resolution of the
N-city Steiner problem.

N 5 10 15 20 30 40 50 60
max. R 7.55 5.89 5.77

Exponential mean R 3.08 3.00 3.24
exact method of [22] st. dev.

nb. pb. 25 25 25
max. R 6.847 4.227 4.554 4.014 3.443

O(N logN) mean R 3.173 2.333 2.769 2.663 2.568
heuristic of [31] st. dev. 2.09 0.70 0.89 0.64 0.57

nb. pb. 15 15 15 15 15
max. R 6.168 4.737 4.752 4.174 3.620 3.576

O(N1.317) mean R 3.138 3.015 2.868 3.024 2.841 2.946
heuristic of [36] st. dev. 1.863 1.008 0.721 0.631 0.400 0.404

nb. pb. 15 15 15 15 15 15
max. R 6.168 4.758 4.838 4.127 3.703 3.666

O(N2.19) mean R 3.223 3.123 2.948 2.972 2.921 3.178
heuristic of [37] st. dev. 1.875 0.972 0.754 0.633 0.423 0.371

nb. pb. 15 15 15 15 15 15
max. R 11.909 9.082 8.026 6.088 5.694 5.497 5.531 5.207

Our relaxation scheme mean R 2.727 2.711 2.744 2.732 2.715 2.712 2.729 2.723
applied to the MST: st. dev. 2.211 1.515 1.190 1.013 0.827 0.738 0.629 0.600
O(N logN) nb. pb. 4472 3162 2581 2236 1825 1581 1414 1290

Table 4
Minimum, maximum, mean and standard deviation of the length reduction R (in percents)

achieved over the MST, and number of problems tested with two different approaches for the reso-
lution of the N-city Steiner problem.

N 100 300 500 700 1000 3000 5000 7000 10000
min. R 2.286 2.668 2.807

O(N1.317) max. R 3.467 3.316 3.283
heuristic mean R 2.952 3.052 3.017 3.000
of [36] st. dev. 0.370 0.169 0.128

nb. pb. 15 15 15 1
min. R 1.162 2.025 2.348 2.459 2.504 2.799 2.772 2.717 2.738

Our relaxation max. R 4.604 3.622 3.368 3.242 3.052 2.885 2.822 2.787 2.832
scheme applied mean R 2.755 2.757 2.815 2.803 2.779 2.842 2.791 2.762 2.786
to the MST: st. dev. 0.468 0.266 0.178 0.180 0.135 0.036 0.022 0.024 0.031
O(N logN) nb. pb. 1000 577 44 37 31 5 5 5 5

largely confirmed in the following when much larger N ’s are considered.

When compared with the O(N1.317) and O(N2.19) heuristics of [36] and [37],
it appears that our relaxation of the MST yields slightly longer suboptimal trees.
Nevertheless, since our relaxation of the MST represents an O(N logN) heuristic for
the Steiner problem, our approach can still trade off favorably.

The heuristic of [36] offers results that allow us to carry on the comparison above
N = 50, up to N = 10000, as reported in Table 4. In addition, Fig. 7 represents
the evolution of the maximum and mean length reduction, that we obtained with our
relaxation of the MST, as a function of N .

The data of Table 4 and Fig. 7 show that our relaxation of the MST leads to
suboptimal solution trees that keep good positive length reduction over the whole
range tested, up to N = 10000 cities. For large N , our results confirm over many
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Fig. 7. Maximum (open circles) and mean (solid circles) of the length reduction R (in percents)
achieved by the suboptimal Steiner tree over the MST as a function of the size N of the city set.

examples, after one first incursion up to N = 10000 by [36], that trees can be found
that achieve, on average, a nonvanishing length reduction over the MST. These results,
as well as those of [36], further indicate that, for large N , the exact minimal trees of
Steiner problems also achieve, on average, a nonvanishing length reduction over the
MST.

With increasing N , our mean length reduction R in Table 4 and Fig. 7 seems
to stabilize to a constant value around 2.8%. This is confirmed both by a maximum
value of R which tends to the mean of R and by a standard deviation for R which
goes to zero with increasing N . In the same conditions, the heuristic of [36], although
much less data are available for it, seems to display the same type of saturation for the
mean R but to a higher value around 3.0%. This confirms the fact already observed
in Table 3 that the heuristic of [36] yields shorter suboptimal trees on average but
still with an algorithmic complexity higher than O(N logN).

Furthermore, the data of Table 3 reveal that the exact minimal trees (when ac-
cessible) and the suboptimal trees found by good heuristics exhibit close values for
the mean length reduction. In view of this proximity of behavior, the results of Table
4, although characterizing properties of the suboptimal trees, can serve as a basis to
conjecture properties of the minimal trees of Steiner problems with large N . If we
use our extended results of Table 4 to support the possibility of saturation of the
mean length reduction R for large N , together with the less numerous results of [36]
for a better estimation of the value of this saturation, we can thus propose that the
exact minimal trees for Steiner problems with large N will display an average length
reduction in the vicinity of 3%. After the analysis of the mean length of the MST,
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as performed in Fig. 6, we can conjecture that, for large N , the average length of the
minimal Steiner tree will be approximately 3% below 0.65N1/2.

6. Discussion. The heuristic of [36] essentially considers all connected subgraphs
of the MST which contain four cities, determines the minimal Steiner tree for each
subgraph, which is then incorporated, through some of its Steiner points specially
selected, onto the solution tree under construction. This heuristic thus performs a
systematic local search for every four-city subgraph of the MST in order to discover
the length reduction that is locally optimal (maximal). This heuristic is more of a
classic style of combinatorics in graphs. In contrast, our relaxation algorithm closely
adheres to a physical analogy that we prove fruitful. It performs length reductions in
a uniform and fast way, under the sole control of surface tension forces, in a purely
local manner at the level of each Steiner point and its three neighbors. This produces
deformations to the tree that are fast with no systematic search of local optimality
but with a global convergence to good solution trees as expected from the analogy
under test. This simple and uniform procedure results in a heuristic with a low and
provable complexity of O(N logN). The heuristic of [36], relatively more complicated
with its systematic local search, shows a higher complexity that is only empirically
estimated and, at the same time, slightly shorter solution trees.

Another interesting heuristic has been proposed for the Euclidean Steiner problem
[32], [33] which is based on a simulated annealing approach [5]. Works in [35], [46],
and [37] also rely, in part, on simulated annealing techniques for the resolution of
various versions of the Steiner problem. The heuristic of [32] starts with a random
Steiner tree. Tree transformations are implemented which consist in snipping off
a randomly selected branch and, after patching the broken branch, attach this to
another randomly selected branch. This results in the possibility of constructing any
given tree from any other, while permanently preserving the full connectivity of the
tree. These tree transformations are then accepted or rejected, depending on the
change of length they entail, within the usual probabilistic scheme under the control
of a temperature parameter which is gradually reduced [5]. The heuristic is tested in
[32] up to N = 70 cities. The results in [32] are presented in a way that does not allow
them to fit into the comparison of Tables 3 and 4. The quality of the solution trees in
[32] is not evaluated against the MST. The scaling of the method with size N of the
problem is not addressed in a way that makes possible the precise determination of
its algorithmic complexity. When run on an IBM 3081 computer, the best computing
times reported are 17 seconds for N = 20 and 160 seconds for N = 50. With cities
chosen uniformly at random in the square [−10, 10]×[−10, 10], reference [32, page 196]
reports for N = 50 a typical solution tree of length 1808.54. When rescaled to the unit
square [0, 1] × [0, 1] this gives a length of 90.43, which appears well above the 4.825
mean length of the MST for N = 50 as estimated in Table 2 and Fig. 6. Compared
with our relaxation scheme that implements only local transformations to the tree
at a length scale O(N−1/2), the heuristic of [32] realizes random transformations at
a length scale O(1) that are unable to keep the complexity below or at O(N logN)
while obtaining performances comparable with ours. This is because a performant
solution tree requires length adjustments at the scale O(N−1/2), and a total of at least
O(N3/2) transformations involving O(1)-length changes are required for this goal.

Recently, another interesting approach, based on a neural network algorithm, has
been proposed for the Steiner problem [38]. This neural method can be described as
using a piecewise-linear curve which self-organizes to find a suboptimal tree. In the
report of [38] the method, tested up to N = 100, never performs better than Beasley’s
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[36], and its solution trees have lengths that remain, on average, 1.56% above those of
[36]. The complexity of the algorithm is not given explicitly in [38], and it is at least
O(N2) since each iteration involves the calculation of a matrix of distances relative
to O(N) points.

Another recent heuristic for the Steiner problem is described in [39], then refined
and experimentally evaluated in [40]. An interesting characteristic of this heuristic
that is shared by very few of the algorithms evoked here is that it can solve Steiner
problems in a space of arbitrary dimension, while our approach in its present form, as
well as those, for instance, in [22, 4, 31, 36, 37], is limited to the plane. The complexity
of this heuristic is not explicitly established, but it is certainly above O(N logN). For
Steiner problems in the plane, the evaluation in [40] is limited to N = 25, and the
best performance leads to solution trees whose average length is 2.342% below the
length of the MST. With our solution trees, in the same conditions, the mean length
reduction is always found above 2.710%.

For the Steiner problem in the Euclidean plane, a performance guarantee is proved
in [47] which states the existence of a polynomial-time heuristic that will display a
performance ratio (the minimum ratio of lengths between the minimal Steiner tree
and the approximation solution for the same set of cities) strictly larger than the
Steiner ratio

√
3/2. Reference [47], relying on the recent work of [48], also suggests

a polynomial-time greedy algorithm that does not use the MST and that has the
performance guarantee mentioned above. Although polynomial, the complexity of
this heuristic in the plane is not given explicitly in [47], and it may be large and is
certainly larger than quadratic. Also, the property that is proved in [47] does not
exclude the possibility of obtaining a suboptimal tree longer than the MST for given
problems. A performance guarantee with our O(N logN) heuristic relaxing the MST
is the obtainment of a solution which can, at least, be made as good as this tree.
Furthermore, the experimental results of Table 4 show that our algorithm was always
found to converge to a solution tree strictly shorter than the initial MST.

7. Conclusion. We have presented a heuristic for the Steiner problem which is
based on a physical analogy with the relaxation of a fluid film under surface tension
forces. A uniform and purely local evolution scheme results for the Steiner tree,
which translates into a low and provable complexity of O(N logN) for the heuristic,
and allows us to tackle very large problems. The performance of this heuristic was
compared with that of the best available heuristics with low complexity. Compared
with [31], which represents the heuristic with the smallest complexity, our method
generally leads, with the same low complexity of O(N logN), to shorter solution
trees. In turn, the heuristics of [36] and [37] lead in general to solution trees slightly
shorter than ours but with complexities higher than our O(N logN).

Beyond these quantitative performances we want to emphasize a specific charac-
ter of our method, which is to put the Steiner problem in the more novel framework of
analog relaxation of a physical type, establishing a connection with energy minimiza-
tion in physical systems that revealed a fruitful analogy in other areas of optimization.
In contrast, the other known algorithms with comparable performance are more of a
classic style of combinatorics in graphs.

In particular, our relaxation scheme can be applied to any initial Steiner tree
instead of that derived from the MST. With an initial Steiner tree randomly con-
structed in an O(N) step, we were able to obtain solution trees achieving a positive
length reduction R for problem sizes up to N ≈ 100. This type of approach can lead,
for the Steiner problem, to low-complexity heuristics that do not use the MST. More
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elaborate schedules for the evolution of T , inspired by thermodynamic analogies and
incorporating slow cooling and possibly heating phases, may also bring improvement
to the performance of the fluid-film relaxation heuristic as introduced here.
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Abstract. In this paper we set up a new model of shortest networks that interconnects a set
of smooth curves and avoids a set of smoothly bounded obstacles. Using the hexagonal coordinate
system we show how the problem of determining a full Steiner tree with a given topology in such
a network can be converted to a problem of solving a set of simultaneous equations. Moreover, the
number of equations is linearly dependent on the number of curves and obstacles if all curves and all
boundaries of obstacles are convex. Hence, any existing numerical methods and computer programs
for solving equations can be used to solve this shortest network problem.
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1. Introduction. Given a set A of points a1, a2, ... (referred to as terminals)
in the Euclidean plane, the shortest network interconnecting A is called the Steiner
minimal tree on A. The vertices of the tree that are not in the given set are called
Steiner points. It is well known that Steiner minimal trees satisfy an angle condition:
all angles at the vertices are not less than 120◦. A tree satisfying this angle condition
is called a Steiner tree. A Steiner tree is called full if every terminal is of degree 1.
The topology (i.e., the graph structure) of a (full) Steiner tree is called a (full) Steiner
topology. It has been proved [8] that any Steiner topology is a degeneracy of a full
Steiner topology caused by the collapse of Steiner points into terminals.

The problem of constructing Steiner minimal trees is usually called the Steiner
problem [5], [6]. This problem has some generalizations. Instead of points, Cockayne
and Melzak [3] considered the network connecting compact sets. Chen [1] determined
the network connecting a straight line and two points on the same side. Trietsch
[13], [14] studied the more general case: to determine the Steiner network intercon-
necting given points and existing networks. A number of people [12], [17], [11] have
studied shortest networks with polygonal obstacles. In this paper we study a new
generalization of the Steiner problem that is defined as follows.

Given: Collection C of objects C1, C2, ..., Ck and collection M of obstacles M1,M2, ...,
Ml placed on the plane. Objects and obstacles are assumed to be pairwise disjoint,
and the boundaries of objects and obstacles are assumed to be smooth closed curves.
As degenerate cases some objects can be single points. Denote by C andM the union
of the regions in C and M, respectively.

Find: The minimum length network N of curves such that
(1) N is disjoint from the interior of M, and
(2) N∪ C is a connected set.

We refer to this problem as the shortest networks for smooth curves (SNSC)
problem. Comparing the SNSC problem with all other generalizations mentioned
above, there are two significant differences:

∗ Received by the editors July 22, 1994; accepted for publication (in revised form) August 12,
1996. This research was supported by a grant from Australian Research Council.
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† Department of Mathematics, University of Melbourne, Victoria 3052, Australia (weng@
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Fig. 1.

(1) Instead of points, the network is required to connect a set of smooth closed
curves, the boundaries of objects.

(2) Instead of polygonal lines, all obstacles have smooth boundaries.
Below is an instance of the SNSC problem (Fig. 1(1)): construct a shortest high-

way network N connecting three cities C1, C2, C3, a river R, and a farm F where the
network cannot penetrate a mountain M . Thus, M is an obstacle, C1, C2, C3, F , and
R are objects. Since the area of C1, C2, C3 is very small compared with F and M ,
these cities can be regarded as three single points.

Remark 1. Surely, R cannot be a closed curve. However, since the river is very
long, it can be treated as a part of a closed curve.

Remark 2. In the network design problem there are two ways to treat obstacles.
Either the edges of the desired network are allowed to penetrate the obstacles with
some penalties, or no penetration is allowed at all. In practice, which approach is
suitable depends on the conditions of a real problem. In this paper we study the
second approach.

By minimality, N must be a forest. More exactly, N can be decomposed into
subtrees T1, T2, ..., Tr so that each Ti is either

(1) a nontrivial path along the boundary of an obstacle or
(2) a tree made up of straight lines whose only intersection with C and M is at

its degree 1 vertices.
The paths of type (1) will be called joints, and the trees of type (2) are in fact

ordinary full Steiner trees defined in the beginning of this section. Hence, all of the
degree 1 vertices of a full Steiner tree will be points of C or M; these points will be
called terminal (vertices) of the Steiner tree.

In the example shown in Figure 1(2), N is decomposed into five trees Ti(1 ≤ i ≤ 5)
and has eight terminal vertices ai(1 ≤ i ≤ 8). T3 is a joint while all other trees are
full Steiner trees. Note that the road inside F joining two trees of N , marked by a
dashed line in Figure 1(2), is a local road and hence is ignored.

Clearly, the endpoints of a joint in N must be terminals of two full Steiner trees.
In other words, a joint is fully determined by the full trees that are connected by the
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joint. Hence, we can temporarily put aside all joints in the process of construction
of N . Consequently, if we know how to construct a full Steiner subtree for a given
topology, then by exhausting all possible decompositions of the topology of N we can
find all feasible solutions and then select the shortest one from them as the required
network.

Since the original Steiner problem has been proved to be NP-hard [4], as a gen-
eralization, the SNSC problem is also NP-hard. The crucial point in the Steiner
problem is that there exists an exponential number of possible full Steiner topologies
[6]. However, for a given full Steiner topology on a given set of points, the Steiner
tree is easy to construct. Melzak [10] first proposed a method for constructing a
full Steiner tree with a given topology. The running time of the improved version of
Melzak’s method is linear [7]. Later an algebraic method [15], [9], called the hexagonal
coordinate method, was developed which is equivalent to Melzak’s geometric method
but more natural and efficient. Along this line the SNSC problem without obstacles
was partly studied in [15]. In this paper, by the same approach, we show, given a full
Steiner topology, how the problem of constructing a full Steiner subtree in an SNSC
problem can be converted to a problem of solving a set of simultaneous equations.
Moreover, the number of equations is linearly dependent on the number of curves and
obstacles if all curves and all boundaries of obstacles are convex. Hence, any existing
numerical methods and computer programs solving equations can be used to solve
this shortest network problem.

The paper is organized as follows. Section 2 is a brief review of the hexagonal
coordinate method. Sections 3 and 4 give full details of the solution to the SNSC
problem for objects and obstacles with convex boundaries. A numerical example is
also given. In the last section we discuss how the conditions of smoothness, convexity,
and closure can be removed or weakened in this method.

2. The hexagonal coordinate method. In this section we give a brief review
of the hexagonal coordinate method to solve the original Steiner problem [15], [9].
Suppose T is a full Steiner tree (not necessarily minimal). Then its edges have only
three directions. This property leads us to consider a coordinate system with three
axes such that they are 120◦ apart. Let O be the origin, axis OU be the 0◦ line, axis
OV be the 120◦ line, and axisOW be the 240◦ line. There are three possible definitions
of the coordinates of a point p, and we use the following one. Suppose qu, qv, qw are
the feet of the lines through p and perpendicular to OU,OV,OW , respectively; then
the distances from O to qu, qv, qw are defined to be the coordinates of p and denoted
by u(p), v(p), w(p) (or just u, v, w), respectively (Fig. 2).

This coordinate system is called a hexagonal coordinate system. Clearly, u, v, w
satisfy the following equation which is called the closure of coordinates:

u+ v + w = 0.(1)

If the edges of T are not just parallel to the axes, then we can rotate the axes of
the base coordinate system defined above at a certain angle α so that the new axes
OU ′, OV ′, OW ′ are parallel to the edges of T . Define

l = cosα, k =
sinα√

3

to be the rotation coefficients; then they satisfy the Pythagorean theorem

l2 + 3k2 = 1.(2)
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Fig. 2.

It has been proved [15] that the transformations between the old and new coordinates
are


 u′

v′

w′


 =


 l k −k

−k l k
k −k l




 u

v
w


 ,(3)


 u

v
w


 =


 l −k k

k l −k
−k k l




 u′

v′

w′


 ,(4)

where u′, v′, w′ are new coordinates of p. Note that by (1) we have
 1 1 1

1 1 1
1 1 1


 = 0,

and hence
 l k −k

−k l k
k −k l




 l −k k

k l −k
−k k l


 =


 l −k k

k l −k
−k k l




 l k −k

−k l k
k −k l


 = I.

The advantage of the hexagonal coordinate system is that the coordinates of a Steiner
point s are linearly dependent on the coordinates of any two adjacent points in the
new system. Suppose s with coordinates u′s, v

′
s, w

′
s is adjacent to pi with coordinates

u′i, v
′
i, w

′
i (i = 1, 2, 3). If sp1‖OU, sp2‖OV, sp3‖OW , then

v′1 − v′s = w′1 − w′s, w
′
2 − w′s = u′2 − u′s, u

′
3 − u′s = v′3 − v′s,(5)

and the lengths of these edges are

L(sp1) = |u′s − u′1| , L(sp2) = |v′s − v′2| , L(sp3) = |w′s − w′3| .(6)
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After changing the subscripts of ai, we may assume that the anticlockwise cir-
cumferential order of the terminals of T is a1a2... [8]. If the edge incident with
ai (i = 1, 2, ...) is parallel to OU ′/OV ′/OW ′, then its coordinate u′i/v

′
i/w

′
i is defined

to be the (first) characteristic coordinate and referred to as x′i. Then, v′i/w
′
i/u

′
i is

the second characteristic coordinate and referred to as y′i, and, finally, w′i/u
′
i/v

′
i is the

third characteristic coordinate and referred to as z′i. Since T is a full tree, the vertices
of T can be partitioned into two subsets so that one subset is labeled as positive,
another as negative, and each edge joins a positive vertex with a negative vertex.
Define εi = 1 if ai is a positive vertex, otherwise εi = −1. Then, by induction, we can
prove [9] that the length of T is

L =
∑
i

εix
′
i,(7)

and the following characteristic equation holds

∑
i

εi(y
′
i − z′i) = 0.(8)

Note that this equation completely describes the topology of T . Go back to the old
(base) hexagonal coordinate system and let xi, yi, zi be the corresponding character-
istic coordinates of ai in the old coordinate system. (For example, if x′i = u′i, then
xi = ui and so on.) Then from (1), (3), and (8) we obtain the following equation of
rotation:

l · Fl − 3k · Fk = 0,(9)

where Fl =
∑

i εi(yi − zi), Fk =
∑

i εixi. Now the hexagonal coordinate method
can be stated as follows. First, by the given full topology work out its characteristic
equation and the expression of the length of T . Next, solve the equation of rotation (9)
with the Pythagorean theorem (2) to obtain k, l. Then, calculate the coordinates of
all terminals in the new coordinate system by transformation (3) and the coordinates
of all Steiner points by (5). Finally, transform these coordinates back into the old
coordinate system by (4). As to the length of the tree, we can obtain it directly by
(7). A numerical illustration of this method has been given in [9].

3. Determining terminal vertices. In the SNSC problem, in addition to the
positions of Steiner points, we need to determine the positions of terminal vertices
that are constrained on the given closed curves, i.e., the boundaries of objects and
obstacles. For simplicity, in this and the next section we assume all curves are convex.
Since the curves are smooth, we have the following theorem that is the basis of our
method.

Theorem 3.1. Suppose p is a terminal vertex of a shortest network N for smooth
curves.

1. If p lies on the boundary of an object, then p is either of degree 1 or 2. If p is
of degree 1, then its edge is the normal line of the curve at p. If p is of degree 2, then
the two edges, belonging to two full subtrees, form the same angle with the normal line
of the curve at p.

2. If p lies on the boundary of an obstacle, then the edge at p is the tangent of
the curve.
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Proof. Since any angle in a Steiner tree is not less than 120◦, and all edges must
lie outside the objects, the degree of p is not more than two when p lies on the
boundary of an object. When p is of degree 2, by the minimality of N the two edges
at p should satisfy the reflection law of the light in physics. The rest of the theorem
is trivial.

The three kinds of terminals classified in Theorem 3.1 are referred to as extreme
terminals, reflection terminals, and tangent terminals, respectively.

(1) Tangent terminals. Suppose an obstacle has a smooth boundary f (u, v, w) =
0. Let fx = ∂f

∂x . To differentiate the above equation we have

df = fudu+ fvdv + fwdw = 0.

On the other hand, from u+ v + w = 0 we have

du+ dv + dw = 0.

Eliminating dw we obtain fudu+ fvdv − fwdu− fwdv = 0, i.e.,

dv

du
=

fu − fw
fw − fv

.(10)

Similarly we have

dw

du
=

fv − fu
fw − fv

.(11)

If the tangent line of f = 0 at a point a on its boundary meets the axis OU at
angle α, then

tanα =
dy

dx
=

d
(
(v − w) /

√
3
)

du
=

1√
3

(
dv

du
− dw

du

)

=
1√
3

(
fu − fw
fw − fv

− fv − fu
fw − fv

)
=

1√
3

(
2fu − fv − fw

fw − fv

)
,(12)

where x, y are the usual Cartesian coordinates. Especially if the line is parallel to
OU , then tanα = 0. It follows that

2fu − fv − fw = 0.

Now suppose the edge at a in N is parallel to the new axis OU ′; then the co-
ordinates of a should satisfy 2fu′ − fv′ − fw′ = 0. To get the expression in the old
coordinates, differentiate

f(u, v, w) = f(u (u′, v′, w′) , v (u′, v′, w′) , w (u′, v′, w′)) = 0

with respect to u′,

fu′ = fu(uu′u′u′ + uv′v′u′ + uw′w′u′)
+fv(vu′u′u′ + vv′v′u′ + vw′w′u′)
+fw(wu′u′u′ + wv′v′u′ + ww′w′u′).
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From equation (4), we have uu′ = l, uv′ = −k, and so on; from u′ + v′ + w′ = 0, we
have u′u′ = 1, v′u′ = −1, and so on. Substituting them into the expression of fu′ we
get

fu′ = ful + fv(2k − l) + fw(−2k − l).

Similarly,

fv′ = fu(−2k − l) + fvl + fw(2k − l),
fw′ = fu(2k − l) + fv(−2k − l) + fwl.

Hence, the condition of a tangent terminal whose incident edge is parallel to OU ′ is

2fu′ − fv′ − fw′ = fu (2l) + fv (3k − l) + fw (−3k − l) = 0,

i.e.,

l · (2fu − fv − fw)− 3k · (fw − fv) = 0.

In the same way, we can get the condition of a tangent terminal whose incident edge
is parallel to OV ′ or OW ′. This proves the following theorem.

Theorem 3.2. If the incident edge of a tangent terminal is parallel to OU ′ or
OV ′ or OW ′, respectively, then its coordinates satisfy the optimum condition

l · (2fu − fv − fw)− 3k · (fw − fv) = 0(13)

or

l · (−fu + 2fv − fw)− 3k · (fu − fw) = 0(14)

or

l · (−fu − fv + 2fw)− 3k · (fv − fu) = 0,(15)

respectively.
(2) Extreme terminals. Suppose f = 0 is the boundary of an object and a is

a point on it. Assume the tangent line at a meets OU at angle α and the normal line
meets OU at angle β; then tanα tanβ = −1. By equation (12)

tanβ = −
√

3

(
fw − fv

2fu − fv − fw

)
.(16)

Especially if the normal line is parallel to OU , then tanβ = 0, i.e.,

fw − fv = 0.

Now suppose a is an extreme terminal and its incident edge is parallel to OU ′; then
the condition becomes fw′ − fv′ = 0. Using the same technique as stated above, this
condition can be represented in the old coordinates as follows:

fw′ − fv′ = fu(2k) + fv(−k − l) + fw(−k + l) = 0,



SHORTEST NETWORKS FOR SMOOTH CURVES 1061

Fig. 3.

i.e.,

l · (fw − fv) + k · (2fu − fv − fw) = 0.

Similarly, we can derive the condition of an extreme terminal whose incident edge is
parallel to OV ′ or OW ′. This proves the following theorem.

Theorem 3.3. If the incident edge of an extreme terminal is parallel to OU ′ or
OV ′ or OW ′, respectively, then its coordinates satisfy the optimum condition

l · (fw − fv) + k · (2fu − fv − fw) = 0(17)

or

l · (fu − fw) + k · (−fu + 2fv − fw) = 0(18)

or

l · (fv − fu) + k · (−fu − fv + 2fw) = 0,(19)

respectively.
(3) Reflection terminals. Suppose two subtrees T1 and T2 join at a reflection

terminal a which lies on f = 0, the boundary of an object. Suppose pa is the edge
belonging to subtree T1 with rotation coefficients l1, k1, and aq is another edge be-
longing to subtree T2 with rotation coefficients l2, k2. Suppose pa or its extension
meets OU at angle β1, aq or its extension meets OU at angle β2, and the normal line
at a meets OU at angle β (Fig. 3).

Let pa, aq meet the normal line at angles θ1, θ2, respectively. Then by Theorem
3.1, we have θ1 = θ2 and

tan θ1 = tan (β1 − β) =

(
tanβ1 − tanβ

1 + tanβ1 tanβ

)

= tan θ2 = tan (β − β2) =

(
tanβ − tanβ2

1 + tanβ tanβ2

)
.

However,

tanβ1 =
sinβ1

cosβ1
=

√
3k1

l1
, tanβ2 =

sinβ2

cosβ2
=

√
3k2

l2
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by the definition of rotation coefficients. Hence, substituting tanβ1, tanβ2 with these
expressions and substituting tanβ with equation (16), after simplification we obtain
the following theorem from tan θ1 = tan θ2.

Theorem 3.4. The optimum condition of reflection terminals is

(l1k2 + k1l2)
(−2f2

u + f2
v + f2

w + 2fufv + 2fufw − 4fvfw
)

+ (l1l2 − 3k1k2)
(
f2
w − 2fufw + 2fufv − f2

v

)
= 0.

(20)

4. Constructing SNSC. As we pointed out in section 1, N is a union of joints
and full Steiner trees, and for each possible decomposition we consider only the full
Steiner subtrees. Let T be a full subtree whose topology is known. There are two
cases.

Case 1. T does not contain reflection terminals. Such a subtree is called an isolated
tree and can be determined alone. Suppose T spans n terminals ai, i = 1, 2, ..., n.
Write down

• the equation of rotation l · Fl − 3k · Fk = 0,
• the Pythagorean theorem l2 + 3k2 = 1,

and for each terminal ai that is not a single point, its three associate equations:
• the closure of its coordinates ui + vi + wi = 0,
• the constraint equation fi = 0, and
• the optimum condition by Theorem 3.2 or 3.3.

Solving the 3n+2 equations simultaneously, we can get l, k, and 3n coordinates of ai.
Case 2. If T is not isolated, then it shares some reflection terminals with other

full Steiner trees. In that case, these subtrees have to be solved simultaneously. For
example, suppose T = T1 ∪ T2 so that T1 and T2 share a reflection terminal ar. Then
write down the equations for the terminals of T1 and T2, respectively, as stated above.
The two sets of equations, having different rotation coefficients l1, k1 and l2, k2, are
connected by the associate equations of ar : ur + vr + wr = 0, fr = 0, and the
optimum condition by Theorem 3.4. Solving these equations simultaneously, we get
l1, k1, l2, k2, and the coordinates of all constrained terminals including ar.

Note that the equations stated above, called the determinative equations (with
respect to the given full topology), are only necessary conditions for the existence of
full subtrees. If the determinative equations have no solution, then no subtrees exist
for the given topology. However, once a solution exists, then we can determine all
Steiner points after the coordinates of terminals are obtained and compute the length
of the tree as stated in section 2. Note also that the number of equations is linearly
dependent on the number of involved objects and obstacles no matter if T is isolated
or not.

On the other hand, since the determinative equations are nonlinear, there are
possibly multiple solutions. In fact, for a convex smooth closed curve, there are two
tangents through a point outside the curve (Fig. 4(1)). Similar cases also exist for
extreme terminals and reflection terminals (Figs. 4(2) and 4(3)).

If in a solution an edge incident to an extreme terminal or a reflection terminal
intersects given curves (Figs. 4(2) and 4(3)), then the solution is not a real solution
and should be excluded. As to a tangent terminal, it involves two full trees, say T1 and
T2, that are connected by a joint J lying on the boundary of an obstacle M . Let e1
and e2 be the edges in T1 and T2 meeting J , respectively. There are three possibilities
(Fig. 5). T1 and T2 are a feasible pair of subtrees in N only if the extensions of e1
and e2 intersect and M lies in the angle formed by the extensions as shown in Fig.
5(3).
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Fig. 4.

Fig. 5.

Thus, we have converted the problem of determining full subtrees to a problem of
solving a set of simultaneous equations. By exhausting all possible decompositions of
N , we can find all feasible solutions and select the shortest one as the desired network.

In real problems, preliminary geometric considerations can eliminate many impos-
sible decompositions of N . Below, as an illustration, we use this hexagonal coordinate
method to solve the example given in the first section. The data are conveniently
designed so that the solution can be checked by hand.

Example 1. Suppose the coordinates of C1, C2, C3 and the boundaries of F,R,M
are as follows:

C1 : a1 = (−5, 4, 1),

C2 : a6 = (−11, 22 + 3
√

6
2 ,−11− 3

√
6

2 ),
C3 : a7 = (9,−4.5,−4.5),
F : f = 3(u+ 2− 2

√
3)2 + (v − w)2 − 72 = 0,

R : f = (v − w − 18)
2 − 6(u− 6) = 0,

M : f = 9(u+ 9)2 + 5(v − w − 33)2 − 270 = 0.
Determine the shortest network N .

Solution. As three single points, C1, C2, C3 are denoted by a1, a6, a7, respectively.
First, since a7 is very closed to F , N should be decomposed into two parts. The part
connecting a7 and F consists of only one edge a7a8, where a8 is an extreme terminal
on F . This part is denoted by T5. Similarly, since a6 is very closed to M , there should
be a tangent point a5 on M such that a4a5 is a tree in N . Let T4 be this tree and
T3 be the joint meeting T4 at a5. The other endpoint of T3 is denoted by a4. Let T
be the tree connecting a1, F,R, and a4. Since F and R are objects, there should be
an extreme terminal on each of them in T , say a2 and a3, respectively. Thus, T will
connect 4 points ai, 1 ≤ i ≤ 4, and we have a decomposition N = T ∪ T3 ∪ T4 ∪ T5.
Using the hexagonal coordinate method, it is not hard to obtain the solutions for T4
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Fig. 6.

and T5:

a5 =

(
−9,

(
21 +

3
√

6

2

)
,

(
−12− 3

√
6

2

))
, |T4| = 2,

a8 =
(
2(
√

6 +
√

3− 1), (1−
√

6−
√

3), (1−
√

6−
√

3)
)
, |T5| = 2.6369.

Since T joins four points, there are two full topologies: in one topology a1, a2

join a Steiner point s1, and a3, a4 join another Steiner point s2, while in another
topology a1, a4 join a Steiner point s1, and a2, a3 join another Steiner point s2. First
we compute the tree T with the first topology using the hexagonal coordinate method.
Since a4, as a tangent terminal, may lie on the right side or the left side of M , we
obtain 2 solutions as shown in Figs. 6(1) and 6(2).

However, we find that s1 lies inside F in the solution of Fig. 6(1). Therefore, the
solution is infeasible. It means the Steiner point s1 should collapse into a2, and T
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should be decomposed into two trees: one tree T1 joins a1 and a2, and another tree
T2 connects a2, a3, and a4. So, we recompute T taking a2 as a reflection terminal.
Below are the details.

Suppose the new coordinate system for T1 is OU1V1W1 with rotation coefficients
l1, k1, and a1a2 is parallel to OU1. Suppose the new coordinate system for T2 is
OU2V2W2 with rotation coefficients l2, k2, and a2s2 is parallel to OU2.

The equations for T1 include the following:
• equation of rotation

(−v1 + w1 + v2 − w2) · l1 − 3 (−u1 + u2) · k1

= (−3 + v2 − w2) · l1 − 3 (5 + u2) · k1 = 0,

• Pythagorean theorem, l21 + 3k2
1 = 1.

The equations for T2 include the following:
• equation of rotation

(−v2 + w2 − w3 + u3 − u4 + v4) · l2 − 3 (−u2 − v3 − w4) · k2 = 0,

• Pythagorean theorem, l22 + 3k2
2 = 1.

Associate equations of the extreme terminal a3 are as follows:

u3 + v3 + w3 = 0,

(v3 − w3 − 18)
2 − 6(u3 − 6) = 0,

l2 · (fu3 − fw3) + k2 · (−fu3 + 2fv3 − fw3) =
= l2 · (2v3 − 2w3 − 42) + k2 · (6v3 − 6w3 − 102) = 0.

Associate equations of the tangent terminal a4 are as follows:

u4 + v4 + w4 = 0,

9(u4 + 9)2 + 5(v4 − w4 − 33)2 − 270 = 0,

l2 · (−fu4
− fv4

+ 2fw4
)− 3k2 · (fv4

− fu4
)

= l2 · (−18u4 − 30v4 + 30w4 + 828)− 3k2 · (−18u4 + 10v4 − 10w4 − 492) = 0.

Associate equations of the reflection terminal a2 are as follows:

u2 + v2 + w2 = 0,

f = 3(u2 + 2− 2
√

3)2 + (v2 − w2)
2 − 72 = 0,
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Fig. 7.

(l1k2 + k1l2)
(−2f2

u2
+ f2

v2
+ f2

w2
+ 2fu2

fv2
+ 2fu2

fw2
− 4fv2

fw2

)
+ (l1l2 − 3k1k2)

(
f2
w2

− 2fu2fw2
+ 2fu2

fv2
− f2

v2

)
= (l1k2 + k1l2)

(−72(u2 + 2− 2
√

3)2 + 24(v2 − w2)
2
)

(l1l2 − 3k1k2)
(
48(u2 + 2− 2

√
3)(v2 − w2)

)
= 0.

Solving the above set of equations we obtain the solution

l1 =

√
3

2
, k1 =

√
3

6
, l2 =

1

2
, k2 =

1

2
,

a2 = (−2, 4,−2), a3=(6, 6,−12), a4 = (−4, 20,−16), s2 = (2, 8,−10),

|T1| = 2
√

3, |T2| = 24.

As to the length of T3, it equals 5.8473 by the standard line integral.
Similarly, we can compute T with the topology and the specific path round M

shown in Figs. 6(2)–6(4). Comparing all four solutions, we find Fig. 6(1) gives the
minimal length of T . Thus, we conclude that the network in Fig. 1(2) is the required
shortest network.

5. Discussions. In the development of the hexagonal coordinate method, we
have set some restrictions: the boundaries of objects and obstacles are smooth, convex
closed curves. Now we discuss these conditions and show how to remove or weaken
them.

(1) Nonclosed curves. For example, as we said in Remark 1, although the river
R in the example is a nonclosed curve, it can be regarded as a part of a closed curve.
Such a treatment is especially appropriate if R is very long. However, if R is not
very long, then the constrained point a3 may not be an interior point of R but one
of its endpoints, the source or the mouth. Similar cases exist for extreme terminals
and reflection terminals on objects. Let us have a close look at the case for extreme
terminals. If an object C is a convex nonclosed curve a1a2 and if the network N is
assumed to be on the convex side of C, then the constrained point on C, say p, has
three possible positions as shown in Fig. 7.

If p is assumed to be an interior point, then p should be treated as an extreme
terminal on C. Its incident edge in the solution should be perpendicular to C (Fig.
7(2)). If p is assumed to coincide with a1 or a2, then p should be treated as a single
point located at a1 or a2. In the solution, the angle between its incident edge and C
should be not less than 90◦ (Fig. 7(1) and 7(3)). In a word, we need first to compute



SHORTEST NETWORKS FOR SMOOTH CURVES 1067

Fig. 8.

the network with the three possible assumptions separately, and then check which
assumption is right.

(2) Nonconvex curves. In principle, the hexagonal coordinate method can also
be applied to nonconvex curves. For example, if the boundary of an obstacle M is
nonconvex, then more than two tangent lines can be drawn from a point outside M . It
causes nothing but the number of solutions of the determinative equations to increase,
and we need to spend more time to check which one is feasible and is the shortest.
Figure 8 shows two of many possibly encountered cases. If an object is not convex,
then there may exist many possible positions for extreme points or reflection points.
Similarly, we need to check and compare all solutions of the determinative equations
that result from the nonconvexity.

(3) Piecewise differentiable curves. If an object is not smooth but piecewise
differentiable, then each piece can be treated as stated in (1). For example, suppose
an object C is a convex nonclosed curve consisting of two differentiable pieces a1a2 and
a2a3. If the network N is assumed to be on the convex side of C, then the constrained
point p on C has five possible positions: p is either an interior point on a1a2 or on
a2a3, or p coincides with a1, a2, or a3. Similarly, if the boundary of an obstacle M is
convex, consisting of some differentiable arcs, then the constrained point p on M may
be an interior point of an arc or the meeting point of two arcs. We can compute each
case with different assumptions of the position of p, and, again, check and compare
all solutions of the determinative equations afterwards.

Summing up, based on calculus, the hexagonal coordinate method gives a general
approach to the Steiner problem for curves with obstacles. That is, it may apply to
the Steiner problem for nonclosed, nonconvex and piecewise differentiable curves that
are either objects or boundaries of obstacles, though it causes the computation to
increase significantly.

Acknowledgment. The author wishes to thank a referee for a great number
of helpful comments and suggestions. Especially, the referee pointed out that the
method described in this paper can also be applied to piecewise differentiable curves.
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1. Introduction. Consider the convex minimization problem

(P ) f∗ = inf{f(x) : x ∈ R
p
+},(1.1)

where f : R
p 7→ (−∞,+∞] is a closed proper convex function and R

p
+ := {x ∈

R
p xj ≥ 0, j = 1, . . . , p}. Recently [9] we proposed to solve (P ) via the iterative

scheme: start with x0 ∈ R
p
++ := {x ∈ R

p : xj > 0, j = 1, . . . , p} and generate the
sequence {xk} by

xk = arg min
x∈Rp

{f(x) + λ−1
k dϕ(x, xk−1)},(1.2)

where λk is a sequence of positive numbers and dϕ(x, y) :=
∑p

j=1 yjϕ(y−1
j xj) is a

distance-like function based on a strictly convex function ϕ (see section 2 for a precise
definition and properties). Algorithm (1.2) is in fact a proximal-type algorithm (see,
e.g., Martinet [18], Rockafellar [25]), where here dϕ(·, ·) replaces the usual quadratic
term 1/2||x− xk||2. However, the fundamental difference here is that the term dϕ is
used to force the iterates {xk} to stay in the interior of the nonnegative orthant R

p
++,

namely algorithm (1.2) will automatically generate a positive sequence {xk}.
The motivation for studying algorithms of the form (1.2) can be found in several

recent studies. In [7], the method (1.2) with the particular choice ϕ(t) = − log t+t−1
was studied and convergence was proved when f is a convex differentiable function
with compact level sets and locally Lipschitz-continuous gradients. Convergence re-
sults for a more general class of functions ϕ were recently derived in [9] under weaker
assumptions than [7]. The extension of method (1.2) to the more general linearly
constrained convex problems and to variational inequalities on polyhedra were re-
cently analyzed in [1]. The application of method (1.2) to the dual functional of a
convex program gives rise to several interesting nonquadratic augmented Lagrangian
methods [9], [26]. These include, for example, algorithms given in [2], [21], and [27].
These methods have an important practical advantage over the classical augmented

∗ Received by the editors September 20, 1995; accepted for publication (in revised form) June 19,
1996. This author was partially supported by National Science Foundation grant DMS-9401871 and
by Israeli Ministry of Science grant 9636-1-96.
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† School of Mathematical Sciences, Tel-Aviv University, Ramat-Aviv 69978, Israel (teboulle@
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Lagrangian, which is derived from the quadratic proximal method, since they pre-
serve the second-order differentiability (if the objectives and constraints are given
C2), and, therefore, Newton-type algorithms can be applied. For further details on
the derivation of nonquadratic augmented Lagrangian methods and their properties,
we refer the reader to [9], [26], and to the more recent work of [22], which also demon-
strates how distances of the type dϕ naturally emerge in the context of constrained
optimization.

Convergence analysis of methods like (1.2) has proven to be rather involved and
surprisingly difficult; see, e.g., [1], [9], [10]. The main purpose of this work is to present
a simplified approach to the convergence analysis of methods based on (1.2) and to
prove new convergence results. Building on the works of Güler [8] and Lemaire [15],
developed for the classical quadratic proximal methods, we extend their analysis for
proximal methods based on (1.2). Starting with two simple and general inequalities
for the proximal-like methods (1.2), we develop an elegant analysis which allows us
to substantially strengthen and extend available convergence results for these meth-
ods. In particular, we establish global convergence results for an inexact proximal-like
algorithm based on (1.2), and an ergodic-type convergence result for maximal mono-
tone operators. Similar extensions and convergence results for proximal-like methods
based on Bregman functions have been given by Kabbadj [12] and more recently in
strengthened form by Kiwiel [11]. However, it should be noted that the analysis of
proximal-like methods based on Bregman distances does not carry over to method
(1.2), (except for the case ϕ(t) = t log t− t+ 1, for which the two distances coincide;
see, e.g., [26]). This is due mainly to the fact that the nice “Pythagoras-type” prop-
erty noticed in [6, Lemma 3.1], which holds for Bregman distances, does not hold in
general for the distances dϕ.

In the next section, we give the definition of dϕ, collect some of its properties, and
give some examples. In section 3, we state our algorithm and the basic assumptions.
In section 4, we present two fundamental estimates and prove global convergence of
the methods allowing inexact minimization in (1.2). The convergence of an algorithm
based on (1.2) for finding a zero of a maximal monotone operator is analyzed in section
5. The last section considers applications to linearly constrained convex problems and
linear programs and extends recent results derived in [1]. In an appendix, we state
two results on convergence of nonnegative real sequences. Notation used in this paper
and not explicitly defined can be found in Rockafellar’s book [24].

2. Distance-like functions: ϕ-divergences. We start by recalling the defi-
nition of ϕ-divergences and some of their basic properties as used in the context of
optimization; see, e.g., [26] and references therein for further details.

Let ϕ : R → (−∞,+∞] be a closed proper convex function. We denote its domain
by domϕ := {t : ϕ(t) < +∞} 6= ∅ with domϕ ⊆ [0,+∞). We assume that ϕ satisfies
the following:

(i) ϕ is twice continuously differentiable on int(domϕ) = (0,+∞).

(ii) ϕ is strictly convex on its domain.

(iii) limt→0+ ϕ′(t) = −∞.

(iv) ϕ(1) = ϕ′(1) = 0 and ϕ′′(1) > 0.1

We denote by Φ the class of functions satisfying (i)–(iv). Given ϕ ∈ Φ, the ϕ-

1 Note that the class of functions satisfying (i)–(iii) (except for the second-order differentiability)
are the so-called class of Legendre functions; see [24, Section 26] .
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divergence dϕ is defined for x, y ∈ R
p
++ by

dϕ(x, y) =

p∑
j=1

yjϕ(xj/yj).(2.1)

From the strict convexity of ϕ and (iv) we immediately obtain

ϕ(t) ≥ 0 and ϕ(t) = 0 iff t = 1.

Using this fact in (2.1) it can be easily verified that dϕ can be viewed as a (non-
symmetric) distance-like function satisfying

dϕ(x, y) ≥ 0 and dϕ(x, y) = 0 iff x = y ∀(x, y) ∈ R
p
++ × R

p
++.(2.2)

Given ϕ ∈ Φ, let α := ϕ′′(1) > 0, and define the following two subclasses of Φ:

Φ1 = {ϕ ∈ Φ : ϕ′(t) ≤ α log t ∀t > 0},(2.3)

Φ2 = {ϕ ∈ Φ1 : α(1− 1/t) ≤ ϕ′(t) ∀t > 0}.(2.4)

Example 2.1. It can easily be verified that the first three functions given below
are in Φ2, while the last one is in Φ1:

ϕ1(t) = t log t− t+ 1, domϕ = [0,+∞); α = 1.

ϕ2(t) = − log t+ t− 1, domϕ = (0,+∞); α = 1.

ϕ3(t) = (
√
t− 1)2, domϕ = [0,+∞); α = 1/2.

ϕ4(t) = t+ t−1 − 2, domϕ = (0,+∞); α = 2.

The first example ϕ1 plays an important role in the convergence analysis of the
algorithms based on (1.2). For ϕ = ϕ1 we have

dϕ(x, y) := H(x, y) =

p∑
j=1

xj log
xj
yj

+ yj − xj ,(2.5)

which is the so-called Kullback–Leibler relative entropy distance functional [17].
Notice that H(x, y) can be continuously extended to R

p
+ × R

p
++, adopting the

convention that 0 log 0 = 0, i.e., H admits points with zero components in its first
argument. The next result gives useful properties of H.

Lemma 2.1.
(i) The level sets of H(x, ·) are bounded for all x ∈ R

p
+.

(ii) If {yk} ⊂ R
p
++ converges to y ∈ R

p
+, then limk→∞H(y, yk) = 0.

(iii) If {zk} ⊂ R
p
+, {yk} ⊂ R

p
++ are such that {zk} is bounded, limk→∞ yk = y ∈

R
p
+ and limk→∞H(zk, yk) = 0, then limk→∞ zk = y.

Proof. The proof is elementary using (2.5).
We will frequently make use of the following useful identity, which is obtained by

direct substitution in (2.5):

H(c, a)−H(c, b) =

p∑
j=1

cj log bj/aj + aj − bj ∀a, b ∈ R
p
++, c ∈ R

p
+.(2.6)

We conclude this section by giving some important properties of the function ϕ
and the corresponding dϕ, which will be needed in the rest of this paper.
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Lemma 2.2. Let ϕ ∈ Φ and assume that ϕ ∈ C3 on R++. Then there exists
η > 0 such that

ϕ′(t) ≥ α(1− t−1 − η(1− t−1)ϕ′(t)) ∀ t > 0.

Proof. This is just a rewriting of [9, Proposition 2.5], which states that there
exists η > 0 such that

ϕ′′(1)(t− 1)− tϕ′(t) ≤ ϕ′′(1)η(t− 1)ϕ′(t) ∀t > 0.

Indeed, with α = ϕ′′(1) the above inequality can be rewritten as

tϕ′(t) ≥ α(t− 1− η(t− 1)ϕ′(t))

and which after division by t > 0 gives the desired inequality.
Lemma 2.3. Let z ∈ R

p
++ be fixed and ϕ ∈ Φ. Then, the level sets L(z, ν) :=

{x ∈ R
p
++ : dϕ(x, z) ≤ ν} are bounded for all ν ≥ 0.

Proof. It is enough to consider the one-dimensional case, i.e., to show that hζ(t) :=
ζϕ(t/ζ), ζ > 0 has bounded level sets, which in turn is equivalent to showing that ϕ
has bounded level sets. Since {t : ϕ(t) ≤ 0} = {1} (by strict convexity of ϕ and (iv)),
the conclusion follows from [24, Corollary 8.7.1, p. 70].

3. An entropy-like proximal method (EPM). The Algorithm (1.2) is based
on the ϕ-divergence which, as seen in the previous section, generalized the concept
of entropy-like distances. Accordingly, we call the method based on (1.2) an EPM.
Problem (P ) will be solved by the EPM, allowing approximate computation in the
minimization step of (1.2).

We make the following assumptions for problem (P ):
(A0) inf{f(x) : x ∈ R

p
+} = f∗ > −∞.

(A1) domf ∩ R
p
++ 6= ∅.

The EPM. Given ϕ ∈ Φ, x0 ∈ R
p
++, εk ≥ 0, λk > 0, generate the sequence

{xk} ⊂ R
p
++ satisfying

gk ∈ ∂εkf(xk),(3.1)

λkg
k + Φ′(xk/xk−1) = 0,(3.2)

where

Φ′(b/a) := (ϕ′(b1/a1), . . . , ϕ
′(bp/ap))T ∀a, b ∈ R

p
++(3.3)

and ∂εf denotes the ε-subdifferential of f .
The above algorithm can be considered as an approximate version of the proximal

method (1.2) in the following sense. From (3.1), the convexity of ϕ and the definition
of dϕ in (2.1), we obtain, respectively, ∀u ∈ R

p
+

f(u) ≥ f(xk) + 〈u− xk, gk〉 − εk,

λ−1
k dϕ(u, xk−1) ≥ λ−1

k dϕ(xk, xk−1) + λ−1
k 〈u− xk,Φ′(xk/xk−1)〉.

Adding the two inequalities and using (3.2) gives

f(u) + λ−1
k dϕ(u, xk−1) ≥ f(xk) + λ−1

k dϕ(xk, xk−1)− εk,
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i.e.,

xk ∈ εk − argmin{f(u) + λ−1
k dϕ(u, xk−1)},(3.4)

where we use the notation ε− argminF (x) := {z : F (z) ≤ inf F + ε}, with F a given
function and ε ≥ 0.

Lemma 3.1. For any y ∈ R
p
++ and λ > 0 we have the following:

(i) If (A0) holds, then the function x→ F (x) := f(x)+λ−1dϕ(x, y) has bounded
level sets.

(ii) If in addition (A1) holds, then there exists a unique x(y) ∈ R
p
++ such that

x(y) = argminx{f(x) + λ−1dϕ(x, y)}.(3.5)

The minimum above is attained at x(y) > 0 satisfying

− Φ′
(
x(y)

y

)
∈ λ∂f(x(y)),(3.6)

where ∂f denotes the subdifferential of f .
Proof. Fix y, λ > 0. (i) First note that x → F (x) := f(x) + λ−1dϕ(x, y) is a

closed proper strictly convex function (since dϕ(·, y) is strictly convex). Therefore, if
the minimum exists it must be unique. To show that F (x) has bounded level sets it
suffices to show that for any ν ≥ f∗ the level set

L(ν) := {x : F (x) ≤ ν}

is bounded. Let ν′ := (ν − f∗)λ and L′(ν′) := {x : dϕ(x, y) ≤ ν′}. Clearly, we have
L(ν) ⊂ L′(ν′). But from Lemma 2.3, L′(ν′) is bounded and, hence, so is L(ν).

(ii) By (i), the minimizer x(y) exists and is unique. Moreover, under the addi-
tional assumption (A1), writing the optimality conditions for (3.5) and recalling that
limt→0+ ϕ′(t) = −∞ proves that x(y) > 0 and that it satisfies (3.6).

Remark 3.1. Part (ii) of Lemma 3.1 corresponds to the exact version of the EPM,
i.e., with ε = 0. The proof of Lemma 3.1 for that version was given in [9] under more
stringent assumptions on the problem’s data and which appear to be unnecessary.2

4. Convergence analysis. The analysis relies essentially on the following two
simple inequalities. Recall in the sequel that the two parameters α and η are fixed
and positive (since α = ϕ′′(1) > 0 and η > 0 is from Lemma 2.2).

Lemma 4.1. For any a, b ∈ R
p
++ and c ∈ R

p
+, we have the following:

(i) If ϕ ∈ Φ1, and ϕ ∈ C3(0,+∞), then 〈c − b,Φ′(b/a)〉 ≤ α[H(c, a) − H(c, b)]
+ αη〈b− a,Φ′(b/a)〉.

(ii) If ϕ ∈ Φ2, then 〈c− b,Φ′(b/a)〉 ≤ α[H(c, a)−H(c, b)].
Proof. (i) Since ϕ ∈ Φ1, we have ϕ′(t) ≤ α log t ∀t > 0. Set t := bj/aj ; we then

obtain, for each j = 1, . . . , p,

cjϕ
′(bj/aj) ≤ αcj log bj/aj .(4.1)

From Lemma 2.2 we also obtain

− bjϕ
′(bj/aj) ≤ α(aj − bj + η(bj − aj)ϕ

′(bj/aj)).(4.2)

2 We thank K. C. Kiwiel for pointing out this fact.
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Adding the two inequalities (4.1) and (4.2), summing over j = 1, . . . , p, and using
(3.3) we obtain

〈c− b,Φ′(b/a)〉 ≤ α


 p∑
j=1

cj log bj/aj + aj − bj


+ αη

p∑
j=1

(bj − aj)ϕ
′(bj/aj)

= α[H(c, a)−H(c, b)] + αη〈b− a,Φ′(b/a)〉,

where the first term in the last equality is from (2.6).
(ii) Since ϕ ∈ Φ2, we have −ϕ′(t) ≤ −α(1 − 1/t) ∀t > 0, and, hence, for each

j = 1, . . . , p

− bjϕ
′(bj/aj) ≤ α(aj − bj).(4.3)

Proceeding as in the proof of (i), combining (4.1) and (4.3) gives the desired result
(ii).

The following result provides fundamental estimates from which global rate of
convergence estimates in terms of function values as well as convergence of the iterates
xk will follow. For simplicity of notation, we will use the following:

δ(xk, xk−1) := δk = 〈xk − xk−1,Φ′(xk/xk−1)〉.(4.4)

Lemma 4.2. Let {λk} be an arbitrary sequence of positive numbers and σn :=∑n
k=1 λk. Let {xk} be the sequence generated by the EPM given in (3.1).

(a) If ϕ ∈ Φ1 and ϕ ∈ C3(0,+∞), then ∀x ∈ R
p
+:

(i) λk(f(xk)− f(x)) ≤ α[H(x, xk−1)−H(x, xk)] + αηδk + λkεk.
(ii) H(x, xk) ≤ H(x, xk−1)+ ηδk +α−1λkεk ∀x ∈ R

p
+ subject to (s.t.) f(x) ≤

f(xk).
(iii) σn(f(xn)− f(x)) ≤ α[H(x, x0)−H(x, xn)] + αη

∑n
k=1 δk +

∑n
k=1 σkεk.

(b) If ϕ ∈ Φ2, then ∀x ∈ R
p
+:

(i) λk(f(xk)− f(x)) ≤ α[H(x, xk−1)−H(x, xk)] + λkεk.
(ii) H(x, xk) ≤ H(x, xk−1) + α−1λkεk ∀x ∈ R

p
+ s.t. f(x) ≤ f(xk).

(iii) σn(f(xn)− f(x)) ≤ α[H(x, x0)−H(x, xn)] +
∑n

k=1 σkεk.
Proof. Using the definition of the ε-subdifferential we have

f(x) ≥ f(xk) + 〈gk, x− xk〉 − εk,

where gk ∈ ∂εkf(xk). From (3.6), gk = −λ−1
k Φ′(xk/xk−1). Substituting the latter in

the above inequality we then obtain

λk(f(xk)− f(x)) ≤ 〈x− xk,Φ′(xk/xk−1)〉+ λkεk.(4.5)

Case a. Applying Lemma 4.1(i) at the points c = x, a = xk−1 and b = xk and
using (4.5) proves (i). The proof of (ii) follows immediately from (i) for any x ∈ R

p
+

such that f(xk)− f(x) ≥ 0. To prove (iii) we first note that by (3.4)

xk ∈ εk − argmin{f(x) + λ−1
k dϕ(x, xk−1)};

i.e., ∀x ∈ R
p
++,

f(x) + λ−1
k dϕ(x, xk−1) ≥ f(xk) + λ−1

k dϕ(xk, xk−1)− εk.(4.6)
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In particular, for x = xk−1, recalling that dϕ ≥ 0 and dϕ(xk−1, xk−1) = 0 we obtain

f(xk−1)− f(xk) ≥ λ−1
k dϕ(xk, xk−1)− εk ≥ −εk.(4.7)

Let σn =
∑n

k=1 λk. Using σk = λk + σk−1 (with σ0 ≡ 0), multiplying the above
inequality by σk−1, and summing over k = 1, . . . , n we obtain

n∑
k=1

σk−1f(xk−1)− (σk − λk)f(xk) ≥ −
n∑

k=1

σk−1εk,

which reduces to

σnf(xn)−
n∑

k=1

λkf(xk) ≤
n∑

k=1

σk−1εk.

Now, using Lemma 4.2a(i) and summing over k = 1, . . . , n we have

−σnf(x) +
n∑

k=1

λkf(xk) ≤ α[H(x, x0)−H(x, xn)] + αη
n∑

k=1

δk +
n∑

k=1

λkεk.

Adding the last two inequalities yields

σn(f(xn)− f(x)) ≤ α[H(x, x0)−H(x, xn)] + αη

n∑
k=1

δk +

n∑
k=1

(λk + σk−1)εk,

which proves (iii), since λk + σk−1 = σk.
Case b: The proof follows the same steps as in Case a, starting now with Lemma

4.1(ii).
We are now in a position to prove our main convergence result for the case ϕ ∈ Φ2.

The proof for the case ϕ ∈ Φ1 will be similar but requires an additional technical
result and will be given in the next theorem. We denote the set of minimizers of f by
X∗ := {x : f(x) = infR

p
+
f}.

Theorem 4.3. Let ϕ ∈ Φ2 and σn =
∑n

k=1 λk. Then the following hold.
(i) f(xn)− f(x) ≤ ασ−1

n H(x, x0) + σ−1
n

∑n
k=1 σkεk ∀x ∈ R

p
+.

(ii) If σn →∞ and λ−1
k σkεk → 0, then f(xn) → f∗ = inf{f(x) : x ∈ R

p
+}.

(iii) Moreover, if X∗ 6= ∅, σn →∞ and
∑∞

k=1 λkεk <∞, then the sequence {xn}
converges to an optimal solution of (P ).

Proof. (i) The proof follows immediately from Lemma 4.2b(iii), since H(·, ·) ≥ 0.
(ii) Passing to the limit in (i), since σn → ∞ the first term in (i) goes to zero.

Invoking Lemma A.1 (see the Appendix) with ank := σ−1
n λk if k ≤ n, ank = 0

otherwise and uk := λ−1
k σkεk, we obtain

∑
k

ankuk = σ−1
n

∑
k

σkεk → 0

as σn → ∞ and λ−1
k σkεk → 0. Therefore, we have lim supn→∞ f(xn) ≤ inf{f(x) :

x ∈ R
p
+}, which together with the fact that f(xn) ≥ inf{f(x) : x ∈ R

p
+} implies that

xn is a minimizing sequence.
(iii) Let x∗ ∈ X∗. Since

f(xk) ≥ f(x∗) ∀k,(4.8)
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we obtain from Lemma 4.2b(ii)

H(x∗, xk) ≤ H(x∗, xk−1) + α−1λkεk.

Since
∑∞

k=1 λkεk < ∞, invoking Lemma A.2 with vk := H(x∗, xk) ≥ 0 and βk :=
α−1λkεk ≥ 0 implies that {H(x∗, xk)} converges, and, hence, by Lemma 2.1(i) that
the sequence {xk} is bounded. Let {xkj} be a subsequence converging to x∞ ∈ R

p
+.

Since f(xk) → f∗, f(xkj ) → f∗, and, hence, with f being closed we have f(x∞) ≤
limkj→∞ f(xkj ) = f∗ and it follows that x∞ ∈ X∗. Therefore, H(x∞, xk) converges.
Since {xkj} ∈ R

p
++ converges to x∞ ∈ R

p
+, then by Lemma 2.1(ii), H(x∞, xkj ) →

0, and, hence, H(x∞, xk) → 0. If y ∈ R
p
+ is another limit point of {xk}, then

H(x∞, xkj ) → 0 as xkj → y. But by Lemma 2.1(iii) we then have x∞ = y, and,
hence, xk → x∞ ∈ X∗.

Remark 4.1. The above results extend and strengthen the convergence result
established in [10] for the exact version of the EPM, i.e., with εk = 0 ∀k. Indeed, to
establish convergence, in [10] it was also required that

(i) limλ−1
k = ∞, (ii)

∞∑
k=1

λ−1
k = ∞,

while here it is enough to have
∑

λk → ∞ to guarantee global convergence of {xk}
(see also section 6). Moreover, a byproduct of our analysis gives for the exact version
of the EPM the global rate of convergence estimate

f(xn)− f(x) ≤ ασ−1
n H(x, x0) ∀x ∈ R

p
+.(4.9)

Note that this kind of result is much in the spirit of the existing results for the
classical quadratic proximal algorithm; see Güler [8] and Lemaire [15]. For proximal-
like methods based on Bregman functions, the estimate (4.9) has been derived by
Chen and Teboulle [6], and results analogous to Theorem 4.1 have been given by
Kiwiel [11].

Remark 4.2. As pointed out by one referee, the condition λ−1
k σkεk → 0 in Theo-

rem 4.3(ii) could be replaced by the simpler condition
∑

εk < +∞. First, we note that
with the sole condition εk → 0 we have lim infn→+∞ f(xn) = inf{f(x) : x ∈ R

p
+}.

Indeed, from Lemma 4.2b(i) summing over k = 1, . . . , n we obtain (recalling that
H(·, ·) ≥ 0)

σ−1
n

n∑
k=1

λkf(xk) ≤ f(x) + ασ−1
n H(x, x0) + σ−1

n

n∑
k=1

λkεk.(4.10)

Passing to the limit as n → +∞, using Lemma A.1 and [16, Proposition 3.5], it
follows from (4.10) that lim infn→+∞ f(xn) ≤ inf{f(x) : x ∈ R

p
++}, which together

with f(xn) ≥ inf{f(x) : x ∈ R
p
+} implies that lim infn→+∞ f(xn) = inf{f(x) : x ∈

R
p
+}. Now, if

∑
εk < +∞, then summing the second inequality in (4.7) implies that

limn→+∞ f(xn) exists, and hence we are done.
We now turn to the convergence of the EPM with ϕ ∈ Φ1. We will first need the

following technical result.
Lemma 4.4. Let ϕ ∈ Φ, and let {xk} be generated by the EPM. Assume that

X∗ 6= ∅, σn →∞ and
∑

εk <∞. Then the following hold.
(i) σ−1

n

∑n
k=1 δk → 0.
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(ii)
∑∞

k=1 δk <∞ if λk ∈ (0, λ] for some 0 < λ <∞, where δk is defined in (4.4).
Proof. First notice that by the gradient inequality for ϕ with ϕ(1) = 0, we have

ϕ(t) ≤ (t− 1)ϕ′(t). Using the definition of dϕ and (4.4) it follows that

0 ≤ λ−1
k dϕ(xk, xk−1) ≤ λ−1

k 〈xk − xk−1,Φ′(xk/xk−1)〉 = λ−1
k δk,

showing that the sequence {δk} is nonnegative.
With x := xk−1 in (4.5) and using (4.4) we obtain

λ−1
k δk ≤ f(xk−1)− f(xk) + εk.

Summing the above inequality we obtain

n∑
k=1

λ−1
k δk ≤ f(x0)− f(xn) +

n∑
k=1

εk,

≤ f(x0)− f(x∗) +
n∑

k=1

εk,

where in the second inequality we used x∗ ∈ X∗ with f(xn) ≥ f(x∗) ∀n. Since we
assumed

∑∞
k=1 εk < ∞, we thus have

∑∞
k=1 λ

−1
k δk < ∞, and, hence, λ−1

k δk → 0.
It is now easy to verify that all the assumptions of Lemma A.1 are satisfied with
ank := λk/σn if k ≤ n, ank = 0 otherwise, and uk := λ−1

k δk → 0, which implies

n∑
k=1

ankuk =

n∑
k=1

λk
σn

δk
λk

= σ−1
n

n∑
k=1

δk → 0 as n→∞.

Finally, to prove (ii) note that since λk ∈ (0, λ] we have λ−1
∑∞

k=1 δk ≤
∑∞

k=1 λ
−1
k δk <

∞.
Theorem 4.5. Let ϕ ∈ Φ1, ϕ ∈ C3(0,+∞), and σn =

∑n
k=1 λk. Then the

following hold.
(i) f(xn)− f(x) ≤ ασ−1

n H(x, x0) + αησ−1
n

∑n
k=1 δk + σ−1

n

∑n
k=1 σkεk ∀x ∈ R

p
+.

(ii) Let X∗ 6= ∅. If σn →∞, and
∑∞

k=1 εk <∞, then f(xn) → f∗ = inf f(x).
(iii) Moreover, under the hypotheses of (ii), if λk ∈ (0, λ], then the sequence {xn}

converges to an optimal solution of (P ).
Proof. (i) The proof follows immediately from Lemma 4.2a(iii).
(ii) From Lemma 4.2a(i), summing over k = 1, . . . , n, we obtain

σ−1
n

n∑
k=1

λkf(xk) ≤ f(x) + ασ−1
n H(x, x0) + αησ−1

n

n∑
k=1

δk + σ−1
n

n∑
k=1

λkεk.

Passing to the limit as n→ +∞, noting that by Lemma 4.4(i) the middle term goes
to zero; the rest of the proof follows using the same arguments as given in Remark
4.2.

(iii) Let x∗ ∈ X∗. Since f(xk) ≥ f(x∗) ∀k, we obtain from Lemma 4.2a(ii)

H(x∗, xk) ≤ H(x∗, xk−1) + ηδk + α−1λkεk.

Since λk is bounded above, together with
∑∞

k=1 εk < ∞ we have
∑∞

k=1 λkεk < ∞,
and by Lemma 4.4(ii)

∑∞
k=1 δk <∞. Invoking Lemma A.2 with vk := H(x∗, xk) ≥ 0

and βk := αηδk + α−1λkεk ≥ 0 implies that {H(x∗, xk)} converges, and, hence, by
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Lemma 2.1(i), that the sequence {xk} is bounded. The remainder of the proof is now
the same as given in Theorem 4.3(iii).

Remark 4.3. When εk = 0 ∀k, we recover the convergence result established in
[9]. Our proof and analysis is, however, considerably simpler than the one developed
in [9] and also provides, as in the case of Φ2, the global rate of convergence estimate

f(xn)− f(x) ≤ ασ−1
n H(x, x0) + αησ−1

n

n∑
k=1

δk.

We finally briefly indicate that our analysis could be further simplified by mod-
ifying the EPM described in (3.1) and (3.2) in much the same way it is done for
the classical quadratic proximal algorithm with approximate minimization steps; see,
e.g., [15]. More precisely, one could consider algorithm (3.1)–(3.2) with the additional
assumption that the sequence {xk} satisfies

Fk(x
k) ≤ Fk(x

k−1),(4.11)

where

Fk(x) := f(x) + λ−1
k dϕ(x, xk−1).

Using the definition of Fk, we note that (4.11) implies that

f(xk) + λ−1
k dϕ(xk, xk−1) ≤ f(xk−1) + λ−1

k dϕ(xk−1, xk−1) = f(xk−1),

namely, since dϕ ≥ 0, that {f(xk)} is nonincreasing. The latter fact allows for deriving
our results in an even simpler way. However, it should be noted that to require the
nonincreasingness of {f(xk)} may be difficult to realize in practice. We leave to the
reader to verify that when {xk} is generated by the EPM satisfying (4.11) one obtains
the following modified estimates (compare with Theorems 4.5(i)–4.3(i), respectively):

If ϕ ∈ Φ1 ∩ C3(0,+∞), then

f(xn)− f(x) ≤ ασ−1
n H(x, x0) + ασ−1

n η
n∑

k=1

δk + σ−1
n

n∑
k=1

λkεk ∀x ∈ R
p
+.

If ϕ ∈ Φ2, then

f(xn)− f(x) ≤ ασ−1
n H(x, x0) + σ−1

n

n∑
k=1

λkεk ∀x ∈ R
p
+.

The convergence results of Theorems 4.3–4.5 then hold for this modified version of
the EPM with σn →∞, εk → 0 to obtain a minimizing sequence and with

∑
λkεk <

∞ to get the global convergence of the sequence {xn} to an optimal solution of (P ). A
similar convergence result of this type, i.e., assuming that {f(xk)} is nonincreasing,
was derived by Kabbadj [12, Theorem 3.6.1] and more recently by Kiwiel [11] for
proximal-like methods based on Bregman distances.

5. The EPM for maximal monotone operators. In this section we extend
our analysis to consider the generalization of the EPM to maximal monotone opera-
tors. For simplicity of exposition, we will consider the exact version of the algorithm,
i.e., ε = 0 and only the case ϕ ∈ Φ2.
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A set valued map T : R
p → R

p is said to be a monotone operator if

〈y′ − y, x′ − x〉 ≥ 0 ∀y′ ∈ T (x′) ∀y ∈ T (x)

∀x, x′ ∈ domT := {x : T (x) 6= ∅}. A monotone operator is said to be maximal if its
graph

G(T ) = {(x, y) ∈ R
p × R

p : y ∈ T (x)}
is not properly contained in the graph of any other monotone operator.

Let U be a given maximal monotone operator. We want to solve the following
problem.

Find x∗ ∈ R
p such that 0 ∈ T (x∗),(5.1)

where

T (x) =

{
U(x) +NR

p
+
(x) if x ∈ R

p
+,

∅ otherwise.

Here NR
p
+

denotes the normal cone of R
p
+ (see [24, p. 215]), which is also maximal

monotone with domNR
p
+

= R
p
+. Under the assumption domU ∩ R

p
++ 6= ∅, by [25,

Theorem 1], T is also maximal monotone. Note that problem (5.1) is equivalent to
the complementary problem associated with the maximal monotone operator U , i.e.,

find (x, y) ∈ R
p
+ × R

p
+ ∩G(U) : 〈x, y〉 = 0,

while the solution of the convex minimization problem (P ) corresponds to the special
case U = ∂f under our assumption (A1).

The EPM for solving (5.1) is as follows: given x0 > 0, generate a sequence
{
xk
}

satisfying

xk > 0 : 0 ∈ U(xk) + λ−1
k Φ′(xk/xk−1).(5.2)

We will assume that the sequence
{
xk
}

is well defined; i.e., there exists a unique

xk > 0 solving (5.2). Some sufficient conditions for the existence of
{
xk
}

in the
special case ϕ = ϕ2 can be found in the recent work of Auslender and Haddou [1].
More recently, further existence results have also been established in [5], for more
general ϕ, but which also request further assumptions on both the class Φ2 and also
on the operator T (see also Remark 5.1 below).

Theorem 5.1. Let
{
xk
}
be the sequence generated by (5.2). Assume that T−1(0) 6=

∅, dom U ∩ R
p
++ 6= ∅, and let σn →∞. Then the following hold.

(i)
{
xk
}

is bounded.
(ii) Every limit point of the averaged sequence zn := σ−1

n

∑
λkx

k is a zero of T.
Proof. Let (x, y) ∈ G(T ). By (5.2) we have gk := −λ−1

k Φ′(xk/xk−1) ∈ U(xk).
Using Lemma 4.1(ii) with c = x, a = xk−1, b = xk we obtain

λk〈x− xk, gk〉 ≥ α[H(x, xk)−H(x, xk−1)].(5.3)

Since T is monotone and gk ∈ T (xk) = U(xk) (recall that xk > 0 implies NR
p
+
(xk) =

0) we have

〈x− xk, y〉 ≥ 〈x− xk, gk〉 ∀(x, y) ∈ G(T ).
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Using (5.3) we obtain

λk〈x− xk, y〉 ≥ α[H(x, xk)−H(x, xk−1)].(5.4)

Since T−1(0) 6= ∅, with the choice (x, y) = (x∗, 0) ∈ G(T ) in (5.4) we obtain

H(x∗, xk) ≤ H(x∗, xk−1),(5.5)

and, therefore,
{
H(x∗, xk)

}
is decreasing and

{
xk
}

is bounded, proving (i).
Summing (5.4) over k = 1, . . . , n, using the definition of σn and zn we then obtain

〈zn − x, y〉 ≤ ασ−1
n [H(x, x0)−H(x, xn)]

≤ ασ−1
n H(x, x0).

Since xn is bounded, so is zn. Let znj → z∞. Since σn → ∞, from the last
inequality it follows that 〈z∞ − x, y〉 ≤ 0 ∀(x, y) ∈ G(T ), which by the maximal
monotonicity of T (which is implied by the assumption dom U ∩ R

p
++ 6= ∅) means

that 0 ∈ T (z∞).
Remark 5.1. The above convergence result is not as strong as the one obtained

for the special maximal monotone operator ∂f. Even in the case of the classical
quadratic proximal algorithm, if in addition

∑
λ2
k < +∞, one can prove only ergodic

convergence results as the ones derived in Theorem 5.1, see [3]. This, however, should
not be too surprising due to the fact that ∂f enjoys additional properties not shared by
arbitrary maximal monotone operators and allows us to derive stronger convergence
results; see, for example, Bruck [4] for further results and details in the context of
quadratic proximal algorithms. With further assumptions on both T and ϕ, it is also
possible to prove global convergence of the sequence {xk}, as shown in the recent
work of Burachik [5, Chapter 6]. However, some of the assumptions needed on ϕ in
[5] are unfortunately ruling out some interesting particular realizations of the EPM,
such as the choice ϕ = ϕ2. For this special case, global convergence was established
in [1] under minimal assumptions.

6. Some applications. To further illustrate the simplicity and usefulness of the
analysis developed in section 4, we briefly consider in this section an extension of the
EPM to linearly constrained convex programs, as recently proposed by Auslender and
Haddou [1].

Thus following [1] we consider the more general convex problem

(GP ) f∗ = inf{f(x) : x ∈ C},
where C is a polyhedral set given by

C = {x ∈ R
p : Ax ≤ b}

with A an m× p matrix, b ∈ R
m, and m ≥ p. We denote by ai the rows of the matrix

A.
Throughout this section we assume for (GP ) that (H1) f∗ > −∞ and (H2) A is

of maximal rank. (The latter is clearly satisfied when C = R
p
+.)

Assume that intC 6= ∅ and define

li(x) = bi − 〈ai, x〉, i = 1, . . . ,m,(6.1)

L(x) = (l1(x), . . . , lm(x)),(6.2)

Dϕ(x, y) = dϕ(L(x), L(y)),(6.3)

D(x, y) = H(L(x), L(y)).(6.4)
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The EPM (in exact form) to solve (GP ), which will be called here the GEPM, is
then as follows: start with x0 ∈ intC and generate {xk} ∈ intC satisfying

xk = argmin{f(x) + µkDϕ(x, xk−1) : x ∈ R
p}.(6.5)

Note that for ease of comparison with the results of [1] we use here µk := 1/λk. Three
convergence results of the GEPM were established in [1] under the following three
different assumptions:

(H3) ϕ(t) = ϕ2(t) = − log t+ t− 1 and ∃µ > 0 : 0 < µk ≤ µ.
(H4) ϕ ∈ Φ1 ∩ C3(0,+∞), ∃µ, µ̄ > 0 : µ̄ ≤ µk ≤ µ.
(H5) ϕ ∈ Φ2, ∃µ > 0 : 0 < µk ≤ µ and

∑∞
k=1 µk = +∞.

As pointed out in [1], (H4) imposes serious restrictions on the choice of µk. (Note
that in [1] the assumption (H4) should also have required that ϕ ∈ Φ1 ∩C3(0,+∞).)
(H5) allows for relaxing the condition µk ≥ µ̄ but still requires

∑∞
k=1 µk = +∞. (H3)

is the weakest assumption on {µk} but handles only the special choice of ϕ = ϕ2. In
this particular case, as shown in [1], it is possible to establish an interesting quadratic
convergence result for linear programs. However, Auslender and Haddou [1] were not
able to extend such a result for a more general class of functions ϕ such as the one
satisfying (H5).

We show below that the analysis of section 4 can be applied to (GP ), allowing us
to both relax the hypothesis used in [1] and extend their results on the quadratic rate
of convergence for linear programming for more general ϕ than the one considered
in (H3). The key ingredient is once again Lemma 4.1. Indeed, using the optimality
conditions for (6.5) we obtain

gk − µk

m∑
i=1

aiϕ
′(li(xk)/li(xk−1)) = 0,(6.6)

where here gk ∈ ∂f(xk). Using the definition of the subdifferential for the convex
function f and (6.6) we then have ∀x ∈ C:

f(xk)− f(x) ≤ 〈gk, xk − x〉(6.7)

= µk

m∑
i=1

〈ai, xk − x〉ϕ′(li(xk)/li(xk−1)).(6.8)

Let ϕ ∈ Φ2. Applying Lemma 4.1(ii) (in R
m) at c = l(x), a = l(xk−1), b = l(xk) we

obtain using (6.2)–(6.4)

m∑
i=1

〈ai, xk − x〉ϕ′(li(xk)/li(xk−1)) ≤ α[D(x, xk−1)−D(x, xk)].(6.9)

Combining (6.8) and (6.9) we thus obtain ∀x ∈ C

f(xk)− f(x) ≤ αµk[D(x, xk−1)−D(x, xk)].(6.10)

The latter inequality is the basis from which convergence results for the GEPM easily
follow. For example, from (6.10), following the proof of Lemma 4.2 we can derive the
global estimate

f(xn)− f(x) ≤ ασ−1
n D(x, x0) ∀x ∈ C.(6.11)
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With σn =
∑n

k=1 µ
−1
k →∞, the convergence of the GEPM then follows with a similar

proof as given in Theorem 4.3 (and using [1, Lemma 2.2], which is an extension of
Lemma 2.1 for the polyhedral case C). Note that here instead of the assumption (H5)
we only require σn →∞, which is obviously satisfied if µk ∈ (0, µ), µ > 0. A similar
analysis allows us to prove convergence in the case Φ1 ∩ C3(0,+∞). We omit the
details since this can be done much in the same way it was done in section 4 for EPM
in that case.

Now consider the GEPM applied to linear programs, i.e., with f(x) = 〈c, x〉. Let
ρ(x,X∗) := infy∈X∗ ||x − y||2. The next result extends [1, Theorem 3.2], which was
proved only under (H3), i.e., for the special case ϕ(t) = − log t + t − 1, to the more
general class ϕ ∈ Φ2.

Theorem 6.1. Let ϕ ∈ Φ2. Assume that (H2) holds, µk ∈ (0, µ) for some
µ > 0, and that the optimal set X∗ of (GP) is nonempty. Let ν > 0 and choose µk ≤
min{µ, ν/min1≤i≤m li(x

k−1)} ∀k ≥ 1. Then the sequences {f(xk)} and {ρ(xk, X∗)}
converge quadratically to f∗ and 0, respectively.

Proof. Since X∗ is nonempty, from (6.10) we have

f(xk)− f∗ ≤ αµk[D(x∗, xk−1)−D(x∗, xk)] ∀x∗ ∈ C.

The rest of the proof now follows exactly the one given in [1, Theorem 3.2].

Appendix. The following result is due to Silverman and Toeplitz, a proof of
which can be found for example in [13, Theorem 2, p. 35].

Lemma A.1. Let {ank} be a sequence of real numbers satisfying
(i) ank ≥ 0 ∀n = 1, 2, . . . , k = 1, 2, . . . ,
(ii)

∑∞
k=1 ank = 1 ∀n = 1, 2, . . ., and limn→∞ ank = 0 ∀k = 1, 2, . . . .

If {uk} is a sequence such that limk→∞ uk = u, then limn→∞
∑n

k=1 ankuk = u.
Lemma A.2. Let {vk} and {βk} be nonnegative sequences of real numbers satis-

fying (i) vk+1 ≤ vk + βk, (ii)
∑∞

k=1 βk <∞. Then the sequence {vk} converges.
Proof. The proof is elementary. See also [20, Chapter 2].

Acknowledgment. The author is grateful to two referees for their valuable com-
ments and remarks which contributed greatly to improve the results and presentation.
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Abstract. We present methods for finding common fixed points of finitely many firmly non-
expansive mappings on a Hilbert space. At every iteration, an approximation to each mapping
generates a halfspace containing its set of fixed points. The next iterate is found by projecting the
current iterate on a surrogate halfspace formed by taking a convex combination of the halfspace
inequalities. This acceleration technique extends one for convex feasibility problems (CFPs), since
projection operators onto closed convex sets are firmly nonexpansive. The resulting methods are
block iterative and, hence, lend themselves to parallel implementation. We extend to accelerated
methods some recent results of Bauschke and Borwein [SIAM Rev., 38 (1996), pp. 367–426] on the
convergence of projection methods.

Key words. firmly nonexpansive mappings, successive projections, relaxation methods, convex
feasibility problems, surrogate inequalities

AMS subject classifications. 49M45, 90C25, 47H09
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1. Introduction. Let D be a closed convex nonempty subset of a real Hilbert
space H with inner product 〈·, ·〉 and norm ‖ · ‖. Let Ti : D → D (i ∈ I, |I| <∞) be
a collection of firmly nonexpansive mappings, i.e.,

‖Tix− Tiy‖2 ≤ 〈Tix− Tiy, x− y〉 ∀x, y ∈ D,(1)

with fixed-point sets Fi = FixTi = {x ∈ D : x = Tix}, i ∈ I. Our problem is to

find, if possible, any point x in
⋂

i∈I Fi.(2)

This generalizes the following CFP:

find, if possible, any point x in
⋂

i∈I Ci,(3)

where Ci are closed convex subsets of H, since we may let Ti = PCi
, where PCi

x =
arg miny∈Ci ‖x− y‖ is the projection mapping onto Ci. In turn, (2) is an instance of
(3) since each Ti is nonexpansive (‖Tix−Tiy‖ ≤ ‖x−y‖ ∀x, y ∈ D) and Fi is closed and
convex [AuE84, Theorem 5.2.1]; thus, (2) and (3) are essentially equivalent. Further,
if we let each Ti be the resolvent (Ī +Ai)

−1 of some maximal monotone operator Ai

in H, where Ī is the identity mapping, then problem (2) reduces to finding a common
zero for the Ais, whereas PCi = (Ī +NCi)

−1, where NCi is the (maximal monotone)
normal cone operator of Ci [Eck89, EcB92, Tse92]. Next, since (1) holds if and only
if Ti = 1

2 (Ī + Si) for some nonexpansive mapping Si [BaB96, Eck89, EcB92, Roc76],
problem (2) reduces to finding a common fixed point of the Sis. The earlier references
[BrR77, GoR84] contain fundamental material on firmly nonexpansive mappings and
their iterations and fixed points.
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bozena@ibspan.waw.pl)

1084



SURROGATE PROJECTION METHODS 1085

The recent survey of [BaB96] lists numerous applications and unifies and improves
many algorithms for the CFP; other improvements are given in [Fl̊a95]. Another
recent survey of [Kiw95] is restricted to finite-dimensional CFPs but gives strong
convergence results for both the “short-step” methods discussed in [BaB96, Fl̊a95] and
the accelerated “long-step” methods stemming from [Mer62] (see also [GP93]). Our
study [Kiw95] was motivated mainly by possible applications of methods for the CFP
in algorithms for convex nondifferentiable optimization [Kiw96a, Kiw96b, Kiw97].

This paper establishes convergence of long-step methods for (2) derived via the
acceleration techniques of [Kiw95]. Our results on rate of convergence in the infinite-
dimensional setting indicate that the methods of [Kiw95] should work well even when
the dimension of the space becomes very large. Our work has benefited greatly from
the general framework of [BaB96]; in fact, most of our results parallel ones obtained in
[BaB96] for short-step methods, and, hence, we shorten some of our proofs by referring
to [BaB96] (the extended version of our report [Ki L94] provides more details). Yet
another recent perspective on long-step methods of [Com95a, Com95b, Com97] follows
a different path (cf. Remark 2.4).

The paper is organized as follows. In section 2 we describe a general method
and its basic properties. Our general convergence results of sections 3 and 4 hinge
on generalizations of the concepts of focusing and linearly focusing algorithms of
[BaB96]. These concepts, as well as that of linear regularity, are exploited in section
5 in deriving linear rate of convergence results. In section 6 we discuss some examples
of [BaB96]. In section 7 we establish convergence of subgradient algorithms for the
case where each Ci is a lower-level set of some convex function. Extensions of the
surrogate and scalarized subgradient cuts of [Kiw95, Oet75] are given in sections 8
and 9. In section 10 we specialize the preceding results to the case where each Ci is
polyhedral. Finally, section 11 extends some results of [Com95a, Com95b, Com97]
for infinitely many constraints.

We use the following notation. B(x, r) = {y : ‖y − x‖ ≤ r} is the ball with
center x and radius r, H = {x : 〈a, x〉 ≤ b} (a ∈ H, b ∈ R) is called a halfspace
(including H = H or ∅), dC = infc∈C ‖ · −c‖ is the distance function of a closed
convex C ⊂ H (with PC = I and dC(·) = ∞ if C = ∅), intS and coS are the interior
and closed convex hull of S ⊂ H, {1:N} = {1, 2, . . . , N}, R

N
+ = {λ ∈ R

N : λ ≥ 0}
and t+ = max{t, 0} ∀t ∈ R. We shall need the following results.

Lemma 1.1 (see [BaB96, Lemma 2.4]). If T : D → D is firmly nonexpansive and
c ∈ FixT, then 〈x− Tx, c〉 ≤ 〈x− Tx, Tx〉 ∀x ∈ D.

Corollary 1.2 (see [BaB96, Corollary 2.5]). If C is a closed convex set and α ≥
0, then RC,α = (1−α)I+αPC satisfies ‖c−RC,αx‖2 ≤ ‖c−x‖2−α(2−α)‖x−PCx‖2
∀c ∈ C, x ∈ H.

2. A general algorithm and its basic properties. Identifying (2) and (3),
let Ci = Fi, i ∈ I, N = |I| (so that I = {1:N}), and C = ∩i∈ICi. We first state a
general algorithm for (2), without assuming that C 6= ∅.

Algorithm 2.1.
Step 0 (initiation). Select an initial point x0 ∈ D, a weight threshold λmin ∈

(0, 1
N ], and a starting localization radius ρ0 ≥ dC(x0). Set the iteration counter to

n = 0.
Step 1 (working set selection). Choose a nonempty set În ⊂ I, so that for each

i ∈ I, i ∈ În for infinitely many n.
Step 2 (halfspace selection). For each i ∈ În, choose a firmly nonexpansive

operator T
(n)
i : D → D with FixT

(n)
i ⊃ Ci, let xin = T

(n)
i xn and Hn

i = {x :
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〈
ain, x

〉 ≤ bin} with

(ain, bin) = (xn − xin,
〈
xn − xin, xin

〉
) ∀i ∈ În.(4)

Step 3 (surrogate construction). Find a weight vector λn ∈ R
|I|
+ , λni = 0, i /∈ În,∑

i∈I λ
n
i = 1, for the surrogate inequality 〈ân, x〉 ≤ b̂n with

(ân, b̂n) =
∑
i∈În

λni (ain, bin) =
∑
i∈În

λni (xn − xin,
〈
xn − xin, xin

〉
)(5)

such that the surrogate halfspace Ĥn = {x : 〈ân, x〉 ≤ b̂n} satisfies

dĤn(xn) ≥ λmin max
i∈În

dHn
i

(xn).(6)

If Ĥn = ∅, print “C = ∅” and stop.
Step 4 (relaxation). Select a relaxation parameter αn ∈ (0, 2] and set (cf. Corollary

1.2)

xn+1 = RĤn,αn
xn = xn + αn(PĤnx

n − xn),(7)

σn = αn(2− αn)d 2
Ĥn(xn).(8)

Step 5 (infeasibility detection). If ρ2
n < σn, print “C = ∅” and stop.

Step 6 (update locality radius). Set ρn+1 = (ρ2
n − σn)

1
2 , increase n by 1 and go

to Step 1.
Define the set of active indices In = {i ∈ În : λni > 0}. Suppose xn ∈ D. At Step

2, by Lemma 1.1 with T = T
(n)
i , we have Ci ⊂ FixT

(n)
i ⊂ Hn

i ∀i ∈ În. By (4)–(5),〈
ain, xn

〉− bin = ‖ain‖2 = ‖xn − xin‖2 ∀i ∈ În,(9)

〈ân, xn〉 − b̂n =
∑
i∈In

λni ‖xn − xin‖2 and ‖ân‖ = ‖
∑
i∈In

λni (xn − xin)‖,(10)

so xin = PHn
i

(xn), dHn
i

(xn) = ‖xn − xin‖ = ‖ain‖, ∀i ∈ În. Since ∩i∈InCi ⊂
∩i∈InHn

i ⊂ Ĥn from λn ≥ 0, by Corollary 1.2 and (8),

‖c− xn+1‖2 ≤ ‖c− xn‖2 − αn(2− αn)d 2
Ĥn(xn)

(11)
= ‖c− xn‖2 − σn ∀c ∈ ∩i∈InCi.

Thus progress toward the solution is measured by dĤn(xn), and we shall be interested
in deep cuts that have dĤn(xn) as large as possible.

Remark 2.2. Inequality (6) holds if λnı̂ ≥ λmin for some ı̂ ∈ Inmax := Arg maxi∈În ‖xn−
xin‖, since

dĤn(xn) =
〈ân, xn〉 − b̂n

‖ân‖ ≥ λmin

maxi∈În(
〈
ain, xn

〉− bin)

maxi∈În ‖ain‖
= λmin max

i∈În
dHn

i
(xn)

from 〈ân, xn〉 − b̂n ≥ λmin‖aı̂n‖2 and ‖ân‖ ≤ ∑
i λ

n
i maxi ‖ain‖ by the convexity of

‖ · ‖.
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Remark 2.3. Other ways of finding cuts are given in [Kiw95, Example 3.1] and
section 8; e.g., λni = ‖ain‖γ/∑j ‖ajn‖γ , i ∈ În, are admissible if γ ≥ 0, since

maxi∈Inmax
λni ≥ 1/|În|. The deepest surrogate cut that maximizes dĤn(xn) is ob-

tained for weights that solve

max



∑

i∈În λi‖ain‖2
‖∑i∈În λia

in‖ : λi ≥ 0, i ∈ În,
∑
i∈În

λi = 1


(12)

(cf. (9)–(10)), in which case PĤnxn = P∩i∈ÎnHn
i
xn. “Cheap” approximate solutions

to (12) (that satisfy (6) with λmin = 1) are discussed in [Kiw95, Kiw96b, Kiw97].
Remark 2.4. Conditions like λni ≥ λmin for all i ∈ In (cf. Remark 2.2) simplify

the convergence analysis [Com97], but they need not hold for (approximate) solutions
of (12).

Remark 2.5. Let ĉn = (〈ân, xn〉− b̂n)/‖ân‖2. Then (cf. (5), (7)) PĤn(xn)−xn =
−ĉnân and xn+1 = xn − αnĉnâ

n if ân 6= 0, whereas the method of [BaB96] would
produce

x̃n+1 = xn + αn

(∑
i∈In

λni x
in − xn

)
= xn − αnâ

n.(13)

Both the long-step method (7) and the short-step method (13) use the same direction,
but the former can take a much longer step when some tangent cone to ∩i∈InHn

i is

“flat” and ĉn � 1 [Kiw95, Lemma 4.3]. Of course, both steps coincide if |În| = 1, so
the expected improvements will crystalize for parallel methods.

Remark 2.6. The short-step method (13) is replaced in [BaB96] by x̃n+1 =

xn+
∑

i∈In λ̃
n
i α

(n)
i (xin−xn) with stepsizes α

(n)
i ∈ [0, 2] and weights λ̃ni ≥ 0,

∑
i∈I λ̃

n
i =

1. This iteration is equivalent to (13) with αn =
∑

i∈I λ̃
n
i α

(n)
i ∈ [0, 2] and λni =

λ̃ni α
(n)
i /αn.
By (11), the sequence {xk} is Fejér monotone with respect to C = ∩iCi

‖c− xn+1‖2 ≤ ‖c− xn‖2 − σn ≤ ‖c− x0‖2 −
n∑

j=0

σj ≤ ‖c− x0‖2 ∀c ∈ C,∀n.(14)

Using ρ2
n = ρ2

0 −
∑n−1

j=0 σj , one may prove the following lemma as in [Kiw95], so we
omit its proof. Lemma 2.7 can be used to detect C = ∅.

Lemma 2.7 (the nested ball principle). If (ρ0 − ‖xn+1 − x0‖)2 > ρ2
n − σn then

C = ∅.
3. Basic convergence results. From now on, unless stated otherwise, we as-

sume that C 6= ∅ and {xn} ⊂ D. The second condition is assumed implicitly in
[BaB96]; it holds, e.g., if D = H or B(c, ‖c− x0‖) ⊂ D for some c ∈ C (cf. (14)). Let
α∞ = limn αn and α∞ = limn αn.

Lemma 3.1.
(i) ‖c− xn‖2 − ‖c− xn+1‖2 ≥ αn(2− αn)d 2

Ĥn
(xn) if c ∈ ∩i∈InCi.

(ii) ‖c − xn‖2 − ‖c − xm‖2 ≥ ∑m−1
l=n αl(2 − αl)d

2
Ĥl

(xl) if c ∈ ∩m−1
l=n ∩i∈Il Ci,

m ≥ n ≥ 0.
(iii) {xn} is Fejér monotone with respect to C (hence bounded) and

∞∑
l=0

αl(2− αl)d
2
Ĥl(x

l) <∞.
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Proof. (i) repeats (11). (ii)–(iii) follow from (i).
Corollary 3.2.

(i) If intC 6= ∅, then {xn} converges in norm to some x ∈ D.
(ii) If limn dC(xn) → 0, then {xn} converges in norm to some x ∈ C.

(iii) {xn} has at most one weak cluster point in C.
Proof. This follows from Lemma 3.1(iii) and [BaB96, Theorem 2.16].
Corollary 3.3. If intC 6= ∅, then

∑
n ‖xn+1 − xn‖ =

∑
n αndĤn(xn) <∞.

Proof. Fix c ∈ intC and get ε > 0 such that (s.t.) B(c, ε) ⊂ C. Suppose
xn+1 6= xn. Let y = (xn − xn+1)/‖xn − xn+1‖, so that c + εy ∈ C and, by Fejér
monotonicity, ‖c+ εy− xn+1‖2 ≤ ‖c+ εy− xn‖2. Expanding yields 2ε‖xn+1 − xn‖ ≤
‖c − xn‖2 − ‖c − xn+1‖2, so

∑
n ‖xn+1 − xn‖ < ∞, with ‖xn+1 − xn‖ = αndĤn(xn)

by (7).
Corollary 3.4. If α∞ < 2, then the algorithm is regular, i.e., ‖xn+1 − xn‖ →

0.
Proof. By Lemma 3.1(iii),

∑
n αnd

2
Ĥn

(xn) <∞, so, since

‖xn+1 − xn‖ = αndĤn(xn)

(cf. (7)) and αn ≤ 2,
∑

n ‖xn+1 − xn‖2 <∞.
Corollary 3.5. If 0 < α∞, α∞ < 2, then dĤn(xn) → 0 and limn:i∈În dHn

i
(xn) =

0 ∀i ∈ I.
Proof. This follows from Lemma 3.1(iii) and (6).
As in [BaB96], from now on we assume that the algorithm is focusing.
Definition 3.6. We say the algorithm is focusing if for each i ∈ I and subse-

quence {xnk}, the conditions xnk ⇀ x, dHnk
i

(xnk) → 0 (i.e., xnk − T
(nk)
i xnk → 0)

and i ∈ Înk ∀k imply x ∈ Ci, where → and ⇀ stand for norm and weak convergence
respectively.

Fact 3.7 (see [BaB96, Proposition 3.16]). Suppose for each i ∈ I, {T (n)
i } con-

verges actively pointwise to Ti, i.e., limn:i∈În T
(n)
i x = Tix for every x ∈ D. Then the

algorithm is focusing.
Theorem 3.8. If 0 < α∞, α∞ < 2, then {xn} either converges in norm to some

point in C or has no norm cluster points at all.
Proof. Use Corollary 3.5 in the proof of [BaB96, Theorem 3.10].
Remark 3.9. If there exists ε > 0 s.t. {αn} ⊂ [ε, 2− ε], then 0 < α∞, α∞ < 2.
Definition 3.10. We say the algorithm is intermittent or p-intermittent if there

is a positive integer p s.t. i ∈ În ∪ În+1 ∪ · · · ∪ În+p−1 for each i ∈ I and all n.
Theorem 3.11.

(i) Suppose the algorithm is intermittent and 0 < α∞, α∞ < 2. Then {xn} is
regular and converges weakly to some point in C.

(ii) Suppose the algorithm is p-intermittent, and ν̂n = min{αl(2 − αl) : np ≤
l < (n + 1)p} ∀n ≥ 0. If

∑
n ν̂n = ∞, then {xn} has a unique weak cluster point in

C and a subsequence xnkp ⇀ x ∈ C s.t.

(nk+1)p−1∑
l=nkp

{
max
i∈Îl

d 2
Hl
i
(xl) + ‖xl+1 − xl‖2

}
→ 0.(15)

(iii) Suppose {xn} converges weakly to some point x. If
∑

n:i∈În αn(2−αn) = ∞
for some i ∈ I, then x ∈ Ci. Consequently, x ∈ C if

∑
n:i∈În αn(2 − αn) = ∞ for

every i ∈ I.
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Proof. (i) Use Corollary 3.4 and Corollary 3.5 in the proof of [BaB96, Theorem
3.20(i)]. (ii) Let c ∈ C. By Lemma 3.1(ii), (6) and the definition of ν̂n, for all n ≥ 0,

‖xnp − c‖2 − ‖x(n+1)p − c‖2 ≥ ν̂n

(n+1)p−1∑
l=np

d 2
Ĥl(x

l) ≥ ν̂n

(n+1)p−1∑
l=np

λ2
min max

i∈Îl
d 2
Hl
i
(xl),

where 2dĤl(xl) ≥ ‖xl+1−xl‖ by (7). The conclusion follows as in the proofs of [BaB96,
Theorem 3.20(ii)] and Theorem 3.15. (iii)

∑
n:i∈În αn(2− αn)λ2

mind
2
Hn
i

(xn) < ∞ (cf.

Lemma 3.1(iii) and (6)) yields limn:i∈În dHn
i

(xn) = 0, so x ∈ Ci because the algorithm
is focusing.

Remark 3.12. If 0 < α∞, α∞ < 2, then
∑

n:i∈În αn(2− αn) = ∞ for all i.

Theorem 3.13.

(i) If
∑

n:În=I αn(2 − αn) = ∞, then {xn} has a unique cluster point x in C
and a subsequence {xnk} s.t. xnk ⇀ x and maxi∈I dHnk

i
(xnk) → 0.

(ii) If there exist ε > 0 and a subsequence {xnk} s.t. ε ≤ αnk ≤ 2 − ε and

Înk = I for all k, then xnk ⇀ x for some x ∈ C and maxi∈I dHnk
i

(xnk) → 0.

Proof. (i) By Lemma 3.1(iii),
∑

n αn(2− αn)d 2
Ĥn

(xn) <∞, so

lim
n

max
i∈I

dHn
i

(xn) = 0

by (6). Thus we can extract a subsequence {xnk} and fix x s.t. maxi∈I dHnk
i

(xnk) → 0

and xnk ⇀ x. Since the algorithm is focusing, x ∈ C (cf. Definition 3.6). By Corollary
3.2(iii), {xn} has at most one weak cluster point in C, so (i) holds. (ii) is proved
similarly.

Definition 3.14. The algorithm is quasi cyclic if there is an increasing sequence
of integers {τk}∞k=0 s.t. τ0 = 0,

∑∞
k=0(τk+1 − τk)−1 = ∞ and I =

⋃τk+1−1
l=τk

Î l ∀k.
Theorem 3.15. Suppose the algorithm is quasi cyclic and 0 < α∞, α∞ < 2.

Then {xn} has a unique weak cluster point in C and a subsequence xτk′ ⇀ x ∈ C s.t.

τk′+1−1∑
l=τk′

{
max
i∈Îl

dHl
i
(xl) + ‖xl+1 − xl‖

}
→ 0.(16)

Proof. Fix c ∈ C and k̄ s.t. αl(2−αl) ≥ ε > 0 ∀l ≥ k̄. By Lemma 3.1(ii), ∀k ≥ k̄,

‖xτk − c‖2 − ‖xτk+1 − c‖2 ≥ ε

τk+1−1∑
l=τk

d 2
Ĥl(x

l) ≥ ε(τk+1 − τk)−1

τk+1−1∑
l=τk

dĤl(x
l),

using the Cauchy–Schwarz inequality. Summing and invoking Definition 3.14 yields

the existence of a subsequence {xτk′ } s.t.
∑τk′+1−1

l=τk′
dĤl(xl) → 0. Then (16) follows

from (6) and the fact that 2dĤl(xl) ≥ ‖xl+1 − xl‖ (cf. (7)). Extracting a subse-
quence if necessary, assume xτk′ ⇀ x ∈ D. To see that x ∈ C, for any i ∈ I, pick
nk′ ∈ {τk′ : τk′+1 − 1} s.t. i ∈ Înk′ to get x ∈ Ci, since the algorithm is focusing,
d
H
n
k′

i
(xnk′ ) → 0 and xnk′ ⇀ x by (16). By Corollary 3.2(iii), x is the unique weak

cluster point of {xn} in C.
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4. Projection setting. At Step 2 we have xin = T
(n)
i xn = PHn

i
xn with Hn

i ⊃
Ci for every index i and all n. Hence, as in the setting of [BaB96, section 4], one

might assume that T
(n)
i is the projection onto some closed convex set Cn

i containing

Ci: T
(n)
i = PCn

i
and Cn

i ⊃ Ci for all i and n.

Definition 4.1. Let d̂i(x) = ‖x − Tix‖ be the defect function of Ti, i ∈ I, so

that d̂i(x) = 0 iff x ∈ Ci. We say the algorithm is linearly focusing if there is β > 0

s.t. βd̂i(x
n) ≤ dHn

i
(xn) for all large n and every i ∈ În; it is strongly focusing if for

every index i and every subsequence {xnk}, the conditions xnk ⇀ x, dHnk
i

(xnk) → 0

and i ∈ Înk imply d̂i(x
nk) → 0, and hence x ∈ Ci by the demiclosedness principle

[Opi67, Lemma 2]. Thus (cf. Definition 3.6): linearly focusing ⇒ strongly focusing ⇒
focusing.

Remark 4.2. For each i ∈ I, d̂i is nonexpansive (so is Ī − Ti from ‖(x − Tix) −
(y − Tiy)‖2 ≤ ‖x− y‖2 − ‖Tix− Tiy‖2; cf. [Eck89, section 3.2.4]).

Corollary 4.3. If the algorithm uses constant operators, i.e., T
(n)
i = Ti for all

n ≥ 0 and i ∈ I, then the algorithm is linearly focusing.
Corollary 4.4. If the set S = {xn : n ≥ 0} is relatively compact, then the algo-

rithm is strongly focusing. In particular, this holds whenever H is finite-dimensional
or intC 6= ∅.

Proof. Use continuity of Ti in the proof of [BaB96, Corollary 4.12].
Corollary 4.5. Suppose the algorithm is linearly focusing, 0 < α∞, α∞ < 2

and either H is finite dimensional or intC 6= ∅. Then {xn} converges in norm to
some point in C.

Proof. If intC 6= ∅, then {xn} converges in norm (Corollary 3.2(i)). If dimH <∞,
then {xn} has a norm cluster point. The result follows from Theorem 3.8.

Theorem 4.6. Suppose intC 6= ∅, so that {xn} converges to some x (Corollary
3.2(i)). If

∑
n:i∈În αn = ∞ for some i ∈ I, then x ∈ Ci. Thus, x ∈ C if

∑
n:i∈În αn =

∞ for all i ∈ I.
Proof. Since

∑
n:i∈În αndĤn(xn) <∞ by Corollary 3.3 with

dĤn(xn) ≥ λmindHn
i

(xn)

if i ∈ În by (6), we have limn dHn
i

(xn) = 0. Since the algorithm is focusing,
x ∈ Ci.

Corollary 4.7. Suppose {xn} has a subsequence {xn′} s.t. limn′ αn′ > 0 and
În

′
= I for all n′. If intC 6= ∅, then {xn} converges in norm to some point in C.
Remark 4.8. Note that the last theorem works especially when αn ≡ 2, in which

case none of the previous results are applicable. The result of [BaB96, Theorem 4.22]
corresponding to Corollary 4.7 assumes additionally that λn

′
i → λi ∈ (0, 1] for i ∈ I.

Definition 4.9. We say the algorithm considers remotest sets if În contains
some active remotest index in ∈ Înrem := {i : d̂i(x

n) = maxj∈I d̂j(xn)} for all n.
Theorem 4.10. Suppose the algorithm is strongly focusing and considers re-

motest sets.
(i) If

∑
n αn(2 − αn) = ∞, then {xn} has a unique cluster point in C and a

subsequence xnk ⇀ x ∈ C s.t. maxi∈I d̂i(xnk) → 0.

(ii) If 0 < α∞, α∞ < 2, then xn ⇀ x for some x ∈ C and maxi∈I d̂i(xn) → 0.
Proof. (i) By Lemma 3.1(iii),

∑
n αn(2−αn)d 2

Ĥn
(xn) <∞, so limn dHn

in
(xn) = 0

by (6). Thus we can extract a subsequence {xnk} and fix x and i ∈ I s.t. dHnk
i

(xnk) →
0, ink ≡ i and xnk ⇀ x. Since the algorithm considers remotest sets and is strongly
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focusing, we deduce maxj∈I d̂j(xnk) = d̂i(x
nk) → 0 and x ∈ C (cf. Definition 4.1).

By Corollary 3.2(iii), {xn} has at most one weak cluster point in C, so (i) holds. (ii)
is proved similarly.

Remark 4.11. Theorem 4.10 also holds for the approximate remotest set control
which demands that

max
i∈I

d̂i(x
nk) → 0 whenever xnk ⇀ x and max

i∈Înk
dHnk

i
(xnk) → 0.

This control was used in [GPR67, Kiw95] with d̂j replaced by dCj
.

5. Norm convergence and bounded regularity. Guaranteeing norm conver-
gence requires further assumptions.

Definition 5.1. {Ti}i∈I is regular if ∀ε > 0 ∃δ > 0 ∀x ∈ H : maxi∈I d̂i(x) ≤
δ ⇒ dC(x) ≤ ε, and boundedly regular if ∀ bounded S ⊂ H ∀ε > 0 ∃δ > 0 ∀x ∈
S : maxi∈I d̂i(x) ≤ δ ⇒ dC(x) ≤ ε. {Ci}i∈I is (boundedly) regular if {Ti = PCi

}i∈I
(then d̂i = dCi

∀i ∈ I) is also.
Theorem 5.2. Suppose the algorithm is strongly focusing and p-intermittent,

and ν̂n = min{αl(2− αl) : np ≤ l < (n+ 1)p} ∀n ≥ 0. If
∑

n ν̂n = ∞ and {Ti}i∈I is
boundedly regular, then {xn} converges in norm to some point in C.

Proof. Use Theorem 3.11(ii) and the proofs of [BaB96, Theorem 5.2] or Theorem
5.5.

Theorem 5.3. Suppose the algorithm is strongly focusing and considers remotest
sets, and {Ti}i∈I is boundedly regular. If

∑
n αn(2− αn) = ∞, then {xn} converges

in norm to some point in C. In particular, this happens whenever 0 < α∞, α∞ < 2.
Proof. Use Theorem 4.10(i) and the proof of [BaB96, Theorem 5.3].
Theorem 5.4. Suppose the algorithm is strongly focusing and {Ti}i∈I is bound-

edly regular. If
∑

n:În=I αn(2−αn) = ∞, then {xn} converges in norm to some point
in C.

Proof. By Theorem 3.13(i), xnk ⇀ x and maxi∈I dHnk
i

(xnk) → 0 imply that

maxi∈I d̂i(xnk) → 0 (strong focusing), so dC(xnk) → 0 by bounded regularity; apply
Corollary 3.2(ii).

Theorem 5.5. Suppose the algorithm is strongly focusing and quasi cyclic, and
0 < α∞, α∞ < 2. If {Ti}i∈I is boundedly regular, then xn → x for some x ∈ C.

Proof. Using Definition 3.14 and (16) with xτk′ ⇀ x ∈ C, for any i ∈ I pick
nk′ ∈ {τk′ : τk′+1 − 1} s.t. i ∈ Înk′ , d

H
n
k′

i
(xnk′ ) → 0, xnk′ − xτk′ → 0, and xnk′ ⇀ x.

As the algorithm is strongly focusing, d̂i(x
nk′ ) → 0. But d̂i is nonexpansive (Remark

4.2) and xnk′ − xτk′ → 0, so d̂i(x
τk′ ) → 0. Since i is arbitrary, maxi∈I d̂i(xτk′ ) → 0.

Now {Ti}i∈I is boundedly regular and {xn} is bounded, so dC(xτk′ ) → 0. Hence
(Corollary 3.2(ii)), xn → x.

As in [BaB96], guaranteeing linear convergence requires linear regularity.
Definition 5.6. {Ti}i∈I is linearly regular if ∃κ > 0 ∀x ∈ H: dC(x) ≤

κmaxi∈I d̂i(x), and boundedly linearly regular if ∀ bounded S ⊂ H ∃κS > 0 ∀x ∈ S:

dC(x) ≤ κS maxi∈I d̂i(x). {Ci}i∈I is (boundedly) linearly regular if {Ti = PCi
}i∈I

(then d̂i = dCi ∀i ∈ I) is also.
We say {xn} converges linearly with rate β ∈ [0, 1) if there are x ∈ H and α ≥ 0

s.t. ‖xn − x‖ ≤ αβn for all n.
Theorem 5.7. Suppose the algorithm is linearly focusing and p-intermittent,

{αn} ⊂ [ε, 2−ε] for some ε > 0, and {Ti}i∈I is boundedly linearly regular. Then {xn}
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converges linearly to some point in C; the rate of convergence is independent of the
starting point whenever {Ti}i∈I is linearly regular.

Proof. Fix any i ∈ I. For all k ≥ 0, get mk ∈ {kp: (k + 1)p − 1} with i ∈ Îmk .

Since d̂i is nonexpansive (Remark 4.2),

d̂i(x
kp) ≤ ‖xkp − xmk‖+ d̂i(x

mk) ≤
mk−1∑
l=kp

‖xl+1 − xl‖+ d̂i(x
mk),

so

d̂ 2
i (xkp) ≤ (mk + 1− kp)


mk−1∑

l=kp

‖xl+1 − xl‖2 + d̂ 2
i (xmk)




by the Cauchy–Schwarz inequality. Fix c ∈ C. Since minα∈(0,2−ε](2 − α)/α > ε/2,
Lemma 3.1(i) with αn ≤ 2− ε and ‖xn+1 − xn‖ = αndĤn(xn) (cf. (7)) yield

‖xn − c‖2 − ‖xn+1 − c‖2 ≥ 2− αn
αn

‖xn+1 − xn‖2 ≥ ε

2
‖xn+1 − xn‖2,

so

ε

2

mk−1∑
l=kp

‖xl+1 − xl‖2 ≤ ‖xkp − c‖2 − ‖xmk − c‖2 ≤ ‖xkp − c‖2 − ‖x(k+1)p − c‖2.

Since the algorithm is linearly focusing, there is β > 0 s.t. βd̂j(x
n) ≤ dHn

j
(xn) for

all j ∈ În and large n, whereas maxj∈În dHn
j

(xn) ≤ dĤn(xn)/λmin by (6), and

ε2d 2
Ĥn

(xn) ≤ ‖xn − c‖2 − ‖xn+1 − c‖2 from (11) with αn(2 − αn) ≥ ε2. Hence,

β2ε2λ2
mind̂

2
i (xmk) ≤ ‖xmk − c‖2 − ‖xmk+1 − c‖2 ≤ ‖xkp − c‖2 − ‖x(k+1)p − c‖2. Thus,

d̂ 2
i (xkp) ≤ p

(
2

ε
+

1

β2ε2λ2
min

)(
‖xkp − c‖2 − ‖x(k+1)p − c‖2

)
.(17)

The conclusion follows as in the proof of [BaB96, Theorem 5.7].
Theorem 5.8. Suppose the algorithm is linearly focusing, considers remotest

sets, there is ε > 0 s.t. ε ≤ αn ≤ 2−ε for all large n, and {Ti}i∈I is boundedly linearly
regular. Then {xn} converges linearly to some point in C; the rate of convergence is
independent of the starting point whenever {Ti}i∈I is linearly regular.

Proof. Use (17) with p = 1, i = in (omit 2
ε ) as in [BaB96, Proof of Theorem

5.8].
Remark 5.9. As in [BaB96], one may use Ti = PCi

∀i ∈ I in the preceding results.

6. Examples.
Example 6.1. Suppose the algorithm is linearly focusing, 0 < α∞, α∞ < 2, and

some Tj is demicompact [Com95a]; e.g., its range is boundedly compact (e.g., so is
Cj and Tj = PCj ). Then {xn} converges in norm to some point in C.

Proof. By Corollary 3.5, limn:j∈În dHn
j

(xn) = 0. Since the algorithm is linearly

focusing, it has a subsequence {xn′} with j ∈ În
′

and ‖xn′ − Tjx
n′‖ = d̂j(x

n′) → 0.

Passing to a subsequence if necessary, we can assume that {Tjxn′} is norm convergent.

Hence, {xn′} has a norm cluster point. The result follows from Theorem 3.8.
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Example 6.2. Our framework covers the examples of [BaB96, Examples 6.1, 6.3,
6.5, 6.6, 6.8, 6.11, 6.15, 6.16, 6.17, 6.18, 6.21, 6.22, 6.24, 6.35, 6.43, and 6.44].

Example 6.3. Our framework provides “long-step” versions (cf. Remark 2.5) of
the examples of [BaB96, Examples 6.13, 6.20, 6.27, 6.34, 6.37, 6.39, 6.40, 6.42, and
6.50].

Remark 6.4. Our framework does not cover Examples 6.30 and 6.47 of [BaB96]
because Theorems 6.29 and 6.46 of [BaB96] hinge on a certain regularity property of
short-step methods.

7. Subgradient algorithms. Throughout this section and sections 8 and 9 we
make the following standing assumption.

Assumption 7.1. Ci = {x : fi(x) ≤ 0} for every i ∈ I (= {1:N}), where
fi : H → R is a convex function whose subdifferential ∂fi, defined by

∂fi(x̂) = {g ∈ H : fi(x) ≥ fi(x̂) + 〈g, x− x̂〉 ∀x ∈ H} ∀x̂ ∈ H,
is nonempty and uniformly bounded on bounded sets, so that fi is bounded and
Lipschitz continuous on bounded sets (cf. [BaB96, Proposition 7.8]).

Definition 7.2. The algorithm is called a subgradient algorithm if, for all n

and i ∈ În, Step 2 chooses T
(n)
i = PȞn

i
, where Ȟn

i = {x : fi(x
n) +

〈
gin, x− xn

〉 ≤ 0}
for some gin ∈ ∂fi(x

n), so that PȞn
i

(xn) = xn − f+
i

(xn)

‖gin‖2 g
in, where f+

i = max{fi, 0}
and 0

0 := 0.
Theorem 7.3. Let ĉ ∈ C and Li = sup{‖g‖ : g ∈ ∂fi(x), x ∈ B(ĉ, ‖ĉ − x0‖)},

i ∈ I. Then {xn} ⊂ B(ĉ, ‖ĉ−x0‖) and ‖gin‖ ≤ Li for all i ∈ În and n ≥ 0. Further,
(i) the subgradient algorithm is focusing for Ti = PCi

, i ∈ I (cf. Definition 3.6);
and

(ii) if there is some Slater point x̌ s.t. supi∈I fi(x̌) < 0, then

dCi
(xn) ≤ ‖x̌− x0‖

−fi(x̌)
f+
i (xn) ≤ Li‖x̌− x0‖

−fi(x̌)
dȞn

i
(xn)

for all i ∈ În and n ≥ 0, where Li corresponds to ĉ = x̌. Thus, the algorithm is

linearly focusing with β = infi∈I
−fi(x̌)

Li‖x̌−x0‖ (cf. Definition 4.1).

Proof. Use the proofs of [BaB96, Theorems 7.7 and 7.12].
We only give two translations of the preceding convergence results.
Theorem 7.4.

(i) Suppose the subgradient algorithm is intermittent, and 0 < α∞ and α∞ < 2.
Then {xn} is regular and converges weakly to some point in C.

(ii) Suppose the subgradient algorithm is p-intermittent and ν̂n = min{αl(2 −
αl) : np ≤ l < (n+ 1)p} ∀n ≥ 0. If

∑
n ν̂n = ∞, then {xn} has a unique weak cluster

point in C.
Proof. Combine Theorems 3.11 and 7.3.
Theorem 7.5. Suppose for some x̌ ∈ H and ε̌ > 0, supi∈I fi(x̌) ≤ −ε̌. Then

x̌ ∈ intC, {Ci}i∈I is boundedly linearly regular and {xn} converges in norm to some
x ∈ H.

(i) If
∑

n:i∈În αn = ∞ for every index i, then x ∈ C.
(ii) If the algorithm is intermittent or considers remotest sets, and {αn} ⊂

[ε, 2− ε] for some ε > 0, then x ∈ C and {xn} converges linearly to x.
Proof. If x ∈ B(x̌, infi{ ε̌

Li
, ‖x̌−x0‖}), g ∈ ∂fi(x), then fi(x̌) ≥ fi(x)+〈g, x̌− x〉 ≥

fi(x) − Li‖x̌ − x‖ yields fi(x) ≤ 0, so x̌ ∈ intC and {Ci}i∈I is boundedly linearly
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regular [GPR67, Equation (11)]. By Theorem 7.3, the algorithm is linearly focusing,
so (i) follows from Theorem 4.6, and (ii) follows from Theorems 5.7 and 5.8; cf. Remark
5.9.

Example 7.6. Suppose 0 < α∞, α∞ < 2 and the level set {x : fj(x) ≤ 1} of some
fj is boundedly compact. Then {xn} converges in norm to some point in C.

Proof. By Corollary 3.5, Definition 7.2, and Theorem 7.3, limn:j∈În dHn
j

(xn) =

0 yields limn:j∈În f
+
j (xn) = 0, so there is a subsequence {xn′} with j ∈ În

′
and

fj(x
n′) ≤ 1. Hence {xn′} has a norm cluster point. The result follows from Theorem

3.8.
Remark 7.7. If fi = dCi for some i, then ∂fi(x) =

x−PCix
‖x−PCix‖ if x /∈ Ci, ∂fi(x) =

{g ∈ H : ‖g‖ ≤ 1, 〈g, y − x〉 ≤ 0 ∀y ∈ Ci} if x ∈ Ci [BaB96, Remark 7.6], and
PCi

= PHn
i

for all n.
Theorem 7.8. Let I∂ ⊂ I and I ′∂ = I \ I∂ be s.t. for some x̌ ∈ ∩i∈I′

∂
Ci,

supi∈I∂ fi(x̌) < 0, fi = dCi
∀i ∈ I ′∂ and {Ci}i∈I′

∂
is boundedly linearly regular. Then

{Ci}i∈I is boundedly linearly regular and the subgradient algorithm is linearly focusing
(for Ti = PCi

, i ∈ I). If {αn} ⊂ [ε, 2− ε] for some ε > 0, and the algorithm is either
intermittent or considers remotest sets, then {xn} converges linearly to some x ∈ C.

Proof. Let C ′ = ∩i∈I′
∂
Ci. By bounded linear regularity, for any bounded S ⊂

H there exists κ′S > 0 s.t. dC′(x) ≤ κ′S maxi∈I′
∂
dCi

(x) for all x ∈ S. Since x̌ ∈
C ′ ∩ int

⋂
i∈I∂ Ci, C

′ and {Ci}i∈I∂ are boundedly linearly regular [GPR67, Equation
(11)], i.e., there is κ̌S > 0 s.t. dC(x) ≤ κ̌S max{dC′(x),maxi∈I∂ dCi

(x)} for all x ∈ S.
Hence, dC(x) ≤ κS maxi∈I dCi(x) with κS = κ̌S max{κ′S , 1}, i.e., {Ci}i∈I is boundedly

linearly regular. By Theorem 7.3, βdCi(x
n) ≤ dHn

i
(xn) ∀i ∈ În ∩ I∂ with β > 0, and

dCi
(xn) = dHn

i
(xn) ∀i ∈ În∩I ′∂ (cf. Remark 7.7), so the algorithm is linearly focusing.

Invoke Theorems 5.7 and 5.8.
Remark 7.9. Theorems 7.4, 7.5, and 7.8 provide “long-step” extensions of the

results of [BaB96, Theorems 7.15, 7.18, 7.22, and 7.27 and the associated examples].
To cover more examples, we now extend the subgradient framework as in [Kiw95].
Definition 7.10. We say the subgradient algorithm uses analytic surrogates if

at Step 2, Ȟn
i = {x :

〈
ǎin, x

〉 ≤ b̌in} with (ǎin, b̌in) = (gin,
〈
gin, xn

〉 − fi(x
n)) for

i ∈ În, whereas Step 3 finds a weight vector λn ∈ R
|I|
+ , λni = 0, i /∈ În,

∑
i∈I λ

n
i = 1

for the surrogate inequality 〈ân, x〉 ≤ b̂n with (ǎn, b̌n) =
∑

i∈În λ
n
i (ǎin, b̌in) s.t. Ĥn =

{x : 〈ân, x〉 ≤ b̂n} satisfies

dĤn(xn) ≥ λmin

maxi∈În f
+
i (xn)

maxi∈În ‖gin‖
= λmin

maxi∈În(
〈
ǎin, xn

〉− b̌in)+

maxi∈În ‖ǎin‖
.(18)

Definition 7.11. We say the subgradient algorithm considers most violated
constraints if În contains some index in ∈ Ǐnrem := {i : f+

i (xn) = maxj∈I f+
j (xn)} for

all n.
Remark 7.12. Choices of weights satisfying (18) are discussed in [Kiw95] and in

section 8.
Remark 7.13. The Fejér estimates (11) and (14) remain valid for analytic surro-

gates, since ∩i∈InCi ⊂ ∩i∈InȞn
i ⊂ Ĥn from convexity and λn ≥ 0. Hence, Lemmas

2.7 and 3.1 and Theorem 7.3 are also true. By (18) and Theorem 7.3,

dĤn(xn) ≥ λmin max
i∈În

f+
i (xn)/L with L = max

i∈I
Li for all n ≥ 0.(19)
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Hence, the results of section 3 are easily extended to the subgradient algorithm with
analytic surrogates by replacing dHn

i
(xn) with f+

i (xn)/L in (6); “focusing” is re-

placed by the fact that xnk ⇀ x and f+
i (xnk)/L → 0 imply x ∈ Ci by weak lower

semicontinuity of fi. A similar argument extends Corollaries 4.4 and 4.5, Theorem
4.6, Corollary 4.7 (with Ti = PCi

; cf. Remark 5.9), and Example 7.6. An extension of
Theorem 4.10 is given below.

Theorem 7.14. Suppose the subgradient algorithm uses analytic surrogates and
considers most violated constraints.

(i) If
∑

n αn(2− αn) = ∞, then {xn} has a unique weak cluster point in C.
(ii) If 0 < α∞, α∞ < 2, then xn ⇀ x for some x ∈ C and maxi∈I f+

i (xn) → 0.
Proof. (i) By Lemma 3.1(iii),

∑
n αn(2− αn)d 2

Ĥn
(xn) <∞, so

lim
n

max
i∈I

f+
i (xn) = 0

by (19) with maxi∈În f
+
i (xn) = maxi∈I f+

i (xn). Thus, we can find a subsequence

{xnk} and x s.t. xnk ⇀ x and maxi∈I f+
i (xnk) → 0, so x ∈ C. By Corollary

3.2(iii), {xn} has at most one weak cluster point in C; so (i) holds. (ii) is proved
similarly.

We now extend [BaB96, Theorem 7.33(ii)] by specializing Theorems 5.7 and 5.8.
Theorem 7.15. Let I∂ ⊂ I and I ′∂ = I \ I∂ be s.t. for some x̌ ∈ ∩i∈I′

∂
Ci,

supi∈I∂ fi(x̌) < 0, fi = dCi
∀i ∈ I ′∂ and {Ci}i∈I′

∂
is boundedly linearly regular. If

the subgradient algorithm uses analytic surrogates, is either intermittent or considers
most violated constraints, and {αn} ⊂ [ε, 2− ε] for some ε > 0, then {xn} converges
linearly to some x ∈ C.

Proof. {Ci}i∈I is boundedly linearly regular (Theorem 7.8). By Theorem 7.3,
there is β > 0 s.t. βdCi

(xn) ≤ f+
i (xn)/L for all i ∈ În ∩ I∂ , and dCi(x

n) = f+
i (xn)

for all i ∈ În ∩ I ′∂ , so replacing β and L by min{β, 1} and max{L, 1}, respectively, we

have βdCi
(xn) ≤ f+

i (xn)/L for all i ∈ În and n ≥ 0. Hence, (19) may be used in the
proofs of Theorems 5.7 and 5.8.

8. Surrogate subgradient cuts. We now show how to satisfy the requirements
of Definition 7.10. To ease notation, let Hi = {x ∈ H :

〈
ai, x

〉 ≤ bi}, ai ∈ H \ {0},
bi ∈ R, i ∈ J , where |J | < ∞. Let x̂ /∈ P := ∩i∈JHi, ri = (

〈
ai, x̂

〉− bi)+, i ∈ J , and
Jmax = Arg maxi ri. In view of (18), our task is to find weights λi ≥ 0,

∑
i λi = 1 for

the surrogate inequality 〈â, x〉 ≤ b̂ with (â, b̂) =
∑

i λi(a
i, bi) such that 〈â, x̂〉 > b̂ and

Ĥ = {x : 〈â, x〉 ≤ b̂} satisfies

dĤ(x̂) =
〈â, x̂〉 − b̂

‖â‖ =

∑
i∈J λi(

〈
ai, x̂

〉− bi)

‖∑i∈J λiai‖
≥ λmin

maxi∈J(
〈
ai, x̂

〉− bi)

maxi∈J ‖ai‖ .(20)

Sometimes it is convenient to use the following condition that implies (20):

dĤ(x̂) ≥ λmin max
i∈J

〈
ai, x̂

〉− bi

‖ai‖ = λmin max
i∈J

dHi
(x̂).(21)

Example 8.1. First, (20) holds if λı̂ ≥ λmin for some ı̂ ∈ Jmax and λi = 0 whenever〈
ai, x̂

〉
< bi, since then 〈â, x̂〉 − b̂ =

∑
i λiri and ‖â‖ ≤∑i λi maxi ‖ai‖ by convexity

of ‖ · ‖.
Example 8.2. Let ψ : R+ → R+ be nondecreasing with ψ(t) > 0 for t ≥ maxi ri.

Choose µ ∈ R
|J|
+ with

∑
i µi = 1 and µı̂ ≥ λmin for some ı̂ ∈ Jmax. Let λi =
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µiψ(ri)/
∑

j µjψ(rj), i ∈ J . Then λı̂ ≥ µı̂/
∑

i µi ≥ λmin, so (20) holds by Example
8.1. Examples include ψ(t) = tγ with γ ≥ 0, and ψ(t) = 0 if t < maxi ri, 1 otherwise.

Example 8.3. Choose ψ as in Example 8.2 and mij ≥ 0, i, j ∈ J , s.t.

mı̂ı̂/
∑
i,j

mij ≥ λmin

for some ı̂ ∈ Jmax. Let λi =
∑

jmijψ(rj)/
∑

k,jmkjψ(rj), i ∈ J . Then λı̂ ≥
mı̂ı̂ψ(rı̂)/

∑
k,jmkjψ(rı̂) ≥ λmin, so (20) holds by Example 8.1.

Example 8.4. Choosing ψ and µ as in Example 8.2, let

λi = (µiψ(ri)/‖ai‖)/
∑
j

µjψ(rj)/‖aj‖, i ∈ J.

Then (20) holds, since dHı̂
(x̂) = rı̂/‖aı̂‖ ≥ rı̂/maxi ‖ai‖ and

dĤ(x̂) =

∑
i µiψ(ri)dHi

(x̂)

‖∑i µiψ(ri)ai/‖ai‖‖ ≥
∑

i µiψ(ri)dHi
(x̂)∑

i µiψ(ri)
≥ µı̂ψ(rı̂)dHı̂

(x̂)∑
i µiψ(rı̂)

= µı̂dHı̂
(x̂).

Example 8.5. Let λi = (ri/‖ai‖2)/
∑

j(rj/‖aj‖2), i ∈ J . Then (21) holds if

λmin ≤ |J |−1/2, since by convexity of ‖ · ‖2

d 2
Ĥ

(x̂) =

∑
i ‖riai/‖ai‖2‖2

‖∑i ria
i/‖ai‖2‖2

∑
i

r2i
‖ai‖2 ≥

1

|J | max
i
d 2
Hi

(x̂).

Example 8.6. The deepest surrogate cut that maximizes dĤ(x̂) has weights λ̌i
that solve

max

{∑
i λi(

〈
ai, x̂

〉− bi)

‖∑i λia
i‖ : λi ≥ 0, i ∈ J,

∑
i

λi = 1

}
.

Following [Kiw96b, section 5], we may equivalently find

λ̂ ∈ Arg min



∥∥∥∥∥
∑
i

λia
i

∥∥∥∥∥
2

/2 +
∑
i

λi(bi −
〈
ai, x̂

〉
) : λ ≥ 0


 ,(22)

and let λ̌j = λ̂i/
∑

j λ̂j , i ∈ J (then PP(x̂) = x̂ − ∑i λ̂ia
i and λ̂ is a Lagrange

multiplier for min{‖x − x̂‖2/2 :
〈
ai, x

〉 ≤ bi, i ∈ J}). If the Gram matrix G with

entries
〈
ai, aj

〉
is available, (22) can be solved by standard active-set QP methods.

The restricted active-set method of [Kiw95, section 8] can find, using little storage
[Kiw94], in just two iterations an approximate solution to (22) for which (21) holds
with λmin = 1; see also [Kiw97].

Remark 8.7. The preceding examples also show how to find surrogates in the
geometric framework of section 2. To this end, note that for J = În, (ai, bi) =
(ain, bin) and λi = λni , i ∈ În, (6) and (20)–(21) are equivalent due to (9). In
particular, Example 8.2 yields a “long-step” extension of [BaB96, Example 6.32].
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9. Scalarized subgradient cuts. Maintaining Assumption 7.1, we now extend
the scalarized subgradient cuts of [Kiw95, Example 3.6], which generalized those of
[Oet75].

For y, z ∈ R
N , let |y| = (|y1|, . . . , |yN |) and 〈y, z〉 =

∑N
i=1 yizi. Let ‖ · ‖ be

any monotone norm on R
N s.t. |y| ≤ |z| ⇒ ‖y‖ ≤ ‖z‖, e.g., ‖y‖ = ‖y‖p :=

(
∑N

i=1 |yi|p)1/p, 1 ≤ p ≤ ∞. The dual norm defined by ‖z‖∗ = max‖y‖≤1 〈y, z〉 satis-
fies ‖y‖ = max‖z‖∗≤1 〈y, z〉 and is monotone, since ‖|y|‖ = ‖y‖ and max‖y‖≤1 〈y, z〉 =
max‖y‖≤1 〈|y|, |z|〉. Hence, ‖y‖ = maxz∈Z 〈y, z〉 if y ≥ 0, where Z = {z ∈ R

N
+ : ‖z‖∗ ≤

1}. For each x ∈ H, let y(x) := (f+
1 (x), . . . , f+

N (x)) ≥ 0 and

f(x) := ‖y(x)‖ = max{〈y(x), z〉 : z ∈ Z}.(23)

Theorem 9.1. f is convex and Lipschitz continuous on bounded sets. For each
x̂ ∈ H,

∂f(x̂) =

{∑
i∈I

zi∂f
+
i (x̂) : z ∈ Z(x̂)

}
=



∑
i∈Ǐ(x̂)

zi∂fi(x̂) : z ∈ Z(x̂)


 ,(24)

where Z(x̂) = Arg maxz∈Z 〈y(x̂), z〉, Ǐ(x̂) = {i : fi(x̂) ≥ 0}, ∂f+
i (x̂) = ∂fi(x̂) if

fi(x̂) > 0, ∂f+
i (x̂) = ∪0≤λ≤1λ∂fi(x̂) if fi(x̂) = 0, ∂f+

i (x̂) = {0} if fi(x̂) < 0.

Consequently, sup{‖g‖ : g ∈ ∂f(x̂)} ≤ sup·
‖·‖1
‖·‖∗ sup{‖g‖ : g ∈ ∪i∈I∂fi(x̂)}.

Proof. Since Z ⊂ R
N
+ is compact and each fi is convex and Lipschitz continuous on

bounded sets (cf. Assumption 7.1), so are f+
i , 〈y(·), z〉 for any z ∈ Z, and f . Since z ≥

0 and f+
i are continuous, ∂ 〈y(·), z〉 (x̂) =

∑
i zi∂f

+
i (x̂) (cf. [IoT74, Theorem 4.2.1]).

Therefore, [IoT74, Theorem 4.2.3], ∂f(x̂) = coG(x̂), where G(x̂) = {∑N
i=1 zi∂f

+
i (x̂) :

z ∈ Z(x̂)}. By a similar argument using f+
i = maxλ∈[0,1] λfi, we have ∂f+

i (x̂) =

∂fi(x̂) if fi(x̂) > 0, ∂f+
i (x̂) = {0} if fi(x̂) < 0, and ∂f+

i (x̂) = co∪0≤λ≤1λ∂fi(x̂)

if fi(x̂) = 0. It is easy to see that if Z̃ ⊂ R
m
+ and Ai ⊂ H, i = 1:m, are convex,

then so is A = ∪z̃∈Z̃
∑

i z̃iAi (cf. [STF86, Lemma 3.4.1]), whereas if Z̃ is compact
and each Ai is bounded and weakly closed, so is A. But each ∂fi(x̂) is bounded,
convex, and weakly closed [Phe93, Proposition 1.11]. Hence coG(x̂) = G(x̂) and
∂f+

i (x̂) = ∪0≤λ≤1λ∂fi(x̂) if fi(x̂) = 0. If z ∈ Z(x̂) and g =
∑

i ziλig
i with gi ∈

∂fi(x̂), λi = 1 if fi(x̂) > 0, λi ∈ [0, 1] if fi(x̂) = 0, λi = 0 if fi(x̂) < 0, and ži = ziλi
for all i, then |ž| ≤ |z|, ‖ž‖∗ ≤ ‖z‖∗ ≤ 1, ž ≥ 0, and 〈y(x̂), ž〉 = 〈y(x̂), z〉, i.e.,

ž ∈ Z(x̂), and g =
∑

i∈Ǐ(x̂) žig
i. Finally, ‖g‖ ≤ L̂

∑
i zi = L̂‖z‖1 ≤ L̂ sup·

‖·‖1
‖·‖∗ , where

L̂ = sup{‖g‖ : g ∈ ∪Ni=1∂fi(x̂)}.
Definition 9.2. The algorithm is called a scalarized subgradient algorithm if

Step 3 sets Ĥn = {x : f(xn) + 〈gn, x− xn〉 ≤ 0} for some gn ∈ ∂f(xn).

Corollary 9.3. The scalarized subgradient algorithm uses analytic surrogates
in the sense that if gn =

∑
i∈Ǐ(xn) z

n
i g

in with zn ∈ Z(xn) and gin ∈ ∂fi(x
n), then

for λn defined by λni = zni /
∑

j∈Ǐ(xn) z
n
j , i ∈ Ǐ(xn), λni = 0, i /∈ Ǐ(xn), (18) holds with

În = I and

λmin =

(
sup
·
‖ · ‖1
‖ · ‖∗ sup

·
‖ · ‖∞
‖ · ‖

)−1

.(25)
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Proof. Clearly,

dĤn(xn) =
f(xn)

‖gn‖ =
‖y(xn)‖/∑i∈Ǐ(xn) z

n
i

‖∑i λ
n
i g

in‖ ,

where

‖y(xn)‖ ≥ ‖y(xn)‖∞ inf·
‖ · ‖
‖ · ‖∞ ,

∑
i∈Ǐ(xn)

zni ≤ ‖zn‖1 ≤ ‖zn‖∗ sup
·
‖ · ‖1
‖ · ‖∗ ≤ sup

·
‖ · ‖1
‖ · ‖∗ ,

and ‖∑i λ
n
i g

in‖ ≤ maxi ‖gin‖.
Remark 9.4. If ‖ · ‖ = ‖ · ‖p, γ = p− 1 ≥ 0 and q satisfies 1

p + 1
q = 1, then zni =

f+
i (xn)γ/(

∑
j f

+
j (xn)p)1/q and λni = f+

i (xn)γ/(
∑

j f
+
j (xn)γ), i ∈ I, as in Example

8.2.
Remark 9.5. Since scalarized subgradient algorithms use analytic surrogates and

consider most violated constraints (În ≡ I), their convergence is described by Remark
7.13 and Theorems 7.14 and 7.15 (with I ′∂ = ∅). Alternatively, since C = {x : f(x) ≤
0}, they may be viewed as subgradient algorithms with N and f1 replaced by 1 and f ,
respectively. Of course, f cannot have a Slater point, but this is not really necessary.

Theorem 9.6. If there is some Slater point x̌ s.t. fi(x̌) < 0, ∀i ∈ I, then

dC(x) ≤ ‖x̌−x‖
−maxi∈I fi(x̌) sup·

‖·‖∞
‖·‖ f(x) for any x.

Proof. Let ε = −maxi fi(x̌), t = mini
ε

ε+f+
i

(x)
and y = (1−t)x̌+tx. Then for each

i, fi(y) ≤ (1− t)fi(x̌) + tfi(x) ≤ 0, so y ∈ Ci and dC(x) ≤ ‖x− y‖ = (1− t)‖x̌− x‖.
But 1− t = maxi

f+
i

(x)

ε+f+
i

(x)
≤ maxi

f+
i

(x)

ε and ‖y(x)‖∞ ≤ f(x) sup·
‖·‖∞
‖·‖ .

10. Polyhedral framework. We now consider the case where each fi is a poly-
hedral function of the form φ(x) = maxmj=1(

〈
aj , x

〉− bj) with aj ∈ H, bj ∈ R, m <∞.

Then ∂φ(x) = co{aj :
〈
aj , x

〉 − bj = φ(x)} (cf. Theorem 9.1) and ‖g‖ ≤ Lφ for each
g ∈ ∂φ(x), where Lφ = maxj ‖aj‖ is the Lipschitz constant of φ. We shall need the
following version of Hoffman’s lemma [Hof52].

Lemma 10.1. Consider a nonempty polyhedron P = {x ∈ H :
〈
ai, x

〉 ≤ bi, i =

1:m}. There exists α > 0 s.t. φ(x) := maxmi=1(
〈
ai, x

〉−bi)+ ≥ αdP(x) for all x ∈ H.

Proof. Suppose P 6= H (otherwise let α = 1). For any Î ⊂ {1:m} s.t. {ai}i∈Î are
positively independent, let αÎ = min{‖∑i∈Î µia

i‖ : µi ≥ 0,
∑

i∈Î µi = 1}, and let α

be the minimum of such αÎ . Let x̂ /∈ P and x̄ = arg min{‖x− x̂‖2/2 :
〈
ai, x

〉 ≤ bi, i =
1:m}. By the optimality conditions [Lau72, section 2.3], there exists λ ∈ R

m
+ s.t.

x̄−x̂+
∑

i λia
i = 0 and

∑
i λi(

〈
ai, x̄

〉−bi) = 0. Since x̄ 6= x̂,
∑

i λia
i 6= 0. By a classic

reduction argument (cf. [IoT74, section 3.5.1]), we may assume that {ai : λi > 0}
are positively independent. Let µ = λ/

∑
i λi. Clearly, g :=

∑
i µia

i ∈ ∂φ(x̄) and
φ(x̄) = 0, so φ(x̂) ≥ 〈g, x̂− x̄〉. Since dP(x̂) = ‖x̂− x̄‖ and 〈g, x̂−x̄

‖x̂−x̄‖ 〉 = ‖g‖ ≥ α, the

conclusion follows.
Corollary 10.2. If each fi is polyhedral, then there exist αi > 0 and Li s.t.

αidCi
(x) ≤ f+

i (x) ≤ LidCi
(x) for all x ∈ H. Further, there exist α > 0 and L < ∞

s.t. αdC(x) ≤ maxi∈I f+
i (x) ≤ Lmaxi∈I dCi

(x) for all x. In particular, {Ci}i∈I is

linearly regular. Moreover (cf. (23)), α inf ·
‖·‖
‖·‖∞ dC(x) ≤ f(x) for all x.
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Proof. For each i, let Li be the Lipschitz constant of fi, so that f+
i (x) = |f+

i (x)−
f+
i (PCi

x)| ≤ LidCi
(x) for all x, let L = maxi Li and invoke Lemma 10.1.

Theorem 10.3. Suppose the subgradient algorithm uses analytic surrogates, is
intermittent or considers most violated constraints, {αn} ⊂ [ε, 2− ε] for some ε > 0,
and each fi is polyhedral. Then {xn} converges linearly to some point in C with a
rate independent of the starting point.

Proof. {Ci}i∈I is linearly regular and there are β > 0 and L s.t. βdCi(x
n) ≤

f+
i (xn)/L and ‖gin‖ ≤ L for all i ∈ În and n ≥ 0 (Corollary 10.2). Hence, (cf.

(18)) (19) may be used in the proofs of Theorems 5.7 and 5.8 (with Ti = PCi
for all

i).
Theorem 10.4. Suppose the subgradient algorithm uses analytic surrogates, is

intermittent or considers most violated constraints, {αn} ⊂ [ε, 2− ε] for some ε > 0,
and fi = dCi

with Ci polyhedral for i ∈ I. Then {xn} converges linearly to some
point in C with a rate independent of the starting point.

Proof. {Ci}i∈I is linearly regular (Corollary 10.2) and dCi
(xn) = f+

i (xn) with

‖gin‖ ≤ 1 (cf. Remark 7.7) for all i ∈ În and n ≥ 0. Hence, (cf. (18)) (19) with L = 1
may be used in the proofs of Theorems 5.7 and 5.8 (with Ti = PCi for all i).

Theorem 10.5. Suppose the scalarized subgradient algorithm generates {αn} ⊂
[ε, 2 − ε] for some ε > 0 and each fi is polyhedral. Then {xn} converges linearly to
some point in C with a rate independent of the starting point.

Proof. There are β > 0 and Lf s.t. βdC(xn) ≤ f(xn)/Lf (Corollary 10.2),
‖gn‖ ≤ Lf (Theorem 9.1) and hence dĤn(xn) ≥ f(xn)/Lf (cf. Definition 9.2) for all
n ≥ 0. This suffices for modifying the proof of Theorem 5.8 (with T1 = PC1

, and C1

and N replaced by C and 1).
Remark 10.6. Theorems 10.4 and 10.5 extend ones in [BaB96, Theorem 7.36]

and [Oet75, p. 48].

11. Infinite constraint sets. We now consider the case where I is countably
infinite. The control of Step 1 is chaotic, i.e., I = lim supn Ǐ

n. One may select M ≥ 1
and choose În s.t. |În| ≤ M ; see [Com95b] for examples of chaotic and admissible
controls. If |În| = ∞, it suffices to find a finite Ǐn ⊂ În s.t. maxi∈Ǐn dHn

i
(xn) ≥

1
2 supi∈În dHn

i
(xn); then Ǐn may replace În in (5) to get

dĤn(xn) ≥ λmin sup
i∈În

dHn
i

(xn)

for any λmin ∈ (0, 1
2 ]. We still say the algorithm considers remotest sets if

∀n∃in ∈ În : d̂in(xn) ≥ 1

2
sup
i∈I

d̂i(x
n);

more generally, coercive control demands that

sup
i∈I

d̂i(x
nk) → 0 whenever d̂ink (xnk) → 0 with ink ∈ Înk .

Remark 11.1. The results of sections 3–6 extend easily to |I| = ∞, except for
the following: Theorem 3.8, Corollary 4.5, Theorems 4.10 and 5.2–5.5, and Example
6.1.

Theorem 11.2. Theorems 4.10 and 5.2–5.5 hold for |I| = ∞ with “strongly

focusing” replaced by “linearly focusing” (and maxi∈I d̂i by supi∈I d̂i).



1100 KRZYSZTOF C. KIWIEL AND BOŻENA  LOPUCH

Proof. Theorem 4.10: For (i), again limn dHn
in

(xn) = 0 and βd̂in(xn) ≤ dHn
in

(xn)

(Definition 4.1) yield limn supi∈I d̂i(x
n) = 0, so there is a subsequence xnk ⇀ x

s.t. supi∈I d̂i(x
nk) → 0; the rest follows as before. (ii) is proved similarly. The-

orem 5.2: By Definition 3.10 and (15) with xnkp ⇀ x ∈ C, ∀ε > 0 ∃k̄ ∀k ≥ k̄
∀i ∈ I ∃mk ∈ {kp: (k + 1)p − 1}: i ∈ Îmk , dHmk

i
(xmk) < ε and ‖xmk − xnkp‖ ≤∑(nk+1)p−1

l=nkp
‖xl+1 − xl‖ < ε. But βd̂i(x

mk) ≤ dHmk
i

(xmk) for all large k (Definition

4.1) and d̂i is nonexpansive (Remark 4.2), so supi∈I d̂i(x
nkp) → 0, dC(xnkp) → 0

(bounded regularity) and xn → x (Corollary 3.2(ii)). Theorem 5.3: By Theo-

rem 4.10(i), supi∈I d̂i(x
nk) → 0 and bounded regularity yield dC(xnk) → 0, so

xn → x (Corollary 3.2(ii)). Theorem 5.4: By Theorem 3.13(i) and Definition 4.1,

β supi∈I d̂i(x
nk) ≤ supi∈I dHnk

i
(xnk) → 0 yields dC(xnk) → 0 by bounded regularity;

apply Corollary 3.2(ii). Theorem 5.5: By Definition 3.14 and (16) with xτk′ ⇀ x ∈ C,
∀ε > 0 ∃k̄ ∀k′ ≥ k̄ ∀i ∈ I ∃nk′ ∈ {τk′ : τk′+1 − 1}: i ∈ Înk′ , d

H
n
k′

i
(xnk′ ) < ε

and ‖xnk′ − xτk′ ‖ ≤ ∑τk′+1−1

l=τk′
‖xl+1 − xl‖ < ε. But βd̂i(x

τk′ ) ≤ d
H
τ
k′

i
(xτk′ ) for all

large k′ (Definition 4.1) and d̂i is nonexpansive (Remark 4.2), so supi∈I d̂i(x
τk′ ) → 0,

dC(xτk′ ) → 0 (bounded regularity) and xn → x (Corollary 3.2(ii)).
Remark 11.3. Theorems 4.10 and 5.3 hold under approximate remotest set control

(Remark 4.11); under coercive control, “strongly focusing” should be replaced by
“linearly focusing.”

Theorem 11.4. Suppose the algorithm is linearly focusing, 0 < α∞, α∞ < 2 and

the control is chaotically coercive, i.e., ∃ı̂k ∈ Înk : d̂ı̂k(xnk) → 0 ⇒ supi∈I d̂i(x
nk) →

0. Then the following hold.
(i) {xn} converges weakly to some point in C, and supi∈I d̂i(x

nk) → 0.
(ii) If {Ti}i∈I is boundedly regular, then {xn} converges in norm to some point

in C.
(iii) If some Tj is demicompact (cf. Example 6.1) and |{n : j ∈ În}| = ∞, then

{xn} converges in norm to some point in C.

Proof. (i) By Definition 4.1 and Corollary 3.5, βd̂ı̂k(xnk) ≤ dHnk
ı̂k

(xnk) → 0 yields

supi∈I d̂i(x
nk) → 0, so if xnk′ ⇀ x, then x ∈ C; the result follows from Corollary

3.2(iii). (ii) Bounded regularity and supi∈I d̂i(x
nk) → 0 yield dC(xnk) → 0; apply

Corollary 3.2(ii). (iii) By the proof of Example 6.1, {xn} has a norm cluster point,
which must lie in C by (i); the result follows from [BaB96, Theorem 2.16(v)].

Theorem 11.5. Suppose 0 < α∞, α∞ < 2, and the control is admissible, i.e.,

there exist positive integers {Mi}i∈I s.t. ∀i ∈ I ∀n ≥ 0: i ∈ ⋃n+Mi−1
l=n I l. Then the

following hold.
(i) {xn} converges weakly to some point in C, and

n+Mi−1∑
l=n

{
max
i∈Îl

dHl
i
(xl) + ‖xl+1 − xl‖

}
→ 0 ∀i ∈ I.(26)

(ii) If the algorithm is linearly focusing, then supi∈I d̂i(x
n) → 0, so that if

{Ti}i∈I is boundedly regular, then {xn} converges in norm to some point in C.
(iii) If the algorithm is linearly focusing and some Tj is demicompact (cf. Exam-

ple 6.1), then {xn} converges in norm to some point in C.
Proof. Use the proofs of Theorem 3.15 for (i) and Theorem 11.2 for (ii) with

τk = n, τk+1 = n + Mi, k = k′ = n for i ∈ I. (iii) Use the proof of Theorem



SURROGATE PROJECTION METHODS 1101

11.4(iii).

Remark 11.6. When |I| = ∞, Assumption 7.1 should require that ∂fi be
nonempty and uniformly bounded with respect to bounded sets and all i ∈ I, so
that L = supi∈I Li <∞ (cf. Theorem 7.3). We still say the algorithm considers most

violated constraints if ∀n∃in ∈ În: f+
in

(xn) ≥ 1
2 supi∈I f

+
i (xn). Again, the results of

section 7 extend easily, except for Example 7.6 and the part of Remark 7.13 related
to the exceptions of Remark 11.1; Theorems 11.4(i) and 11.5(i) with d̂i replaced by
f+
i extend to the subgradient algorithm with analytic surrogates as in Remark 7.13.
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Abstract. We consider differentiable semi-infinite optimization problems depending on a real
parameter. For generic one-parametric families we classify the corresponding set of generalized
critical points into eight types. Five of these types also occur in problems with a finite number
of inequality constraints, whereas the other three types are typical for the semi-infinite case. We
discuss types 7 and 8 in detail. While at points of type 6, the singularity is due to the fact that
in the associated lower level problem a Lagrange multiplier corresponding to an active inequality
constraint vanishes, at points of type 7 and 8, the gradients of the active constraints in the lower
level problem are linearly dependent. If the total number of active constraints in the lower level
problem does not exceed the lower level dimension, the point is of type 7; otherwise, it is of type
8. Moreover, we distinguish between points of type 8a and 8b, where a point is of type 8a if the
Mangasarian–Fromovitz constraint qualification holds in the lower level problem, and of type 8b
otherwise. At points of type 8a, the set of generalized critical points is not smooth, but it does
not exhibit a turning point. The linear and quadratic indices remain constant when passing along a
point of type 8a. Points of type 7 and type 8b are (relative) boundary points of the set of generalized
critical points.

Key words. parametric optimization, semi-infinite optimization, generalized critical point,
critical point, singularity, index, jump

AMS subject classifications. 90C31, 90C34
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1. Introduction. In this paper we study the solution sets of semi-infinite opti-
mization problems depending on a real parameter. The description of the problems
is as follows:

SIP (t) minimize f(·, t) on the feasible set M(t),

where

M(t) = {x ∈ R
n | hi(x, t) = 0, i ∈ I, g(x, t, y) ≥ 0, y ∈ Y (t)},

Y (t) = {y ∈ R
m | uk(t, y) = 0, k ∈ K, vl(t, y) ≥ 0, l ∈ L},

and t ∈ R .
The defining functions f, hi : R

n × R → R, g : R
n × R × R

m → R, and uk, vl :
R × R

m → R are supposed to be r-times continuously differentiable, r ≥ 1 to be
specified later on (r ≥ 3 will always be sufficient). Moreover, the cardinalities of the
index sets I, K, L satisfy the inequalities |I| < n, |K| < m, and |L| <∞.

For a fixed value t = t̄ of the parameter, SIP (t̄) is a semi-infinite problem because
the feasible set M(t̄) is described by, in general, infinitely many constraints according
to infinite index sets Y (t̄).

∗Received by the editors July 14, 1995; accepted for publication (in revised form) July 7, 1996.
http://www.siam.org/journals/siopt/7-4/28909.html

†RWTH Aachen, Department of Mathematics, D-52056 Aachen, Germany (jongen@rwth-
aachen.de).

‡RWTH Aachen, Department of Mathematics, D-52056 Aachen, Germany (stein@mathc.rwth-
aachen.de). This author was supported by the “Deutsche Forschungsgemeinschaft” through the
Graduiertenkolleg “Mathematische Optimierung” at the University of Trier.

1103



1104 H. TH. JONGEN AND O. STEIN

For an introduction to semi-infinite programming (SIP) problems we refer to the
extensive survey by R. Hettich and K. O. Kortanek [7]. The present research about the
generic structure of the solution set related to SIP (t) is based on several preliminary
studies. Fundamental results concerning finite one-parametric optimization problems
are due to M. Kojima and R. Hirabayashi [18], H. Th. Jongen, P. Jonker, and F. Twilt
[13, 14], as well as to A. B. Poore and C. A. Tiahrt [20, 24]. The generic local
structure of parameter-free semi-infinite optimization problems has been studied by
H. Th. Jongen and G. Zwier [17, 25]. A stability analysis for the feasible set of one-
parametric semi-infinite optimization problems has been performed by H. Th. Jongen,
J.-J. Rückmann, and G.-W. Weber [15], while results about the solution set of SIP (t)
in case that the index set Y (t) is endowed with a special structure have been derived
by T. Rupp [21, 22] and R. Hettich, H. Th. Jongen, and O. Stein [6].

Throughout the paper we make the following assumptions on the index set Y (t).
Assumption 1. The set Y (t) ⊂ R

m is compact for all t ∈ R.
Assumption 2. The set-valued mapping t → Y (t) is upper semicontinuous at

each t ∈ R.
Note that Assumptions 1 and 2 coincide with Berge’s notion of upper semiconti-

nuity for the mapping Y on R (cf. [1]).
For a given point (x, t) ∈ R

n+1, we define the set of active inequality constraints
by

Y0(x, t) = {y ∈ Y (t) | g(x, t, y) = 0}.
Note that Y0(x, t) is compact for all (x, t) ∈ R

n+1 by Assumption 1 and by the
continuity of g(x, t, ·) . Of course, Y0(x, t) need not consist of isolated points.

If F,G ∈ C1 we denote by Fx(x, y) (column vector) the partial derivative of F
and by d

dxG(x) the total derivative of G with respect to x.
Definition 1.1. A point x̄ ∈M(t̄) is called a generalized critical point (in short,

g.c. point) for SIP (t̄) if the set of vectors

{fx(x̄, t̄), hix(x̄, t̄), i ∈ I, gx(x̄, t̄, y), y ∈ Y0(x̄, t̄)}
is linearly dependent.

In case of a g.c. point, there exist a finite subset {ȳ1, . . . , ȳs} ⊂ Y0(x̄, t̄) (s ∈
N0 := N ∪ {0}) and real numbers κ, λi, i ∈ I, µj , j ∈ {1, . . . , s}, not all vanishing,
such that

κfx(x̄, t̄) =
∑
i∈I

λih
i
x(x̄, t̄) +

s∑
j=1

µjgx(x̄, t̄, ȳ
j).(1)

Hence, Definition 1.1 relaxes the first-order necessary condition for a point x̄ to be a
local minimum for SIP (t̄) (cf. [5, 8]), where the multipliers κ and µj are assumed to
be nonnegative.

Definition 1.2. A point x̄ ∈ M(t̄) is called a stationary point for SIP (t̄) if
equation (1) holds with κ = 1 and µj ≥ 0, j ∈ {1, . . . , s}.

Definition 1.3. The g.c. point set Σ ⊂ R
n+1 is defined to be the set

Σ = {(x, t) ∈ R
n+1

∣∣ x ∈M(t) is a g.c. point for SIP (t)} .

In the case where the index set Y (t) is a constant finite set, i.e., the standard case
of finitely many inequality constraints, the generic structure of the set Σ is completely
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characterized in [13, 14]. In particular, it turns out that each point of Σ belongs to
one of five specific types. However, in the semi-infinite case, three additional types
are coming into play.

Let the linear space of real valued Cr-functions on R
N , which is denoted by

Cr(RN ,R), be topologized by means of the (strong or Whitney) Cr
s -topology (cf.

[9, 12]). A typical base neighborhood W r
ε of the zero function is generated by means

of a continuous positive function ε : R
N −→ R :

W r
ε =

{
ψ ∈ Cr(RN ,R)

∣∣ |∂αψ(y)| < ε(y) for all y ∈ R
N , for all |α| ≤ r

}
.

A typical Cr
s -neighborhood of F ∈ Cr(RN ,R) has the form F +W r

ε . The Cr
s -topology

for a finite product of spaces is defined by the corresponding product topology.
Definition 1.4. The set CUSC (compact upper semicontinuous) is defined as

the following subset of C3(Rm+1,R)|K|+|L| : ( . . . , uk, . . . , vl, . . . ) belongs to CUSC
if and only if Assumptions 1 and 2 are satisfied.

Theorem 1.5. There exists a C3
s -open dense subset

F ⊂ C3(Rn+1,R)|I|+1 × C3(Rn+m+1,R)× CUSC

such that for (f, . . . , hi, . . . , g, . . . , uk, . . . , vl, . . .) ∈ F we have the following:
each point of the corresponding generalized critical point set Σ is one of eight types.

It is the aim of this paper to give a complete classification of the eight types
that generically appear in the semi-infinite case, and to present results concerning the
local structure of Σ at points of each type. Thereby, we will enhance a result of our
previous paper [6] which focussed on points of type 6.

The paper is organized as follows. In section 2 we discuss the case that SIP (t)
can locally be reduced to a one-parametric finite optimization problem, and thus, the
above mentioned types 1–5 generically occur. Section 3 deals with generic violations
of this reduction approach which lead to the new types 6–8. In section 4, we sketch
the genericity part of the proof of Theorem 1.5, and section 5 contains remarks about
jumps at singular points of type 6–8 and about certain generalizations of our concept.

2. The reducible case. Since for given (x̄, t̄) ∈ R
n+1 with x̄ ∈ M(t̄), any

y ∈ Y0(x̄, t̄) is a global minimum of g(x̄, t̄, ·) on Y (t̄), the elements of Y0(x̄, t̄) are
solutions of the finite multiparametric optimization problem

Q(x, t) minimize g(x, t, ·) on the feasible set Y (t)

at the parameter value (x, t) = (x̄, t̄). By this observation, SIP (t) is a two-level opti-
mization problem, where the upper level consists of optimizing the objective function
f , whereas the lower level is concerned with the corresponding active index set Y0 of
inequality constraints.

In order to exploit the finite structure of the lower level problem Q(x, t), as well
as to describe the locally reduced finite upper level problem (cf. section 2.2), we recall
some definitions and results for finite parametric optimization problems.

2.1. Finite optimization problems. Consider the problem

P (τ) minimize F (·, τ) on the feasible set M(τ) ,

where

M(τ) = {z ∈ R
n
∣∣ Hi(z, τ) = 0 , i ∈ I, Gj(z, τ) ≥ 0 , j ∈ J }
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and τ ∈ R
k. The functions F,Hi, Gj : R

n × R
k → R are assumed to be Cr, r ≥ 2,

and the cardinalities of I,J satisfy |I| < n, |J | <∞.
In the following, we make use of two constraint qualifications.
Definition 2.1. Let τ̄ ∈ R

k be fixed. The linear independence constraint quali-
fication (in short, LICQ) is said to hold at z̄ ∈M(τ̄) if the set of vectors

{Hi
z(z̄, τ̄), i ∈ I, Gj

z(z̄, τ̄), j ∈ J0(z̄, τ̄)}
is linearly independent; here, J0(z̄, τ̄) denotes the index set of active inequality con-
straints.

Mangasarian–Fromovitz constraint qualification (in short, MFCQ) is said to hold
at z̄ ∈ M(τ̄) if both the set of vectors {Hi

z(z̄, τ̄) , i ∈ I} is linearly independent and
if there exists a vector ξ ∈ R

n satisfying

ξ>Hi
z(z̄, τ̄) = 0 , i ∈ I,

ξ>Gj
z(z̄, τ̄) > 0 , j ∈ J0(z̄, τ̄).

It is well known that LICQ implies MFCQ; i.e., MFCQ is a weaker constraint
qualification.

Definition 2.2. For z̄ ∈M(τ̄) let the Lagrange function L be defined as follows:

L(z̄,τ̄)(z, λ, µ, τ) = F (z, τ) −
∑
i∈I

λiH
i(z, τ) −

∑
j∈J0(z̄,τ̄)

µjG
j(z, τ) .

The point z̄ is called a critical point for F (·, τ̄)|M(τ̄) if LICQ holds and if there exist
real numbers λ̄i, i ∈ I, µ̄j , j ∈ J0(z̄, τ̄) (called Lagrange multipliers) satisfying

L(z̄,τ̄)
z (z̄, λ̄, µ̄, τ̄) = 0.(2)

Note that, by LICQ, the Lagrange multipliers of a critical point are uniquely
determined.

Definition 2.3. Let z̄ ∈ M(τ̄) be a critical point with Lagrange multipliers
λ̄i, i ∈ I, µ̄j , j ∈ J0(z̄, τ̄). Then, z̄ is called nondegenerate if the following conditions
hold:

ND1: µ̄j 6= 0, j ∈ J0(z̄, τ̄),

ND2: L(z̄,τ̄)
zz (z̄, λ̄, µ̄, τ̄) |Tz̄M(τ̄) is nonsingular.

A critical point is called a nondegenerate local mimimum if it is both a nondegenerate
critical point and a local minimum.

In Definition 2.3, the symbol Tz̄M(τ̄) stands for the tangent space of M(τ̄) at
z̄ , i.e.,

Tz̄M(τ̄) =


ξ ∈ R

n

∣∣∣∣∣∣
ξ>Hi

z(z̄, τ̄) = 0, i ∈ I,
ξ>Gj

z(z̄, τ̄) = 0, j ∈ J0(z̄, τ̄)


 .

Moreover, Lzz denotes the matrix of second-order partial derivatives (Hessian) with
respect to z. Finally, Lzz|Tz̄M(τ̄) stands for the matrix V >LzzV, where V may be any
matrix of n-vectors which form a basis for the tangent space Tz̄M(τ̄) .
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Definition 2.4. Let z̄ ∈ M(τ̄) be a nondegenerate critical point. The linear in-
dex/linear coindex (LI/LCI) of z̄ is defined to be the number of negative/positive num-
bers µ̄j in ND1 (cf. Definition 2.3). The quadratic index/quadratic coindex (QI,QCI)

of z̄ is defined to be the number of negative/positive eigenvalues of L(z̄,τ̄)
zz (z̄, λ̄, µ̄, τ̄)|Tz̄M(τ̄)

in ND2.
Note that the numbers QI and QCI are independent of the incidental choice of

the matrix V (by Sylvester’s law of inertia). The indices LI, LCI, QI, QCI completely
determine the local behavior of the objective function F (·, τ) on the feasible set M(τ)
(cf. [11]). In particular, a nondegenerate critical point is a local minimum if and only
if LI+QI=0. For convenience we will refer to the number of negative and positive
eigenvalues of a symmetric matrix A by QI(A) and QCI(A), resp.

By defining ζ = (z, λ, µ), the Karush–Kuhn–Tucker equations for a critical point
z̄ ∈M(τ̄) read

L(z̄,τ̄)
ζ (ζ̄, τ̄) = 0.

Since for a nondegenerate critical point it is easily shown that the matrix L(z̄,τ̄)
ζζ (ζ̄, τ̄)

is nonsingular, the implicit function theorem yields the existence of a locally unique
Cr−1-function ζ satisfying ζ(τ̄) = ζ̄ and

L(z̄,τ̄)
ζ (ζ(τ), τ) ≡ 0 .(3)

Hence, in a neighborhood of τ̄ we may define the marginal function

Φ(τ) = F (z(τ), τ) .

Equation (3) immediately yields the following well-known lemma.
Lemma 2.5. Φ is of differentiability class Cr, and locally around τ̄ we have

d
dτ Φ(τ) ≡ L(z̄,τ̄)

τ (ζ(τ), τ) .

2.2. The reduced upper level problem. In this section, we study generalized
critical points x̄ of SIP (t̄) with the additional property that all elements of Y0(x̄, t̄)
are nondegenerate global minima of Q(x̄, t̄). Then, Y0(x̄, t̄) is a discrete set. Since
Y0(x̄, t̄) is also a closed subset of the compact set Y (t̄) (cf. Assumption 1), it follows
that Y0(x̄, t̄) is a finite set, say Y0(x̄, t̄) = {ȳj , j ∈ J}, where J = {1, . . . , s} and
s ∈ N0 .

Now we treat (x, t) as parameters and apply the implicit function theorem as
in section 2.1. In this way we obtain for (x, t) near (x̄, t̄) and for any j ∈ J a
nondegenerate local minimum yj(x, t) of Q(x, t), where the function yj(x, t) depends
Cr−1 on the parameters (x, t). Thus, we may introduce the (locally defined) marginal
functions ϕj(x, t) = g(x, t, yj(x, t)), j ∈ J . Using the corresponding Lagrangians

L(x̄,t̄,ȳj)(x, t, yj , βj , γj) = g(x, t, yj) −
∑
k∈K

βjku
k(t, yj)

−
∑

l∈L0(x̄,t̄,ȳj)

γjl v
l(t, yj) , j ∈ J,

we obtain from Lemma 2.5 the following.
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Corollary 2.6. The marginal functions ϕj , j ∈ J , are of differentiability class
Cr, and locally around (x̄, t̄) we have

ϕjx(x, t) ≡ gx(x, t, y
j(x, t)).

The next lemma is a straight generalization of the “reduction lemma” in [8]. Here,
we need both Assumption 1 and 2.

Lemma 2.7. Let (x̄, t̄) ∈ Σ for SIP (t) and let all elements of Y0(x̄, t̄) be nonde-
generate global minima of Q(x̄, t̄). Define the unfolded feasible set Z = {M(t)×{t} |
t ∈ R} as well as the set

M (x̄,t̄)(t) =
{
x ∈ R

n | hi(x, t) = 0, i ∈ I, ϕj(x, t) ≥ 0, j ∈ J}
and its unfolding Z(x̄,t̄) = {M (x̄,t̄)(t)×{t} | t ∈ R} . Then, there exists a neighborhood
U of (x̄, t̄) with Z ∩ U = Z(x̄,t̄) ∩ U .

By Lemma 2.7 we obtain a local reduction of the semi-infinite optimization prob-
lem to an optimization problem with finitely many constraints, namely,

P (x̄,t̄)(t) minimize f(·, t) on the feasible set M (x̄,t̄)(t) .

For finite one-parametric optimization problems P (x̄,t̄)(t) the generic structure of
Σ (which is defined as in Definition 1.3, with the obvious specifications) has been
studied in [13, 14], where all defining functions are supposed to be C3. We emphasize
that continuous derivatives of second order are sufficient for all situations under con-
sideration apart from singular points of type 3 (cf. Definition 2.11), where we locally
need third-order derivatives in order to treat the vanishing eigenvalue of an associated
Hessian. Therefore we require the following.

Assumption 3. SIP (t) is defined by C3-functions.

By Assumption 3 and Corollary 2.6, all defining functions of P (x̄,t̄)(t) are of
differentiability class C3, and hence, we can reformulate the definitions and results
from [13, 14] for the locally reduced upper level problem P (x̄,t̄)(t). Thereby we obtain
that, generically, each point of Σ belongs to one of precisely five different types. The
remainder of this section deals with the definitions of these types and their related
characteristic numbers as well as with short descriptions of Σ in a neighborhood of
each type. Note that these definitions and results are immediate consequences of
[13, 14] and, being familiar with these works, the reader may proceed with section 3.
However, in the remainder of this paper we will refer to the following facts frequently
and in detail.

Recall that, by Corollary 2.6, we have

ϕjx(x̄, t̄) = gx(x̄, t̄, ȳ
j),

ϕjxt(x̄, t̄) = gxt(x̄, t̄, ȳ
j) + gxy(x̄, t̄, ȳ

j) · yjt (x̄, t̄),
and ϕjxx(x̄, t̄) = gxx(x̄, t̄, ȳ

j) + gxy(x̄, t̄, ȳ
j) · yjx(x̄, t̄).

Also note that, by the definitions of ϕj and J , all indices in J correspond to inequalities
being active at z̄, i.e., J0(z̄) = J = {1, . . . , s}. Furthermore, we let I = {1, . . . , q}
with q ∈ N0.

Definition 2.8. Let Γ be a one-dimensional manifold in R
n+1 and z̄ = (x̄, t̄)

∈ Γ. If the function Φ(x, t) ≡ t, restricted to Γ, possesses a local extremum at z̄,
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Fig. 2.1. A g.c. point of type 1.

we call z̄ a turning point with respect to t for Γ. If, additionally, Γ is locally a C2-
manifold and the extremum of Φ(x, t) is nondegenerate, we call z̄ a quadratic turning
point with respect to t.

Note that in case of a quadratic turning point z̄, the set Γ can be approximated
by means of a parabola in a neighborhood of z̄.

Definition 2.9 (type 1). A point z̄ = (x̄, t̄) ∈ Σ is of type 1 if the following
conditions (1.1) and (1.2) are fulfilled.

(1.1) All elements of Y0(x̄, t̄) are nondegenerate global minima for Q(x̄, t̄).
(1.2) x̄ is a nondegenerate critical point for P (x̄,t̄)(t̄).

Characteristic numbers: LI, LCI, QI, QCI (cf. Definition 2.4).
If z̄ is of type 1, the set Σ can be parametrized by means of the parameter t in

a neighborhood of z̄ (compare Figure 2.1). Since f, hi, ϕj are C3-functions, Σ is a
C2-manifold around z̄. Locally, the indices LI, LCI, QI, and QCI remain constant
along Σ.

Definition 2.10 (type 2). A point z̄ = (x̄, t̄) ∈ Σ is of type 2 if the following
conditions (2.1)–(2.7) are fulfilled.

(2.1) All elements of Y0(x̄, t̄) are nondegenerate global minima for Q(x̄, t̄).
(2.2) x̄ is a critical point for P (x̄,t̄)(t̄).
(2.3) s > 0.

By condition (2.2) and Definition 2.2 we have

fx(z̄) =

q∑
i=1

λ̄ih
i
x(z̄) +

s∑
j=1

µ̄jϕ
j
x(z̄).(4)

(2.4) In (4), exactly one of the Lagrange multipliers µ̄j vanishes.
After renumbering, we assume that µ̄s = 0. Put

T =
⋂
i∈I

Ker (hix(z̄))
> ∩

⋂
j∈J

Ker (ϕjx(z̄))
>,(5)

T̃ =
⋂
i∈I

Ker (hix(z̄))
> ∩

⋂
j∈J\{s}

Ker (ϕjx(z̄))
>,

L(z) = f(z) −
q∑

i=1

λ̄ih
i(z) −

s∑
j=1

µ̄jϕ
j(z),(6)

where Ker(A) denotes the zero space of the matrix A.
(2.5) Lxx(z̄)|T is nonsingular.
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(2.6) Lxx(z̄)|T̃ is nonsingular.

Let B be an n × r matrix of rank r. By B† we denote the matrix (B>B)−1B>. In
fact, B† is the Moore–Penrose inverse of B. Now, let W be a basis matrix for the
linear space T̃ , put ψ = (h1, . . . , hq, ϕ1, . . . , ϕs−1), and define

α = −((ψx)
†)> · (ψt)>,

β = −W (W>LxxW )−1W> (Lxx α+ Lxt) ,

γ = (ϕsx)
>(α+ β) + ϕst ,

all partial derivatives being evaluated at z̄.

(2.7) γ 6= 0.

We put δ = QI(Lxx(z̄)|T̃ ) − QI(Lxx(z̄)|T ) and obtain the characteristic numbers
sign(γ) and δ.

A point of type 2 is a degenerate critical point; however, only the strict comple-

mentary condition (ND1 in Definition 2.3) is violated. Let P
(x̄,t̄)
e (t) (resp., P

(x̄,t̄)
d (t))

denote the parametric optimization problem which differs from P (x̄,t̄)(t) in the sense
that the inequality constraint ϕs is turned into an equality constraint (resp., deleted

as a constraint). Then, x̄ is a nondegenerate critical point both for P
(x̄,t̄)
e (t̄) and

P
(x̄,t̄)
d (t̄). As a consequence, the set Σ is (locally) the union of the two C2-curves
t 7−→ (xe(t), t) and t 7−→ (xd(t), t) as far as they are feasible points; here, xe(t) and

xd(t) are the critical points near x̄ for P
(x̄,t̄)
e (t) and P

(x̄,t̄)
d (t), respectively. It can be

shown that xdt (t̄) = α+ β and hence, if we follow the points (xd(t), t) for increasing t,
we enter (leave) the feasible set M (x̄,t̄)(t) according to sign(γ) = +1 (−1); see Figure
2.2 for a typical situation, where the labels “xe(t)”, “xd(t)” denote the graphs of xe

and xd, respectively. The part of Σ consisting of nonstationary points is represented
by a dashed curve.

Definition 2.11 (type 3). A point z̄ = (x̄, t̄) ∈ Σ is of type 3 if the following
conditions (3.1)–(3.5) are fulfilled.

(3.1) All elements of Y0(x̄, t̄) are nondegenerate global minima for Q(x̄, t̄).
(3.2) x̄ is a critical point for P (x̄,t̄)(t̄).

By condition (3.2), the critical point relation (4) holds.

(3.3) In (4), we have µ̄j 6= 0, j ∈ J .

Let the Lagrange function L be defined as in (6) and let the tangent space T be as in
(5).

(3.4) Exactly one eigenvalue of Lxx(z̄)|T vanishes.
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Let V be a basis matrix for the tangent space T . According to (3.4), let w be a
nonvanishing vector such that V >Lxx(z̄)V w = 0, and put v = V w. Now let ψ =
(h1, . . . , hq, ϕ1, . . . , ϕs) and define (the symbol † again denotes the Moore-Penrose
inverse):

α1 = Lxxx(v, v, v) − 3v>Lxx · ((ψx)†)>(v>ψxxv),(7)

α2 = L>xtv − ψt(ψx)
†Lxxv,(8)

where

Lxxx(v, v, v) =
n∑

i,j,k=1

∂3

∂xi∂xj∂xk
L · vivjvk,

v>ψxxv = (v>h1
xxv, . . . , v

>ϕsxxv)
>,

all partial derivatives being evaluated at z̄ . In the case that I = J = ∅, we have
T = R

n and we omit all entries of ψ in (7) and (8). Next, we define α = α1 · α2.

(3.5) α 6= 0.

We put β = QI(Lxx(z̄)|T ) and obtain the characteristic numbers sign(α) and β.

A point of type 3 is a degenerate critical point; however, only condition ND2 in
Definition 2.3 is violated. In a neighborhood of z̄ the index set of active inequality
constraints for points on Σ remains constant (hence, equal to J). Locally around z̄ the
set Σ is a one-dimensional C2-manifold, and the function Φ(x, t) ≡ t, restricted to Σ,
has a nondegenerate local maximum (minimum) at z̄ according to sign(α) = +1 (−1).
Consequently, the set Σ has a quadratic turning point at z̄. In view of condition (3.3),
the indices LI and LCI do not change when passing the point z̄ along Σ. However,
the quadratic index QI changes from β to β+ 1, or vice versa. A typical situation for
a g.c. point of type 3 is sketched in Figure 2.3.

Definition 2.12 (type 4). A point z̄ = (x̄, t̄) ∈ Σ is of type 4 if the following
conditions (4.1)–(4.7) are fulfilled.

(4.1) All elements of Y0(x̄, t̄) are nondegenerate global minima for Q(x̄, t̄).
(4.2) q + s > 0.
(4.3) q + s− 1 < n.

Define the n× (q + s) matrix M =
(
h1
x(z̄), . . . , h

q
x(z̄), ϕ

1
x(z̄), . . . , ϕ

s
x(z̄)

)
.

(4.4) rank(M) = q + s− 1 .

From condition (4.4) we see that Ker(M) is a one-dimensional space. Let (λ̄, µ̄) be a
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generator for Ker(M) and define

L(z) =

q∑
i=1

λ̄ih
i(z) +

s∑
j=1

µ̄jϕ
j(z)

and T = Ker(M>) . Furthermore, let W be a basis matrix for T and define

A = Lt(z̄) W
>Lxx(z̄)W.

(4.5) A is nonsingular.
Finally, let

α = f>x (z̄)WA−1W>fx(z̄).

We note that α is independent of the choice of the matrix W .
(4.6) α 6= 0.

In the case s > 0 we require, additionally,
(4.7) µ̄j 6= 0, j ∈ J ,

and we normalize the µ̄j’s by setting µ̄s = 1. Let γ be the number of negative µ̄j ,
j ∈ {1, . . . , s− 1}, and put δ = Lt(z̄), β = QCI(A). Then, we have the characteristic
numbers sign(α), β as well as (corresponding to µ̄s = 1) γ and sign(δ).

For specific details about this type we refer to [13] and [14]. Here, we only mention
that locally around z̄ the set Σ is a one-dimensional C2-manifold and the function
Φ(x, t) ≡ t, restricted to Σ, has a nondegenerate local maximum (minimum) at z̄
according to sign(α) = +1 (−1). Consequently, the set Σ has a quadratic turning
point at z̄. When passing the point z̄ along Σ, the linear index LI changes from γ to
s−γ, and the quadratic index QI changes from β−1 to n− q− s−β+1 or from β to
n−q−s−β (or vice versa), according to the values of sign(α) and sign(δ). See Figure
2.4 for an example with J 6= ∅, where the dashed part of Σ stands for nonstationary
points.

Definition 2.13 (type 5). A point z̄ = (x̄, t̄) ∈ Σ is of type 5 if the following
conditions (5.1)–(5.5) are fulfilled.

(5.1) All elements of Y0(x̄, t̄) are nondegenerate global minima for Q(x̄, t̄).
(5.2) q + s = n+ 1.
(5.3) The set {hiz(z̄), i ∈ I, ϕjz(z̄), j ∈ J} is linearly independent.

Since we assume q = |I| < n throughout, condition (5.2) implies that s ≥ 2. From
conditions (5.2) and (5.3) we see that there exist λi, i ∈ I, and µj , j ∈ J , not all
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vanishing (and unique up to a common multiple) such that

q∑
i=1

λih
i
x(z̄) +

s∑
j=1

µjϕ
j
x(z̄) = 0.(9)

(5.4) In (9) we have µj 6= 0, j ∈ J .

From conditions (5.2) and (5.3) it follows that there exist unique numbers αi, i ∈ I,
and βj , j ∈ J , such that

fz(z̄) =

q∑
i=1

αih
i
z(z̄) +

s∑
j=1

βjϕ
j
z(z̄).(10)

Put

∆ij = βi − βj
µi
µj

, i, j ∈ J,

and let ∆ be the s× s matrix with ∆ij as its (i, j)th element.

(5.5) All off-diagonal elements of ∆ are unequal to zero.

Put

L(z) =

q∑
i=1

λih
i(z) +

s∑
j=1

µjϕ
j(z),

where λi, µj satisfy (9). From condition (5.3) we see that Lt(z̄) 6= 0. We define

γj = sign(µj · Lt(z̄)) , j ∈ J.

Moreover, let δj denote the number of negative entries in the jth column of ∆, j ∈ J.
Thereby, we obtain the characteristic numbers γj , δj , j ∈ J.

A combination of (9), (10), and condition (5.5), together with the linear indepen-
dence of the set {hix(z̄), i ∈ I, ϕjx(z̄), j ∈ J \ {k}} for any k ∈ J , yields that z̄ is a
nondegenerate critical point if we delete ϕk as a constraint. For k ∈ J put

Mk = {z ∈ R
n+1 | hi(z) = 0, i ∈ I, ϕj(z) = 0, j ∈ J \ {k}},

M+
k = {z ∈Mk | ϕk(z) ≥ 0}.

From conditions (5.2), (5.3) and the fact that the hi, ϕj are C3-functions it follows
that, locally around z̄, the set Mk is a one-dimensional C3-manifold, k = 1, . . . , s.
Furthermore, in a neighborhood of z̄, the set Σ is the union of the sets M+

k , k =
1, . . . , s. The indices (LI, LCI, QI, QCI) alongM+

k \{z̄} are equal to (δk, s−1−δk, 0, 0).
As t increases and passes the value t̄, the setM+

k emanates from z̄ (ends at z̄) according
to γk = +1 (−1). If MFCQ is violated at z̄, there is exactly one k with δk = 0, i.e.,
there is exactly one branch Mk of local minima. Furthermore, if z̄ satisfies MFCQ,
then there are branches of local minima if and only if z̄ is a local minimum itself. In
the latter case, there are exactly two indices k1 and k2 with δk1

= δk2
= 0, and these

indices satisfy γk1
= −γk2

(thus, the set of local minima of P (x̄,t̄) does not exhibit a
turning point at (x̄, t̄)). Figure 2.5 shows two examples for Σ around g.c. points of
type 5.
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3. The nonreducible case. In this section, we deal with generic violations of
the reduction approach in section 2.2, where we assumed that for given t̄ and a g.c.
point x̄ of SIP (t̄), all elements of Y0(x̄, t̄) are nondegenerate global minima for Q(x̄, t̄).
By Assumption 1, Y0(x̄, t̄) turned out to be a finite set. Now we require Y0(x̄, t̄) to be
finite, i.e.,

Y0(x̄, t̄) = {ȳj , j ∈ J}, J = {1, . . . , s}, s ∈ N0,

and we assume that exactly one of these points is degenerate. After renumbering, we
may assume that ȳ1, . . . , ȳs−1 are nondegenerate global minima of Q(x̄, t̄), whereas
ȳs is a degenerate global minimum. Let Assumption 3 be fulfilled also in this section;
i.e., all defining functions of SIP (t) are of differentiability class C3.

In the generic case, only the degenerate types discussed in section 2.2 play a
role for ȳs. Since ȳs is a local minimum, and since we have only one parameter t
at hand, the restricted Hessian of the corresponding Lagrangian Lyy(x̄, t̄, ȳs)|TȳY (t̄) is
nonsingular generically. In fact, the first such singularity (in one dimension) takes the
form y4, which has singularity-codimension two. Hence, the singularities generically
occurring at ȳs are related to the types 2, 4, and 5, which leads to the three additional
types 6, 7, and 8 for the semi-infinite case.

The following subsections treat the definitions of the three new types as well as
results about the corresponding local structure of Σ. Proofs will be given as far as
they have not been published in [6], where g.c. points of type 6 are treated extensively.

3.1. Points of type 6. A g.c. point of type 6 can be roughly characterized by
the fact that the degeneracy of the minimum ȳs of Q(x̄, t̄) is due to the vanishing of
exactly one Lagrange multiplier (i.e., ND1 in Definition 2.3 is violated), whereas LICQ
is satisfied at ȳs. In order to improve readability, we will not formulate all conditions in
original variables, but we will apply sequential simplification. For explicit formulations
within original coordinates we refer to [23].

Definition 3.1 (type 6). A point z̄ = (x̄, t̄) ∈ Σ is of type 6 if the following
conditions (6.1)–(6.7)∗ are fulfilled.

(6.1) There exists an s ∈ N0 with Y0(x̄, t̄) = {ȳj , j ∈ J}, J = {1, . . . , s}, and the
points ȳ1, . . . , ȳs−1 are nondegenerate global minima for Q(x̄, t̄).

(6.2) The set of vectors {hix(z̄), i ∈ I, gx(z̄, ȳj), j ∈ J} is linearly independent.
Condition (6.2) implies the existence of unique real numbers λ̄i, i ∈ I, and µ̄j , j ∈ J,
satisfying

fx(z̄) =
∑
i∈I

λ̄ih
i
x(z̄) +

∑
j∈J

µ̄jgx(z̄, ȳ
j).(11)
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(6.3) In (11), we have µ̄j 6= 0, j ∈ J .
Now, consider the one-parametric finite optimization problem

Q(x̄, t) minimize g(x̄, t, ·) on the feasible set Y (t).

(6.4) The point (t̄, ȳs) satisfies conditions (2.2)–(2.6) (cf. Definition 2.10) for
Q(x̄, t).

(6.4.1) ȳs is a critical point for Q(x̄, t̄).
(6.4.2) L0(x̄, t̄, ȳ

s) 6= ∅.
After renumbering, we assume that L0(x̄, t̄, ȳ

s) = {1, . . . , p}, p ≥ 1. Then, we have
(cf. Definition 2.2):

gy(x̄, t̄, ȳ
s) =

∑
k∈K

β̄ku
k
y(t̄, ȳ

s) +

p∑
l=1

γ̄lv
l
y(t̄, ȳ

s).(12)

(6.4.3) In (12), exactly one of the Lagrange multipliers γ̄l vanishes. After renum-
bering, we assume that γ̄p = 0. Define T , T̃ , and L(t, y) as in Definition 2.10.

(6.4.4) Lyy(x̄, t̄, ȳs)|T is nonsingular.
(6.4.5) Lyy(x̄, t̄, ȳs)|T̃ is nonsingular.

Note that we do not require a transversality condition corresponding to condition (2.7)
here. However, condition (6.7)∗ (see below) implies transversality in the lower level
problem (compare Theorem 3.2(iv)).

Before we state the next conditions we reduce the problem locally by coordi-
nate transformation. For j ∈ {1, . . . , s − 1}, we introduce the marginal functions
(compare condition (6.1) and section 2.2) ϕj(x, t) = g(x, t, yj(x, t)) . In view of
conditions (6.2) and (6.3) we can treat the equality constraint functions hi, i ∈ I,
and the inequality constraint functions ϕj , j = 1, . . . , s − 1, as new coordinates.
Since µ̄j 6= 0, j = 1, . . . , s− 1 (cf. condition (6.3)), we see that ϕj is a binding con-
straint. Hence, in the new coordinates we can delete the constraints hi, i ∈ I, and
ϕj , j = 1, . . . , s− 1. Subsequently, in view of conditions (6.4.1) and (6.4.3), the con-
straints uk, k ∈ K, and vl, l ∈ {1, . . . , p− 1}, are binding near the point ȳs. Hence,
around ȳs, we can use the functions uk, k ∈ K, and vl, l ∈ {1, . . . , p − 1}, as new
coordinates and they can be deleted in our further considerations.

The preceding observations show that we may proceed locally with the following
simplified system SIP (t)∗ (in new coordinates and dimensions), where I = ∅, K = ∅,
and |L| = 1 :

SIP (t)∗ minimize f(·, t) on the feasible set M(t),

where

M(t) = {x ∈ R
n | g(x, t, y) ≥ 0 , y ∈ Y (t)},

Y (t) = {y ∈ R
m | v(t, y) ≥ 0 },

and Y0(x̄, t̄) = {ȳ}. The corresponding lower level problem is

Q(x, t)∗ min g(x, t, y) subject to v(t, y) ≥ 0 .

In order to study the feasible set M(t) for t near t̄, we merely have to focus on
the behavior of the functions g and v around (x̄, t̄, ȳ).
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From condition (6.4) it follows for Q(x, t)∗ that

gy(x̄, t̄, ȳ) = γ̄ vy(t̄, ȳ)(13)

with γ̄ = 0 and vy(t̄, ȳ) 6= 0. Hence, (13) can be read as a critical point relation either
treating v as an equality constraint, i.e., for

Q(x, t)∗e min g(x, t, y) subject to v(t, y) = 0 ,

or just deleting v as a constraint, i.e., for

Q(x, t)∗d min g(x, t, y) .

By conditions (6.4.4) and (6.4.5), ȳ is a nondegenerate critical point for both
Q(x̄, t̄)∗e and Q(x̄, t̄)∗d. Thus, there exist locally unique C2-functions ye(x, t) and
γe(x, t), where ye(x, t) is the unique critical point near ȳ for Q(x̄, t)∗e with t near
t̄ (with Lagrange multiplier γe(x, t)), as well as a C2-function yd(x, t) with the anal-
ogous property. Now define the problems

SIP (t)∗e min f(x, t) subject to g(x, t, ye(x, t)) ≥ 0

and

SIP (t)∗d min f(x, t) subject to g(x, t, yd(x, t)) ≥ 0 .

Convention: In the following we mark conditions (6.5)–(6.7) with a star (*) in
order to underline that they are conditions in terms of the simplified system.

Definition 3.1 (type 6, continued).
(6.5)∗ x̄ is a nondegenerate critical point for SIP (t̄)∗e.
(6.6)∗ x̄ is a nondegenerate critical point for SIP (t̄)∗d.

By condition (6.5)∗, there exist locally unique C2-functions xe(t) and µe(t), where
xe(t) is the unique critical point near x̄ for SIP (t)∗e with t near t̄ (with Lagrange
multiplier µe(t)). In a similar way, condition (6.6)∗ gives rise to C2-functions xd(t)
and µd(t).

Finally, we define the values α and δ by

α =
d

dt
v
(
t, yd(xd(t), t)

) |t=t̄ ,

δ =
d

dt
γe (xe(t), t) |t=t̄ .

(6.7)∗ α 6= 0.
The characteristic numbers are sign(α) and sign(δ).

Locally around a point of type 6, Σ is composed by means of the C2-curves
t 7−→ (xe(t), t) and t 7−→ (xd(t), t). From the next theorem, we obtain exactly six
possibilities according to the local structure of Σ, four of which are depicted in Figure
3.1. We include a proof of this theorem in the appendix.

Theorem 3.2. Let z̄ = (x̄, t̄) be a point of type 6. Then, the following holds:
(i) if ẋe(t̄)− ẋd(t̄) vanishes, then the value α ·δ is negative (where the dot denotes

derivation with respect to t),
(ii) sign(δ) does not vanish,
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(iii) for t in a neighborhood of t̄, the points yd(xd(t), t) and ye(xe(t), t) are local
minima of the problems Q(xd(t), t)∗d and Q(xe(t), t)∗e, respectively,

(iv) the C2-curves t 7−→ (ye(xe(t), t), t) and t 7−→ (
yd(xd(t), t), t

)
meet in (ȳ, t̄)

under a nonvanishing angle.

Remark 3.1. Altogether, the curves t 7−→ (xe(t), ye(xe(t), t), t) and t 7−→(
xd(t), yd(xd(t), t), t

)
meet in (x̄, ȳ, t̄) under a nonvanishing angle, because this holds

particularly for their lower level components by Theorem 3.2(iv). Anyway, the projec-
tions t 7−→ (xe(t), t) and t 7−→ (

xd(t), t
)

need not meet in (x̄, t̄) under a nonvanishing
angle. Equation (40) (cf. the appendix) even implies the equality ẋe(t̄) = ẋd(t̄) when-
ever xe and xd are scalar functions (by Cramer’s rule). Thus, condition (6.10)∗ in
our previous paper [6] has to be deleted.

The results in parts (ii) and (iii) of Theorem 3.2 together with condition (6.7)∗

yield that exactly one branch of each graph (emanating at or ending in z̄) belongs to
Σ, as depicted in Figure 3.1. From this we immediately obtain the following.

Corollary 3.3. Let z̄ be a point of type 6. Then, z̄ is a turning point for Σ if
and only if α · δ is positive.

Moreover, by part (i) of Theorem 3.2, the set Σ is locally a C1-manifold if the
curves t 7−→ (xe(t), t) and t 7−→ (xd(t), t) meet under a vanishing angle. Examples
show that, in general, Σ is not a C2-manifold in this case.

Now, we will study the change of the indices (LI, LCI, QI, QCI) when passing z̄
along Σ, by comparing the indices at (xe(t̄), t̄) and (xd(t̄), t̄) for the problems SIP (t)∗d
and SIP (t)∗e as introduced in conditions (6.5)∗ and (6.6)∗, respectively. To this aim,
we define the Lagrangians corresponding to SIP (t)∗d and SIP (t)∗e, as well as their
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evaluated Hessians by

Ld(x, t, µ) = L(x, t, µ, yd(x, t)) , Hd = Ldxx(x̄, t̄, µ̄),
Le(x, t, µ) = L(x, t, µ, ye(x, t)) , He = Lexx(x̄, t̄, µ̄),

where

L(x, t, µ, y) = f(x, t)− µg(x, t, y).

The tangent spaces to the feasible sets of both problems are given by

T d = T e = T = Ker g>x (x̄, t̄, ȳ).

Recall that, in order to compute the change of the quadratic index, we have to compare
the number of negative eigenvalues of the restricted Hessians Hd|T and He|T . The
next lemma is easily checked by using properties of the determinant function, whereas
Lemma 3.5 is obvious.

Lemma 3.4. Consider an n× n matrix A and a column vector b ∈ R
n \ {0}. Let

V be an n× (n− 1) matrix whose columns form a basis of Ker b> and put Ṽ = (V, b).
Then, we have

det

(
A b
b> 0

)
= − ||b||42

det2 Ṽ
· det

(
V >AV

)
.

Lemma 3.5. Let A and B be symmetric n×n matrices with a positive semidefinite
difference A−B. Then, if B is positive definite, so is A.

Now we state our main result concerning index changes at points of type 6.
Theorem 3.6. Let z̄ = (x̄, t̄) be a point of type 6. When passing the point z̄

along Σ, the following holds for the corresponding indices:
(i) LI, LCI remain unchanged,
(ii) QI either remains constant or changes by one,
(iii) QI changes by one if and only if z̄ is a turning point for Σ.

Moreover, we have the following:
(iv) If z̄ is a turning point for Σ and one of the branches of Σ consists of local

minimizers, then this is the branch corresponding to the curve t 7−→ (
xd(t), t

)
.

Proof. Part (i). It is an immediate consequence of condition (6.3).
Part (ii). In [6] the equation

V >HdV − V >HeV = µ̄ϑ
(
V >γex

) (
V >γex

)>
(14)

is shown, where V is a basis matrix of T = Ker g>x and ϑ = v>y g
−1
yy vy. Hence, the

restrictions of Hd and He to T differ by a matrix of rank one at most, which proves
the assertion.

Part (iii). Let V and ϑ be defined as in the proof of part (ii) (the definitions of
Ad and Ae as well as the formulas (41) and (43) are contained in the appendix). The
determinant property of Schur complements yields

det

(
Hd −gx
−g>x 0

)

det

(
He −gx
−g>x 0

) = −ϑ · detAd

detAe
.(15)
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Thus, we have

detHd|T
detHe|T =

detV >HdV

detV >HeV

Lemma 3.4
=

det

(
Hd −gx
−g>x 0

)

det

(
He −gx
−g>x 0

) (15),(41)
= −ϑ · δ

α
.

Since ϑ is positive by (43), it follows that the value QI(Hd|T ) − QI(He|T ) is odd if
and only if α · δ is positive. Thus, the assertion follows from Corollary 3.3 and part
(ii).

Part (iv). Since one of the branches consists of local minimizers we have µ̄ > 0
by condition (6.3) and by part (i). Hence, the assertion follows from (14), Lemma
3.5, and part (iii).

For examples showing that both situations in Theorem 3.6(ii) occur, compare
[6]. (Note that in [6] a class of optimization problems broader than SIP (t) is under
investigation, but nevertheless, the cited example fits in our context.)

3.2. Points of type 7. At g.c. points of type 7, it is the violation of LICQ in the
lower level problem Q(x̄, t̄) that causes the degeneracy of the minimum ȳs. Yet, the
total number of active constraints at ȳs (equalities and inequalities) does not exceed
the lower level dimension m.

Definition 3.7 (type 7). A point z̄ = (x̄, t̄) ∈ Σ is of type 7 if the following
conditions (7.1)–(7.3) are fulfilled.

(7.1) There exists an s ∈ N0 with Y0(x̄, t̄) = {ȳj , j ∈ J}, J = {1, . . . , s}, and the
points ȳ1, . . . , ȳs−1 are nondegenerate global minima for Q(x̄, t̄).

Define the marginal functions ϕj(x, t) = g(x, t, yj(x, t)), j ∈ {1, . . . , s−1}, as well as
the function ϕs(x, t) = g(x, t, ȳs) and the one-parametric finite optimization problem

P (t) minimize f(·, t) on the feasible set M(t),

where

M(t) = {x ∈ R
n
∣∣ hi(x, t) = 0 , i ∈ I, ϕj(x, t) ≥ 0 , j ∈ J}.

Note that, as in problem P (x̄,t̄) (cf. section 2.2), we have J0(x̄, t̄) = J by definition of
the functions ϕj.

(7.2) x̄ is a nondegenerate critical point for P (t̄).
(7.3) The point (t̄, ȳs) satisfies conditions (4.2)–(4.7) (cf. Definition 2.12) for Q(x̄, t).

After renumbering we may assume that L0(x̄, t̄, ȳ
s) = {1, . . . , p}, p ≥ 0. Moreover,

let K possess a fixed order.
(7.3.1) |K|+ p > 0 .
(7.3.2) |K|+ p− 1 < m .
(7.3.3) The matrix M = (uky , k ∈ K, v1

y, . . . , v
p
y)|(t̄,ȳ) has rank |K|+ p− 1 .

Let the one-dimensional space Ker(M) be generated by (β̄, γ̄)> and define L(t, y), T,
W , and A as in Definition 2.12.

(7.3.4) A is nonsingular.
Define δ = g>y (x̄, t̄, ȳs)WA−1W>gy(x̄, t̄, ȳs).

(7.3.5) δ 6= 0 .
In the case p ≥ 1 we additionally require

(7.3.6) γ̄l 6= 0, l ∈ {1, . . . , p}
and we normalize the γ̄l’s by setting γ̄p = 1.
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The characteristic number for a g.c. point of type 7 is sign(δ).
Before we perform an analysis of the local structure of Σ in a neighborhood

of z̄, we reduce the problem locally as in section 3.1. In the upper level problem,
we treat the equality constraint functions hi, i ∈ I, and the marginal functions
ϕj , j = 1, . . . , s− 1, as new coordinates. In the lower level problem we have to con-
sider two cases.

Case 1. p = 0.
By condition (7.3.3) the set of vectors {uky(t̄, ȳ), k ∈ K \ {k0}} is linearly inde-
pendent for some k0 ∈ K. Hence, we introduce the equality constraint functions
uk, k ∈ K \ {k0} as new coordinates.

Case 2. p ≥ 1.
The set of vectors {uky , k ∈ K, vly, l ∈ {1, . . . , p}\{l0}} is linearly independent for any
l0 ∈ {1, . . . , p} by conditions (7.3.3) and (7.3.6). Furthermore, by condition (7.3.6)
the corresponding constraints are binding near the point ȳs. Thus, we choose l0 = p
and treat the functions uk, k ∈ K, and vl, l ∈ {1, . . . , p− 1}, as new coordinates.

The preceding observations show that, by deleting all functions which define new
coordinates, we may proceed locally with the following simplified system SIP (t)∗ (in
new coordinates and dimensions), satisfying I = ∅ and |K|+ |L| = 1 :

SIP (t)∗ minimize f(·, t) on the feasible set M(t),

where

M(t) = {x ∈ R
n | g(x, t, y) ≥ 0 , y ∈ Y (t)}

Y (t) = {y ∈ R
m | w(t, y) ρ 0 },

and Y0(x̄, t̄) = {ȳ}. In Case 1, ρ means “=”; otherwise it means “≥”.
By condition (7.2) we have gx(z̄, ȳ) 6= 0 and fx(z̄) = µ̄gx(z̄, ȳ) with a Lagrange

multiplier µ̄ 6= 0. Moreover, the matrix(
fxx(z̄)− µ̄gxx(z̄, ȳ) −gx(z̄, ȳ)

−g>x (z̄, ȳ) 0

)
is nonsingular.(16)

Conditions (7.3.3), (7.3.4), and (7.3.5) imply

wy = 0,(17)

wt · wyy is nonsingular,(18)

δ = w−1
t g>y w

−1
yy gy 6= 0,(19)

all partial derivatives being evaluated at (x̄, t̄, ȳ).
Theorem 3.8. Let z̄ = (x̄, t̄) be a point of type 7. Then, Σ locally consists of the

branch corresponding to nonnegative α of a one-dimensional C2-manifold

Γ = {(x(α), t(α)), α ∈ (−ε, ε)},

which has a quadratic turning point at z̄ = (x(0), t(0)). For increasing t, Σ emanates
from (ends at) z̄ according to sign(δ) = −1 (+1).

A proof of Theorem 3.8 is given in the appendix. In order to illustrate the
structure of Σ in a neighborhood of a g.c. point of type 7, we give the following
example.
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Example 3.1. Consider the problem (with I = K = ∅, |L| = 1, n = m = 1)

minimize f(x, t) = x on the feasible set M(t),

where

M(t) = {x ∈ R | 0 ≤ g(x, t, y) = x+ y , y ∈ Y (t)},
Y (t) = {y ∈ R | 0 ≤ v(t, y) = t− y2 }.

It is easily checked that (x̄, t̄) = (0, 0) is a g.c. point of type 7 with Y0(0, 0) = {ȳ} =
{0}. In particular, we obtain δ = − 1

2 .

In fact, observing that

Y (t) =

{ ∅, t < 0,[−√t,√t ] , t ≥ 0,
and M(t) =

{
R, t < 0,

[
√
t,∞), t ≥ 0,

there are no g.c. points for t < 0, but a unique g.c. point x =
√
t for t ≥ 0. This is

just the situation sketched in Figure 3.2 for δ < 0.

Note that in this example, the set Σ of g.c. points coincides with the set of global
minima.

3.3. Points of type 8. Like at g.c. points of type 7, the violation of LICQ in
the lower level problem Q(x̄, t̄) causes the degeneracy of the minimum ȳs. However,
at g.c. points of type 8 the total number of active constraints at ȳs (equalities and
inequalities) exceeds the lower level dimension m (by one).

Definition 3.9 (type 8). A point z̄ = (x̄, t̄) ∈ Σ is of type 8 if the following
conditions (8.1)–(8.3) are fulfilled.

(8.1) There exists an s ∈ N0 with Y0(x̄, t̄) = {ȳj , j ∈ J}, J = {1, . . . , s}, and the
points ȳ1, . . . , ȳs−1 are nondegenerate global minima for Q(x̄, t̄).

(8.2) x̄ is a nondegenerate critical point for P (t̄) with P (t) defined as in Definition
3.7.

(8.3) The point (t̄, ȳs) satisfies conditions (5.2)–(5.5) (cf. Definition 2.13) for Q(x̄, t).

(8.3.1) |K|+ |L0(x̄, t̄, ȳ
s)| = m+ 1.

After renumbering we may assume that L0(x̄, t̄, ȳ
s) = {1, . . . , p}, p ≥ 2. Moreover,

let K possess a fixed order and put ω = (y, t).

(8.3.2) The set of vectors {ukω(t̄, ȳs), k ∈ K, vlω(t̄, ȳs), l ∈ {1, . . . , p}} is linearly
independent.
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Now put M =
(
uky(t̄, ȳ

s), k ∈ K, v1
y(t̄, ȳ

s), . . . , vpy(t̄, ȳ
s)
)
. By condition (8.3.2), M

has rank m and thus, there exists a solution (β, γ) (nonvanishing and unique up to a
common multiple) of

M

(
β
γ

)
= 0.(20)

(8.3.3) In (20) we have γl 6= 0, l = 1, . . . , p.
By condition (8.3.2), there is a unique solution (ζ, η) of the system

gω(x̄, t̄, ȳs) =
(
ukω(t̄, ȳs), k ∈ K, v1

ω(t̄, ȳs), . . . , vpω(t̄, ȳs)
)( ζ

η

)
.(21)

Put

∆ij = ηi − ηj
γi
γj

, i, j = 1, . . . , p,

and let ∆ be the p× p matrix with ∆ij as its (i, j)th element.
(8.3.4) All off-diagonal elements of ∆ are unequal to zero.

Put

L(t, y) =
∑
k∈K

βku
k(t, y) +

p∑
l=1

γlv
l(t, y),

where βk, γl satisfy (20). From condition (8.3.2) we see that Lt(t̄, ȳs) does not vanish.
We define the characteristic numbers

αl = sign (γl · Lt(t̄, ȳs)) , l = 1, . . . , p.

Additionally, we distinguish two situations occurring at points of type 8 since they
give rise to essentially different local structures of Σ. A g.c. point z̄ of type 8 is of
type 8a if MFCQ is satisfied at ȳs in the lower level problem Q(x̄, t̄). Otherwise, z̄ is
of type 8b.

In case of a g.c. point of type 8b we define the additional characteristic number

l∗ = argmin

{
ηl
γl

α1

Lt(t̄, ȳs) , l = 1, . . . , p

}
,

(which can be shown to be well defined).
Before we perform an analysis of the local structure of Σ in a neighborhood of

z̄, we reduce the problem locally again like in sections 3.1 and 3.2. In the upper
level problem, we treat the equality constraint functions hi, i ∈ I, and the marginal
functions ϕj , j = 1, . . . , s − 1, as new coordinates. Note that in the lower level
problem, there are exactly two (one) branches of local minima if z̄ is of type 8a (type
8b) (see Definition 2.13). For any index q ∈ {1, . . . , p} we see from using (20) and
(21) that

gy(x̄, t̄, ȳ
s) =

∑
k∈K

(
ζk − ηq

γq
βk

)
uky(t̄, ȳ

s) +
∑
l 6=q

∆lqv
l
y(t̄, ȳ

s).(22)

The right-hand side vectors in (22) are linearly independent by conditions (8.3.2)
and (8.3.3), none of ∆lq vanish by condition (8.3.4) and we have |K| + |{2, . . . , p}|



ON PARAMETRIC SEMI-INFINITE OPTIMIZATION 1123

= m by condition (8.3.1). As new coordinates we choose the constraint functions
uk, k ∈ K, and vl, l ∈ {1, . . . , p} \ {l1, l2}, where the indices of branches consisting
of local minima are contained in the set {l1, l2}. This yields a lower level problem of
dimension one.

The preceding observations show that, by deleting all functions which define new
coordinates, we may proceed locally with the following simplified system SIP (t)∗ (in
new coordinates and dimensions), satisfying I = K = ∅ and |L| = 2 :

SIP (t)∗ minimize f(·, t) on the feasible set M(t),

where

M(t) = {x ∈ R
n | g(x, t, y) ≥ 0 , y ∈ Y (t)},

Y (t) = {y ∈ R
1 | v1(t, y) ≥ 0 , v2(t, y) ≥ 0},

and Y0(x̄, t̄) = {ȳ}. The corresponding lower level problem is

Q(x, t)∗ min g(x, t, y) subject to v1(t, y) ≥ 0 , v2(t, y) ≥ 0 .

From condition (8.2) we conclude that gx(z̄, ȳ) 6= 0 and fx(z̄) = µ̄gx(z̄, ȳ) with a
Lagrange multiplier µ̄ 6= 0. Furthermore, the matrix(

fxx(z̄)− µ̄gxx(z̄, ȳ) −gx(z̄, ȳ)
−g>x (z̄, ȳ) 0

)
is nonsingular.(23)

Conditions (8.3.2), (8.3.3), and (8.3.4) imply that the 2× 2 matrix(
v1
y v2

y

v1
t v2

t

)
is nonsingular,(24)

v1
y · v2

y 6= 0,(25)

gy 6= 0,(26)

all partial derivatives being evaluated at (x̄, t̄, ȳ). Moreover, a short calculation shows
that

α1 = sign

(
v1
t − v1

y

v2
y

v2
t

)
,(27)

α2 = sign

(
v2
t − v2

y

v1
y

v1
t

)
,(28)

and that z̄ is of type 8a (of type 8b) for SIP (t)∗ according to α1 · α2 = −1 (+1) . In
case of a point of type 8b we find that

l∗ ∈ {1, 2} is the unique index with gy · vl∗y < 0.(29)

From (24)–(26) the following lemma is easily deduced.
Lemma 3.10. The point ȳ is a nondegenerate critical point both for problem

Q(x̄, t̄)∗1 and Q(x̄, t̄)∗2, where

Q(x, t)∗i min g(x, t, y) subject to vi(t, y) ≥ 0 , i ∈ {1, 2}.
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By Lemma 3.10, there exist locally unique C2-functions yi(x, t) and γi(x, t),
i ∈ {1, 2}, satisfying yi(z̄) = ȳ and γi(z̄) = γ̄i (where γ̄i denotes the unique La-
grange multiplier in problem Q(x̄, t̄)∗i ) and

gy(x, t, y
i(x, t)) − γi(x, t) viy(t, y

i(x, t)) ≡ 0,

−vi(t, yi(x, t)) ≡ 0.
(30)

By differentiation of (30) with respect to x at (x̄, t̄, ȳ) we obtain for i ∈ {1, 2}(
yix
γix

)
= −

(
gyy − γ̄iviyy −viy

−viy 0

)−1(
gyx
0

)
=

(
0

1
viy
gyx

)
.(31)

Now we introduce the problems

SIP (t)∗i min f(x, t) subject to g(x, t, yi(x, t)) ≥ 0 , i ∈ {1, 2}.
Essentially by equation (31) we have the following lemma.
Lemma 3.11. The point x̄ is a nondegenerate critical point both for problem

SIP (t)∗1 and SIP (t)∗2.
Proof. By Lemma 3.10 and Lemma 2.5

d

dx
g(x, t, yi(x, t)) ≡ gx(x, t, y

i(x, t))

holds locally for i ∈ {1, 2} and hence

d

dx
g(x, t, yi(x, t))|(x̄,t̄) = gx(x̄, t̄, ȳ),

as well as

d2

dx2
g(x, t, yi(x, t))|(x̄,t̄) = gxx(x̄, t̄, ȳ) + gxy(x̄, t̄, ȳ) · yix(x̄, t̄)

(31)
= gxx(x̄, t̄, ȳ) .

Defining the Lagrangians Li(x, t) = f(x, t)− µ̄g(x, t, yi(x, t)), i ∈ {1, 2}, we obtain

Lix(x̄, t̄) = fx(x̄, t̄) − µ̄gx(x̄, t̄, ȳ) = 0,(32)

T i = Ker

(
d

dx
g(x, t, yi(x, t))|(x̄,t̄)

)>
= Ker g>x (x̄, t̄, ȳ),(33)

Lixx(x̄, t̄)|T i =

(
fxx(x̄, t̄)− µ̄gxx(x̄, t̄, ȳ) −gx(x̄, t̄, ȳ)

−g>x (x̄, t̄, ȳ) 0

)
.(34)

Thus, the assertion follows from condition (8.2). Note that the right-hand side ex-
pressions in (32), (33), and (34) do not depend on i ∈ {1, 2}.

By Lemma 3.11, there exist locally unique C2-functions xi(t) and µi(t), i ∈ {1, 2}
satisfying xi(t̄) = x̄, µi(t̄) = µ̄ and

fx(x
i(t), t) − µi(t) gx(x

i(t), t, yi(xi(t), t)) ≡ 0,

−g(xi(t), t, yi(xi(t), t)) ≡ 0.
(35)

Now, we turn to the local structure of Σ in a neighborhood of a g.c. point of
type 8 (cf. Figures 3.3 and 3.4). A proof of the next theorem can be found in the
appendix.
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Theorem 3.12.

(i) Let z̄ = (x̄, t̄) be a g.c. point of type 8a. Then, Σ is locally composed by means
of the C2-curves t 7−→ (x1(t), t) and t 7−→ (x2(t), t), which meet in z̄ under a
nonvanishing angle. Exactly one branch of each graph belongs to Σ, and the
composition of the branches is such that Σ does not exhibit a turning point at
z̄. The index quadruple (LI,LCI,QI,QCI) remains constant when passing the
point z̄ along Σ.

(ii) Let z̄ = (x̄, t̄) be a g.c. point of type 8b. Then, Σ locally consists of exactly
one branch of the C2-curve t 7−→ (xi(t), t), where i is the index in {1, 2}\{l∗}.
For increasing t, Σ emanates from (ends at) z̄ according to αi = +1 (−1).

In order to illustrate the structure of Σ in a neighborhood of a g.c. point of type 8,
we give the following example.

Example 3.2. Consider the problem (with I = K = ∅, |L| = 2, n = m = 1)

minimize f(x, t) = x on the feasible set M(t),

where

M(t) = {x ∈ R | 0 ≤ g(x, t, y) = x+ y , y ∈ Y (t)},
Y (t) = {y ∈ R | 0 ≤ v1(t, y) = y(1− y), 0 ≤ v2(t, y) = θ(y − t)},

and where θ is an additional parameter taking the values +1 and −1. It is easily
checked that (x̄, t̄) = (0, 0) is a g.c. point of type 8a (type 8b) with Y0(0, 0) = {ȳ} = {0}
for θ = +1 (−1).
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First, consider the case θ = +1. Observing that

Y (t) =




[0, 1] , t < 0,
[t, 1] , 0 ≤ t ≤ 1,
∅, 1 < t,

and M(t) =

{
[ 0,∞), t < 0,

[ − t,∞), 0 ≤ t ≤ 1,

there is the unique g.c. point x(t) = 0 for t < 0, and the unique g.c. point x(t) = −t
for 0 ≤ t ≤ 1. In particular, we compute α1 = +1 and α2 = −1.

In the case θ = −1 we have

Y (t) =




∅, t < 0,
[0, t] , 0 ≤ t ≤ 1,
[0, 1] , 1 < t,

and M(t) =

{
R, t < 0,

[ 0,∞), t ≥ 0.

Thus, there are no g.c. points for t < 0, but the unique g.c. point x(t) = 0 for t ≥ 0.
We compute α1 = α2 = +1 and l∗ = 2.

Note that in these examples, the sets Σ of g.c. points coincide with the sets of
global minima.

4. On the genericity proof. In this section, we sketch the main ideas of
the genericity part in the proof of Theorem 1.5. To this aim, we denote by F∗ ⊂
C3(Rn+1,R)|I|+1×C3(Rn+m+1,R)×CUSC the set of all function vectors which give
rise to g.c. points of types 1 to 8 only, if they are utilized as defining functions for
SIP (t). Theorem 1.5 then says that there is a subset F of F∗ being C3

s -open and
dense in C3(Rn+1,R)|I|+1 × C3(Rn+m+1,R) × CUSC. A genericity proof for a dif-
ferent class of one-parametric semi-infinite optimization problems has been given by
Rupp [21]; however, he considered only problems where LICQ always holds in the
lower level problem. It is straightforward to modify and generalize the latter proof,
essentially since, by transversality arguments, it can be shown that the points (t̄, ȳ) at
which LICQ fails to hold in the lower level problem generically are isolated (cf. also
[10]).

The open part of the proof just consists of a continuity argument. Before we
treat the dense part by using Thom’s jet-transversality theorem, we give a short
introduction to transversality theory, as far as we need it for our analysis. For details,
cf., e.g., [9], [12].

Two smooth manifolds V,W in R
N are said to intersect transversally (notation:

V >∩W ) if at each intersection point u ∈ V ∩W the tangent spaces TuV, TuW together
span the embedding space:

TuV + TuW = R
N .(36)

The number N − dimV is called the codimension of V in R
N , shortly codimV , and

we have

codimV ≤ dimW(37)

whenever V >∩W and V ∩W 6= ∅. For our purpose, the manifold W is induced by the
1-jet extension of a function F ∈ C∞(RN ,RM ), i.e., by the mapping

j1F : R
N −→ J(N,M, 1), z 7−→ (z, F (z), Fz(z)),

where J(N,M, 1) = R
N+M+N ·M and the partial derivatives are listed according

to some order convention (cf. [12]). Choosing W as the graph of j1F (notation:
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W = j1F (RN )) it is easily shown that W is a smooth manifold of dimension N in
J(N,M, 1). Given another smooth manifold V in J(N,M, 1), we define the set

>∩1V = {F ∈ C∞(RN ,RM )| j1F (RN ) >∩ V }.

Our analysis bases on the following theorem, which is due to Thom.
Theorem 4.1 (jet transversality). With respect to the C∞s -topology, the set >∩1V

is generic in C∞(RN ,RM ).
In particular, >∩1V is C∞s -dense in C∞(RN ,RM ) and hence Cr

s -dense in
Cr(RN ,RM ) for any r ∈ N0 (cf. [9]).

Since jet transversality gives information about certain properties of the func-
tions under investigation only at every single point we apply the concept of multijet
transversality instead (cf. [12]). Thereby, we are able to study properties that have
to be satisfied at all global minima of the lower level problem — i.e., at the points in
Y0(x̄, t̄) — at the same time. Let P be a positive integer and define

R
N
P =

{
(z1, . . . , zP ) ∈∏P

k=1R
N | zi 6= zj for 1 ≤ i < j ≤ P

}
,

as well as the multijet space

JP (N,M, 1) =
{

(z1, u1, . . . , zP , uP ) ∈∏P
k=1J(N,M, 1)| (z1, . . . , zP ) ∈ R

N
P

}
.

The multijet extension j1PF : R
N
P −→ JP (N,M, 1) is the mapping

j1PF : (z1, . . . , zP ) 7−→ (
j1f(z1), . . . , j1f(zP )

)
,

and for a smooth manifold V in JP (N,M, 1) we define the set

>∩1
PV = {F ∈ C∞(RN ,RM )| j1PF (RN

P ) >∩ V }.

Theorem 4.2 (multijet transversality). With respect to the C∞s -topology, the set
>∩1
PV is generic in C∞(RN ,RM ).

In order to avoid technicalities, we construct the set F ⊂ F∗ only for the case
Y (t) = {y ∈ R

m| u(t, y) = 0}, i.e., for one equality constraint in the lower level
problem, the general case running along the same lines (for details, cf. [23]). Conse-
quently, g.c. points of type 6 and type 8 cannot occur in the SIP (t) corresponding to
a function vector (f, g, u) ∈ F . Consider the sets of matrices

R
M×N
ρ =

{
A ∈ R

M×N
∣∣∣ rank(A) = ρ

}
and, for a (possibly empty) index set I ⊂ {1, . . . , N},

R
M×N
ρ,I =

{
A ∈ R

M×N
ρ

∣∣∣ A(I) ∈ R
M×(N−|I|)
ρ−|I|

}
,(38)

where A(I) results from A by deleting the columns with indices in I. Part (i) of the
following lemma can be found in [12], part (ii) in [23].

Lemma 4.3.
(i) R

M×N
ρ is a smooth manifold of codimension (M − ρ)(N − ρ) in R

M×N .

(ii) R
M×N
ρ,I is a smooth manifold of codimension (M + |I| − ρ)(N − ρ) in R

M×N .
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Now we construct the crucial manifold for our genericity proof. Let s ∈ N,
0 ≤ ρ0 ≤ min{n, s+1}, I0 ⊂ {1, . . . , s+1}, as well as 0 ≤ ρj ≤ min{m, 2}, Ij ⊂ {1, 2}
for 1 ≤ j ≤ s. Then, the set

Vs,ρ0,...,ρs,I0,...,Is

= {(ξ1, τ1, υ1, 0, 0, ϕ1, γ1, δ1, ω1, . . . , ξs, τs, υs, 0, 0, ϕs, γs, δs, ωs),

(ξj , τj , υj , ϕj , γj , δj , ωj) ∈ R
n×R×R

m×R
n×R

n×R
m×R

m,

1 ≤ j ≤ s, (ξ1, τ1) = · · · = (ξs, τs),

(ϕ>1 , γ
>
1 , γ

>
2 , . . . , γ

>
s ) ∈ R

n×(s+1)
ρ0,I0

, (δ>j , ω
>
j ) ∈ R

m×2
ρj ,Ij

, 1 ≤ j ≤ s }
is a smooth manifold of codimension

2s+ (s− 1)(n+ 1) + (n+ |I0| − ρ0)(s+ 1− ρ0) +
s∑

j=1

(m+ |Ij | − ρj)(2− ρj)

in Js(n + m + 1, 3, 1). Due to Theorem 4.2 and to the Baire property of
C∞(Rn+m+1,R3) with the C∞s -topology, the set of functions

F̃ =

∞⋂
s=1

⋂
ρ0, . . . , ρs
I0, . . . , Is

>∩1
s Vs,ρ0,...,ρs,I0,...,Is

is generic, where the inner intersection ranges over all possible choices of ρ0, . . . , Is.
Now we choose a function vector (f, g, u) from F̃ and a g.c. point (x̄, t̄) of the corre-
sponding SIP (t). We focus on the nontrivial case where Y0(x̄, t̄) 6= ∅, and we choose
indices ȳ1, . . . , ȳs ∈ Y0(x̄, t̄) such that the set {f̄x, ḡ1

x, . . . , ḡ
s
x} is linearly dependent

(where we let f̄x = fx(x̄, t̄) and ḡjx = gx(x̄, t̄, ȳ
j)). Obviously, the evaluated (reduced)

multijet extension

j1s (f, g, u)(x̄, t̄, ȳ
1, . . . , x̄, t̄, ȳs) = (x̄, t̄, ȳ1, ḡ1, ū1, f̄>x , (ḡ

1
x)
>, (ḡ1

y)
>, (ū1

y)
>,

. . . , x̄, t̄, ȳs, ḡs, ūs, f̄>x , (ḡ
s
x)
>, (ḡsy)

>, (ūsy)
> )

is contained in some set Vs,ρ̄0,...,ρ̄s,I0,...,Is , where ρ̄0 = rank(f̄x, ḡ
1
x, . . . , ḡ

s
x), ρ̄j =

rank(ḡjy, ū
j
y), 1 ≤ j ≤ s, and the sets I0, . . . , Is contain indices of some columns

(we identify the columns corresponding to the objective functions f and gj , respec-
tively, with the index 0) whose deletions diminish the corresponding ranks (cf. (38)).
Hence, the intersection of j1s (f, g, u)(R

n+m+1
s ) with Vs,ρ̄0,...,ρ̄s,I0,...,Is is nonempty and,

moreover, this intersection is transverse by the definition of F̃ . Now, application of
(36) and (37) yields essentially the desired result.

In the following, we will show the implications of relation (37) only, since the
treatment of the tangent spaces in (36) is tedious and would blow up the size of this
outline (for details, cf. [23]). However, (37) yields already the main features of our
type classification. Noting that j1s (f, g, u)(R

n+m+1
s ) is a smooth manifold of dimension

s(n+m+ 1) in Js(n+m+ 1, 3, 1), relation (37) gives after a short computation

s∑
j=0

(dj + |Ij |) + d0(n− s+ d0 + |I0|) +
s∑

j=1

dj(m− 1 + dj + |Ij |) ≤ 1,(39)

where each of the substituted variables d0 = s − ρ0 and dj = 1 − ρj , 1 ≤ j ≤ s,
is nonnegative. The latter is due to the fact that (x̄, t̄) is a g.c. point and that the
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ȳj are minimizers of the corresponding lower level problems. Consequently, the left-
hand side of (39) is nonnegative and each of the numbers dj , |Ij |, 0 ≤ j ≤ s is
contained in the set {0, 1}, either none or exactly one of them attaining the value 1.
A first implication of this result is that s cannot exceed n + 1 by the nonnegativity
of (n− s+ d0 + |I0|) and hence, |Y0(x̄, t̄)| ≤ n+ 1 in the generic case.

Next, consider the case in which d0 vanishes or, equivalently, rank(f̄x, ḡ
1
x, . . . , ḡ

s
x) =

s, so that s ≤ n and the corresponding Lagrange multipliers (κ, µ1, . . . , µs) are unique
up to a common multiple. Omitting the lower level problems for a moment, we have

• LICQ and ND1 (cf. Definition 2.3) hold if and only if no multiplier vanishes,
which is easily seen to be equivalent to I0 = ∅.

• LICQ is violated if and only if κ vanishes, or equivalently I0 = {0}. In this
case, none of the µj vanish (i.e., “ND1 holds,” loosely speaking).

• ND1 is violated if and only if I0 = {j} for a j ∈ {1, . . . , s}. In this case, LICQ
holds and exactly one of the µj vanishes.

In case d0 = 1, we find I0 = ∅ and 0 ≤ n − s + 1 ≤ 0, where the second inequality
comes from (39). Thus, we have s = n + 1 and ρ̄0 = n. Completing this analysis
with analogous arguments for the lower level problems, we find that LICQ can be
violated at most once in all occurring problems (upper and lower level), then forcing
ND1 to hold in all problems, and vice versa. These observations yield the following
preliminary type classification:

d0 = · · · = ds = 0, I0 = · · · = Is = ∅ : type 1′or type 3′

d0 = 1 : type 5′

I0 = {0} : type 4′

I0 = {j}, j ∈ {1, . . . , s} : type 2′

Ij = {0}, j ∈ {1, . . . , s} : type 7′.

Note that in the present setting of one equality constraint in the lower level, the cases
dj = 1, j ∈ {1, . . . , s}, do not occur and that the cases Ij = {1}, j ∈ {1, . . . , s}, do
not generate singularities. For the complete classification, the tangent space condi-
tions (36) have to be computed explicitly for each of the above cases and, moreover,
the manifolds Vs,ρ0,...,ρs,I0,...,Is have to be further refined, as to take second-order in-
formation (i.e., 2-jet extensions) into account. This construction yields the desired
set F .

5. Jumps and generalizations. The analysis of the local structure of Σ around
g.c. points of type 6, 7, and 8 in section 3 shows that, in generic one-parametric semi-
infinite programming, the set of g.c. points can possess (relative) boundary points,
as in contrast to finite problems. In fact, only one branch of g.c. points (of type 1)
emanates from (or ends at) points of type 7 and type 8b. In particular, if we trace a
path of local minimizers along Σ by a continuation method, the minimum is lost at
these points. Note that at points of type 8a a path of local minimizers cannot stop (cf.
Theorem 3.12(i)), and at points of type 6 it stops if and only if Σ exhibits a turning
point there (cf. Theorem 3.6(iii)). At turning points of type 6, as well as at points of
type 7 and type 8b, a feasible direction of descent can be constructed so that a jump
to another path of local minimizers is possible at each of the “typically semi-infinite”
singularities of Σ, provided that the feasible set M(t) is contained in some compact
set C for each t (cf. [2] for the finite case). For details, we refer to [16].

In this paper we focussed on the full nonlinear parametric semi-infinite case.
Special subcases (such as the linear and the quadratic case, resp.) are of interest, too.
However, their study within this paper would blow up the size considerably. On the
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other hand, these cases can be treated by combining the ideas presented in this paper
with the work done in [19] (linear case) and [3] (quadratic case). Moreover, the linear
case with regular index sets Y (t) can be found in [21]. In order to apply our results to
one-parametric problems with an objective function of maximum type, note that the
nondifferentiable problem minx maxy∈Y (t) F (x, t, y) is equivalent to a (differentiable)
SIP (t), where the additional variable xn+1 is minimized, subject to the semi-infinite
constraint F (x, t, y) ≤ xn+1, y ∈ Y (t).

Our results extend in an obvious way to one-parametric problems with a fi-
nite number of semi-infinite inequality constraints, i.e., the feasible set is given by
{x ∈ R

n | hi(x, t) = 0, i ∈ I, gj(x, t, y) ≥ 0, y ∈ Yj(t), j ∈ J} with |J | <∞. On the
other hand, generalized semi-infinite programming problems, where the index set Y
depends on the variable x, give rise to a nontrivial modification of the generic-type
classification for g.c. points. In [6] this classification is given for the case that LICQ
always holds in the lower level problem.

Appendix. In this appendix we give the proofs of Theorems 3.2, 3.8, and 3.12,
which are concerned with the local structure of the generalized critical point set Σ
around points of type 6, 7, and 8, resp.

Proof of Theorem 3.2, parts (i), (ii), and (iv). We consider the equations


 fx(x, t) − µ gx(x, t, y)

− g(x, t, y)
gy(x, t, y)


 = 0,




fx(x, t) − µ gx(x, t, y)
− g(x, t, y)

gy(x, t, y) − γ vy(t, y)
− v(t, y)


 = 0,

which define locally unique C2-functions
(
x̃d(t), µ̃d(t), ỹd(t)

)
around (x̄, µ̄, ȳ) and

(x̃e(t), µ̃e(t), ỹe(t), γ̃e(t)) around (x̄, µ̄, ȳ, 0), respectively, since the corresponding Ja-
cobians (with respect to (x, µ, y) and (x, µ, y, γ), resp.)

Ad =


 fxx − µ̄gxx −gx −µ̄gxy

−g>x 0 0
gyx 0 gyy


 and Ae =




0
Ad 0

−vy
0 0 −v>y 0




are nonsingular (all partial derivatives being evaluated at (x̄, t̄, ȳ)). The latter fact
is due to conditions (6.4.5), (6.6)∗ and (6.4.4), (6.5)∗, resp., and is easily proved by
using Schur complements. From the uniqueness of implicit functions we conclude the
local identities


 x̃d(t)

µ̃d(t)
ỹd(t)


 ≡


 xd(t)

µd(t)
yd(xd(t), t)


 and




x̃e(t)
µ̃e(t)
ỹe(t)
γ̃e(t)


 ≡




xe(t)
µe(t)

ye(xe(t), t)
γe(xe(t), t)


 .

Hence, in the sequel we omit the tildes, e.g., we write yd(t) = yd(xd(t), t). In partic-
ular, we obtain

α =
d

dt
v(t, yd(t))|t=t̄ = vt(t̄, ȳ) + (vy(t̄, ȳ))

>ẏd(t̄) ,

δ = γ̇e(t̄) .
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Now, a short calculation yields the equation

Ae




ẋe − ẋd

µ̇e − µ̇d

ẏe − ẏd

δ


 =




0
0
0
α


 .(40)

Condition (6.7)∗ and the last row (40) prove part (iv) of the assertion. Applying
Cramer’s rule to the entry δ in system (40) gives

δ = α · detAd

detAe
(41)

(where det denotes the determinant). This implies part (ii) in virtue of the nonsingu-
larity of Ad and Ae. Now consider the case ẋe − ẋd = 0. Then, the third row of (40)
yields

ẏe − ẏd = δ g−1
yy vy

and thus

α = −v>y (ẏe − ẏd) = −δϑ,
where the value ϑ = v>y g

−1
yy vy is positive by (43) (see below). This proves part (i).

Proof of Theorem 3.2, part (iii). Now it remains to check whether the points
ye(t) and yd(t) corresponding to xe(t) and xd(t) are actually minima of the lower
level problems. Otherwise, (xe(t), t) and (xd(t), t) would not belong to Σ. Since ȳ is
a solution of Q(x̄, t̄)∗ the second-order necessary condition together with γ̄ = 0 and
condition (6.4.4) implies that the restricted Hessian

gyy(x̄, t̄, ȳ) |Ker v>y (t̄,ȳ) is positive definite.(42)

Furthermore, we conclude that the unrestricted Hessian

gyy(x̄, t̄, ȳ) is positive definite,(43)

too, because a feasible direction of descent is easily constructed otherwise. In fact,
assume that (43) does not hold. Then we can choose a vector d with v>y d > 0 and

d>gyyd < 0 by virtue of (42) and condition (6.4.5). But the vector d is a feasible di-
rection of quadratic descent in ȳ, which contradicts the fact that ȳ is a local minimizer
for the problem Q(x̄, t̄)∗. Hence, ȳ is a nondegenerate local minimum of Q(x̄, t̄)∗d, and
the assertion concerning yd(t) follows immediately.

From γe(t̄) = 0 and δ 6= 0 we know that γe(t) does not vanish for t in a neighbor-
hood of t̄. The second-order sufficiency condition is satisfied because, for t close to t̄,
γe(t) is close to zero, and thus, the restricted Hessian

gyy(x
e(t), t, ye(t))− γe(t)vyy(t, y

e(t)) |Ker v>y (t,ye(t))

is positive definite by (42).
Proof of Theorem 3.8. With ζ = (x, µ, y, t) we consider the equations of first-order

necessary conditions corresponding to problem SIP (t)∗ (note that, for the lower level
problem, we have a Fritz-John condition):

F (α, ζ) =




fx(x, t)− µgx(x, t, y)
−g(x, t, y)

α gy(x, t, y)− wy(t, y)
−w(t, y)


 = 0.(44)
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By its block structure and by (16), (18) the Jacobian of (44) at (0, ζ̄)

Fζ(0, ζ̄) =




fxx − µ̄gxx −gx −µ̄gxy fxt − µ̄gxt
−g>x 0 −g>y −gt

0 0 −wyy −wyt

0 0 0 −wt




is nonsingular. Hence, there exists a locally unique C2-function

ζ(α) = (x(α), µ(α), y(α), t(α))

satisfying ζ(0) = ζ̄ and

F (α, ζ(α)) ≡ 0 .(45)

Consequently, in a neighborhood U of z̄ we have (with an ε > 0):

Σ ∩ U ⊂ {(x(α), t(α)), α ∈ (−ε, ε)} = Γ.

Now we show that Γ is a C2-manifold with a quadratic turning point at z̄. Differen-
tiation of (45) with respect to α yields Fα(0, ζ̄) + Fζ(0, ζ̄) · ζα(0) = 0, which implies
the equations

− g>x xα − g>y yα − gt tα = 0,(46)

gy − wyy yα − wyt tα = 0,(47)

− wt tα = 0.(48)

From (18) and (48) we have

tα = 0,(49)

and (18), (47), and (49) imply

yα = w−1
yy gy.(50)

Now, (46), (49), and (50) yield

g>x xα = −g>y w−1
yy gy,

from which we conclude with (19):

xα 6= 0.(51)

Thus, the set Γ = {(x(α), t(α)), α ∈ (−ε, ε)} is a regularly parametrized C2-curve
and hence, a C2-manifold of dimension one. Differentiating the identity

w(t(α), y(α)) ≡ 0 (compare (45))

twice with respect to α and using (17), (49), and (50) we get

tαα = −δ 6= 0.

The assertion about the structure of Γ now follows from the fact that Γ can be
regularly reparametrized by some of the variables xi (recall (51)).
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In the remainder of the proof we check for which α the points y(α) are minimizers
of the lower level problem. Here, we treat only Case 2; i.e., the lower level problem
takes the form

Q(x, t)∗ min g(x, t, y) subject to w(t, y) ≥ 0.

In Case 1, the proof runs along the same lines, but now second-order conditions for
equality constrained problems have to be used. In that case, the constraint function
w may be replaced by −w in order to prove the assumption for nonnegative α.

Consider the lower level part of system (44)

G(α, x, y, t) =

(
α gy(x, t, y)− wy(t, y)

−w(t, y)

)
= 0.(52)

By (17) and (18) there are locally unique C2-functions ỹ(α, x) and t̃(α, x) with
ỹ(0, x̄) = ȳ, t̃(0, x̄) = t̄ and G(α, x, ỹ(α, x), t̃(α, x) ≡ 0. In particular,

G(0, x, ỹ(0, x), t̃(0, x)) ≡ 0(53)

holds locally around x̄, and differentiating (53) with respect to x gives

ỹx(0, 0) = t̃x(0, 0) = 0.(54)

Using (54) as well as (16), it is easily checked that the system

H(α, x, µ) =

(
fx(x, t̃(x, α))− µgx(x, t̃(x, α), ỹ(x, α))

−g(x, t̃(x, α), ỹ(x, α))

)
= 0

defines locally unique C2-functions x̃(α) and µ̃(α) with x̃(0) = x̄, µ̃(0) = µ̄ and
H(α, x̃(α), µ̃(α)) ≡ 0. From the uniqueness of implicit functions we conclude the
local identity 


x̃(α)
µ̃(α)

ỹ(α, x̃(α))
t̃(α, x̃(α))


 ≡




x(α)
µ(α)
y(α)
t(α)


 .(55)

Now it remains to show that for (α, x) in a sufficiently small neighborhood V of (0, x̄),
the point ỹ(α, x) is a solution of Q(x, t̃(α, x))∗ if and only if α > 0. Then, exactly the
points (x(α), t(α)) with nonnegative α belong to Σ, because (x(0), t(0)) = (x̄, t̄) itself
is assumed to be a g.c. point, and by (55) there is a local minimizer y(α) of the lower
level problem corresponding to x(α) with nonvanishing α if and only if α > 0.

Let V be a neighborhood of (0, x̄) and fix (α, x) ∈ V with α < 0. From (52) we
have

gy(x, t̃(α, x), ỹ(α, x)) =
1

α
wy(t̃(α, x), ỹ(α, x)).(56)

Because wyy(t̄, ȳ) is regular, wy(t̃(α, x), ỹ(α, x)) does not vanish and hence, LICQ
holds for the problem Q(x, t̃(α, x))∗. This implies that the negative multiplier 1

α is
uniquely determined and the Karush–Kuhn–Tucker condition is violated. So, ỹ(α, x)
is not a solution of Q(x, t̃(α, x))∗.
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Now, let (α, x) ∈ V with α > 0. Then, we have (56) again, but with a uniquely
determined positive multiplier. From the second-order necessary condition of Fritz-
John type (cf. [4]) we conclude

ξ>wyy(t̄, ȳ) ξ < 0 for all ξ ∈ Ker g>y (x̄, t̄, ȳ) \ {0},
where the strictness of the inequality is due to the regularity of wyy. By (56) we have
Ker g>y (x, t̃(α, x), ỹ(α, x)) = Ker w>y (t̃(α, x), ỹ(α, x)) and thus, for sufficiently small
V ,

ξ>wyy(t̃(α, x), ỹ(α, x)) ξ < 0 for all ξ ∈ Ker w>y (t̃(α, x), ỹ(α, x)) \ {0}.
For α sufficiently close to zero we obtain

ξ>
(
gyy(x, t̃(α, x), ỹ(α, x))− 1

αwyy(t̃(α, x), ỹ(α, x))
)
ξ > 0

for all ξ ∈ Ker w>y (t̃(α, x), ỹ(α, x)) \ {0}
and hence, the second-order sufficiency condition for ỹ(α, x) to be a solution of
Q(x, t̃(α, x))∗ is satisfied. We conclude that

Σ ∩ U = {(x(α), t(α)), α ∈ [0, ε)} .
Proof of Theorem 3.12. With ζi = (x, µ, y, γi) we consider the equations of first-

order necessary conditions corresponding to the problems SIP (t)∗i , i ∈ {1, 2}:

F i(t, ζi) =




fx(x, t)− µgx(x, t, y)
−g(x, t, y)

gy(x, t, y)− γiviy(t, y)
−vi(t, y)


 = 0(57)

with the Jacobian with respect to ζi at (t̄, ζ̄i)

Ai = F i
ζi(t̄, ζ̄

i) =




fxx − µ̄gxx −gx −µ̄gxy 0
−g>x 0 −gy 0
gyx 0 gyy − γ̄iviyy −viy
0 0 −viy 0


 ,

all partial derivatives being evaluated at (x̄, t̄, ȳ). Equations (23) and (31) imply that
Ai is nonsingular. Hence, there exist locally unique C2-functions

ζi(t) = (x̃i(t), µ̃i(t), ỹi(t), γ̃i(t))

satisfying ζi(t̄) = ζ̄i and F i(t, ζi(t)) ≡ 0 . In particular, we obtain

Ai · ζ̇i =




−fxt + µ̄gxt
gt

−gyt + γ̄iviyt
vit


 .(58)

Furthermore, from the uniqueness of implicit functions we conclude the local identities


x̃i(t)
µ̃i(t)
ỹi(t)
γ̃i(t)


 ≡




xi(t)
µi(t)

yi(xi(t), t)
γi(xi(t), t)


 , i ∈ {1, 2}.
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Omitting the tildes, this yields

d

dt
v1(t, y2(t)) |t̄ = v1

t + v1
y · ẏ2 (58),(25)

= v1
t − v1

y

v2
t

v2
y

,

as well as

d

dt
v2(t, y1(t)) |t̄ = v2

t − v2
y

v1
t

v1
y

.

Thus, y2(t) is feasible in the lower level problem for t ≥ 0 (t ≤ 0) according to
α1 = +1 (−1), and y1(t) is feasible for t ≥ 0 (t ≤ 0) according to α2 = +1 (−1). The
set Ω of generalized critical points in the lower level problem is locally composed by
means of the C2-curves t 7−→ (t, y1(t)) and t 7−→ (t, y2(t)), where exactly the branches
with feasible y1(t) and y2(t), respectively, belong to Ω. Moreover, Ω exhibits a turning
point at (t̄, ȳ) if and only if α1 ·α2 = −1, i.e., in case that z̄ is of type 8b. The branches
meet under a nonvanishing angle since the last row of (58) implies

ẏ1 − ẏ2 =
v2
t v

1
y − v1

t v
2
y

v1
y v

2
y

(24)

6= 0.

Using the second row of (58) we also see that

g>x (ẋ1 − ẋ2) = −gy · (ẏ1 − ẏ2)
(26)

6= 0.

Hence, the curves t 7−→ (x1(t), t) and t 7−→ (x2(t), t) meet in z̄ under a nonvanishing
angle, too. The preceding observations show that at most one branch of each graph
belongs to Σ.

In the remainder of the proof we check whether the points yi(t) corresponding to
xi(t) locally around t̄ are minimizers of the lower level problem.

First, let z̄ = (x̄, t̄) be a g.c. point of type 8a. Since MFCQ is satisfied in the
lower level problem Q(x̄, t̄)∗ we have v1

y · v2
y > 0. Furthermore,

gy · viy > 0(59)

holds for both i = 1 and i = 2 because gy · viy < 0 for one i ∈ {1, 2} implies gy · viy < 0
for both i, which is easily shown to be a contradiction to the Fritz-John first-order
necessary condition for ȳ to be a local minimizer of Q(x̄, t̄)∗. From Lemma 3.10 we
already know that ȳ is a nondegenerate critical point both for Q(x̄, t̄)∗1 and Q(x̄, t̄)∗2.
By (25) and the fact that we deal with one-dimensional problems, the corresponding
tangent spaces are zero spaces, and we obtain that ȳ is a nondegenerate local minimum
both for Q(x̄, t̄)∗1 and Q(x̄, t̄)∗2, just by the fact that

gy = ηiv
i
y

has a solution ηi > 0 (compare (59)). Hence, the points yi(x, t), i ∈ {1, 2} are local
minimizers of Q(x, t)∗i for (x, t) in a neighborhood of (x̄, t̄). This implies that Ω is
the composition of two branches of minima, not exhibiting a turning point at (t̄, ȳ),
and the assertion concerning the local structure of Σ in part (i) follows immediately.
By condition (8.2), the linear indices LI and LCI do not change when passing z̄ along
Σ. From equations (32), (33), (34) and the remark following thereafter it is easily
deduced that the quadratic indices QI and QCI do not change either.
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Now, consider a g.c. point z̄ = (x̄, t̄) of type 8b. The same argument as above
shows that there are i, j ∈ {1, 2}, i 6= j, with

gy · viy > 0 and gy · vjy < 0.

From (29) we know that j = l∗. Along the same lines as above we obtain that ȳ
is a nondegenerate local minimum for Q(x̄, t̄)∗i and a nondegenerate local maximum
for Q(x̄, t̄)∗l∗ . Thus, Ω is the composition of one branch of minima and one branch
of maxima, exhibiting a turning point at (t̄, ȳ). Since yl

∗
(t) is a local maximizer,

(xl
∗
(t), t) does not belong to Σ. The remainder of assertion (ii) follows from the

definition of αi.
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Jongen, F. Nožička, G. Still, and F. Twilt, eds., Peter Lang Verlag, Frankfurt a. M., 1997,
pp. 161–175.

[17] H. Th. Jongen and G. Zwier, On the local structure of the feasible set in semi-infinite
optimization, in Parametric Optimization and Approximation, Internat. Ser. Numer. Math.
72, F. Brosowski and F.Deutsch, eds., Birkhäuser-Verlag, Basel, 1984.
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Abstract. This paper deals with the upper semicontinuity of the solution set mapping for lin-
ear inequality systems, complementing a previous work on lower semicontinuity and related stability
concepts. The main novelty of our approach is that we are not assuming any standard hypothesis
about the set indexing the inequalities in the system. This set, possibly infinite, has no topological
structure and, therefore, the functional dependence between the linear inequalities and their associ-
ated indices has no qualification at all. The space of consistent systems, over a fixed index set, is
endowed with the uniform topology derived from the pseudometric of Chebyshev, which turns out to
be a natural way to measure the size of the perturbations. In this context, we provide some necessary
and some sufficient conditions for the upper semicontinuity of the feasible set map at a given system
whose solution set is not necessarily bounded.

Key words. convex analysis, stability theory, linear inequality systems, feasible set mapping,
upper semicontinuity, semi-infinite programming
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1. Introduction. In this paper we consider systems of possibly infinitely many
linear inequalities, in the Euclidean space <n, of the form σ = {a′tx ≥ bt, t ∈ T},
where T is a fixed nonempty arbitrary index set, at ∈ <n and bt ∈ <, for all t ∈ T ,
a′t denotes the transpose of at, and a′tx represents the inner product of at and x. If
we denote by Θ the set of all the systems, in <n, whose index set is T , the solution
set mapping, F : Θ ; <n, assigns to each system σ ∈ Θ its corresponding solution
set (also called feasible set in optimization), which is represented hereafter by F (i.e.,
F(σ) = F ). Since these infinite linear systems arise, in a rather natural form, closely
connected with problems in functional approximation, numerical analysis, optimal
control theory, semi-infinite programming, etc., many authors have approached the
stability properties of their solution sets, extending some well-known theories devel-
oped in the finite context. In particular, the semi-infinite optimization model provides
the principal motivation for studying the topics this paper deals with as far as con-
tinuity properties of the feasible set mapping have a strong influence on the stability
features of the whole problem (upper semicontinuity of the optimal set mapping,
continuity of the optimal value function, Hadamard well-posedness, etc.).

To start with, Robinson, in [10], stated that a system σ is stable under small
perturbations if and only if F is lower semicontinuous (LSC, for short) at σ. This
assertion motivates the study of this property. In [6, 7] different characterizations
of the lower semicontinuity property are supplied, connecting it with other stability
concepts [10, 12].
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The other also very essential part of the continuity analysis concerns the upper
semicontinuity. Since the continuity properties always depend on the topologies con-
sidered in the parameter and in the range spaces, the various results that can be found
in the literature differ from each other. Nevertheless, most of the previous works con-
sider that T is a compact Hausdorff set, a(t) ≡ at ∈ C(T,<n), b(t) ≡ bt ∈ C(T,<),
and, accordingly, the parameter space of all the systems σ satisfying these conditions
is a Banach space. In this particular setting, Brosowski [4] gives a necessary and
sufficient condition for F to be upper semicontinuous (USC) at σ. This condition
is that F must be either bounded or the whole space <n. Helbig [9], in the context
of disjunctive optimization, analyzes a more general case, with T being an arbitrary
topological space but keeping the continuity of the functions a(t) and b(t). More
related to our formulation is the paper of Greenberg and Pierskalla [8], in which no
condition is posed on the index set T and on the parameter functions a(t) and b(t).
Their approach refers to the use of the sup-function and leads to a sufficient condition
for upper semicontinuity, which is also connected with the compactness of the feasible
set in a neighborhood of σ.

As in [6, 7, 8], we formulate our system in its most general setting, i.e., T is an
arbitrary index set which is required to be neither a finite set nor a topological space,
and a(t) and b(t) are arbitrary functions. In order to measure the size of the pertur-
bations of our system σ ∈ Θ, we introduce a pseudometric on the parameter space Θ.
For any pair of systems, in Θ, σ = {a′tx ≥ bt, t ∈ T} and σ1 = {c′tx ≥ dt, t ∈ T}, we
define the pseudodistance

d(σ1, σ) := supt∈T

∥∥∥∥
(
ct
dt

)
−
(
at
bt

)∥∥∥∥ ,
where ‖.‖ is the Chebyshev norm (i.e., ‖x‖ =max{|xi| , i = 1, ..., p}, when x =
(x1, x2, ..., xp)

′ ∈ <p). In this way, (Θ, d) turns out to be a pseudometric space,
whose topology is Hausdorff, satisfies the first axiom of countability, and describes
the uniform convergence in Θ ≡ (<n+1)T .

The main goal of the present paper is to provide some conditions for the upper
semicontinuity of F at a particular consistent (F 6= ∅) system σ. Recall that F is USC
at σ ∈ Θ (in the classical Berge sense) if, for each open set W containing F, there
exists an open set V, σ ∈ V ⊂ Θ, such that if σ1 ∈ V its feasible set, F1, will be also
contained in W.

2. Preliminaries. We shall set out the relevant terminology and some prelim-
inary results as well. The origin or null vector in the Euclidean space <n will be
denoted by 0n and, given a nonempty set X in this space, we denote by aff(X),
dim(X), conv(X), cone(X), and Xo the affine hull of X, the dimension of X (i.e., the
dimension of aff(X)), the convex hull of X, the convex cone spanned by X ∪{0n}, and
the dual cone of X (i.e., Xo := {y ∈ <n | y′x ≥ 0 for all x ∈ X}), respectively.

From the topological side, int(X), rint(X), cl(X), bd(X), and rbd(X) represent the
interior, the relative interior, the closure, the boundary, and the relative boundary of
X, respectively. Finally, we shall use B for representing the open unit ball in <n for
the chosen norm.

We define the asymptotic cone of X, denoted by X∞, as the set of all the limits
of the form limk→∞λkxk, where λk ∈ <+, xk ∈ X, k = 1, 2, ..., and λk ↓ 0.

Next we state the properties of X∞, which are used throughout the paper.
Lemma 2.1. Given a nonempty set X, X⊂ <n, its asymptotic cone X∞ has the

following properties:
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(i) X∞ is a closed cone.
(ii) If X is convex, then X∞ is also convex.
(iii) If X is a closed convex set, X∞ coincides with the set of directions y such

that the half-line {x+ λy | λ ≥ 0}, for a certain x ∈ X (equivalently, for all x ∈ X),
is completely contained in X.

(iv) If X contains a cone K, then K ⊂ X∞.
(v) X is bounded if and only if X∞ = {0n}.
(vi) y ∈ X∞ and ‖y‖ = 1 if and only if there exists a sequence {xk} ⊂ X such

that limk→∞ ‖xk‖ = ∞ and limk→∞ ‖xk‖−1
xk = y.

(vii) X∞ = (X∞)∞.
(viii) If Y ⊂ <n is a bounded set, then (X + Y )∞ = X∞.
(ix) Let X1, X2, ..., Xm be nonempty closed sets, in <n, such that the following

condition holds: if y1, y2, ..., ym are vectors satisfying yi ∈ (Xi)∞, i = 1, 2, ...,m, and
y1 + y2 + · · · + ym = 0n, then yi must be zero for i = 1, 2, ...,m. Then the set X1 +
X2 + · · ·+Xm will be closed.

Proof. The proofs of statements (iii) and (ix) can be found in [11, Theorem 8.2]
and [3, Corollary 2.41], respectively. Statement (vii) is a consequence of (i) and (iv).
The proofs of the remaining propositions are left to the reader.

As a consequence of (iv) and of the definition of an asymptotic cone, if X is a
cone (not necessarily convex), we have X ⊂ X∞ ⊂ cl(X).

When X is convex, X∞ is the well-known recession cone (see [11] for the concepts
related to convex analysis).

We associate with σ = {a′tx ≥ bt, t ∈ T} ∈ Θ the so-called moment cone M :=
cone(A) and the cone P := conv(A∞), where A := {at, t ∈ T}. Most of the results
presented in this paper come through the relationship between both cones, which is
illustrated in the following lemma. Hereafter, when various systems are simultaneously
considered, they and their associated sets are distinguished by means of subindices
(σi → Fi,Mi, Pi, etc.).

Lemma 2.2. Let us consider the system σ = {a′tx ≥ bt, t ∈ T} ∈ Θ .Then the
following propositions hold:

(i) P ⊂ cl(M).
(ii) P = {0n} if and only if A is bounded.
(iii) If cl(M) is pointed, i.e., it does not contain a complete line, then P is closed.
(iv) If d(σ1, σ) is finite, then P1 = P.
(v) If σ1 and σ are consistent, d(σ1, σ) is finite, and F∞ is strictly contained in

(F1)∞, then one has P 6= cl(M).
Proof. (i) comes from the definition of asymptotic cone, and (ii) is a straightfor-

ward consequence of Lemma 2.1(v).
(iii) Carathéodory’s theorem leads us to

P = A∞ +A∞ + · · ·(m+1) · · ·+A∞,

where m := dim(A∞).
Next we prove that if y1, y2, ..., ym+1 are points in (A∞)∞ = A∞ (according

to Lemma 2.1(vii)) such that y1 + y2 + · · · + ym+1 = 0n, then yi must be zero,
i = 1, 2, ...,m+ 1. Then Lemma 2.1(i, ix) will be applied to conclude that P is closed.
Actually, if we assume without loss of generality that y1 6= 0n, we shall get

y0 := y2 + y3 + · · ·+ ym+1 = −y1 6= 0n.
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Since y1 ∈ A∞ ⊂ cl(M), y0 ∈ A∞+A∞+ · · ·(m) · · ·+A∞ ⊂ cl(M), and y0 +y1 = 0n,
we obtain a contradiction with the pointedness property assumed for cl(M).

(iv) If d(σ1, σ) = α, we have A1 ⊂ A+αcl(B) and A ⊂ A1 +αcl(B), and Lemma
2.1(viii) yields

(A1)∞ ⊂ {A+ αcl(B)}∞ = A∞ and (A)∞ ⊂ {A1 + αcl(B)}∞ = (A1)∞.

We have obtained (A1)∞ = A∞ and, hence, P1 = P.
(v) It is well known that F∞ = Mo and (F1)∞ = (M1)

o. Then the hypothesis is
equivalent to asserting that Mo is strictly contained in (M1)

o. Thus, cl(M) = Moo

contains strictly cl(M1) = (M1)
oo, and the propositions (i) and (iv) above make P =

cl(M) impossible.
The following example shows that P does not need to be closed.
Example 2.3. Let us consider the system, in <3, for which A is the algebraic

product of [0,∞) by the set


 1

cos t
1 + sin t


 , t ∈ [0, 2π];


 −1

0
0




 .

It is evident that A∞ = A and P = {a ⊂ <3 | a3 > 0 or a2 = a3 = 0}.
Let us introduce a new system, related to σ, which plays a crucial role in our

approach. According to Lemma 2.1(vi), if a ∈ A∞ and ‖a‖ = 1, there will exist

a sequence {tk} ⊂ T such that limk→∞ ‖atk‖ = ∞ and limk→∞ ‖atk‖−1
atk = a. If,

additionally, b := limsupk→∞ ‖atk‖−1
btk is finite, a′x ≥ b is said to be an implicit fixed

constraint for σ. We call asymptotic system, associated with the consistent system σ,
the one formed by all the implicit fixed constraints. The asymptotic system will be
represented by σa, and F a will be its solution set. Obviously, F ⊂ F a and, if A is
bounded, σa will be an empty system, in which case we define F a = <n. Moreover, if
{bt, t ∈ T} is bounded, we obtain

σa = {a′x ≥ 0, a ∈ A∞ ∩ bd(B)}.
In general, if a′x ≥ b is an implicit fixed constraint, one has a ∈ A∞∩bd(B) and

(F a)∞ ⊃ {A∞ ∩ bd(B)}o = P o.

Lemma 2.4. If σ1 and σ are two systems such that d(σ1, σ) is finite, then one
has (σ1)

a = σa; i.e., the inequalities in σa become implicit fixed constraints for any
system obtained by finite-sized perturbation.

Proof. We shall write σ = {a′tx ≥ bt, t ∈ T} and σ1 = {(at+ut)
′x ≥ bt+vt, t ∈ T},

with ut ∈ <n, vt ∈ <, and supt∈Tmax{‖ut‖ , |vt|} = d(σ1, σ) < ∞. It can be easily
checked that a′x ≥ b is an implicit fixed constraint for σ if and only if

‖a‖ = 1 and

(
a
b

)
∈
{(

at
bt

)
, t ∈ T

}
∞
.

Since {(
at
bt

)
, t ∈ T

}
∞

=

{(
at + ut
bt + vt

)
, t ∈ T

}
∞

(as in the proof of Lemma 2.2(iv)), the conclusion follows trivially.
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The following example illustrates this concept of asymptotic systems and shows
how much it depends on the chosen representation.

Example 2.5. Let us consider the closed convex set F obtained by the intersection
of the upper half-planes associated with the tangent lines to the circle x = (x1, x2)

′ =
(2 + cos t, 2 + sin t)′ at those points corresponding to t ∈ [π, 3π/2]. Three different
representations of F are considered.

(1) σ1 := {−(cos t)x1 − (sin t)x2 ≥ −2(cos t+ sin t)− 1, t ∈ [π, 3π/2]}.
Now (σ1)

a is empty (or (F1)
a = <n).

(2) σ2 := σ1 ∪ {sx1 + sx2 ≥ s(4−√2), s ∈ [1,∞)}.
In this case (σ2)

a = {x1 + x2 ≥ 4−√2}.
(3) σ3 := σ1 ∪ {sx1 ≥ s− 1, s ∈ <+} ∪ {ux2 ≥ u− 1, u ∈ <+}.
For this third representation (σ3)

a = {x1 ≥ 1, x2 ≥ 1}.
3. Conditions based upon perturbations of the solution set. The follow-

ing characterization of upper semicontinuity requires, in the case of an unbounded
initial solution set, that the perturbed solution sets differ from the original one in
some uniformly bounded manner. The result comes through the standard Dolecki’s
characterization of upper semicontinuity for mappings between metric spaces (see,
for instance, [2, Lemma 2.2.2]). We shall only approach the consistent case since,
otherwise, F is USC at the inconsistent system σ (F = ∅) if and only if there exists a
neighborhood of σ containing exclusively inconsistent systems. On the opposite side,
when F = <n (which implies A = {0n}), F is trivially USC at σ.

Theorem 3.1. Given a consistent system σ, F is USC at σ if and only if there
exist two positive scalars, ε and ρ, such that

F1 \ ρcl(B) ⊂ F \ ρcl(B)

for every σ1 ∈ Θ such that d(σ1, σ) < ε.
Proof. First, observe that (Θ, d′), with d′(σ1, σ) := min{1, d(σ1, σ)}, is a complete

metric space, which is locally equivalent to (Θ, d) (providing also the topology of the
uniform convergence on Θ).

Let us suppose that F is USC at σ. If there are no such scalars, ε and ρ, we shall
take ε = 1/k and ρ = k, k = 1, 2, ..., to conclude the existence of two sequences,
{σk} ⊂ Θ and {zk} ⊂ <n, such that d(σk, σ) < 1/k (and, consequently, limk→∞σk =
σ), ‖zk‖ > k, and zk ∈ Fk \ F. Hence, the sequence {zk} has no accumulation point,
and this precludes the fulfillment of the Dolecki condition.

Now we proceed by proving the converse statement. Let W be an open set con-
taining F. Since F is closed, the cut-set valued map Fρ(.) := F(.) ∩ ρcl(B) is USC at
σ (according to [1, Corollary 1.4.10]), so that there exists a ε1 > 0, ε1 ≤ ε such that
F1 ∩ ρcl(B) ⊂ W for all σ1 satisfying d(σ1, σ) < ε1 (we can suppose, without loss of
generality, that all the involved epsilons are smaller than 1). Finally, we write, for
this ε1,

F1 = {F1 ∩ ρcl(B)} ∪ {F1 \ ρcl(B)} ⊂W,

which completes the proof.
Our characterization of upper semicontinuity, given in Theorem 3.1, is valid for

every closed mapping F : Λ ; <n with Λ metrizable, and it is weaker than Dolecki’s
condition in the sense that it fails to be sufficient for upper semicontinuity when the
range space is infinite dimensional. Actually, if Λ = [0, 1] and X is the space of finitely
nonzero sequences (i.e., X = {x = (ξ1, ξ2, ..., ξi, ...) | ξi ∈ <, i = 1, 2, ..., and only a
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finite number of ξi are nonzero}), with the supremum norm (i.e., ‖x‖ = max|ξi|), the
mapping F : Λ ; X such that F(λ) := {x ∈ X | ‖x‖ = λ} satisfies trivially our
condition in Theorem 3.1 but fails to be USC at λ = 1 (if we take λk = (k − 1)/k,
k = 1, 2, ..., it is evident that the element uk ∈ X, which has, as the unique nonzero
component, ξk = (k − 1)/k, satisfies uk ∈ F(λk) \ F(1), but the sequence {uk} has
no accumulation point and, so, Dolecki’s condition fails).

Corollary 3.2. If the solution set of the consistent system σ is bounded, then
F is USC at σ.

Proof. First we shall prove that F is uniformly bounded in some neighborhood
of σ; i.e., there exist positive scalars, ε and ρ, such that F1 ⊂ ρcl(B), provided that
d(σ1, σ) < ε. If this property does not hold, taking again ε = 1/k and ρ = k, k =
1, 2, ..., we build the corresponding couple of sequences, {σk} and {zk}, as they were
created in the proof of Theorem 3.1. It can be assumed, without loss of generality,
the existence of z = limk→∞ ‖zk‖−1

zk, and it is easily checked that a′tz ≥ 0 for all
t ∈ T, so that z ∈ F∞ \ {0n} and F will be unbounded.

We have concluded that d(σ1, σ) < ε entails F1 ⊂ ρcl(B). Hence, F1 \ ρcl(B) =
F \ ρcl(B) = ∅, and Theorem 3.1 can be applied.

The last result can also be derived from the classical Berge theory (e.g., via the
supremum function).

Example 3.3. If σ is a consistent system in < (n = 1), then F is always USC at
σ.

The solution set F will be a bounded interval, an unbounded interval, or the
whole space <. The third case is trivial and in the first case we apply Corollary 3.2.
Then we analyze the only remaining case, for instance F = [α,∞). Now the cut-set
valued map F|α|+1(.) := F(.) ∩ [− |α| − 1, |α| + 1] is USC at σ, and for any open
neighborhood (α − δ,∞) of F, the set F|α|+1(σ1) is included in it, provided that σ1

is close enough to σ. Convexity of F1 implies that this set must be also contained in
(α− δ,∞). Since, for every open set W containing F, there must exist δ > 0 for which
W ⊃ (α− δ,∞) ⊃ F, the statement follows.

The following partial characterization of the upper semicontinuity property was
established in [5, Theorem 3.1] in a more particular setting.

Theorem 3.4. Let σ = {a′tx ≥ bt, t ∈ T} be a consistent system in <n, with
n ≥ 2 and such that A is bounded and different from {0n}. Then F is USC at σ if
and only if F is bounded.

Proof. Let µ > 0 be such that ‖at‖ < µ for all t ∈ T. In order to prove the
direct statement, let us consider two arbitrary positive numbers ε and ρ. If F were
unbounded, a suitable perturbation of a point z ∈ bd(F ) \ ρcl(B) would provide a
point y /∈ F such that ‖y‖ > ρ and ‖y − z‖ < (nµ)−1ε (this requires n ≥ 2). Then y
would be a feasible solution of σ1 = {a′tx ≥ bt + a′t(y − z), t ∈ T} with d(σ1, σ) < ε,
so that F1 \ ρcl(B) would fail to be included in F \ ρcl(B). The nontrivial part of the
proof is then a consequence of Theorem 3.1.

According to this result, F is not USC at the system σ1 considered in Example
2.5.

When A is unbounded, upper semicontinuity of F does not imply boundedness
of the solution set, relying heavily on the representation.

Example 3.5. We take two different representations of F := {x ∈ <2 | −1 ≤ x1 ≤
1} with the same index set T = (−∞,−1] ∪ [1,∞):

σ1 = {tx1 + 0x2 ≥ −t2, t ∈ T}
and σ2 = {tx1 + 0x2 ≥ − | t |, t ∈ T}.
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It can be easily established that F is USC only at σ2 (see [6, Example 2.1] for
additional details).

The major difficulty in our analysis is the unboundedness of A. One can think
about replacing σ by the following equivalent inequality system:

σs :=

{(
at

max {1, ‖at‖}
)′

x ≥ bt
max {1, ‖at‖} , t ∈ T

}
.

If we use the uniform convergence pseudometric, d, restricted to the space of these
scaled parameters, we are confining ourselves to the scenario delimited by Theorem
3.4, but this scaling procedure would permit arbitrarily large perturbations (in those
constraints that originally have ‖at‖ large), and this phenomenon changes drastically
the original sense of the perturbation analysis.

Example 3.6. Given the consistent system σ = {a′tx ≥ bt, t ∈ T}, with T
infinite, the system σ1 = {ka′tx ≥ kbt, (t, k) ∈ T × N}, where N represents the
natural numbers set, is equivalent to σ (same solution set), its index set has the same
cardinality, and F is USC at σ1.

In order to prove the last assertion, we perturb σ1 in the usual way to get

σ2 = {(kat + u(t,k))
′x ≥ kbt + v(t,k), (t, k) ∈ T ×N}.

If
∥∥u(t,k)

∥∥ < ε and
∣∣v(t,k)

∣∣ < ε, for every (t, k) ∈ T ×N , we have d(σ2, σ1) ≤ ε. If x0

is a solution of σ2, multiplying by k−1 each inequality associated with a particular
k ∈ N , we obtain

(at + k−1u(t,k))
′x0 ≥ bt + k−1v(t,k).

For each fixed t ∈ T , we take limits in both sides for k →∞ giving rise to a′tx0 ≥ bt;
i.e., x0 is also a solution of σ1 and, obviously, F is USC at σ1.

The only drawback of the conditions given in Theorems 3.1 and 3.4 is that they
can hardly be checked in practice, as they are not explicitly related to the coefficients
of σ. Thus, the next sections will be devoted to deriving conditions involving these
coefficients and their associated elements (the cones M and P and the asymptotic
system σa).

4. Necessary conditions for upper semicontinuity. The following result
exploits the subtle relationship between M and P, which was described in Lemma 2.2.

Theorem 4.1. Let σ = {a′tx ≥ bt, t ∈ T} be a consistent system such that
sufficiently small perturbations preserve consistency. If F is USC at σ, then there
cannot exist y ∈ bd(M) \ P such that {λy | λ ≥ 0} is an exposed ray of cl(M).

Proof. Let us assume the contrary; i.e., there exists y ∈ bd(M) \ P such that
D:= {λy | λ ≥ 0} is an exposed ray of cl(M).

We start by considering a nontrivial supporting hyperplane H := {z | c′z =
0}, c 6= 0n, such that H∩ cl(M) = D. We shall assume that c′z ≥ 0 for each z ∈
cl(M) and, therefore, c′z > 0 for every z ∈ P \ {0n} (recall Lemma 2.2(i)).

Let us take any u ∈ M \D, ‖u‖ = 1. It must hold c′u > 0 and, for an arbitrary
ε > 0, we define the system σ1 = {(at + εu)′x ≥ bt, t ∈ T}. It is obvious that
d(σ1, σ) = ε, M1 ⊂ M, and, then, cl(M1) ⊂ cl(M). Moreover, we can take ε small
enough to have σ1 consistent.

Now we consider a vector e such that e′y < 0. For all z ∈ D \ {0n} and µ > 0 we
have (c+ µe)′z = c′z + µe′z = µe′z < 0. Our immediate aim is to prove the existence
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of µ0 > 0 such that (c+µ0e)
′(at+εu) ≥ 0, whichever t ∈ T we take. This would imply

that the exposed D and cl(M1) can be properly separated, concluding that cl(M1) is,
in fact, strictly contained in cl(M).

If such a µ0 does not exist, for each k ∈ N we will find tk ∈ T such that

(c+ k−1e)′(atk + εu) < 0.

Two possibilities have to be considered.
(i) If the sequence {atk} is bounded, there must exist a convergent subsequence.

Without loss of generality, we write limk→∞atk = a ∈ cl(M) and, taking limits in
the last inequality, we get c′(a + εu) ≤ 0, but this is impossible because c′a ≥ 0 and
c′u > 0.

(ii) If {atk} is unbounded, a subsequence {atkr } exists such that
∥∥atkr ∥∥ ≥ r, r =

1, 2, ... . Now the sequence {∥∥atkr ∥∥−1
atkr } will contain a convergent subsequence and,

for the sake of brevity, we write limr→∞
∥∥atkr ∥∥−1

atkr = b, with b ∈ A∞ \ {0n} ⊂
P \ {0n}. Taking limits again over the inequalities corresponding to the indices tkr ,
we obtain

limr→∞(c+ k−1
r e)′{∥∥atkr ∥∥−1

(atkr + εu)} = c′b ≤ 0,

but one must have c′b > 0 since b ∈ P \ {0n}.
We have concluded that, for an arbitrarily small ε, a consistent system σ1 can be

built such that d(σ1, σ) = ε and with cl(M1) strictly contained in cl(M). Therefore,
F∞ is strictly contained in (F1)∞. Now if we take, for any α > 0, the open set W =
F+αB, we have F ⊂W andW∞ = F∞ (Lemma 2.1(viii)), leading to (F1)∞\W∞ 6= ∅.
This prevents the inclusion F1 ⊂ W since taking any x ∈ F1 and y ∈ (F1)∞ \W∞,
the half-line, in F1, {x+λy | λ ≥ 0} will leave W, for λ large enough. Otherwise, y =
limk→∞k−1(x+ ky) will belong to W∞, giving rise to a contradiction.

If F is bounded, cl(M) = (F∞)o = {0n}o = <n and bd(M) = ∅. Hence, the
necessary condition for upper semicontinuity given in Theorem 4.1 holds trivially in
this case as well as in the case n = 1.

It has been established (see [7, Theorem 3.1]) that F is LSC at σ if and only if σ
lies in the topological interior of the consistent systems set in Θ. Therefore, Theorem
4.1 provides a necessary condition for the continuity of F at σ.

Corollary 4.2. Let σ = {a′tx ≥ bt, t ∈ T} be a consistent system in <n, with
n ≥ 2, such that sufficiently small perturbations provide consistent systems and for
which cl(M) is pointed. If F is USC at σ, then P = cl(M).

Proof. Let S be any set of vectors in cl(M) such that each exposed ray of cl(M) is
generated by some a ∈ S. Theorem 4.1 enables us to write S ⊂ P, whereas Corollary
18.7.1 in [11] yields cl(M) = cl cone(S) ⊂ P, because P is closed (Lemma 2.2 (iii)).
Hence, cl(M) = P (Lemma 2.2(i)).

Unfortunately, the example below shows that the necessary conditions given here
are not sufficient.

Example 4.3. Let us consider the system, in <2, σ = {−2tx1 +x2 ≥ −t2, t ∈ <},
which provides a linear representation of F = {x ∈ <2 | x2 ≥ (x1)

2}.
We observe that M = {a ∈ <2 | a2 > 0} ∪ {02} and P = {a ∈ <2 | a2 = 0}.

Thus, bd(M) \ P = ∅ and the conditions in Theorem 4.1 and Corollary 4.2 are
trivially satisfied. Nevertheless, F is not USC at σ. In fact, for any ε > 0, we
consider the system σ1 = {−2tx1 + x2 ≥ −t2 − ε, t ∈ <}, whose feasible set is
F1 = F−(0, ε)′. Obviously, d(σ1, σ) = ε, but there is no positive ρ such that F1\ρcl(B)
⊂ F \ ρcl(B).
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Next we give another necessary condition involving the asymptotic system σa.
Theorem 4.4. Let σ = {a′tx ≥ bt, t ∈ T} be a system in <n, with n ≥ 2, such

that the solution set F and A = {at, t ∈ T} are both unbounded. If F is USC at σ,
then there will exist ρ > 0 such that, for every z ∈ bd(F ) \ ρcl(B), one can find an
implicit fixed constraint which is active at z.

Proof. If F is USC at σ, we know, from Theorem 3.1, the existence of a couple of
positive scalars, ε and ρ, such that

F1 \ ρcl(B) ⊂ F \ ρcl(B)

for every σ1 ∈ Θ such that d(σ1, σ) < ε. If we take z ∈ bd(F ) \ ρcl(B), a sequence
{zk} exists such that zk /∈ F, ‖zk‖ > ρ, and limk→∞zk = z. We define a perturbed
system associated with each k ∈ N :

σk :=

{
a′tx ≥ bt + a′t(zk − z), t ∈ Tk := {t ∈ T | a′tzk < bt}

a′tx ≥ bt, t ∈ T \ Tk
}
.

It is evident that zk ∈ Fk and this implies d(σk, σ) ≥ ε. Thus, there will exist tk ∈ Tk
such that

∣∣a′tk(zk − z)
∣∣ ≥ ε/2, which leads to limk→∞ ‖atk‖ = ∞, and we can suppose,

without loss of generality, that limk→∞ ‖atk‖−1
atk = a ∈ A∞. On the other hand,

a′tkzk < btk and a′tkz ≥ btk yield together the existence of yk ∈ [z, zk[ satisfying
a′tkyk = btk . Since limk→∞yk = z, we get

a′z = limk→∞ ‖atk‖−1
a′tkyk = limk→∞ ‖atk‖−1

btk ,

and a′x ≥ a′z belongs, obviously, to σa.
According to this result, F cannot be USC at the system σ2 introduced in Example

2.5.
The condition given in Theorem 4.4 is not sufficient for the upper semicontinuity

property, as the following example shows.
Example 4.5. Let us consider the following system, in <2,

σ :=

{
x2 ≥ 0,

−kx2 ≥ 0, k = 1, 2, . . .

}
.

Straightforward calculations yield the following.
(i) F = {x ∈ <2 | x2 = 0}, σa = {−x2 ≥ 0}, and the condition in Theorem 4.4 is

fulfilled.
(ii) The system σε obtained from σ replacing the first inequality by x2 ≥ −ε

satisfies d(σε, ε) = ε, but the condition in Theorem 3.1 is never accomplished.
We shall finish this section dealing with a particular case where the USC property

is characterized through Theorem 4.4. If dim(M) = 1, we take a ∈ <n, ‖a‖ = 1, such
that at = αta, αt ∈ <, for every t ∈ T. Then one can define

ϕ1 :=

{
sup{bt/αt : t ∈ T and αt > 0},
−∞ if αt ≤ 0 for all t ∈ T,

ϕ2 :=

{
inf{bt/αt : t ∈ T and αt < 0},
∞ if αt ≥ 0 for all t ∈ T.

If both values are finite, the solution set will be the slice F = {x ∈ <n | ϕ1 ≤ a′x ≤
ϕ2}. If one of these values is infinite (for instance, ϕ2 = ∞), F will be a half-space
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(F = {x ∈ <n | ϕ1 ≤ a′x}, accordingly). The possibility F = <n is excluded here
because it would imply αt = 0 for all t ∈ T, and then dim(M) = 0.

Corollary 4.6. Let σ = {a′tx ≥ bt, t ∈ T} be a consistent system for which
dim(M) = 1 and n ≥ 2. Then F is USC at σ if and only if the following condition
holds:

♦ If ϕi is finite for i = 1 or i = 2, then there must exist a sequence {αti
k
} ⊂

(−1)i+1<+ such that limk→∞|αti
k
| = ∞ and limk→∞(bti

k
/αti

k
) = ϕi.

Proof. We focus on the most involved case, in which both values ϕi are finite.
If the condition ♦ holds, we can write(

a
ϕ1

)
= limk→∞(αt1

k
)−1

(
αt1

k
a

bt1
k

)
= lim

k→∞

∥∥∥at1
k

∥∥∥−1
(

at1
k

bt1
k

)
,

and ( −a
−ϕ2

)
= limk→∞

∣∣∣αt2
k

∣∣∣−1
(

αt2
k
a

bt2
k

)
= lim

k→∞

∥∥∥at2
k

∥∥∥−1
(

at2
k

bt2
k

)
.

This means that the inequalities a′x ≥ ϕ1 and a′x ≤ ϕ2 belong to σa, and Lemma
2.4 applies, yielding F1 ⊂ (F1)

a = F a = F, for any system σ1 such that d(σ1, σ) is
finite. Now the upper semicontinuity of F at σ becomes evident.

In order to prove the converse, it is enough to apply Theorem 4.4. Again, we
assume that ϕ1 and ϕ2 are finite, and let us consider first dim(F ) = n; i.e., ϕ1 6= ϕ2.
Now, if z ∈ bd(F )\ρcl(B) it must be, for instance, a′z = ϕ1, and Theorem 4.4 ensures
that the constraint a′x ≥ a′z belongs to σa (it defines the only possible supporting
half-space to F at z, and ‖a‖ = 1). This fact requires the existence of a sequence
{t1k} ⊂ T such that limk→∞‖at1

k
‖ = ∞ and

(
a
a′z

)
=

(
a
ϕ1

)
= limk→∞

∥∥∥at1
k

∥∥∥−1
(

at1
k

bt1
k

)

= limk→∞
∣∣∣αt1

k

∣∣∣−1
(

αt1
k
a

bt1
k

)
,

and this expression entails the corresponding part in the condition ♦. The discussion
of the possibility a′z = ϕ2 follows a similar reasoning, yielding the other part.

If ϕ1 = ϕ2 (i.e., dim(F ) = n − 1), taking two sequences {zk := z + k−1a} and
{yk := y − k−1a}, where z ∈ F \ ρcl(B), and following the same steps as those in the
proof of Theorem 4.4, we obtain a couple of constraints in σa, namely a′1x ≥ a′1z and
a′2x ≥ a′2z , such that a′1a ≤ 0 and a′2a ≥ 0. Since {a1, a2} ⊂ {−a,+a}, if we had
a1 = a2 we would get a′1a = a′2a = 0, and this is obviously impossible.

Observe that condition ♦, in Corollary 4.6, never holds for a finite system (|T | <
∞); i.e., upper semicontinuity is excluded in this case (this conclusion also follows
from Theorem 3.4).

Let us illustrate the scope of the last result by revisiting Example 3.5. Concerning
σ1, observe that limt→∞(−t2)/t = −∞ 6= −1 = ϕ1, so that F is not USC at σ1.
However, {k} and {−k} are sequences satisfying condition ♦ for σ2, and F is USC at
σ2.

5. Sufficient conditions for upper semicontinuity. The first result in this
section refers to the asymptotic system σa and its solution set F a.
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Theorem 5.1. If σ is a consistent system for which F a \ F is bounded, then F
is USC at σ.

Proof. Since F a \F is bounded, there will exist ρ > 0 such that F a \F ⊂ ρcl(B),
and F \ ρcl(B) = F a \ ρcl(B). If d(σ1, σ) is finite, Lemma 2.4 allows us to write

F1 \ ρcl(B) ⊂ F a \ ρcl(B) = F \ ρcl(B),

and Theorem 3.1 applies (with ε = ∞).
Theorem 5.1 provides the upper semicontinuity of F at the system σ3 introduced

in Example 2.5.
The following example shows that the condition given in Theorem 5.1 fails to be

necessary, even in the favorable case in which F is full dimensional.
Example 5.2. Let us consider the system, in <2,

σ := {tx1 + x2 ≥ − |t| , t ∈ <}.

We shall prove that dim(F ) = 2 and that F is USC at σ, despite the unboundedness
of F a \ F .

It can be easily checked that

F = {x ∈ <2 | x2 ≥ 0 and x1 ∈ [−1,+1]},

whereas

σa = {−x1 ≥ −1, x1 ≥ −1},

and F a \ F is unbounded.
Next we shall prove that F is USC at σ, starting from a perturbed system σ1

such that d(σ1, σ) < ε < 1

σ1 := {(t+ ut)x1 + (1 + vt)x2 ≥ − |t|+ wt, t ∈ <},

where |ut| < ε, |vt| < ε, |wt| < ε for all t ∈ <. According to Lemma 2.4, F1 ⊂ F a

and if x = (x1, x2)
′ ∈ F1 one has x1 ∈ [−1,+1]. We proceed by showing that x2 is

also bounded from below in F1. For t = 1 we get

(1 + v1)x2 ≥ −1 + w1 − (1 + u1)x1 ≥ −1 + w1 − 1− u1,

and, since 1 + v1 > 0, we write

x2 ≥ −2 + w1 − u1

1 + v1
>
−2− 2ε

1 + v1
>
−2(1 + ε)

1− ε
.

Then, if we define ρ := 2(1 + ε)/(1 − ε), it is obvious that F1 \ ρcl(B) ⊂ F \ ρcl(B),
provided that d(σ1, σ) < ε.

The system studied in the following example shows that the upper semicontinuity
of F at σ does not guarantee dim(F ) = dim(F a). However, if dim(F ) = n, the above
dimensional equality is trivial, and if dim(F ) = n− 1 the equality is still valid under
the upper semicontinuity property (it can be argued as in the final paragraph of the
proof given for Corollary 4.6, approaching any point z ∈ rint(F ) \ ρcl(B) by means
of the same couple of sequences {zk := z + k−1a} and {yk := y − k−1a}, where
aff(F ) = {x ∈ <n | a′x = b}).
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Example 5.3. We analyze the system in <2

σ =

{
tx1 + x2 ≥ 0, t ∈ <
sx1 − x2 ≥ 0, s ∈ <

}
.

It is obvious that F = {02} and, so, F is USC at σ (Corollary 3.2), whereas σa =
{x1 ≥ 0, −x1 ≥ 0}, giving rise to F a = {x ∈ <2 | x1 = 0}. Thus, dim(F ) < dim(F a).

Before we reach the following sufficient condition, we need a technical lemma.
Lemma 5.4. Let c ∈ <n, h ∈ <n \ {0n} and ρ > 0 such that ‖c+ λh‖ > ρ for

all λ ≥ 0. Then, for every d ∈ <n, there exists λd > 0 such that, for each λ ≥ λd and
all α ∈ [0, 1], the following inequality holds:

‖α(d+ λh) + (1− α)c‖ > ρ.

Proof. First we shall prove that there exists ε > 0 such that, for each u ∈ εB
and for all λ ≥ 0, we have ‖c+ λ(h+ u)‖ > ρ. If this is not the case, there will exist
sequences {uk} and {λk} such that limk→∞uk = 0n, λk > 0, and ‖c+ λk(h+ uk)‖ ≤
ρ, k = 1, 2, ... .

Two possibilities arise. If {λk} is bounded, there must exist λ0 ≥ 0 for which
‖c+ λ0h‖ ≤ ρ is fulfilled, and this represents a contradiction. If, alternatively, {λk}
is unbounded, we get

∥∥λ−1
k c+ h+ uk

∥∥ ≤ ρ/λk, k = 1, 2, ... , giving rise to h = 0n,
which constitutes another contradiction.

Now we are ready to finish the proof:

‖α(d+ λh) + (1− α)c‖ =
∥∥c+ αλ[h+ λ−1(d− c)]

∥∥ > ρ,

if λ is large enough to guarantee that λ−1(d− c) < ε.
Theorem 5.5. Let σ = {a′tx ≥ bt, t ∈ T} be a system, in <n, such that the

solution set F and A = {at, t ∈ T} are both unbounded. Suppose that, additionally, σ
satisfies the following conditions:

(a) dim(F ) = dim(F a).
(b) There exists ρ > 0 such that F∩ ρcl(B) 6= ∅, and

(b1) for all z ∈ F a \ ρcl(B) there exists h ∈ F∞ \ {0n} such that
‖z + λh‖ > ρ for every λ ≥ 0;

(b2) for all z ∈ rbd(F ) \ ρcl(B) there exists an inequality in σa,
a′x ≥ a′z, which is properly active at z (i.e., F is not completely
contained in the hyperplane {x ∈ <n | a′x = a′z}).

Then F is USC at σ.
Proof. The first step in the proof establishes

rbd(F ) \ ρcl(B) ⊂ rbd(F a) \ ρcl(B).

This a straightforward consequence of (b2) and [11, Theorem 11.6].
The second step consists of proving

F \ ρcl(B) ⊂ F a \ ρcl(B),

and then applying Theorem 5.1. Otherwise, we take z ∈ F a \ F, ‖z‖ > ρ, and by
condition (b1) we can consider h ∈ F∞ \{0n} such that ‖z + λh‖ > ρ for every λ ≥ 0.
If we pick y ∈ rint(F ), Lemma 5.4 yields ‖α(y + λh) + (1− α)z‖ > ρ if α ∈ [0, 1] and
λ is large enough, for instance λ ≥ λ0.
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Corollary 8.3.1 in [11] establishes (rint(F ))∞ = (F )∞ and, for all λ ≥ 0, y+λh ∈
rint(F ) ⊂ rint(F a) (we have used condition (a)). Since it has been assumed that
z /∈ F, if λ ≥ λ0 we can find in the segment ]y + λh, z[ a point v such that v ∈
rbd(F ) \ ρcl(B) at the same time that the accessibility lemma [11, Theorem 6.1]
yields v ∈ rint(F a) \ ρcl(B). This last statement contradicts the inclusion relation,
already established, between the relative boundaries.

In Example 5.2, conditions (a) and (b2), for ρ ≥ 1, are satisfied, but (b1) fails.
This fact allows us to point out that the conditions in Theorem 5.5 are not conjointly
necessary for upper semicontinuity. The corollary that follows provides a vast class
of systems for which condition (b1) is fulfilled.

Corollary 5.6. Let σ = {a′tx ≥ bt, t ∈ T} be a consistent system, in <n, which
satisfies the following conditions:

(i) cl(M) is pointed.
(ii) bd(M) \ P = ∅.
(iii) {bt, t ∈ T} is bounded.
Then conditions (a) and (b1) in Theorem 5.5 are fulfilled.
Proof. Corollary 14.6.1 in [11] leads to

dim(F∞) = dim{cl(M)}o = n− lineality{cl(M)},

where lineality{cl(M)} denotes the dimension of the largest subspace contained in
cl(M). Since cl(M) is pointed, we get dim(F∞) = n, and both F and Fa are full
dimensional. Hence, (a) is obviously satisfied.

By Lemma 2.2(iii), P is closed. Moreover, in the proof of Corollary 4.2 we have
established cl(M) = cl cone(S), where S ⊂ bd(M). Condition (ii) implies bd(M) ⊂ P
and, therefore,

cl(M) = cl cone(S) ⊂ cl conv bd(M) ⊂ P.

This inclusion actually means cl(M) = P and F∞ = {cl(M)}o = P o = F a as a
consequence of (iii). Now, if z ∈ F a \ ρcl(B), we can take h = z and so ‖z + λh‖ =
(1 + λ) ‖z‖ > ρ for every λ ≥ 0. Therefore, condition (b1) holds.
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1990.

[2] B. Bank, J. Guddat, D. Klatte, B. Kummer, and K. Tammer, Non-linear Parametric
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Abstract. Consider the following integer isotone optimization problem. Given an n-vector x
find an n-vector y with integer components so as to minimize max{wj |xj − yj | : 1 ≤ j ≤ n} subject
to y1 ≤ y2 ≤ · · · ≤ yn, where each weight wj > 0. In this article, the dual of this problem is
defined, a strong duality theorem is established, and the set of all optimal solutions is shown to
be all monotonic integer vectors lying in a vector interval. In addition, algorithms are obtained
for computation of optimal solutions having the worst-case time complexity O(n2), when wj are
arbitrary, and O(n), when wj = 1 for all j. The problem considered is of isotonic regression type
and has practical applications, for example, to estimation and curve fitting. It is also of independent
mathematical interest. The problem and the results can be easily extended to a partially ordered
set.

Key words. isotonic regression, isotone optimization, duality, uniform norm, optimal solutions,
min–max and max–min, algorithms, complexity
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1. Introduction. Consider the following integer isotone optimization problem.
Given x = (x1, x2, . . . , xn) ∈ Rn find y = (y1, y2, . . . , yn) ∈ Rn with integer yj ,
1 ≤ j ≤ n, so as to minimize

d(x, y) := max{wj |xj − yj | : 1 ≤ j ≤ n}(1.1)

subject to the isotonicity or monotonicity constraint y1 ≤ y2 ≤ · · · ≤ yn, where
each weight wj > 0, 1 ≤ j ≤ n. Such problems without the integer constraint on
yj fall into the general class of problems called isotonic regression. For example, if
dp(x, y) :=

∑n
j=1 wj |xj − yj |p, 1 ≤ p < ∞, and we minimize d2(x, y) and d1(x, y),

instead of d(x, y) of (1.1), the problem is called the isotonic regression [3, 16] and
isotonic median regression [5, 15], respectively. When d(x, y) is minimized without
the integer constraint on yj , the problem is called isotone optimization [18, 19]. In the
classical approach to regression and other optimization problems, the least squares
objective, d2(x, y), has been extensively used. This method gained its popularity due
to its applications to linear regression—the differentiability properties of the objective
leading to explicit mathematical expressions. For nonlinear problems, one is generally
forced to use either an iterative procedure justified by a mathematical algorithm
or a highly inefficient exhaustive search [13]. With the advances in optimization
and computational applications, for some time now, both d1(x, y) (mean absolute
deviation) and d(x, y) (maximum absolute deviation) objective functions are being
used to obtain best fits and estimators. See, for example, MINMAD and MINMADAX
regression in [2] and the least absolute value (LAV) or L1-norm estimation and L∞-
norm estimation in [10]. See also [4]. Note that ‖x‖p := dp(x, 0)1/p, 1 ≤ p < ∞,
and ‖x‖∞ := d(x, 0) are, respectively, the Lp and L∞ norms on Rn. Both d1 and
d∞ objectives have the strong advantage that their form allows transformation of the
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problem to a linear program facilitating computation of its solution [2]. Different
objective functions, such as the ones considered above, yield different computational
complexities and give best fits which have different properties and which are, therefore,
appropriate in different situations. The nature of the problem essentially determines
the choice of the objective function. The example that follows illustrates this point.

Goldstein and Kruskal [9] first introduced the integer constraint on yj in isotonic
regression and cited practical applications of this problem. They showed that the
optimal solution of this problem can be obtained by rounding the unique optimal
solution of the isotonic regression problem. Motivated by their work, we analyze
the integer isotone optimization problem. The following example is taken from their
article and modified for the purpose of illustrating an application of our problem. A
magazine has different local versions published in distinct localities. Each advertiser
purchases space in one or more versions, is assigned a “class number,” and is charged
according to that number. The class number is an integer which is approximately
proportional to the combined circulation of the versions selected by the advertiser. As
a result of several “special case” decisions, circulation shifts, historical developments,
etc., these numbers have become inconsistent. It is desired to assign new class numbers
to advertisers according to their combined circulation. The class numbers must be
fair; i.e., for any two advertisers X and Y , X must not be assigned a lower class
number than Y if X has a higher circulation than Y . Furthermore, the maximum
absolute change in each class number must be kept as small as possible to minimize
the “sense of disturbance” each advertiser experiences. Suppose that the advertisers
are numbered 1, 2, . . . , n according to the increasing order of their circulation. For the
jth advertiser, 1 ≤ j ≤ n, let xj and yj denote, respectively, the old class number and
the new one to be computed. The sense of disturbance to be minimized is quantified
by max{|xj − yj | : 1 ≤ j ≤ n}. We certainly have y1 ≤ y2 ≤ · · · ≤ yn with integer yj .
This is problem (1.1) with wj = 1. Note that we could not simultaneously minimize
the absolute change in each class number; minimizing d(x, y), which bounds each
change, is the best we could do. Note also that d2 or d1 would not be as appropriate
for this problem as d.

It will be seen from the results summarized below that the problem has a rather
rich and interesting mathematical structure. We establish a dual problem and weak
duality (section 2). We obtain a strong duality result and a closed form representation
for the set of optimal solutions—a vector interval whose endpoints are the minimal
and maximal solutions (section 3). We also obtain max–min and min–max forms
of optimal solutions. We devise algorithms of worst-case time complexity O(n2) for
computation of solutions. When wj = 1 for all j, we show that a solution to our
problem is obtained by rounding a special solution of the problem without the integer
constraint. This gives an O(n) algorithm for computing the solution (section 4). The
problem of isotone optimization (without the integer constraint) was considered in [18,
19]. Clearly, the set of feasible solutions to this problem, all monotone vectors y, is a
convex cone. However, such an inference is not possible with the integer constraint.
Nevertheless, strong results as stated above hold. For a further comparison of the two
versions of the problem see section 3.

Finally, we note that our problem has the following integer programming formu-
lation. Given x find y with integer yj so as to minimize t subject to wjyj + t ≥ wjxj ,
1 ≤ j ≤ n, −wjyj + t ≥ −wjxj , 1 ≤ j ≤ n, and y1 ≤ y2 ≤ · · · ≤ yn.

2. The dual problem and weak duality. The problem defined in section 1
is the primal problem. In this section, we develop a dual problem and obtain a weak
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duality result. We strengthen the latter to strong duality in section 3.
Let M be the set of all monotone integer vectors; i.e., all z ∈ Rn such that

z1 ≤ z2 ≤ · · · ≤ zn and each zj is an integer. Our primal problem then may be
restated as follows. Given x ∈ Rn find y ∈M so that

∆ := min{d(x, z) : z ∈M} = d(x, y).

The notations b·c and d·e are used to denote, respectively, the floor and ceiling
functions of the reals. Similarly, [·] denotes the rounding function defined as follows.
For any real c, we let [c] = bcc if bcc ≤ c < bcc+1/2 and [c] = dce if dce−1/2 < c ≤ dce.
For c = bcc+1/2 = dce−1/2, we set [c] equal to either bcc or dce uniformly throughout
the computations. Throughout this article, we use the square brackets [·] to denote
the rounding function only.

We first obtain lower bounds on ∆. These give us motivation to define a dual
problem and lead us naturally to a weak duality result. Indeed, let

δ1 = max{|xj − [xj ]| : 1 ≤ j ≤ n}.
If y ∈ M , then, since yj is an integer, we have wj |xj − yj | ≥ wj |xj − [xj ]| for all j.
This gives d(x, y) ≥ δ1, and, thus, ∆ ≥ δ1. Note that if x1 ≤ x2 ≤ · · · ≤ xn, then we
immediately obtain an optimal solution y of the problem by setting yj = [xj ] for all
j, and in this case indeed ∆ = δ1. Thus, the lower bound δ1 is attained by ∆. Now
consider the complementary case xj > xk for some j < k. Hopefully, we could obtain
a different bound on ∆. To this end, let T and T0 be the following sets of ordered
pairs:

T = {(j, k): 1 ≤ j ≤ k ≤ n},
T0 = {(j, k) ∈ T : j < k, xj > xk}.

Let also, mjk = (wjxj + wkxk)/(wj + wk), (j, k) ∈ T . Note that mjk may be viewed
as the average of xj and xk with weights wj/(wj +wk) and wk/(wj +wk), which add
up to 1. Then, clearly, mjj = xj and, by the property of averages, we observe (for
use in section 3) that

min{xj , xk} ≤ mjk ≤ max{xj , xk}.(2.1)

By relaxing the constraints of the original problem, for each (j, k) ∈ T0, we define the
following subproblem of two variables. Find integer yj and yk so as to minimize

max{wj |xj − yj |, wk|xk − yk|}
subject to yj ≤ yk. Because the subproblem is a relaxation of the original problem,
the optimal objective value of the subproblem gives a lower bound on ∆ for each
(j, k) ∈ T0. To solve the subproblem, then, let us first drop the integer restriction on
yj , yk. Then, clearly, since xj > xk, the unique optimal solution (yj , yk) must satisfy
yj = yk and wj(xj − yj) = wk(yk − xk). This gives yj = yk = mjk with the optimal
objective value equal to wj(yj −mjk) = (wjwk)/(wj + wk)(xj − xk).

Now introduce the integer constraint on yj , yk. The subproblem becomes more
complicated. Its optimal solution is not unique in general. Furthermore, it is not true
that yj = yk in its every solution. For example, suppose wj = wk = 1, xj = 5/2,
xk = 1/2. Then yj = 1, yk = 2 is optimal. Note, however, that yj = yk = 1 or 2 are
also optimal. Thus, we may surmise the following.
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Lemma 2.1. The subproblem always has at least one optimal solution (yj , yk)
with yj = yk.

Proof. Assume that yj < yk at optimality. We produce another optimal solution
(y′j , y

′
k) with y′j = y′k. If yj ≥ xk, let y′j = yj and y′k = yj . Then y′j = y′k. Since,

xj − y′j = xj − yj and 0 ≤ y′k − xk < yk − xk, the new solution (y′j , y
′
k) is at least

as good as (yj , yk), and, hence, optimal. If yk ≤ xj , then, by a symmetric argument,
the lemma holds. Now suppose that yj < xk and yk > xj . If wj ≥ wk, then let
y′j = yj and y′k = yj . Then y′j = y′k and xj − y′j = xj − yj . Since xj > xk, we
have xj − yj > xk − yj = xk − y′k ≥ 0. This with the inequality wj ≥ wk gives
wj |xj − y′j | = wj |xj − yj | ≥ wk|xk − y′k|. Consequently,

max{wj |xj − y′j |, wk|xk − y′k|} = wj |xj − yj | ≤ max{wj |xj − yj |, wk|xk − yk|}.

Thus (y′j , y
′
k) is optimal. If wj < wk, a symmetric argument completes the

proof.
Having established that yj , yk have a common value in this special optimal so-

lution, we ask if we could reasonably expect this value to equal bmjkc or dmjke. If
so, what are the conditions which let us make the choice among the two? To answer
these questions, define an integer cjk for each (j, k) ∈ T as follows.

cjk = bmjkc, if wj |mjk − bmjkc| ≤ wk|mjk − dmjke|,
= dmjke otherwise.

It is easy to verify that cjj = [mjj ] = [xj ]. We show below that cjk solves the
subproblem.

Lemma 2.2. yj = yk = cjk gives an optimal solution to the subproblem, and its
minimum objective function value is given by

max{wj |xj − cjk|, wk|xk − cjk|} = rjk + wj |mjk − bmjkc|,(2.2)

if wj |mjk − bmjkc| ≤ wk|mjk − dmjke|,
= rjk + wk|mjk − dmjke| otherwise,

where rjk = (wjwk)/(wj + wk)(xj − xk).
Proof. Using Lemma 2.1, we let yj = yk = c in the objective function of the

subproblem and find the value of c which minimizes the objective. To this end, we
verify that wj(xj−mjk) = wk(mjk−xk) = rjk, by substituting (wjxj +wkxk)/(wj +
wk) for mjk. Since xj − c = (xj −mjk) + (mjk − c), we obtain

wj(xj − c) = wj(xj −mjk) + wj(mjk − c) = rjk + wj(mjk − c).

Similarly, wk(c− xk) = rjk + wk(c−mjk). Consequently, we have

max{wj |xj − c|, wk|xk − c|} = rjk + wj(mjk − c), c ≤ mjk,(2.3)

= rjk + wk(c−mjk) otherwise.

Thus, for c ≤ mjk, (2.3) is minimized by c = bmjkc giving the minimum value
rjk + wj(mjk − bmjkc) = V1, say. Similarly, for c > mjk, the minimizer of (2.3) is
c = dmjke with the minimum rjk + wk(dmjke − mjk) = V2, say. If V1 ≤ V2, or,
equivalently, wj |mjk − bmjkc| ≤ wk|mjk − dmjke|, then bmjkc is the minimizer of
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the objective of the subproblem, otherwise dmjke is the minimizer. Now, the defini-
tion of cjk shows that it minimizes the objective with the minimum value as in the
lemma.

As was observed before, the optimal objective value of the subproblem gives a
lower bound on ∆ for each (j, k) ∈ T0. Hence, if we let

δ2 = max{max{wj |xj − cjk|, wk|xk − cjk|}: (j, k) ∈ T0},

then ∆ ≥ δ2, which is the new bound we wanted. (The use of the right side of (2.2)
in the computation of δ2 is discussed in section 4.) Now, if

δ = max{δ1, δ2},

then ∆ ≥ δ. This leads to our dual problem which is to determine δ. Note that δ
depends only on the given vector x. Observe also that δ has two components: δ1,
which is formed by considering each variable yj separately, and δ2, which is obtained
by considering variables pairwise. We state below the weak duality formally.

PROPOSITION 2.3 (weak duality) ∆ ≥ δ.
We obtain in Theorem 3.3 the strong duality ∆ = δ. Thus the singular and

pairwise values, δ1 and δ2, turn out to be adequate to generate the overall optimality,
a rather remarkable occurrence.

3. Strong duality and characterization of optimal solutions. In this sec-
tion, we establish a strong duality result and identify optimal solutions to the primal.
We start with the following definitions:

y
j

= dmax{xi − δ/wi : i ≤ j}d, 1 ≤ j ≤ n,(3.1)

ȳj = bmin{xk + δ/wk : k ≥ j}c, 1 ≤ j ≤ n.(3.2)

Clearly, y, ȳ ∈ M . In Theorem 3.3 below, we establish the strong duality ∆ = δ
and characterize the set of all optimal solutions to the problem as a “vector interval”
[y, ȳ] ∩ Z of Rn, where y ≤ ȳ; y and ȳ are, respectively, the minimal and maximal
optimal solutions. We need the following preliminary results.

Lemma 3.1. For all (j, k) ∈ T , the following two conditions are equivalent:
(a) wj(mjk − bmjkc) ≤ wk(dmjke −mjk),
(b) wj(xj − bmjkc) ≤ wk(dmjke − xk).
Proof. It is easy to verify that (a) may be written as (wj +wk)mjk ≤ wjbmjkc+

wkdmjke. Since (wj + wk)mjk = wjxj + wkxk, the previous inequality is equivalent
to wjxj + wkxk ≤ wjbmjkc+ wkdmjke, which may be written in the form of (b).

Lemma 3.2. If (j, k) ∈ T , then xj − δ/wj ≤ cjk ≤ xk + δ/wk.
Proof. If (j, k) ∈ T0, then, by the definition of δ2, we have wj |xj−cjk| ≤ δ2 ≤ δ and

wk|xk−cjk| ≤ δ2 ≤ δ. This gives wj(xj−cjk) ≤ δ and wk(cjk−xk) ≤ δ. Rearranging
these two inequalities we obtain xj − δ/wj ≤ cjk ≤ xk + δ/wk, which is the required
result. Now suppose that (j, k) ∈ T\T0. Then, by the definition of T and T0, we
have xj ≤ xk, which gives [xj ] ≤ [xk]. Also, by (2.1), xj ≤ mjk ≤ xk. Consequently,
[xj ] ≤ [mjk] ≤ [xk]. Again, by the definition of δ1, we have wj |xj − [xj ]| ≤ δ1 ≤ δ
and wk|xk − [xk]| ≤ δ1 ≤ δ. This gives wj(xj − [xj ]) ≤ δ and wk([xk] − xk) ≤ δ.
Rearranging these inequalities we have

xj − δ/wj ≤ [xj ] ≤ [xk] ≤ xk + δ/wk.(3.3)
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Suppose now that wj(mjk − bmjkc) ≤ wk(dmjke −mjk). In this case cjk = bmjkc,
and condition (b) of Lemma 3.1 holds. If wj(xj − bmjkc) ≤ 0 in that condition, then
xj ≤ bmjkc. Consequently, [xj ] ≤ bmjkc ≤ [mjk] ≤ [xk]. By (3.3), the required result
holds for cjk = bmjkc. Now suppose that wj(xj − bmjkc) > 0 in condition (b) of
Lemma 3.1. Then, by that condition, wk(dmjke−xk) > 0, which gives bmjkc < xj ≤
xk < dmjke. This implies that dmjke − bmjkc = 1 and bmjkc ≤ [xj ] ≤ [xk] ≤ dmjke.
Clearly, either [xj ] = bmjkc or [xj ] = dmjke. In the former case, by (3.3), the required
result holds for cjk = bmjkc. In the latter case, [xj ] = [xk] = dmjke. Now condition
(b) of Lemma 3.1 with dmjke = [xk] gives wj(xj − bmjkc) ≤ wk([xk] − xk). By the
definition of δ1, we have wk([xk] − xk) ≤ δ1 ≤ δ. Consequently, wj(xj − bmjkc) ≤ δ.
This gives xj − δ/wj ≤ bmjkc ≤ dmjke = [xk]. Then the required result follows again
for cjk = bmjkc by (3.1). The case wj(mjk − bmjkc) > wk(dmjke − mjk) may be
established similarly.

Theorem 3.3. (a) (Strong duality) ∆ = δ.

(b) (Characterization of optimal solutions). Both y and ȳ are optimal solutions
with y ≤ ȳ; thus d(x, y) = d(x, ȳ) = δ. Furthermore, y ∈ M is an optimal solution if
and only if y ≤ y ≤ ȳ.

Proof. We prove both parts simultaneously. Clearly, y, ȳ ∈M . We now show that
y ≤ ȳ. Let an index j be fixed and i ≤ j ≤ k. Then, by Lemma 3.2, there exists an
integer c such that xi−δ/wi ≤ c ≤ xk+δ/wk. Consequently, dxi−δ/wie ≤ bxk+δ/wkc
for all i and k with i ≤ j ≤ k. It follows at once from (3.1) and (3.2) that y

j
≤ ȳj ; i.e.,

y ≤ ȳ. Again, by (3.1) and (3.2), we have xj−δ/wj ≤ y
j
≤ ȳj ≤ xj+δ/wj , 1 ≤ j ≤ n.

Hence, −δ ≤ wj(yj − xj) ≤ wj(ȳj − xj) ≤ δ, which gives d(x, y) = d(x, ȳ) ≤ δ. Since

y and ȳ ∈M , we have shown that ∆ = δ, and y and ȳ are optimal solutions.

Now we characterize an optimal solution. Suppose y ∈ M is optimal. Fix an
index j. Then for all i ≤ j, we have yi ≤ yj . But wi|xi − yi| ≤ δ, which gives
xi − δ/wi ≤ yi. Thus xi − δ/wi ≤ yj for all i ≤ j, which implies y

j
≤ yj . Similarly,

yj ≤ ȳj . Hence y ≤ yj ≤ ȳj . Conversely, suppose that y ∈ M and y ≤ y ≤ ȳ.
Since y

j
≤ yj ≤ ȳj , it is easy to verify that |xj − yj | ≤ max{|xj − y

j
|, |xj − ȳj |}.

This at once gives d(x, y) ≤ max{d(x, y), d(x, ȳ)}. Now, both y and ȳ are optimal;
hence, d(x, y) = d(x, ȳ) = δ. It follows that d(x, y) ≤ δ, which shows the optimality
of y.

We now make several remarks. The results of the above theorem are similar to
those for the problem without the integer constraint [18, 19]; however, the definitions
of quantities are much different and the proofs are more involved. Special duality
results exists for general approximation problems such as the one we are considering
but without the integer constraint [6, 7, 20, 22]. However, when the integer constraint
is introduced, the problem assumes a different structure. A comprehensive treatment
of the duality for such problems does not exist at this time. A number of approxi-
mation problems are known to have extremal (i.e., minimal and/or maximal) optimal
solutions [11, 12, 21, 22]. The above theorem shows that this is true for our problem.
A general theory of extremal solutions for such problems with integer constraints does
not currently exist.

Both the problems of isotonic regression and isotonic medium regression can be
solved by the well-known pool adjacent violators (PAV) algorithms. It is shown in [17]
that the PAV algorithms can be applied to a broad class of problems including the
two above. However, the PAV algorithms cannot be applied to our problem because
it has a different structure than isotonic regression.
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Let ∆′ andM ′ be quantities for the isotone optimization problem without the inte-
ger constraint corresponding, respectively, to ∆ and M of our problem with the integer
restriction. If d(x, u) = ∆′ for some u ∈M ′ then, clearly, [u] := ([u1], [u2], . . . , [un]) ∈
M . This observation shows that ∆ ≤ ∆′ + max{wj : 1 ≤ j ≤ n}/2. On the
other hand, ∆/∆′ can be arbitrarily large. For example, let n = 2, wj = 1 for
all j, and x = (1/2 + 2ε, 1/2), where ε > 0. It is easy to see that y = (1, 1) and
u = (1/2 + ε, 1/2 + ε), respectively, are solutions to the two problems with and with-
out the integer constraint. Consequently, ∆ = 1/2 and ∆′ = ε giving ∆/∆′ = 1/(2ε).

The results of this section can be easily extended to a problem on a set S =
{s1, s2, . . . , sn} with partial order ≤. For any function x on S, let xj = x(sj). A
function y on S is called isotone [18, 19] if yj ≤ yk whenever sj ≤ sk. Given x, the
problem is to find an isotone y which minimizes d(x, y). All the previous formulae
and results hold for this problem when ≤ is interpreted as the partial order and < is
interpreted as ≤ but 6=.

4. Minimax forms of optimal solutions and algorithms. In this section we
derive the min–max and max–min forms of optimal solutions and obtain algorithms
for computing the solutions. It is known that the (unique) optimum of the isotonic
regression problem can be expressed in max–min and min–max forms [16]. Van Eeden
[8] showed that if the objective function of the isotonic problem is separable and each
component function is strictly unimodal, then such representations for the optimal
solution can be obtained. Clearly, dp(x, y), 1 < p < ∞, is a special case of such a
separable function, and in particular so is d2(x, y), the isotonic regression objective.
Note that d(x, y) is not separable or unimodal. It was shown in [19] that, in spite of
this, one solution of the isotonic optimization problem (without the integer constraint)
has such a representation and certain special properties. The max–min and min–max
representations also hold for our integer restricted problem as shown below, and they
lead us to a linear time algorithm for computation of an optimal solution when wj = 1.

For each (j, k) ∈ T , we defined integers cjk in section 2. We define two vectors z
and z̄ by

zj = max
i≤j

min
k≥j

cik, 1 ≤ j ≤ n,

z̄j = min
k≥j

max
i≤j

cik, 1 ≤ j ≤ n.

Theorem 4.1. Both z and z̄ are optimal solutions with z ≤ z̄. If wj = 1 for all
j, then zj = z̄j = [(maxi≤j xi + mini≥j xi)/2].

Proof. By an elementary result in minimax theory, we have max min ≤ min max
[14]. This gives zj ≤ z̄j . By Lemma 3.2, we have xi − δ/wi ≤ cik ≤ xk + δ/wkj

for all i ≤ k. Taking the relevant minima and maxima, we at once obtain by (3.1)
and (3.2) that y

j
≤ zj ≤ z̄j ≤ ȳj . Now optimality of z and z̄ follows from part

(b) of Theorem 3.3. If wj = 1 for all j, we have cik = [mik] = [(xi + xk)/2] for all
(i, k) ∈ T as may be easily verified. The last statement of the theorem follows from
this observation.

We note that if wj = 1 for all j, then u defined by uj = (maxi≤j xi+mini≥j xi)/2
is an optimal solution of the isotone optimization problem [19]. Since zj = z̄j = [uj ]
when wj = 1, we see that the rounding of a solution of the isotone problem gives a
solution of the problem with the integer constraint. As was observed earlier, a similar
result holds for the integer isotonic regression problem [9].

The algorithms for computing the solutions y, ȳ and z, z̄ may be based directly

on their representations. Clearly, the sets T and T0, at worst, contain O(n2) elements.
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First suppose that wj > 0 are arbitrary. It is easy to see that the computations of
cjk, (j, k) ∈ T , and of δ2 and, hence, δ require O(n2) time. It is easy to verify that
δ2 can be determined with less computations using the right side of (2.2) than its left
side once wj(mjk − bmjkc) and wk(dmjke − mjk) are obtained (compute rjk using
rjk = wj(xj−mjk)). We may then compute y and ȳ in O(n) time using their obvious
recursive definitions. For example, y

1
= x1 − δ/w1, yj+1

= max{y
j
, xj − δ/wj},

1 ≤ j ≤ n − 1. Hence, the overall worst-case time complexity [1] of the algorithm
for computing y, ȳ is O(n2). Again, clearly, the computation of z and z̄ is of O(n2)
worst-case time complexity. Now suppose that wj = 1 for all j. Then y and ȳ still

take O(n2) overall time, but we may compute z and z̄ in O(n) time using, again,
their obvious recursive definitions. Thus, the assumption wj = 1 only reduces the
complexity of computation of z and z̄ but not of y and ȳ.
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